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Abstract

The recent advances in aerial- and satellite-based hyperspectral imaging sensor tech-

nologies have led to an increased availability of Earth’s images with high spatial and

spectral resolution, which opened the door to a large range of important applications.

Hyperspectral imaging records detailed spectrum of the received light in each spatial po-

sition in the image, in which each pixel contains a highly detailed representation of the

reflectance of the materials present on the ground, and a better characterization in terms

of geometrical details. Since different substances exhibit different spectral signatures,

the abundance of informative content conveyed in the hyperspectral images permits an

improved characterization of different land coverage. Therefore, hyperspectral imaging

emerged as a well-suited technology for accurate image classification in remote sensing.

In spite of that, a significantly increased complexity of the analysis introduces a series of

challenges that need to be addressed on a serious note. In order to fully exploit the po-

tential offered by these sensors, there is a need to develop accurate and effective models

for spectral-spatial analysis of the recorded data.

This thesis aims at presenting novel strategies for the analysis and classification of hy-

perspectral remote sensing images, placing the focal point on the investigation on deep

networks for the extraction and integration of spectral and spatial information. Deep

learning has demonstrated cutting-edge performances in computer vision, particularly in

object recognition and classification. It has also been successfully adopted in hyperspec-

tral remote sensing domain as well. However, it is a very challenging task to fully utilize

the massive potential of deep models in hyperspectral remote sensing applications since

the number of training samples is limited which limits the representation capability of a

deep model. Furthermore, the existing architectures of deep models need to be further

investigated and modified accordingly to better complement the joint use of spectral



and spatial contents of hyperspectral images. In this thesis, we propose three differ-

ent deep learning-based models to effectively represent spectral-spatial characteristics of

hyperspectral data in the interest of classification of remote sensing images.

Our first proposed model focuses on integrating CRF and CNN into an end-to-end

learning framework for classifying images. Our main contribution in this model is the

introduction of a deep CRF in which the CRF parameters are computed using CNN and

further optimized by adopting piecewise training. Furthermore, we address the problem

of overfitting by employing data augmentation techniques and increased the size of the

training samples for training deep networks. Our proposed 3DCNN-CRF model can

be trained to fully exploit the usefulness of CRF in the context of classification by

integrating it completely inside of a deep model.

Considering that the separation of constituent materials and their abundances provide

detailed analysis of the data, our second algorithm investigates the potential of using

unmixing results in deep models to classify images. We extend an existing region based

structure preserving non-negative matrix factorization method to estimate groups of

spectral bands with the goal to capture subtle spectral-spatial distribution from the

image. We subsequently use these important unmixing results as input to generate

superpixels, which are further represented by kernel density estimated probability dis-

tribution function. Finally, these abundance information-guided superpixels are directly

supplied into a deep model in which the inference is implicitly formulated as a recurrent

neural network to perform the eventual classification.

Finally, we perform a detailed investigation on the possibilities of adopting generative

adversarial models into hyperspectral image classification. We present a GAN-based

spectral-spatial method that primarily focuses on significantly improving the multiclass

classification ability of the discriminator of GAN models. In this context, we propose to

adopt the triplet constraint property and extend it to build a useful feature embedding

for remote sensing images for use in classification. Furthermore, our proposed Triplet-

3D-GAN model also includes feedback from discriminator’s intermediate features to

improve the quality of the generator’s sample generation process.
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Chapter 1

Introduction

In this chapter, we present the motivations of our work, followed by an overview of our

contributions. We conclude this chapter with an outline of the structure of the thesis.

1.1 Motivations

Human vision has the ability to perceive information from three types of color photore-

ceptors which are sensitive to three different spectra in the visible light, corresponding

to red, blue and green. The cross-referencing of these three colors has enabled us to

distinguish a number of color signals and eventually satisfy the requirement to fulfill the

basic needs of daily lives. However, human vision is still restricted to visible light and a

limited spectral resolution.

Hyperspectral imaging systems use sensors that typically operate in the range of visible

through to the infrared wavelengths and can simultaneously capture information from

hundreds of narrow spectral channels from the surface of the earth covering an area.

Each pixel in a hyperspectral image (HSI) is represented by a vector in which each ele-

ment is a measurement corresponding to a specific wavelength. The elaborated spectral

information increases the possibility of accurately discriminating materials of interest in

a scene with an increased classification accuracy. Also, thanks to the advances in hyper-

spectral technology, finer spatial resolution of the new sensors immensely contributes to

the analysis of small spatial structures in images.

1



Chapter 1. Introduction 2

In the past several decades, HSI systems have gained considerable attention from the

researchers in a wide array of applications. The high discriminative ability of HSI to

identify and distinguish different materials on the surface has contributed the field of

remote sensing in analysing several applications on the Earth’s surface such as earth

monitoring, land cover classification, agriculture, and mining [3–6]. Supporting a wide

range of research in computer vision and pattern recognition community, hyperspectral

imaging also covers broad topics related to predicting the categories of targets such

as object/scene classification [7], saliency detection [1], and image reconstruction [8]

etc. Also, any material that depends on chemical gradients for functionality can also

be compliant to study by techniques that combine chemical and spatial properties. As

a result, HSI is increasingly being used in (i) applied chemistry for detecting toxic

chemical substances [9], (ii) medicine for disease diagnosis [10, 11] and image-guided

surgeries [12], (iii) pharmacy for monitoring powder potency inside a feed frame for

tablet manufacturing [13] and (iv) biology as fluorescence correlation tool for studying

concentrations of molecules in living cells [14].

The earth observation domain entails several interesting research issues, ranging from

hardware technology of the sensors to a higher level of data analysis for the image un-

derstanding. The remote sensing image classification, which is the process of identifying

meaningful objects of interests with common properties, has emerged as one of the ma-

jor challenges in the community. This process outputs a thematic map, in which every

pixel is represented by a given label, describing the objects within appropriate classes.

The rich spectral and spatial information in the HSI provides a strong foundation for

achieving high accuracy in the identification of different materials of interests. However,

it introduces a number of challenges that need to be addressed in order to reduce the

impact of misclassification of pixels during the classification process.

Firstly, the curse of high dimensionality of the data, typically represented by the spectral

dimension, results in an expensive computation and limit the exploitation of the tradi-

tional classification approaches. Generally, the supervised classification of HSIs suffer

from the effect of overfitting as the number of training samples are relatively small in

compared to the high spectral dimensions. As a result, it significantly affects the gener-

alization capability of the classifiers. Since the number of training samples are extremely

limited, inclusion of additional features after a certain point leads to a decrease in both

classification accuracy and generalization ability of the classifiers.
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Secondly, most HSIs are captured by sensors placed on satellites, airborne, or unmanned

aerial vehicles. Due to the long distances between the sensors and the targets, HSIs

normally do not have high spatial resolution, resulting in mixed responses of various

types of ground objects. Hence, each signal is the result of a combination of spectra

of several pure materials composing the area defined by the pixel projected onto the

ground. The mixed estimations of several pure materials impose serious challenges in

classification problems. Interestingly, retrieving these pure spectra, usually referred to as

a collection of spectral signatures, or endmembers, and their corresponding proportions,

i.e., abundances, at each pixel [15] brings useful sub-pixel information. These estimations

can serve as important cues for classification and if combined in a classification model,

can facilitate the process of extracting more structured spectral-spatial information.

To address the above-mentioned limitations, it is thus necessary to develop new tech-

niques to exploit the underlying spatial and spectral information in HSI. Spatial correla-

tion statistics measure and analyze the degree of dependencies among pixels in HSI. The

spatial homogeneity or heterogeneity contributes in estimating degree of spatial corre-

lation among the pixels across the earth surface. Hence, an integration of both spectral

and spatial information can maximize the exploitation of the information residing in the

HSI and eventually improve the classification performance.

In the hyperspectral classification problem, a number of features are designed to extract

discriminative information from HSI, which can enhance the classification performance.

All these methods show that feature extraction and fusion lead to improved classification

performance over processing on raw spectral features. These hand-crafted features are

extensively used in many traditional approaches to exploit the spectral, textural and

geometrical attributes of the HSIs. However, these features depend mostly on domain-

specific information and sometimes, cannot properly address the underlying relationships

in the data. As a result, it is difficult for these features to achieve an optimal balance

between discriminability and robustness.

Recently, deep learning algorithms have gained significant attention from the researchers

in the geoscience and remote sensing community and have achieved excellent perfor-

mance compared to those of traditional learning algorithms. A deep model learns the

representative and discriminative features in a hierarchical manner to model high level

abstraction of data [16]. Among various deep learning models, a convolutional neural
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network (CNN) has been widely used for pixel-level labeling problems. With this model,

a good representation of spectral-spatial features can be learned, which allows perform-

ing an end-to-end classification task [16]. Unfortunately, the possibility of reaching local

minima during CNN training and the presence of noise in the input images may pro-

duce isolated regions in the classification map. Moreover, since this is very challenging

to collect large number of ground truth data in remote sensing applications, CNNs suffer

from the problem of “overfitting” and may not perform well on test data.

In this regard, several probabilistic graphical models such as the markov random field

(MRF) and conditional random field (CRF) have been introduced in the deep models to

explicitly model the contextual information between regions [17–20]. However, in most

cases, the integration of such graphical models is entirely disconnected from the CNN

and do not completely utilize the incredible potential of integration in an unified frame-

work [21]. It will be interesting to explore the possibilities of combining the graphical

models in a deep network that is capable of end-to-end learning.

The existing deep models generally receive input from the HSIs in terms of the whole

spectral cube. However, hyperspectral features obtained from smaller sized band groups

have several advantages. Firstly, smaller band groups provide better local spectral-

spatial estimation of the underlying data. Secondly, different band groups capture spec-

tral information in different ranges of wavelengths which provide more material based

information to the classifier. Finally, several band groups provide ample information to

the deep model which can benefit the deep network for classification in terms of both

sufficient amount of training samples and useful spectral-spatial information as input.

Generative adversarial network (GAN) has recently been adopted for the classification

of remote sensing images [22, 23]. Mostly, GANs have been used in order to separate

real sample from fake ones. Unfortunately, little attention have been given in order

to design the GAN architecture in a way to handle multi-class classification problems.

In most cases, the last layer of the discriminator network is modified to include addi-

tional classifier for multi-class classification [24]. It is, therefore, not clear how GANs

are contributing in the class-specific discrimination which leaves a massive space for

improvement.
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1.2 Contributions of the Thesis

This thesis proposes three novel methods to learn deep features for HSI classification and

showcase their abilities in different scenarios. We present an integration of deep models

with traditional probabilistic graphical models in an end-to-end learning framework in

two different contexts: (1) explicitly formulate CRF as a deep model to integrate the

advantages of both models in modeling the spatial relationships in the data and (2) pro-

viding structure-based unmixing results representing spectral-spatial estimation of the

underlying endmembers as input. We also adopt GANs for remote sensing and include

explicit components to enhance the multi-class classification ability of the discriminator.

The contributions of the thesis are listed as follows:

1. We first propose a method to classify HSIs by considering both spectral and spatial

information via a combined framework consisting of CNNs and CRF in an unified

end-to-end learning procedure. We use multiple spectral band groups to learn deep

features using CNNs, and then formulate an optimized deep CRF with CNN-based

unary and pairwise potential functions to effectively extract the semantic corre-

lations between patches consisting of 3-D data cubes. Furthermore, we introduce

a deep deconvolution network that improves the final classification performance.

We also introduce a new data set and experiment our proposed method on it along

with several widely used benchmark data sets to evaluate the effectiveness of our

method.

2. Secondly, we present a CNN based classification model by providing unmixing

results as input during the training of the model. We extend an existing unmix-

ing method to estimate the individual spectral responses from different materials

in different groups of wavelengths. The estimations of the materials are used as

important features to generate superpixels in which we introduce kernel density

(KD)-estimated probability density function (PDF) to describe the spectral dis-

tribution of the superpixels and update the cluster centers accordingly. These

abundance information-guided superpixels are provided as input to train a CRF-

CNN integrated deep model in which the inference is implicitly formulated as a

recurrent neural network (RNN). Instead of raw data, our proposed model receives
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significant spectral-spatial information in the data to produce better and powerful

features so as to achieve improved classification performance.

3. Thirdly, we demonstrate the potential of GAN-based models in developing an

effective spectral-spatial method for HSI classification. We present a novel GAN

model, primarily focusing on improving the multi-class classification ability of

the discriminator. In this context, we propose to adopt the triplet constraint

property and extend it to build a powerful spectral-spatial feature embedding for

remote sensing images for use in classification. To further improve the quality

of the generated fake samples, our model receives feedback from discriminator’s

intermediate features, thus enabling it to use those samples as augmented data.

1.3 Outline of the Thesis

This thesis is organized in six chapters.

In chapter 2, we introduce the background of the thesis including the basic knowledge of

HSI in the context of remote sensing technology. We then present an overview on HSI

feature extraction methods and introduce the widely used classifiers in the contexts of

both supervised and unsupervised classification. We further elaborate on the importance

of developing spectral-spatial classification approaches and review the related state-of-

the-art methods. In the end, we discuss the existing deep network architectures and

present a detailed overview on the recent deep model-based classification methods.

In chapter 3, we present an efficient CRF-CNN based deep learning algorithm for classi-

fying HSI data. We first present our proposed 3D-CNN that we apply in a range of more

effective spectral-spatial representative band groups to extract initial features. We then

propose an optimized deep CRF model and present a detailed parameter calculation and

inference procedure, along with the prediction refinement stage. We also present a data

augmentation algorithm to increase the size of training samples for training the CNNs

followed by presenting elaborated experiments.

In chapter 4, we propose an integrated method which combines unmixing results into

a deep model in order to classify hyperspectral data. We first present an unmixing
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algorithm that we extend to estimate different materials from different group of wave-

lengths. Next, we present abundance information-guided superpixel extraction algo-

rithm in which we further introduce KD-estimated PDF to describe the suuperpixels.

We later present our proposed deep model which is formulated as a recurrent neural

network after receiving unmixing results as important cues for classification.

In chapter 5, we present a GAN-based model for HSI classification. After discussing the

background on GAN models, we introduce our proposed formulation of triplet constraint

construction and the selection process of the triplets. Then we present the network

architectures, consisting of the generator and the discriminator. Finally we present

detailed experimental results and performed several stages of evaluation to support the

potential of our proposed model.

In chapter 6, we summarize the thesis and discuss future work.





Chapter 2

Literature Review

This chapter provides a basic overview of the field of remote sensing, focusing on the

HSIs, the data acquisition technologies and the challenges related to their analysis in

solving complex tasks such as classification. A comprehensive review on hyperspec-

tral feature extraction, followed by discussion on the recent spectral-spatial methods

specifically designed to classify remotely sensed data are also presented. Furthermore,

we provide an extensive review on the existing deep network architectures and their

corresponding state-of-the-art techniques that are able to learn expressive, high-level

contextual features for classification task. Finally, we introduce the datasets used for

experimental purposes on HSI classification in this thesis.

2.1 Overview on Remote Sensing

Remote sensing is the process of data acquisition on the environment, geology, atmo-

sphere, and different attributes of the earth by positioning satellite- or aircraft-based

sensors. Targeting an object or a scene covering an area under investigation, the sensors

collect and transmit data from different parts of the electromagnetic spectrum perceiv-

ing a portion of the electromagnetic radiation reflected from the earth’s surface in a

range of wavelengths.

9
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The main distinction of remote sensing systems is based on the types of the source of

energy, considering that the electromagnetic radiation is the primary carrier of infor-

mation. Remote sensing systems, which rely on naturally occurring energy provided

by the sun; either reflected or absorbed and then re-emitted from the earth’s surface,

are called passive sensors [25]. While this visible radiation is only available when the

sun is illuminating the earth, the emitted energy, i.e., the far infrared can be perceived

anytime of the day, as long as the amount of energy is large enough to be recorded.

Most passive systems used in remote sensing applications operate in the visible, near

infrared, medium infrared, far infrared, and microwave portions of the electromagnetic

spectrum. Active sensors [25], on the other hand, rely on their own sources of radiation

to illuminate objects so that the energy reflected and returned to the sensor may be

measured. Those operate in the microwave and radio wavelength regions of the electro-

magnetic spectrum. Examples of largely used active sensors are the RAdio Detection

And Ranging (RADAR) [26] and Light Detection And Ranging (LiDAR) [27].

The basic foundation of the existing sensors is to obtain information about the reflected

radiation along the pathway as the satellite- or aircraft-based sensors orbit the Earth.

Those information obtained by the sensors can be described in terms of radiometric

(spectral), geometric (spatial) and temporal resolution. Radiometric resolution is the

number of bands that a sensor captures spectral information, whereas spatial resolution

refers to the smallest amount of area on the Earth’s surface for which a sensor can

record spectral information. The frequency with which a sensor revisits the same part

of the Earth’s surface is measured by the temporal resolution. Due to the advent of

sensor technologies, hyperspectral imaging has become an emerging technology in remote

sensing for increasing knowledge and understanding of the Earth’s surface.

2.2 Introduction to Hyperspectral Images

Before introducing HSIs, we now present a brief review on the traditional images such

as gray scale and color images. Each pixel in a gray scale image represents the intensity

of the light received by the sensors over a range of wavelengths. In case of red, green
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and blue (RGB) images, each pixel is represented by three intensity maps, each of which

correspond to the intensity of particular regions of the visible spectrum of three colors,

shown in Fig. 2.1.

Figure 2.1: The electromagnetic spectrum.

Compared to gray scale and RGB images, HSIs contain tens or hundreds of narrow

spectral bands, individually containing the light intensity for that wavelength. The

spectral range is wider than traditional images covering wavelengths of approximately

380nm to 1100nm (as shown in Fig. 2.1). Due to its wider spectral range, HSIs are able

to provide rich information on the spectral and spatial distributions of the objects [28].

Hyperspectral imaging systems started contributing immensely in remote sensing after

the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [29] was developed in

the 1980’s at the Jet Propulsion Laboratory (JPL) for Earth remote sensing. Several

other examples of hyperspectral airborne imaging systems are Reflective Optics System

Imaging Spectrometer (ROSIS) [30], Hyperspectral Digital Imagery Collection Experi-

ment (HYDICE) [31], Airborne Real-time Cueing Hyperspectral Enhanced Reconnais-

sance (ARCHER) [32] etc. Examples of sensors operating in space are Hyperion (USA,

2000) [33], Advanced Responsive Tactically Effective Military Imaging Spectrometer

(ARTEMIS, USA, 2009) [34]. The hyperspectral sensors typically cover a range of 0.4

to 2.5 µm using 115 to 512 spectral channels, with a spatial resolution varying from 0.75

to 20 m/pixel for airborne sensors and from 5 to 506 m/pixel for satellite sensors [28].
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Figure 2.2: Hyperspectral image cube.

Figure 2.3: Spectral responses from different materials in a HSI

As illustrated in the Fig. 2.2, every pixel of the image can be represented as a high-

dimensional vector with the spectral information added as a third dimension of values

to the two-dimensional spatial image, generating a three-dimensional data cube, some-

times referred to as an image cube [35]. Different materials exhibit different spectral

information as illustrated in Fig. 2.3. It shows an example containing different materials,

such as plant, soil, brick etc. We can see the differences between the spectral responses

from two different materials: leaves and soil. Due to the wider range of spectral re-

sponses, hyperspectral imaging has been acknowledged as an emerging and well-suited

technology for various remote sensing applications, such as:

� Agriculture: Hyperspectral imaging has become a popular research tool for mon-

itoring quality parameters and improving grading and classification of major ele-

ments of agriculture materials [36].
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� Mineralogy: The application of hyperspectral imaging for the automatic iden-

tification of minerals from satellite and airborne images, and the relative pres-

ence of valuable minerals, has been the subject of interesting researches in recent

decades [37].

� Monitoring environment: With the advent of hyperspectral imaging technologies,

it has become easier to monitor the environmental changes on the earth’s surface

caused by natural calamities and human activities [38].

� Surveillance: Recent advances in hyperspectral imaging acquisition and processing

have contributed significantly in developing models for detecting hidden objects in

the domain of military surveillance and providing useful security services [39].

2.3 Hyperspectral Data Acquisition

Hyperspectral sensors capture a scene as a collection of images, each of which repre-

sents a narrow wavelength range of the electromagnetic spectrum. Considering a three-

dimensional space (x, y, λ), where x and y are spatial coordinates and λ is the spectral

coordinate, each pixel in those images is the integral of the radiance in a cube. The

minimum value obtained by the integral represents the radiometric resolution and the

spatial resolution is represented by the size of a cube in the plane (x, y). The spectral

resolution is the minimum bandwidth on which the measured radiation is integrated.

For remote sensing, image spectrometer devices for data acquisition can be categorized

from two aspects: (i) underlying architecture of the devices and (ii) filtering techniques.

2.3.1 Architecture of the Devices

The architecture of the devices may depend on the acquisition approaches of spatial

information by using techniques including whisk broom, push broom, and framing or

‘staring arrays’. In whisk broom scanners [40, 41], the spectral image with zero spatial

dimension is processed by dispersing the spectrum on a linear detector array to obtain

information from one pixel at a time in both the along-track and cross-track directions
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perpendicular to the flight path. In push broom scanners [40, 41], a two-dimensional

detector array is used which is arranged perpendicular to the flight direction of the

aircraft. The detector advances with the carrier’s motion, collecting image one line at a

time, with all the pixels in a line being simultaneously obtained. The dispersion occurs

across the slit of the spectrometer, producing the spectral dimension and one spatial

dimension which has to be scanned to complete the data cube. Although limited to

the varying sensitivity of the individual detectors, a push broom scanner can capture

stronger signal in compared to the whisk broom scanners.

A framing or ‘staring array’ [42] acquisition device consists of an array of light-sensing

pixels at the focal plane of a lens and uses a two-dimensional field of view (FOV), which

is kept stationary on the object. The focal plane arrays operate by detecting photons

at particular wavelengths and then emitting an electrical charge which is then digitized

to construct an image of the object.

2.3.2 Filtering Techniques

During acquision of hyperspectral images, spectral scanning acquires single images for

each different wavelength sequentially, while the object is kept stationary under the cam-

era. The spectral filtering can be provided by (i) a number of discrete filters in a filter

wheel [43] or (ii) tunable filters [44]. The advantage of spectral scanning is that they are

able to choose spectral bands and have a direct representation of the spatial dimensions

of the scene. A liquid crystal tunable filter (LCTF) [45] with large aperture uses elec-

tronically controlled liquid crystal elements to transmit a selectable wavelength in the

visible and near infrared (VNIR) band and exclude others. A significant characteristic

of this spectrometer is that it has a strong ability of becoming accustomed to environ-

mental changes. Acousto optical tunable filter (AOTF) [46] camera is another example

of a spectral scanning camera that is used to dynamically select a specific wavelength

from a broadband or multi-line laser source. As the applied radio frequencies are varied,

the transmitted wavelength changes, tuning the wavelength of the beam image in tens

of microseconds or less. In Fig. 2.4, we show a Brimrose hyperspectral AOTF camera

in the spectral laboratory at the Griffith University.
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Figure 2.4: AOTF hyperspectral imaging system [1].

A Fabry–Pérot interferometer (FPI) [47] consists of a transparent plate with two parallel

reflecting surfaces which is used to prevent the rear surfaces from producing interfer-

ence fringes. Some optical spectrum analysers use this interferometer to determine the

wavelength of light with great precision by using different free spectral ranges.

2.4 Mixing Model

Remote sensing images generally suffer from lower resolution due to the long distance

between the sensor and the targets. As a result, the responses of the materials are often

mixed together. Linear mixing model (LMM) and nonlinear mixing model (NMM) are

two main types of mixing models. We now present a brief explanation of each of those:

2.4.1 Linear Mixing Model

LMM is a widely adopted mixing model assuming that there is no interference between

the spectral signatures of the materials before the lights are received by the sensor [15,

48]. Illustrated in Fig. 2.5, assuming h is a pixel in an HSI data, we can see that pixel

h is mixed by m1, m2 and m3 materials with the proportions of α1, α2 and α3.

The spectrum is not altered by a single material as it has no interaction with. Specifically,

each pixel is considered to be composed of several materials and hence, the spectral
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Figure 2.5: Linear mixing [2].

signature is represented by a linear mixture of spectral signatures of the materials,

which we call endmembers and its corresponding fractional abundances [15, 49].

Let B be the number of bands in an image and K be the number of endmembers. A

pixel h in a hyperspectral image, is represented by a B × 1 column vector containing

the data in different bands. Let M be a B × K matrix (m1, . . . ,mj , . . . ,mK), where

mj is a B × 1 column vector representing the spectral signature of the jth endmember.

Therefore, h can be approximated by a linear combination of endmembers

h = Ma + e (2.1)

where a is a K × 1 column vector for endmember abundances, and e is the additive

Gaussian white noise. A standard assumption related to the LMM defined here is that

the noise follows a Gaussian distribution with a zero-mean and co-variance matrix [50].

It is important to mention that the statistical model makes an assumption that the noise

variances are the same in all bands which is extensively used in the literature [51, 52]. The

additive noise is generally used to evaluate the effectiveness of the model in extracting

endmembers in an environment corrupted by Gaussian noise, in which case there are no

pure signatures [51].

Upon extending the model from pixel-level to the whole image, the linear model for the

N number of pixels in the image H becomes:

H = MA + E (2.2)
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where matrices H ∈ RB×N+ , A ∈ RK×N+ , and E ∈ RB×K represent the HSI, the abun-

dance matrix, and the additive noise respectively.

Abundance nonnegative constraint (ANC) and abundance sum to one constraint (ASC)

are two constraints imposed on the abundance matrix in order to represent a physically

realizable scene. ANC is defined as:

aj ≥ 0, j = 1, .., N (2.3)

where aj is the abundance vector of the jth pixel. This constraint indicates that none

of the spectral signatures constituting the pixel should be negative. Similarly, ASC can

be defined as:
K∑
i=1

aij = 1 (2.4)

which means that the individual abundances aj for all the K endmembers within the

jth pixel should sum to 1.

2.4.2 Nonlinear Mixing Model

In the nonlinear mixing model (NMM), the incident light is scattered multiple times

from multiple materials before reaching the sensor. As a result, the produced spectral

signature is a non-linear mixture of the material signatures. Non-linear interactions

may occur in (1) microscopic scale and (2) macroscopic scale. The microscopic scale or

intimate mixture occurs when two materials are homogeneously mixed [53]. In this case,

the mixture is produced by photons emitted from one material being absorbed by other

materials, which may emit more photons. Macroscopic level or multilayer configuration

occurs when the light scattered by a given material reflects off other materials before

reaching the sensor. This phenomenon can be observed in forest areas where there may

be many interactions between the ground and the canopy.
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2.5 Hyperspectral Image Feature Exraction

A critical pre-processing step required to design an effective classifier for HSIs is to

identify and characterize the features representing the data [54]. The performance of

a classifier largely depends on the quality of the input features and how sensitive are

those features to the target classes. However, the issue of additional computational load

occurs due to the high dimensional data if we choose to use the complete set of spectral

bands, where each band represents a dimension of the input data. Also, it is a common

problem with HSI data to observe a decreasing generalization performance of the model

if the ratio of the number of available training samples to the number of features is

low. As a result, the classification performance is high on the training samples but is

significantly low on the testing samples, causing a phenomenon called the Hughes effect

or the curse of dimensionality.

To address this issue, the high dimensionality of data can be reduced by selecting a subset

of the original features, needed to effectively describe the properties of the HSI data. Kuo

and Landgrebe [55] proposed a data processing chain, in which the feature extraction

stage is significantly improved after the feature selection stage selects the best subset

of features from the entire spectral channels based on a selection criterion. A number

of techniques integrating the feature selection and feature extraction steps have been

proposed. We have categorized the techniques into (i) knowledge-based (ii) supervised

and (iii) unsupervised approaches. We will now present these feature extraction methods

for HSI data.

2.5.1 Knowledge-based Feature Extraction

Based on the characteristics of the spectral information, references to a number of arith-

metic operations have been found in the literature such as normalized differential veg-

etation index (NDVI), normalized differential water index (NDWI) and a modified soil

adjusted vegetation index (MSAVI2). These arithmetic operations are performed on

a set of relevant bands in order to enhance the signal. Originally designed for multi-

spectral images, these features have been extended to adopt for hyperspectral data as
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well to exploit absorption features. In this context, the genetic programming-spectral

vegetation index [56] and the cellulose absorption index [57] have been derived from

hyperspectral data. For NDVI[58], since the index is calculated through a normaliza-

tion procedure, the NDVI values (between 0 and 1) show a sensitive response to green

vegetation. NDWI [59] is designed to represent and enhance the presence of open water

features by using reflected near-infrared radiation and visible green light and eliminating

the presence of soil and vegetation features. NDVI is very sensitive to certain factors

such as brightness of soil background and vegetation canopies. To address this issue,

MSAVI2 [60] was proposed in which a soil conditioning index was introduced by con-

sidering the effect of the solar incidence angle variation and changes in the underlying

physical structure of the soil.

2.5.2 Supervised Feature Extraction

For classification task, it is very important to discriminate between the classes of inter-

ests in the image. Unfortunately in hyperspectral remote sensing, the classes are often

similar and complex in terms of their characteristics, which makes the discrimination

task difficult. Therefore, automatic feature selection becomes important based on some

criterion using the training data. In this context, a number of parametric supervised

approaches have been proposed based on class modelling using training data.

The parametric supervised methods combine adjacent correlated original bands to pro-

duce new discriminative features, preserving the spectral information. Few distance

functions have been proposed as the selection criterion in order to group the bands,

such as B-dis and J-M distance functions. With B-dis function [61], a new feature can

be obtained by applying a weighted sum of the bands in each group. J-M distance [62],

on the other hand, takes the average of the contiguous groups of bands to produce new

features. These distance functions are used to identify a subset of features that best

accommodate the class data variation and produce the separation capability provided

by each band, leading to a quantitative band selection [63].

Along this direction of obtaining features, linear discriminant analysis (LDA) has been

proposed as parametric feature extraction technique, based on the mean vector and
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covariance matrix of each class. LDA projects the original high-dimensional data onto

a low-dimensional space, where the classes are separated by maximizing the ratio of

between-class scatter matrix to within-class scatter matrix, referred to as the Raleigh

quotient [64]. LDA has been extensively used in remote sensing applications focusing

classification and feature reduction. LDA, however, does not work well in situations

where the number of features is higher than the number of training samples. It is

observed that obtaining solutions in these cases requires the scatter matrices to be non-

singular.

Non-parametric feature extraction methods have been proposed to overcome the limita-

tions of LDA. Bandos et al. [65] proposed a regularization method to address the issue

of the small ratio between the number of available training samples and the number

of spectral features. In this context, Kuo and Landgrebe [55] inferred that the scatter

matrices, regularization methods and eigenvalue decomposition are the essential com-

ponents for solving such ill-posed problems. Fukunaga et al. [66] provided a significant

finding through a non-parametric between-class scatter matrix that the contribution of

each sample in extracting features is different. According to their observation, the data

points close to the boundary are of more importance than those which are far from the

boundary, resulting in distinct weights given to each sample.

Cosine-based non-parametric feature extraction (CNFE) [67] technique has been pro-

posed in order to measure similarity by using cosine distance instead of the euclidean

distance. A double nearest proportion (DNP) [68] feature extraction method was devel-

oped based on a double nearest proportion structure to construct new scatter matrices.

The use of a DNP is particularly effective in cases when overlapping occurs during the

separability between the boundaries of class distributions. Kernel functions can also be

useful in increasing class separability by extending linear models to non-linear models.

Some examples include generalized discriminant analysis (GDA) [69] and kernel local

Fisher discriminant analysis (KLFDA) [70].

Yuntao et al. [71] proposed a feature extraction method based on structured sparse

logistic regression and 3-D discrete wavelet transform (3D-DWT) texture features that

decomposes an HSI cube at different scales, frequencies and orientations in order to
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capture geometrical and statistical spectral-spatial structures. Jie et al. [72] proposed

a novel 3D high-order texture pattern descriptor, based on the local derivative pattern

(LDP) for hyperspectral face recognition.

2.5.3 Unsupervised Feature Extraction

Supervised methods primarily combine groups of contiguous bands of the original HSI.

However, data transformation methods can also be applied to map the original high-

dimensional space to low-dimensional subspace. The principal component analysis

(PCA) is such data transformation method, based on the fact that neighboring bands

are highly correlated and often convey almost the same information. During the process

of transformation, the optimum linear combination of the original bands accounting for

the variation of pixel values in the image is identified [37]. The PCA examines band

dependency by employing the statistical properties of the spectral channels.

Independent component analysis (ICA), in contrast to PCA, not only recovers inde-

pendent signals from overlapping signals but also makes the signals as independent

as possible by reducing higher-order statistical dependence. After applying ICA, each

source is automatically extracted from the observation of linear combination of these

sources [73]. ICA has also been adopted in hyperspectral unmixing [74] due to its low

computation time and its ability to perform without prior information.

Although PCA and ICA have been very effective in compressing information, HSIs do

not always coincide with such orthogonal projections. In this context, projection pursuit

(PP) [75] techniques find a set of interesting projections such that those projections

are deviated from the Gaussian distribution assumptions. During this process, the

projection that maximizes a projection index based on the information divergence of the

estimated probability distribution is searched. After that they reduce the dimensions

by projecting the data onto the subspace orthogonal to the previous projections.

Non-linear feature extraction methods have excellent ability to better represent complex

non-linear data which are well suited for HSI data. In this context, manifold learning

which uses isometric mapping (ISOMAP), have widely been used for HSI data analysis
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since it can approximately maintain the local structure of the original space [76]. In-

stead of selecting random cluster centers, selecting points focusing the boundaries of the

clusters has been adopted in L-ISOMAP approach [77].

Kernel functions can also be adopted in unsupervised feature extraction methods. In-

put data from the original data space can be mapped to a feature space where inner

products in the feature space can be determined by a kernel function with an explicit

non-linear mapping. In this context, Kernel-based PCA (KPCA) [78] and kernel-based

ICA (KICA) [79] were introduced accordingly.

Considering both spectral and spatial features, Al-khafaji et al. [80] proposed a method

to extract spectral and geometric transformation invariant features. The method, named

spectral-spatial scale invariant feature transform (SS-SIFT), consists of keypoint detec-

tion and descriptor construction steps. Jie et al. [1] proposed a material-based salient

object detection method in which they exploited an unmixing approach to estimate the

spatial distribution of different materials, followed by the construction of a conspicuity

map based on the global spatial variance of spectral responses.

2.6 Hyperspectral Image Classification

Hyperspectral imaging research focusing on image understanding has long attracted the

attention because the analysis results, such as the classification, are the basis for many

different applications and domains as mentioned earlier. Similarly, the earth observation

domain demands abundant open research issues to overcome, particularly on the higher

level data analysis algorithms for the remote sensing image understanding. As a result,

remote sensing image classification emerges as one of the most important challenges

which refers to the process of identifying materials of interest on the ground of the area

of interest with similar properties that are grouped into “classes”.

HSIs contain information on hundreds of continuous narrow spectral wavelengths with

very fine spectral resolution in each HSI pixel. The detailed spectral information pro-

vided by HSI satellite- or aircraft-based sensors from the surface of the Earth increases
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the possibility of accurately discriminating materials of interest with a high classifica-

tion accuracy. In addition, thanks to the advances in HSI technology, the improved

spatial resolution of the recently invented sensors facilitate the analysis of small spatial

structures in images. For example, the pixels within a neighboring relationship in sim-

ilar regions have a high possibility of belonging to the same class. By doing this, the

‘labelling uncertainty’ that happens when only spectral information is considered, can

be addressed by taking spatial information into account. Hence, the relation between

the spectral channels and the underlying spatial structure within the image can be ef-

fectively exploited, offering better potential to discriminate more detailed classes and

provide broader applications for hyperspectral feature extraction [1, 72, 80], segmenta-

tion [81] and classification [82, 83].

Broadly speaking, classification techniques for remote sensing images can be categorized

into two: supervised and unsupervised classifiers which are briefly described as follows:

� Supervised classifiers: These types of methods classify input data by considering

the spectral information into the classification procedure, by using a set of repre-

sentative samples for each class, referred to as training samples. These are usually

obtained by labeling the pixels of an image based on some field measurements. For

a hyperspectral data cube with B -bands and Y classes, which can be represented

as a set of N pixel vectors X = {Xi ∈ RB, i = 1, 2, . . . , N}, a supervised classifier

classifies the original data into a set of classes C = {y1, y2, . . . , yY }

� Unsupervised classifiers: With unsupervised classifiers, a remote sensing image

is divided into a number of classes without the help of training data or prior

knowledge of the study area. The grouping can be done based on an arbitrary

number of initial ‘cluster centres’, which may be user-specified or may be randomly

chosen. During the classification process, each pixel is assigned with one of the

cluster centers based on some similarity criterion. We now briefly discuss two

widely used unsupervised classifiers:

1. K -means: One of the most widely used clustering techniques, this approach

starts with a random initial partition of the data samples into candidate
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clusters and then adopts an iterative updating methods to partition the data

samples into K clusters in order to minimize the within class distance.

2. Iterative Self-Organizing Data Analysis (ISODATA): The ISODATA algo-

rithm is similar to the K -means algorithm with the distinct difference that

ISODATA allows for different number of clusters while the K -means assumes

that the number of clusters is known a priori.

Supervised classification techniques play a key role in the analysis of HSIs. A wide

variety of classifiers have been proposed in different applications such as land-cover

mapping, crop monitoring, urban development and forest application etc. Random

Forest (RF), an ensemble method for classification [84], has drawn increasing interest

in HSI classification [85–87]. Here, several classifiers are trained and their individual

results are then combined through a voting process. Each decision tree is provided with

the input vector and provides a unit vote for a particular class and the forest chooses

the class that has the most votes. The advantage of this method is that it provides an

unbiased estimate of the test set error as trees are added to the forest and therefore, it

can avoid overfitting even if the feature dimension is high. Furthermore, in each split of

the procedure, it only uses some of the variables, instead of using all. The algorithm is

insensitive to noise in the training labels, fast to implement, and can deal with large-scale

datasets.

Support vector machine (SVM) is yet another widely used supervised classification

model [88]. It aims at tracing maximum margin hyperplanes in the space where the

data samples are mapped in order to separate the samples belonging to different classes.

The advantage of SVMs over the previous statistical learning methods is that it intro-

duces the concept of geometrical margin that involves only a few training samples at the

boundaries (support vectors). This makes it very suitable to address the issue of lim-

ited training samples in remote sensing applications. Originally introduced for solving

linear classification problems, SVMs can be generalized to non-linear decision functions

by employing kernel-based SVM. The Gaussian radial basis function (RBF) is widely

used in remote sensing [89].
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K -nearest neighbor (KNN) is a non-parametric method widely used for the task of

classification in pattern recognition. The main idea behind this classifier is to determine

the category of a data according to the classification of the nearest K neighbors. The

tradition KNN model has been effectively extended in a spectral-spatial collaborative

manner for remote sensing image classification [67].

Next, we present a brief description of the spectral classification methods and the mo-

tivation for why spectral and spatial classifiers have been consistently gaining a great

deal of attention from different researchers.

2.6.1 Spectral Feature-based Classification

Each pixel in a hyperspectral data cube corresponds to the reflected radiation of the

specific region of the earth surface and has multiple values across the spectral bands.

Vectors of different pixels belonging to the similar material with high probability may

also have similar values. As a result, each band may reveal distinctive features of the

materials of interest representing the class and hence, the original hyperspectral bands

can be essentially considered as good candidate features.

However, classifying remotely sensed data by considering the complete set of spectral

bands remains a challenge because the high dimensionality causes expensive computa-

tion during the analysis and eventually limiting the exploitation of the classification

approaches. Particularly in the context of supervised classification, the problem of lim-

ited training samples affects the generalization capability of the classifier. While keeping

the number of available samples constant, adding additional features also results in a

decrease in both the classification accuracy and the generalization of the classifier. This

is known as Hughes phenomenon [90]. To address this, finding a subspace that consists

of the minimum number of attributes [64] required to describe the hyperspectral data

has been a significant topic of research recently. A non-parametric weighted feature

extraction method [55] was proposed where the feature selection process finds the best

subset of features based on an adopted selection criteria. Later, the feature extraction

stage generates a small number of features by data transformation based on a criteria

for the optimum subspace.
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Recent advances in the spectrometers technologies result in an increased spatial resolu-

tion of the collected scene. As a result, the geometrical details of the scene are high and

eventually leads to the presence of objects which are made of several spatially correlated

pixels. This results in an increase of the intra-class variability [91] which affects the clas-

sification accuracy when only the spectral information are considered. As the limitation

of using only spectral features is identified, the need for including spatial information in

the feature extraction stage has been addressed.

2.6.2 Incorporating Spatial Features

Spatial correlation statistics measure and analyze the degree of dependencies among

pixels in an HSI. These statistics may reflect the relationships in a neighborhood, the

distances between neighbors, the effect of the shared boundaries to determine whether

they fall into a specific class etc. Several methods have been proposed [92–94] that

address spatial neighborhood operations. Along with this, different kinds of texture

features e.g. contrast, correlation and entropy can be generated from a gray-level co-

occurrence matrix (GLCM) [95]. The spatial homogeneity or heterogeneity contributes

in estimating degree of spatial correlation among the pixels across the earth surface.

Hence, an integration of both spectral and contextual information can maximize the

exploitation of the information residing in the HSI and can contribute significantly in

the classification performance.

Spectral and spatial information can be used separately in which the spatial informa-

tion is perceived in advance by the use of spatial filters. Benediktsson et al. [96] used

morphological profiles (MPs) using erosion and dilation operations to enhance spatial

structures that are present in the images with a series of variable sized windows sliding

on the image channels. Additionally, the new values created by the filter from those

channels with opening and closing method are formed into extended morphological pro-

files (EMPs), which are used as spatial features. Another popular way of extracting

spatial features is to use attribute filters (AFs) which include mean, variance, area or

circumference of the window and finally construct attribute profiles (APs) [97] as spatial
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features. Spatial information can also be exploited as a post-processing step to improve

the initial pixelwise classification result, e.g., via mean shift [98] or MRF [99] [100, 101].

Data fusion can also be performed to combine spectral and spatial information, along

with local cross-information by using composite kernels [102]. Focusing on SVMs, as

kernel machines, this method is able to perform well with high-dimensional input space.

A Bayesian framework that integrates spectral and spatial information together to per-

form supervised classification was proposed in [81]. Gormus et. al [103] proposed to

extract intrinsic mode functions for each spectral band by applying 2D empirical mode

decomposition in the spatial domain. Considering the three-dimensional structures of

HSI data, combining spectral and spatial information together should result in a consid-

erable number of discriminative features that can improve the classification performance

significantly.

2.7 Deep Learning Models

Remote sensing images are reflections of the land surface and have the ability to record

multiple-scale information within an area. Pixel-based, object-based, or structure-based

features can be extracted from the land cover data to describe important properties of

the surface. The traditional approaches exploit those features with which information-

extraction models can be constructed in the form of spectral, textural and geometrical

attributes of the image. However, HSIs have underlying relationships in the data and it

is difficult to optimally fuse these features to effectively classify the data. Hand-crafted

features are mostly designed on the basis of domain-specific knowledge and it is also

not practical to address the need of considering all of the underlying details by the use

of pre-designed features. Hence, it is nearly impossible for those features to achieve an

optimal balance between discriminability and robustness.

Recently, Deep Learning (DL) algorithms have been introduced into hyperspectral re-

mote sensing applications and have achieved outstanding performance compared with

those of traditional learning algorithms. A deep model learns the representative and

discriminative features in a hierarchical manner to model high level abstraction of data.
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Considering low-level features at the low-levels, DL can represent and organize multiple

levels of information to express complex relationships between data [16]. We now present

the basic architectures of the existing DL models.

2.7.1 Convolutional Neural Networks

The convolutional neural network (CNN) has established itself as a leading model in deep

learning community as researchers have successfully adopted it in a wide range of appli-

cations in image processing, including image classification [104], object detection [16],

super resolution restoration [105] etc. CNNs are a class of deep learning models that

integrate feature extraction, feature combination and classification with a single neural

network that is trained end to end from raw pixel values to classifier outputs. CNNs

consist of multiple convolutional, pooling and fully connected layers, with nonlinear

activation functions applied at the end of each layer.

During a convolution operation, small regions of the input maps are convolved with

learnable kernels and are subsequently transferred through the activation functions to

construct the output feature maps. One major advantage of a CNN is that it allows

the use of shared weights in convolutional layers, within same feature maps, which

reduces the number of parameters significantly. A convolutional layer is followed by

a translation invariant pooling layer which is used to reduce the dimensionality of the

feature maps. Average pooling and max pooling - these two types of pooling operations

are most commonly used. There are few other pooling operations available such as

spatial pyramid pooling [104], stochastic pooling [106] and def-pooling [107].

The output maps obtained from the last convolutional and pooling layer are flattened

into one-dimensional vector which is the input to the first fully connected layer. The

output generated by the final fully connected layer is considered to be the learnt feature

which is later used to compute the loss function with regard to the ground truth labels of

the input data. Based on the value computed by the loss function, the error is propagated

back into the network and the weights are updated in response to the gradients. In this

way, a higher-level representation of the raw input image is formed and can be used

to train a classifier, e.g., a softmax classifier, to perform classification [108]. Shelhamer
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et. al [109] proposed a novel convolutional network in which the fully connected layer

is replaced with a deconvolutional layer. The basic working principle of a CNN is

graphically represented in Fig. 2.6.

Figure 2.6: A basic CNN architecture.

2.7.2 Stacked Autoencoder

A stacked autoencoder (SAE) is a deep architecture consisting of multiple layers of

sparse autoencoders (AEs) in which the outputs of each layer is connected to the inputs

of the next layer. An AE learns a representation of the input data by encoding, usually

for reducing dimensions and then reconstruct into a representation from the compressed

data that closely matches the original data. An AE consists of a visible layer of d inputs,

one hidden layer of h units with an activation function f. During the training of the

network, f first transforms the input vector x ∈ Rd into a hidden representation y ∈ Rh

and y is then mapped back to a reconstructed z ∈ Rd in the output layer containing

the same number of nodes as the input layer, and with the purpose of reconstructing its

own inputs instead of predicting the target value given inputs. The procedure can be

formally written as:

y = f(Wyx+ by)

z = f(Wzy + bz)

where Wy,Wz represent the weights of the input-to-hidden layer and hidden-to-output

layer respectively and by, bz are the the biases of hidden and output units respectively.

The loss function L(θ) measures the reconstruction z with respect to the input x:

L(θ) =
1

2N

N∑
n=1

||z(n) − x(n)||22
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where N is the number of training samples, θ = (W, by, bz) is the set of parameters for

minimizing the difference between the reconstructed output and the original input over

the entire training set X = [x(1), x(2), . . . , x(n), . . . , x(N)]. Stochastic gradient descent

algorithm [110] can be used to efficiently implement this. Fig. 2.7 shows the structure

of a basic AE:

Figure 2.7: Structure of an autoencoder.

There are three well-known variants of AEs, namely denoising AE, sparse AE and vari-

ational AE. A denoising AE [111] typically forces the model in capturing the structure

of the input distribution and has the ability to recover the correct input from a noisy

version. Sparse AE [112] is aimed at minimizing the reconstruction error by imposing

a sparsity constraint. It can be achieved by additional terms in the loss function dur-

ing training by comparing the probability distribution of the hidden unit activations

with some low desired value. Variational AEs have the distinct property of allowing

easy random sampling and interpolation. It does this by making the encoder to output

two vectors: a vector “means” and another of “standard deviations”. The mean vector

generally controls where the encoding of an input should be centered around and the

standard deviation controls how much from the mean the encoding can vary. In this

way, the decoder is able to learn that all nearby points to the distribution in the latent

space refer to a sample of that class.

The structure of SAEs is to stack n hidden layers by an unsupervised layer-wise learning

algorithm and then fine-tuned by a supervised method. It has mainly three steps:
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1. Train the first AE by the original input data and generate the learned feature

vector.

2. The feature vector of the previous layer is used as the input for the next layer and

this step is repeated until the training achieves convergence.

3. After all the hidden layers containing individual AEs are trained, backpropagation

algorithm may be used to update the weights with respect to the training set.

A basic representation of an SAE is illustrated in Fig. 2.8. As indicated in the figure,

SAE consists of multiple layers of AEs, each of which is a type of neural network used

for efficient encodings.

Figure 2.8: Structure of a stacked autoencoder.

2.7.3 Deep Belief Betworks

A deep belief network (DBN) is another deep model structure, capable of extracting high-

level, invariant features of HSI data, which can contribute to an improved classification.

A DBN model is built with a hierarchically organized series of restricted boltzmann

machines (RBMs).
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RBM is regarded as a layer-wise training model in forming a DBN. It has a two-layer

structure with the lower layer represents a particular type of MRF with “visible” units

v = {0, 1}D and the higher layer represents the “hidden” units h = {0, 1}F . The typical

structure of an RBM is depicted in the Fig. 2.9

Figure 2.9: A typical RBM

An energy function representing the joint distribution can be given by [113]

E(v, h; θ) = −
D∑
i=1

bivi −
F∑
j=1

ajhj −
D∑
i=1

F∑
j=1

wivihj

= −bT v − aTh− vTWh (2.5)

where the model parameters θ = {bi, aj , wij}, wij are the weights between visible and

hidden units, bi and aj are the respective biases of visible and hidden units. The joint

distribution over the visible and hidden units is defined by

P (v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)) (2.6)

Z(θ) =
∑
v

∑
h

E(v, h; θ) (2.7)

where Z(θ) is the normalizing constant, which is the sum of the numerator of all values

of v and h. The energy function supplies a probability to every input vector and the the

probability can be raised by adjusting θ as given in Eq. 2.5. The conditional distributions

of h and v are given by the following logistic functions

P (hj = 1|v) = g(
D∑
i=1

Wijvi + aj) (2.8)
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P (vi = 1|h) = g(
F∑
j=1

Wijhj + bi) (2.9)

where

g(x) =
1

1 + exp(−x)
(2.10)

By using the probability computed from 2.9, it is possible to reconstruct the input data

by setting each vi to 1. After updating the hidden units, the reconstructed features can

be obtained. Contrastive divergence (CD)[114] can be used to learn the corresponding

weights. If the model is able to correctly recover the data, the hidden unit is then

believed to have captured sufficient content from the input.

Multiple RBMs are arranged as a layer-by-layer learning process to finally construct the

DBN. After the first RBM is trained, the learnt features can be subsequently used as

an input to the second RBM. The process is repeated until the output from the last

RBM are assumed to be the final deep features of the input data. The fine-tuning of

the network can be done by adding a logistic regression layer at the end and using

the standard back-propagation algorithm. A conventional DBN to classify an HSI is

illustrated in Fig. 2.10.

Figure 2.10: Training of a typical DBN to classify hyperspectral data
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2.7.4 Generative Adversarial Network

The traditional deep learning models have shown striking success in building discrim-

inative models, used for mapping high-dimensional input to a class label. However,

similar successes were not observed for deep generative models, mainly due to the diffi-

cult inference and learning of the probabilistic models that require computations from

the conditional posterior over hidden layers. As a result, exact sampling from these

distributions is intractable. To overcome these difficulties, Goodfellow et al. [115] pro-

posed a generative adversarial network (GAN), in which a discriminative model learns

to determine whether a data sample belongs to a real distribution or a noise distribu-

tion. To impose challenges for the discriminative model, the generative model produces

samples from random noises. Both models are designed as multilayer perceptrons and

are trained using backpropagation algorithm.

GANs have been extended to the context of semi-supervised learning to design the

discriminator in producing class labels. Springenberg et al. [116] proposed CatGAN in

which the objective function was modified to consider the mutual information between

observed samples and their predicted class distributions. In [117], the features learned

by the discriminator are reused in classifiers. Odena et al. [118] proposed SGAN in

which the generative model and the classifier are learned simultaneously and improves

classification performance on restricted datasets with no generative component.

2.8 Deep Learning For Remote Sensing Image Classifica-

tion

Following the success of DL in natural language processing, DL-based methods [119–122]

have been introduced in hyperspectral remote sensing image classification and achieved

significantly good results. These methods can be organized into three categories: spec-

tral information, spatial information and spectral-spatial information respectively. We

now present a review of each of these categories below:
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2.8.1 Spectral Feature Classification

DL models can automatically extract high-level and abstract features from raw input

data which are more effective than hand-crafted features. In the existing DL-based sec-

tral feature classification methods, the raw spectral vectors are provided as input and

the model generates deep spectral features which are later used for classification. Tradi-

tional CNNs generally take two-dimensional images as input and generate feature maps

accordingly. Hu et. al [123] proposed a 1D-CNN model to perform HSI classification.

The model contains one convolutional, one pooling and two fully connected layers. Mei

et. al [124] proposed another 1D-CNN model but instead of using pooling layer, the

model uses dropout and batch normalization.

Similar to the architecture of 1D-CNN, other deep models including SAE and DBN also

have the ability to take raw spectral vectors as input and generate deep spectral features

which are used for classification. Chen et al. [120] proposed a SAE-based model in which

the relationship between the input layer and reconstruction layer was exploited in a way

that the weights between the hidden and output layers are the transposition of those

of input to hidden layer. A distance prior was introduced during the fine tuning of the

SAE in [125], to give more effective guidance in extracting features in case of insufficient

labeled samples. Zhong et. al [126] introduced diversity promoting priors in terms of

diversity promoting conditions into the objective function optimization during the pre-

training and fine tuning of DBN. Fig. 2.11 illustrates a general framework of DL-based

models for spectral feature classification.

Figure 2.11: General framework of deep learning for spectral feature classification
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2.8.2 Spatial Feature Classification

Since HSIs contain spectral and spatial contents simultaneously, considering only spec-

tral information sometimes fail to extract effective features and consequently, fails to

produce an improved classification accuracy. Therefore, it is better to consider spatial

information along with spectral features in order to effectively classify remote sensing

images.

In the literature containing DL-based spatial feature classification methods, spectral

vectors within a neighborhood region of a given pixel are provided as inputs and spatial

features of that pixel is extracted accordingly. In this regard, 2D-CNN models were

introduced which can learn spectral features within neighborhoods in raw 2D images.

However, due to the large number of spectral bands, the data in a neighborhood region

suffer from high dimensionality. To address this issue, dimensionality reduction methods

were applied in several DL models. Makantasis et. al [127] proposed a randomized PCA

to reduce the HSI dimensions to 10 bands/principal components first and then applied

a 2D-CNN to extract deep features from the reduced number of HSI bands. A 5 × 5

spatial neighborhood was used in this work. A trade-off between the window size and

the number of PCs was observed in [128] where a 42×42 window size was used but only

three PCs were used.

Additional 2D-CNN-based models were introduced in which multiscale spatial features

were captured. Zhou et. al [129] used Laplacian pyramid transformation to capture

multiscale data from the compressed HSI and then fed into an independent 2D-CNN

to extract final features. Attribute profiles were introduced during the additional pre-

processing of the HSI image with PCA in [130] before 2D-CNN was used for classi-

fication. Following this approach of using PCA before employing 2D-CNN, a further

post-processing of the results with sparse coding was done in [131] for classification.

Similar strategies were executed for SAE and DBN as well for spatial feature classifi-

cation. After employing PCA to reduce the dimensions, SAE is included to perform

the classification. During the pre-training, the weights of the hidden-to-output layer are

restricted to the transposition of the weights of the input-to-hidden layers [132]. Similar
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approach was adopted for DBN structures as well [133]. An illustration of DL-based

spatial feature extraction methods are given in Fig. 2.12.

Figure 2.12: General framework of deep learning for spatial feature classification

2.8.3 Spectral-Spatial Feature Classification

In order to take full advantages of the powerful structure of HSI, it is important to

combine both spectral and spatial information to classify data. There are two ways

to do this: (1) extract spectral and spatial features separately and then, combine the

features (1D-CNN, 2D-CNN, SAE and DBN are such few examples). and, (2) extract

deep spectral-spatial features from 3D-cubes directly.

In [122], 1D-CNN and 2D-CNN were used to extract spectral and spatial featuers respec-

tively and later their individual outputs are combined together to be fed into a softmax

classifier. A framework [128] combining SAE, used for spectral features extraction and

a 2D-CNN, used for spatial feature extraction was used, in which the spatial features

were learned by spatial pyramid pooling.

The main challenge experienced during the use of 2D-CNN is the additional dimension

of the 3D structure of HSI image. To address this issue, 2D-CNN architecture can be

either extended to 3D-CNN or rearrang the 3D HSI cube to 2D image. Chen et. al [119]

introduced a 3D-CNN to learn deep spectral-spatial features by taking cubes of 27× 27

spatial size as inputs while a similar 3D-CNN architecture [122] uses input cubes of

5×5. Lee et. al [134] proposed a model that convolves the 3D subcubes with 3×3-sized

and 1 × 1-sized convolution kernels, and then reconstructs the new 3D data using the

convolved outputs jointly.
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Spectral-spatial models containing SAE and DBN generally extract spectral and spatial

features separately and then combine those to produce spectral-spatial features. In

such cases [120, 121], spatial information are flattened to 1D-vector, as both SAE and

DBN can process only 1D input. A spatially updated deep AE was used in [135] for

spectral-spatial feature extraction in which a sample similarity regularization procedure

combined with a collaborative representation-based classification was employed. An

unsupervised convolutional sparse AE with an window-in-window selection strategy was

adopted in [136] to extract spectral-spatial features. An illustration underlying these

approaches is shown in Fig. 2.13.

Figure 2.13: General framework of deep learning for spectral-spatial feature classifi-
cation

Recurrent neural network (RNN) is yet another powerful DL-based model, capable of

processing sequential data. Initially used for speech data, this model has been adopted

in hyperspectral remote sensing image classification. Mou et al. [137] proposed a classi-

fication method in which an RNN is used to capture the sequential property of an HSI

pixel vector. In this method, they used parametric rectified unit in order to avoid the risk

of divergence during training. Wu et al. [138] proposed a convolutional RNN in which

recurrent layers were added after convolutional layers in order to extract middle-level

and locally invariant features.
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2.8.4 GANs for Remote Sensing Image Classification

Although the architecture of a traditional GAN is very promising, yet very little research

has been done on adopting GANs in remote sensing. To handle the extremely time

consuming process of labeling huge amount of remote sensing data, GANs can be adopted

because the required quantities of training data may be provided by the generator during

the training. In this regard, Lin et al. [22] proposed a multiple-layer feature-matching

generative adversarial networks (MARTA GANs) to learn a representation using only

unlabeled data. To fit the complex properties of remote sensing data, they introduced

a fusion layer to merge the mid-level and global features. In [7], the authors introduced

the scaled exponential linear units (SeLU) instead of ReLU and batch normalization.

By adding the SeLU, high-quality and large-sized samples were generated for remote

sensing images. He et al. [23] proposed a semi-supervised learning model in which

three-dimensional bilateral filter (3DBF) was adopted to extract the spectral-spatial

features from the HSI data. The GANs were subsequently trained on those spectral-

spatial features by adding samples from the generator to the features and increasing the

dimension of the classification output.

2.9 Hyperspectral Image Datasets

AVIRIS is a unique optical sensor that captures spectral radiance in 224 contiguous

spectral channels with wavelengths from 400 to 2500 nanometers using a high-altitude

aircraft. The main objective of the AVIRIS project is primarily focused on understanding

and analysing processes related to earth’s surface and identifying environmental changes.

ROSIS, another advanced sensor, is particularly designed to measure ocean parameters

including water biomass detection and water quality measurements and also over land

surfaces. Earth Observing-1 (EO-1), first satellite in NASA’s New Millennium Program

Earth Observing series, has a unique feature that carries an experimental hyperspectral

imagery (Hyperion) that can capture high resolution images in 220 contiguous spectral

channels of the earth surface.
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During our experiments, we used three widely used hyperspectral datasets captured

by the sensors mentioned above, in order to evaluate the effectiveness of our proposed

method. These are: Indian Pines, Salinas and Pavia University. We now briefly intro-

duce the details regarding the datasets.

2.9.1 Indian Pines

Indian Pines data, acquired by the AVIRIS, consists of 145×145 pixels and 220 spec-

tral bands in the wavelength range of 0.4-2.5 µm with a spatial resolution of 20 me-

ter/pixel [139]. This scene covers a test site in North-western Indiana, covering two-

thirds agriculture, and one-third forest. The original 224 number of spectral bands

was reduced to 200 by discarding water absorption bands. Sixteen different classes on

land-cover were considered in the ground truth.

2.9.2 Pavia University

Pavia University dataset, collected by ROSIS-3, consists of 610×340 pixels and 115

spectral bands and has a high spatial resolution of 1.3 meter/pixels [139]. The number

of bands was reduced to 103 by removing noisy bands. The scene, captured during a

flight campaign over Pavia, nothern Italy, has nine different classes on land-cover.

2.9.3 Salinas

This scene was collected by AVIRIS covering Salinas Valley, California and entails a

high resolution of 3.7 meter/pixel. The scene consists of 512×217 pixels and has 224

contiguous spectral bands. 20 water absorption bands are removed and the rest of the

bands include vegetables, bare soils, and vineyard fields, comprising 16 classes [140].

Fig. 2.14 shows randomly chosen bands and the ground truth of of the images for Indian

Pines, Pavia University and Salinas datasets respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: (a) Sample band (b) ground truth for Indian Pines (first row), Pavia
University (second row) and Salinas (third row).





Chapter 3

Conditional Random Field and

Deep Feature Learning for

Hyperspectral Image

Classification

In this chapter, we propose a method to classify hyperspectral images by considering

both spectral and spatial information via a combined framework consisting of CNN and

CRF. We use multiple spectral band groups to learn deep features using CNN, and then

formulate deep CRF with CNN-based unary and pairwise potential functions to effec-

tively extract the semantic correlations between patches consisting of three-dimensional

data cubes. Furthermore, we introduce a deep deconvolution network that improves the

final classification performance.

3.1 Introduction

In Section 2.5, we introduced widely used remote sensing classification methods and

discussed the importance of including spectral and spatial information in building a

43
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more meaningful representation of our hyperspectral data. Spectral-spatial classifica-

tion methods can be divided into two categories. The first category uses the spectral

and spatial information separately in which the spatial information is perceived in ad-

vance by the use of spatial filters [141]. After that, these spatial features are added to

the spectral data at each pixel. Then dimensionality reduction methods can be used

before the final classification. The spatial information can also be used to improve the

initial pixelwise classification result as a post-processing step, e.g., via mean shift [98]

or Markov random field [99], which is a very common strategy in image classification

and segmentation [100, 101]. The second category combines spectral and spatial infor-

mation for classification and segmentation. Li et al. proposed to integrates the spectral

and spatial information in a Bayesian framework, and then use either supervised [81] or

semi-supervised algorithm [142] to perform an additional step that improves the initial

classification results. Yuan et al. [143] combined spectral and texture information where

linear filters were used to supply enhanced spatial patterns. Since hyperspectral data

are normally represented in three-dimensional cubes, the second category of methods

can result in a large number of features containing discriminative information which are

effective for better classification performance.

Recent advances in “deep” architectures such as CNN have contributed immensely in

classifying spectral-spatial features [121, 144]. In some CNN-based hyperspectral data

classification methods [145], the spatial features are obtained by a 2D-CNN model which

exploits the first few principal component bands of the original hyperspectral data. Yu

et al. [146] proposed a CNN architecture which uses a convolutional kernel to extract

spectral features along the spectral dimension only. To obtain features in the spatial

domain, they used normalization layers and a global average pooling layer. On the other

hand, 3D-CNN can learn the signal changes in both spatial and spectral dimensions of

local spectral images. Therefore, it can extract significant discriminative information

for classification and exploit powerful structural characteristics for hyperspectral data.

Recently, this model was adopted by Chen et al. [119] for feature extraction and classi-

fication of hyperspectral images based on three-dimensional data across all the bands,

which combines both spectral and spatial information. Similar works have been proposed

to extract spectral-spatial features from pixel or pixel-pairs using deep CNN [145–147].
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Because CNN can effectively discover spatial structures among the neighboring patches

of the input data, the resulting classification maps generally appear smoother in spite

of not modeling the neighborhood dependencies directly. However, the possibility of

reaching local minima during training of CNN and the presence of noise in the input

images may create holes or isolated regions in the classification map. Compared with

other machine learning methods, CNN is limited by the absence of shape and edge

constraints. As a result, the final classification map appears rough on edges. Moreover,

in hyperspectral remote sensing images, cloud shadows and topography cause variations

in contrast, which often generates incorrect classes in images. The presence of cloud

also may hide regions or decreases the contrast of regions. Due to these reasons, CNN

sometimes recognizes only parts of the regions properly [148].

In these circumstances, a further refinement stage produces an improved classification

output. To this end, combining probabilistic graphical models such as MRF and Con-

ditional Random Field (CRF) with CNN brings significant improvements by explicitly

modelling the contextual information between regions. CRF is traditionally used to per-

form image segmentation after an initial coarse pixel-level class label has been generated.

The goal is to make pixels in a local neighborhood having the same class label. From

this perspective, the outcome of CRF can be considered as an improved classification

map. For these reasons, there has been a recent trend on exploring the integration of

CNN and CRF methods [17–20]. For example, Liu et. al [21] used CRF to improve the

segmentation outputs as a post-processing step. However, the CRF is entirely discon-

nected from the training of the deep network. Instead of using a disconnected approach,

Chen et al. [149] proposed a fully connected Gaussian CRF model where the respec-

tive unary potentials were supplied by a CNN. Since CRF can directly model spatial

structures, if it can be formulated in a deep modeling approach, the trained model will

integrate the advantages of both CNN and CRF in modeling the spatial relationships

in the data. Based on this combination, CRFs can better fine-tune model features by

using the incredible power of CNNs.

To improve the upsampled low-resolution prediction by a traditional CNN, Zheng et

al. [150] formulated a dense CRF with Gaussian pairwise potentials as a Recurrent
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Neural Network (RNN). We argue that this stage of refinement process can be further

improved by applying more advanced refinement methods, such as training a deconvo-

lution network [109]. Deconvolution network [151] was employed to visualize activated

features in a trained CNN and update network architecture for performance enhance-

ment. Hence, it is plausible to use it in order to further improve the final classification

performance.

In computer vision applications, it is usually common to train a deep network with

large amount of samples. This, however, is a very challenging task in hyperspectral

remote sensing applications since the number of training samples is limited. Without

abundant training samples, a deep network faces the problem of “overfitting” which

means the representation capability may not be sufficient to perform well on test data.

It is therefore very important to increase the size of the training samples in order to

handle this overfitting issue.

In our method, we treat hyperspectral images as spectral groups consisting of the image

spanning over a few spectral bands instead of all the bands across the spectra as in [119].

Such smaller-sized yet a large number of spectral groups will be able to provide more

accurate local spectral-spatial structure description of the data. Our framework 3DCNN-

CRF, as shown in Fig. 3.1, starts with generating a feature map obtained by applying a

3D-CNN over the spectral groups. We then introduce 3DCNN-based deep CRF in our

framework by using the output of the 3D-CNN. We calculate the unary and pairwise

potentials of the CRF by extending a CNN-based deep CRF architecture [152] to cope

with both spectral and spatial information along the entire spectral channels. Then a

mean-field inference algorithm [153] was used to generate a classification map. Finally,

a deconvolution network was adopted to improve the final classification performance

accordingly.
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The main contributions of this chapter are as follows:

� 3D-CNN is performed on spectral groups containing a small number of bands,

which results in a more effective spectral-spatial structure representation of the

hyperspectral data.

� CNN-based general pairwise potential functions in CRFs are extended to explicitly

model the spatial relations of local neighborhood along the spectral dimension that

results in an end-to-end training scheme from input image to classification output.

� 3DCNN-CRF also learns a deep deconvolution network during CRF pairwise po-

tential training that improved the final classification performance to a considerable

extent.

� The size of the training set is augmented by generating virtual samples from real

ones in different band groups, which produces different yet useful estimation of

spectral-spatial characteristics of the new samples.

� A new hyperspectral dataset is created and the image regions containing rele-

vant classes are manually labelled. 3DCNN-CRF is evaluated on this dataset and

compared with alternative approaches accordingly.

3.2 3D-CNN for Hyperspectral Feature Representation

In this section, we explain the first stage of our method for obtaining effective spectral-

spatial structure representation of the hyperspectral data using 3D-CNN. In many deep

learning based methods [119, 147], the generated spectral-spatial features can be used to

obtain a classification map. In our method, however, we further provide the features as

input to CRF in order to produce improved classification results. When 3D kernels are

used as the convolution operations on the spectral groups, a common practice is to con-

volve the 3D kernels with a spatial neighborhood along the entire spectral channels [119].

However, in our method, the original image, which has B bands, is divided spectrally

into several images consisting of neighboring L bands where L � B. 3D convolution

filters are applied to each of these different band group images. These groups of bands
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provide more detailed local spatial-spectral information so as to let different wavelength

ranges make distinct contribution to the final classification outcome. Repeated con-

volution operations produce multiple feature maps along the spectral dimension. Let

(x, y) define a location in the spatial dimension and z be the band index in the spectral

dimension. The value at a position (x, y, z) on the cth feature map is given by [122]:

valxyzlj(c)
= f(

m∑
i=1

Pl−1∑
p=0

Ql−1∑
q=0

Rl−1∑
r=0

kpqrlij val
(x+p)(y+q)(z+r)
(l−1)ij + blj) (3.1)

where l is the current layer that is being considered, m is the number of feature maps

in the (l − 1)-th layer (previous layer), j is the current kernel number, i is the current

feature map in the (l − 1)-th layer connected to the feature map of the l-th layer, kpqrlij

is the (p, q, r)-th value of the kernel connected to the i-th feature map in the previous

layer. Pl and Ql are the height and the width of the kernel respectively, and Rl is the

size of the kernel along the spectral dimension.

valxyzlij is calculated by convolving a feature map of the previous layer with a kernel of

the current layer. In this process, the number of feature maps in the previous layer will

be multiplied by the number of kernels in the current layer which will produce as many

feature maps as the output of the l-th convolution layer. Therefore, 3D convolution can

preserve the spectral information of the input data.

After the convolution operations, the intermediate feature maps pass through the pooling

layers and the activation functions. Finally, the feature maps consisting of the data cubes

are flattened into a feature vector and feed into a fully-connected layer which extracts

the final learned deep spectral-spatial features. The entire network is trained using the

standard back propagation algorithm.

After the 3D-CNN training, the learned parameters θλ contain information distinct to

each band group along the spectral channel λ ∈ B. Such representation is very useful

for deep learning framework as the model will be able to receive as much information

as required to identify interesting patterns within the data. The procedure of obtaining

spectral-spatial features by 3D-CNN is summarized in Algorithm 1.
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Algorithm 1: 3D-CNN Training Algorithm

Input: T Input Samples {X1, X2,. . . ,XT }, Y target labels in
Y = {y1, y2, . . . , yY }, number of BP epochs R
1: for Each subcube M ×N × L in λ do
2: while epoch r : 1→ R do
3: while training sample i : 1→ T do
4: Perform convolution operations using Eq. (1) to generate intermediate

feature maps.
5: Compute Soft-max activation a = exp(o)∑

k exp(ok)
; where o is the output of the

final layer of the network and first input to softmax classifier
6: Compute error T = yi-a
7: Back-propagate error to compute gradient δT

δoj

8: Update network parameter θλ using gradient descent ∆wij = −ε δT
δwij

where

ε is the learning rate
9: end while

10: end while
11: end for

Output: Trained CNN parameters θλ

The resulting 3D features map is used to formulate our proposed 3DCNN-CRF as ex-

plained in Section 3.3.

3.2.1 Addition of Virtual Samples

In many occasions, substantial number of weights in a CNN introduces local minima in

the loss function and eventually restricts the classification performance. To overcome

this issue, large amount of samples can be used to update weights during the training

procedure. Unfortunately, the process of obtaining samples, which normally requires

manual labelling, is time consuming and expensive. In remote sensing applications, the

number of available training samples is usually limited. This imposes a great deal of

challenges to the adoption of a deep network model.

To address this issue, the size of the training samples can be augmented by virtually

sampling from the existing labelled samples. Remote sensing scenes generally cover

large areas where pixels belonging to same class in different locations fall under different

radiations. We can simulate this lighting condition in order to generate virtual samples

by multiplying with a random factor and also adding a gaussian noise. A virtual sample

y(λ) is therefore generated from two real samples of the same class represented by xi(λ)
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and xj(λ) along the spectral channel λ ∈ B by

y(λ) = εixi(λ) + (1− εi)xj(λ) + β (3.2)

where ε indicates the effects of light intensity, which vary under different atmospheric

conditions and β is the added random Gaussian noise, which may result from the inter-

actions of adjacent pixels.

y(λ) is assigned with the same class label as εixi(λ) since the hyperspectral characteristics

of the new fused virtual sample shall be sitting between xi(λ) and xj(λ) which belong to

the same class. Moreover, we generate virtual samples within band groups and hence,

they give us multiple spectral information of the same sample from different wavelengths

so as to further augmenting the training data. We insert these new samples into separate

images by replacing the real samples which are used for the fusion. The original image

containing the limited number of real samples and the augmented images containing the

virtual samples obtained from different wavelengths are used for training the CNN.

We further augment the training samples by transforming the sample pixels using rota-

tion and flipping operations. In this approach, each pixel and its 5 × 5 neighbours are

considered as one sample. Therefore, within each band group, the size of each sample

is 5× 5× L where L is the number of bands. We rotated (90◦, 180◦, 270◦) the samples

and also flipped the four samples (the original one and its three variations) to produce

additional transformed images. This leads to 7 combinations of images within each band

group which significantly increase the amount of available data. From these transformed

images, we select limited number of samples for training. Therefore, the smaller number

of real samples and the augmented virtual samples, generated by sample fusion and the

smaller number of augmented virtual samples generated by transformation operations,

are used together to train the 3D-CNN. During the training, part of the real and vir-

tual samples are used for learning the weights of the neurons and the rest are used for

validating and updating the architecture. We report the total number of training and

testing samples for each class used on the datasets in Section 3.5.6.
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3.3 Constructing Deep CRFs

In many cases [119, 147], CNN can effectively discover spatial structures among the

neighboring patches of the input data, which generates smooth classification maps in

spite of not modeling the neighborhood dependencies directly. However, it still encoun-

ters several problems such as

� There are holes or disconnected regions in the classification map obtained by a

CNN due to the occurrence of reaching local minima during the training.

� CNN is generally limited by the absence of shape and edge constraints. The final

classification result may appear rough on edges of some regions or objects.

� In hyperspectral remote sensing, cloud shadows and topography cause variations

in the spectral responses and influence the contrast of regions, which generates

incorrect classes in images. As a result, the CNN sometimes recognizes only parts

of the regions.

To resolve these critical issues in such classification methods, we, therefore, propose

an end-to-end modelling approach by integrating deep CRF with the spectral-spatial

features obtained from the first stage in order to utilize the properties of both CNN and

CRF to better characterize the spatial contextual dependencies between the regions. We

believe that such end-to-end learning approach is very suitable for hyperspectral image

analysis as the integrated models will make full use of the spatial relationships among

spectral band groups to perform the final classification. This is the motivation of our

model 3DCNN-CRF.

In this section, we briefly explain the working principles of this deep CRF employed in

our framework. The deep CRF model was motivated by the work of Lin et al. [152]

which works on color or grayscale images. We have significantly extended this model to

cope with the spectral dimension of the data. During the training, CRF makes full use

of the spatial contextual information in the process which is very relevant and useful in

hyperspectral applications.
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In this chapter, our proposed 3DCNN-CRF will further analyze the output obtained by

the 3D-CNN. It is important to note that the output provided by the 3D-CNN is in

the form of 3D feature maps whose individual location is defined by spatial co-ordinates

along the spectral domain. We define these spectral-spatial locations as voxels. 3DCNN-

CRF is capable of modelling these voxel-neighborhoods, therefore making it ideal for

processing hyperspectral data. The parameters of the deep CRF used in our method

were trained by stacks of CNNs applied on the initial feature map. However, instead of

using group of bands, the 3D-CNNs used in the deep CRF consider the entire spectral

channels together as the input to the network since the initial feature map is already a

powerful representation of local spectral-spatial features.

The nodes in the CRF graph correspond to each voxel in the feature map along the B

bands. The labels of the voxels are given by l ∈ C. Later, edges are formed between the

nodes which construct the pairwise connections between neighboring voxels in the CRF

graph by connecting one node to all other neighboring nodes. The CRF model can be

expressed as

P (l|v(d,λ); θλ) =
1

Z(v(d,λ))
exp(−f(l, v(d,λ); θλ)) (3.3)

where the network parameters θ along different wavelengths λ shall be learned. f(l, v(d,λ); θλ)

is the energy function that models how compatible the input voxel v is. v is defined by

spatial co-ordinates d = {x, y} along the spectral domain λ and is with a particular pre-

dicted label l. Z(v(d,λ)) =
∑
exp[−f(l, v(d,λ); θλ)] is the partition function. In order to

combine more useful contextual information, we should model the relationships between

the voxels in the CRF graph. Therefore, the energy function can be expressed as

E(l, v(d,λ); θλ) =
∑
p∈M
λ∈B

φ(lp, vp; θλ) +
∑

(p,q)∈E
λ∈B

ψ(lp, lq, vp, vq; θλ) (3.4)

where M is the set of voxels or nodes, B is the set of spectral bands and E is the set

of edges between the nodes in the CRF graph. Here φ is a unary potential function

calculated for individual voxels, and ψ is a pairwise potential function determined based

on the compatibility among adjacent voxels. In our method, each pixel with spatial

coordinates (x± 1, y, λ), (x, y± 1, λ) or (x, y, λ± 1) is connected to the pixel at (x, y, λ)
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along the spectral dimension λ instead of connecting all other nodes in order to reduce the

computational complexity. These 6-connected neighboring pixels are connected along

one of the primary axes.

3.3.1 Unary Potential Functions

In our proposed 3DCNN-CRF, we apply stack of 3D-CNNs and generate feature maps

and a fully connected layer to produce the final output of the unary potential at each

individual voxel along λ. The stack of 3D-CNNs is applied on the node feature vectors,

obtained from the initial feature map, to calculate the unary potential for each individual

voxel representing nodes in the CRF graph.

The unary potential function φ is computed as follows:

φ(lp, vp; θλ) = −logP (lp|vp; θλ) (3.5)

During the deep CRF training, the network parameters θλ are adjusted in the stack

of 3D-CNNs along the entire spectral channels as they no longer are partitioned into

groups of bands.

3.3.2 Pairwise Potential Functions

The pairwise potential functions are calculated by considering the compatibility between

the pair of voxels for all possible combinations (in our case, four adjacent voxels). As

the first 3D-CNN applied to the original image gives us the feature vector for individual

voxels in the feature map, the edge features can be formed by concatenating the feature

vectors of two adjacent voxels [154]. Stack of 3D-CNNs are then applied on the edge

feature vectors, which eventually gives us the pairwise potential output. The pairwise

potential function is expressed as follows:

ψ(lp, lq, vp, vq; θλ) = ϕ(vp, vq)δp,q,lp,lq(fp, fq; θλ) (3.6)
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Here ϕ() is the label compatibility function which encodes the possibility of the voxel

pair (vp, vq) being labeled as (lp, lq) by taking the possible combinations of pairs. δp,q,lp,lq

is the output value of the 3D-CNNs applied to the pair of nodes that are described by

the corresponding feature vectors fp,fq previously obtained by the initial 3D-CNN. θλ

contains the 3D-CNN parameters to be learned for the pairwise potential function along

the whole spectral channels λ.

Parameter estimation in CRFs can be performed by maximizing the log likelihood of

a training input-output pair (v, l) as defined in Eq. (3.3) and Eq. (3.4). However, ex-

act maximum-likelihood training for undirected graphical models is intractable as the

computation involves marginal distribution calculation of the model. This is even more

complex for conditional training when we are required to predict certain l given ob-

served input voxel v. This eventually leads the decision of optimizing P (l|v) instead of

p(l, v). Therefore, an efficient CRF training is desirable in order to reduce the compu-

tational complexities. An efficient CRF training method is described in the following

Section 3.3.3.

3.3.3 Piecewise CRF Training

For the proposed CNN based CRF, the objective function for the CRF can be defined

as

∇(θ) =
∑
p∈M

(p,q)∈E×E
λ∈B

φ(lp, vp)ψ(lp, lq, vp, vq)− Z(v; θλ) (3.7)

Although such maximization of log-likelihood of (v, l) improves performance, the con-

ditional training is expensive because the calculation of the log partition function Z(v)

depends on the model parameters as well as on the input voxels along the spectral chan-

nels. Therefore, estimating CRF parameters must include approximating the partition

function for each iteration during the training phase in the stochastic gradient descent

(SGD) method. This gets more complicated when a large number of iterative steps are

required for SGD during the 3D-CNN training.
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In order to efficiently train a large model, we can divide the entire model into pieces and

then independently train those pieces. Later, we can combine the learned weights from

those pieces and use it for testing purposes. This idea, known as piecewise training, was

discussed in [155].

A proposition was defined and proved in [155] about the piecewise estimator that max-

imizes a lower bound on the true likelihood. It says:

Z(I) ≤
∑
e

Z(I|e) (3.8)

Here, I|e is the vector I with zeros in the entries that do not correspond to the edge

e. Therefore, the piecewise objective function for CRF can be defined for a training

input-output pair (v, l) as:

∇(θ) =
∑
p∈M

(p,q)∈E×E
λ∈B

φ(lp, vp)ψ(lp, lq, vp, vq)−
∑

(p,q)∈E×E

Z(v; θλ) (3.9)

According to the proposition in Eq. (3.8), for each v, the bound needs to be applied

separately which removes the requirement of marginal inference for gradient calculation.

This idea can be incorporated into CRF training with 3D-CNN potentials. We can

formulate P (l|v) as a number of independent likelihoods on both unary and pairwise

potentials

P (l|v; θλ) =
∏
φ

∏
p∈M

Pφ(lp|v; θ)
∏
ψ

∏
(p,q)∈E×E

Pψ(lp, lq|v; θλ) (3.10)

Both Pφ(lp|v; θλ) and Pψ(lp, lq|v; θλ) can be calculated from unary and pairwise potentials

respectively.

Pφ(lp|v;λ) =
exp[φ(lp, v; θλ)]∑
lp
exp[φ(lp, v; θλ)]

(3.11)

Pψ(lp, lq|v; θλ) =
exp[ψ(lp, lq, v; θλ)]∑
lp,lq

exp[ψ(lp, lq, v; θλ)]
(3.12)

Therefore, it is not required to compute the partition function anymore and we only

need to calculate the log likelihood of Pφ and Pψ. As a result, the gradient calculation

can be performed without partition function, thus saving expensive inference. After the
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CRF training, we perform an inference on our model, for which a mean-field inference

algorithm is adopted.

3.3.4 Mean-field Inference

In practice, due to large number of parameters contained in the CRF energy function for

both unary and pairwise potentials, the exact minimization of CRF energy is nearly im-

possible. To this end, the mean-field approximation algorithm [153] is used to calculate

the CRF distribution for maximum posterior marginal inference.

We use two Gaussian kernels that operate in the feature space defined by the intensity

of voxel v at coordinates d = {x, y} and the spectral band λ. We use those two-kernel

potentials [153] defined in terms of the feature vectors fp and fq for two voxels vp and vq.

The first term of this potential expresses the size and shape of the voxel-neighborhoods

to encourage the homogeneous labels. The degree of this similarity is controlled by a

parameter θα. This term is defined by

k(1)(fp, fq) = w(1)exp

− ∑
d∈{x,y}

|vp,d − vq,d|2

2θ2α,d

 (3.13)

This kernel is defined by two diagonal covariance matrices (one for each axis) whose

elements are the parameters θα,d.

The second term of the potential is similar. Only an additional parameter ξ is used

for interpreting how strong the homogeneous appearances of the voxels are in an area

defined by spatial co-ordinates d across the spectral channels λ. It is defined by

k(2)(fp, fq) = w(2)exp(−
∑

d∈{x,y}

|vp,d − vq,d|2

2θ2α,d

−
∑
λ∈B

|vp,λ − vq,λ|2

2θ2ξ,λ
) (3.14)

where |vp,d− vq,d| is the spatial distance between voxels p and q and |vp,λ− vq,λ| is their

difference across the spectral domain. The influence of the unary and pairwise terms

can be adjusted with their weights w(1) and w(2).
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The first step of this iterative inference algorithm [153] is initialization in which a soft-

max function over the unary potential across all the labels for individual voxels is per-

formed. The second step is message passing which applies convolutions with the two

Gaussian kernels defined above on the current estimation of the prediction of the voxels.

This reflects how strongly two voxels vp, vq are related to each other. By using back

propagation, we calculate error derivatives on the filter responses. The next step is to

take the weighted sum of the filter outputs for each label of the voxels. When each label

is considered, it can be reformulated as the usual convolution of filter with input voxels

and the output labels. Next, a compatibility transform step is performed followed by

adding the original unary potential for each individual voxel obtained from the initial

3D-CNN. Finally, the normalization step of the iteration can be expressed as another

softmax operation which gives us the final labels in the classification map. Algorithm 2

summarizes the important stages of our deep CRF approach.

Algorithm 2: Deep CRF

Input: 3D feature map obtained from Algorithm 1, |M| voxels in
{v1,v2,. . . ,v|M|}
1: for Each v in M do
2: Add v in CRF graph
3: for Each vi,vj do
4: if vi is adjacent to vj then
5: Connect edge between vi and vj in CRF graph
6: end if
7: end for
8: end for
9: for Each v in M do

10: Compute unary potential function φ using Eq. (3.5)
11: end for
12: for Each vp,vq in E do
13: Compute pairwise potential function ψ using Eq. (3.6)
14: end for
15: Train CRF using Eqs. (3.10), (3.11) and (3.12)
16: Compute two-kernel potentials using Eqs. (3.13) and (3.14)
17: Execute Mean-Field inference algorithm

Output: Classified Labels

Our proposed 3DCNN-CRF produces an improved classification map, hence, integrate

the different 3D-CNN structures in the feature extraction and CRF steps into an end-

to-end modelling approach. However, it suffers from low-resolution representation of

inaccurate object boundaries due to repeated use of pooling layers during CNN training.
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To overcome this problem, we further employ deconvolution network during the CRF

pairwise potential computation and produce an improved output in the final stage. We

do not include a deconvolution network in the first 3D-CNN because we propose to

generate spectral-spatial features only from this stage and use these later to construct

an end-to-end training scheme from input image to classification output. We present

the basic formulation of deconvolution in Section 3.4.

3.4 Prediction Refinement

To obtain a high-resolution classification map from the mean-field inference, we add a

deconvolution network [149] into our framework. This network is composed of deconvo-

lution, unpooling, and rectified linear unit (ReLU) layers [151].

Unpooling

Pooling improves the classification performance by filtering noisy activations in the lower

layers and retaining activations in the upper layers only. It can abstract activations in a

receptive field with a single value. Unfortunately, spatial information within a receptive

field is lost during pooling. As a result, accurate localization is not always possible.

To overcome this problem, unpooling layers are used in the deconvolution network,

which does the exact reverse operation of the pooling layers. During the CRF pairwise

training, unpooling operation produces a finer resolution of an object by reconstructing

the original size of the input data and thus restoring the detailed structures of the object

of interest. Generally, unpooling operation keeps track of the locations of maximum

activations which were selected during the pooling operation. This information can be

very useful in placing the activations back to their original pooled location.
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Deconvolution

The unpooling operation produces a large activation map which is not regular in nature.

Although deconvolution operation is similar to convolution operations, it actually as-

signs a single input with multiple outputs unlike convolution operation which connects

multiple inputs within a filter window or patch to a single activation value [109, 149].

This operation produces a much denser activation map compared to the sparse acti-

vation map obtained earlier. The filters used during deconvolution operation help in

strengthening the activations that are close to the target classes and also suppressing

the noisy activation from the regions containing different classes. As a result, different

layers of the deconvolution network can help in reconstructing shapes in different lev-

els. The filters used in lower layers may help in reconstructing the overall shape of an

object while the higher layer filters can help in more class-specific details of an object.

Therefore, more improved and accurate classification outcome can be obtained by the

use of deconvolution network.

In our proposed 3DCNN-CRF, we incorporate deconvolution into the 3D-CNN training

only during the deep CRF training. This is because we want to produce a final dense

classification map with class-specific information in it instead of simply applying it

on low-resolution activation map as a separate step. The integration of deconvolution

during the pairwise potential calculation of the deep CRF training particularly helps in

producing refined segments and hence, improves the classification accuracy to a large

extent.

3.5 Experimental Results

In this section, we present the experimental results on real-world hyperspectral remote

sensing images. Then we analyse the performance of the proposed method in comparison

with several alternatives.
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3.5.1 Hyperspectral Image Datasets

In the experiments, we used two widely used hyperspectral datasets, i.e., Indian Pines

and Pavia University, in order to evaluate the effectiveness of our proposed method.

A New Dataset

For better evaluation of our proposed method, we created a new dataset by collecting

AVIRIS images from the USGS database1. The details on the construction of this dataset

are described in Section 3.5.2.

We separated our experiments on 3DCNN-CRF into two stages, 3D-CNN feature extrac-

tion and improved classification by deep CRF. For both tasks, we compared our results

with state-of-the-art methods to evaluate the usefulness of our proposed algorithm. The

details of our experiments will be presented later.

Figure 3.2: Image instances from the new dataset Griffith-USGS

3.5.2 Construction of the new dataset

In the official AVIRIS website2, we downloaded remote sensing data located in the region

of north America spanning over the United States of America, Canada and Mexico using

1https://earthexplorer.usgs.gov/
2https://aviris.jpl.nasa.gov/alt locator/
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a data acquisition tool. The AVIRIS sensor collects data that can be used for character-

ization of the Earth’s surface and atmosphere from geometrically coherent spectroradio-

metric measurements. With proper calibration and correction for atmospheric effects,

the measurements can be converted to ground reflectance data which then can be used

for quantitative characterization of surface features.

We downloaded 19 unlabeled scenes to build the training and testing sets for deep

learning. We cropped those scenes into a number of individual portions to build 150

training images and 50 testing images. As we captured scenes from multiple locations,

the spatial resolutions of the scenes used in this dataset range from 2.4 to 18 meters.

Each image consists of approximately 145×145 pixels and 200 spectral bands. Fig. 3.2

shows two instances from the training set of our new dataset Griffith-USGS.

3.5.3 Pre-processing

After collecting the AVIRIS image data, the following step was to undertake some pre-

processing tasks in order to convert images into a suitable form for proper use. Hyper-

spectral sensors should be spectrally and radiometrically calibrated before data analysis.

NASA/JPL has already processed the AVIRIS data to remove geometric and radiomet-

ric errors associated with the motion of the aircraft during data collection. However,

the data should be further corrected for atmospheric effects and converted to surface re-

flectance. To do the conversion, we used a tool “FLAASH” [156] provided by ENVI which

is a model-based radiative transfer program to convert radiance data to reflectance. De-

veloped by Spectral Sciences, Inc., FLAASH uses MODTRAN4 radiation transfer code

to correct images.

3.5.4 Manual Labelling

After obtaining the reflectance data, the next step was to create the training and testing

datasets accordingly. As our method relies on a supervised training approach, it was

important to construct a labeled set in order to fit into our proposed framework. For

this purpose, we performed a pixelwise manual labeling on the images. To increase the
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size of the training set, we cropped smaller portions from the original image. We made

sure that the cropped portion should contain instances of at least few classes that we

want to classify. We created a training set containing six classes, including road, water,

building, grass, tree and soil. We navigated to the exact corresponding locations of the

high-resolution color images in Googe Earth to determine the accurate classes of the

pixels and labeled our hyperspectral band images accordingly.

The widely used Pavia University or Indian Pines are too small to show the advantages of

deep learning based methods. They are not challenging either as their latest classification

accuracies are over 99%. The purpose of collecting a new dataset for our method is to

introduce more challenges into the data and demonstrate the usefulness of our method.

Although the number of classes that we identified is relatively small, the geographical

locations had considerable impact on the entire dataset as the atmospheric effects varied

significantly which produces different surface features. Those scenes varied in terms of

resolution and contrast, and hence introduced more challenges in producing a refined

classification map.

3.5.5 Design of the CNNs

As mentioned before, we used spectral-group based 3D-CNN to generate effective spectral-

spatial features and train deep CRF for an improved classification outcome. However,

to demonstrate the efficacy of such spectral-spatial features in obtaining better classifi-

cation output, we generated an initial classification map from these features. Later, the

final classification map is generated after integrating deep CRF which uses the feature

maps rather than the classification map as the input. In this section, we elaborate the

design of all the CNNs used in various stages of our framework.

For each CNNs used in our 3DCNN-CRF, we used 32 5 × 5 × 5 convolution kernels.

Depending on the datasets and the two stages of our method, we adopted four to seven

convolution layers and two to four pooling layers with 2×2 pooling kernel in each layer.

The analysis on the selection of convolution layers is provided later. ReLU layers were

used for all datasets as well. All layers were trained using backpropagation/SGD. The

architecture of the CNNs used in our method is explained in Table 3.1.
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Table 3.1: Architecture of the CNNs

Dataset
3D-CNN Feature Extraction Deep CRF
Layer Pooling Layer Pooling

Indian Pines

1 2 × 2 1 2 × 2
2 2 × 2 2 No
3 No 3 No
4 No 4 2 × 2
5 2 × 2
6 No
7 2 × 2

Pavia University

1 2 × 2 1 2 × 2
2 2 × 2 2 No
3 No 3 2 × 2
4 No
5 2 × 2
6 No

Griffith-USGS

1 2 × 2 1 2 × 2
2 2 × 2 2 No
3 No 3 No
4 No
5 2 × 2
6 No

The size of the mini-batch was set to 100. For the logistic regression, the learning

rate was set to 0.003 for Indian Pines, 0.01 for Pavia University and 0.005 for our new

dataset. The number of epochs was 700 in 3D-CNN feature extraction and 500 in deep

CRF for Indian Pines, 600 in 3D-CNN feature extraction and 500 in deep CRF for Pavia

University and for Griffith-USGS. The weights were randomly initialized and gradually

trained using the back propagation algorithm. Each convolution kernel extracted distinct

features from the input that convey meaningful structural information about the data.

Different kernels used in the convolution layers are able to extract different features on

the way to form a powerful representation.

3.5.6 Results and Comparisons

Effective spectral-spatial structure representation of the hyperspectral data provides

useful input for classification. These initial inputs guide the subsequent process of con-

structing deep CRF in improving the classification output. It is, in fact, a common

practice to use spectral-spatial features to perform an initial classification which is later
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used in an additional step [81, 157] to improve the classification output. Hence, we gen-

erated an initial classification map in order to demonstrate the effectiveness of spectral

band group-based spectral-spatial features in producing better classification. Further-

more, we intended to validate the usefulness of our proposed 3DCNN-CRF model by

improving from the initial classification.

To begin with, we evaluated the effectiveness of the first part of our framework which

includes the execution of CNN over the image that eventually results in the spectral-

spatial structure followed by an initial classification step. For this purpose, we compared

our method with an SVM-based classification algorithm [102] which itself is divided into

two parts: (1) SVM with composite kernel (SVM-CK) and (2) SVM with generalized

composite kernel (SVM-GCK). We compared our results with SVM-GCK as it outper-

formed its counterpart SVM-CK.

We also compared our method with a spatial-spectral-based method (MPM-LBP-AL) [139].

In this method, active learning (AL) and loopy belief propagation (LBP) algorithms were

used to learn spectral and spatial information simultaneously. Then the marginal proba-

bility distribution were exploited, which used the whole information in the hyperspectral

data. We made comparisons with another supervised method (MLRsubMLL) [81] that

integrated spectral and spatial information into a Bayesian framework. In this method,

a multinomial logistic regression (MLR) algorithm was used to learn the posterior prob-

ability distributions from the spectral information. Moreover, a subspace projection

method was used to characterize noisy and mixed pixels. Later, spatial information

was added using a multilevel logistic MRF prior. Along with this, we also reported the

performance of a recent work developed by Chen et al. [119] who proposed classification

methods based on 1-D, 2-D and 3-D CNNs. To fit into our method, we simply compared

with their 1-D CNN (1D-CNN-LR) and 3-D CNN (3D-CNN-LR) approaches which used

logistic regression (LR) to classify pixels.

We chose limited samples for training since we wanted to simulate the real-world cases

where the size of labelled data is small. For our experiments, we chose 3 samples per class

in the extreme case and continued investigating on different numbers of training samples

per class, from 5 to 15. To improve the classification performance and to avoid overfitting
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Table 3.2: Number of Training and Testing Samples Distribution for Each Class on
Indian Pines Dataset

Class
Training Samples

Real Testing Samples
Real Samples Virtual Samples

Alfalfa 15 33 31

Corn-notill 15 1234 1411

Corn-mintill 15 844 813

Corn 15 238 220

Grass-pasture 15 371 466

Grass-trees 15 675 713

Grass-pasture-mowed 15 18 13

Hay-windrowed 15 402 461

Oats 15 51 5

Soybean-notill 15 991 955

Soybean-mintill 15 1921 2438

Soybean-clean 15 611 576

Wheat 15 193 188

Woods 15 1033 1248

Buildings-Grass-Trees-Drives 15 301 369

Stone-Steel-Towers 15 73 76

Total 9229 9983

problem, we increased the size of the training samples by augmentation discussed in

Section 3.2.1. We used those limited real samples for augmenting the training set and

the rest of the real samples were included in the testing set.

The results that we report in this chapter are based on a training set in which we per-

formed a 10-fold cross validation to select 15 real samples and 50% of the total number

of augmented samples for each class. The reason we did not consider all augmented

samples in each iteration of cross validation because samples with good/bad represen-

tations may affect the classification performance to a significant extent. We report the

total number of training and testing samples for each class used on the three datasets in

Tables 3.2, 3.3 and 3.4. Also, during the CNN training, we used 90% of the total number

of training samples, consisting of limited number of real samples and augmented sam-

ples, to learn the weights and biases of the neurons and the remaining 10% to validate

and further update the design of the architecture.

For performance evaluation, we calculated the overall accuracy (OA) and average accu-

racy (AA) with the corresponding standard deviations. We repeated our experiments for

ten times over the randomly split training and testing data. Furthermore, we assessed
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Table 3.3: Number of Training and Testing Samples Distribution for Each Class on
Pavia University Dataset

Class
Training Samples

Real Testing Samples
Real Samples Virtual Samples

Asphalt 15 5011 6614

Meadows 15 14311 18632

Gravel 15 1904 2082

Trees 15 3055 3047

Painted metal sheets 15 998 1328

Bare Soil 15 4598 5012

Bitumen 15 1072 1313

Self-Blocking Bricks 15 3440 3665

Shadows 15 970 930

Total 35494 52606

Table 3.4: Number of Training and Testing Samples Distribution for Each Class on
Griffith-USGS Dataset

Class
Training Samples

Real Testing Samples
Real Samples Virtual Samples

Road 15 2699 1719

Water 15 3594 1559

Building 15 2512 1466

Grass 15 3936 1902

Tree 15 2897 1757

Soil 15 2543 1401

Total 18271 9804

the statistical significance of our results by applying binomial test in which the assess-

ment was done by computing the p-value from the paired t-test. We set the confidence

interval to 95% which declares statistical significance at p < .05 level.

Table 3.5 reports the pixelwise CNN-based classification results on Indian Pines, Pavia

University and Griffith-USGS datasets with 15 real samples per class and augmented

samples for training. The results show that our method achieved similar accuracy as

1D-CNN-LR [119]. Both methods outperformed other pixel-wise classification methods

and were statistically significant in most cases. Therefore, we can conclude that the

CNN-based approaches can effectively improve the classification accuracy.

As described before, we proposed to perform CNN-based classification on spectral groups

instead of pixel-wise classification. Table 3.6 reports 3-D CNN-based classification results

on Indian Pines, Pavia University and Griffith-USGS datasets with 15 samples per class
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Table 3.5: Classification accuracies on different datasets (pixelwise). A ‘*’ denotes
that the best average accuracy (shown in bold) is significantly better that the accu-
racy achieved by the corresponding method according to a statistical paired t-test for

comparing classifiers

Dataset
SVM-GCK

[102]

MPM-LBP-AL

[139]

MLRsubMLL

[81]

1D-CNN-LR

[119]

Proposed

Method

Indian

Pines

OA (%) 87.53 ± 2.30 90.07 ± 1.76 85.06 ± 1.92 92.93 ± 1.44 92.59 ± 0.55

AA (%) 88.97 ± 0.54∗ 90.01 ± 0.77 86.00 ± 1.09∗ 93.05 ± 2.14 92.96 ± 1.01

Pavia

University

OA (%) 89.39 ± 2.19 84.70 ± 1.22 87.97 ± 1.54 92.35 ± 1.08 92.06 ±1.36

AA (%) 91.98 ± 1.23 85.97 ± 0.07∗ 89.31 ± 0.77∗ 93.17 ± 1.26 93.97 ± 0.30

Griffith-

USGS

OA (%) 67.33 ± 2.71 68.69 ± 0.91 68.05 ± 0.19 75.07 ± 1.23 75.97 ± 0.19

AA (%) 70.45 ± 1.49∗ 69.33 ± 1.01∗ 69.02 ± 0.77∗ 75.98± 1.30∗ 76.42 ± 0.83

Table 3.6: Classification accuracies on different Datasets (spectral groups). A ‘*’
denotes that the best average accuracy (shown in bold) is significantly better than the
accuracy achieved by the corresponding method according to a statistical paired t-test

for comparing classifiers.

Dataset
SVM-GCK

[102]

MPM-LBP-AL

[139]

MLRsubMLL

[81]

3D-CNN-LR

[119]

Proposed

Method

Indian

Pines

OA (%) 90.70 ± 1.35 92.20 ± 1.82 90.66 ± 0.20 97.88 ± 0.48 98.29 ± 0.33

AA (%) 90.83 ± 0.32∗ 92.18 ± 1.21∗ 89.91 ± 2.30∗ 99.18 ± 0.06 99.20 ± 0.09

Pavia

University

OA (%) 96.14 ± 2.19 87.25 ± 1.26 93.91 ± 1.44 98.60 ± 0.07 99.12 ± 0.41

AA (%) 96.05 ± 0.11 89.09 ± 0.08∗ 92.00 ± 1.04∗ 99.53 ± 0.05 99.69 ± 0.03

Griffith-

USGS

OA (%) 73.97 ± 1.21 63.19 ± 1.99 68.88 ± 1.45 77.71 ± 0.87 83.05 ± 1.19

AA (%) 74.97 ± 0.46∗ 65.02 ± 0.97∗ 69.95 ± 1.45∗ 78.95 ± 0.37∗ 84.98 ± 0.86

Table 3.7: Classification accuracies on different datasets.

Dataset
Without

Deconvolution
Deconvolution in

Unary CRF
Deconvolution in

Pairwise CRF

Indian Pines
OA (%) 98.38 ± 0.37 99.04 ± 0.03 99.15 ± 0.16
AA (%) 99.29 ± 0.24 99.35 ± 0.10 99.41 ± 0.04

Pavia University
OA (%) 99.32 ± 0.03 99.23 ± 0.13 99.63 ± 0.07
AA (%) 99.70 ± 0.05 99.53 ± 0.06 99.79 ± 0.03

Griffith-USGS
OA (%) 84.91 ± 1.02 86.00 ± 0.29 88.92 ± 0.17
AA (%) 84.55 ± 1.36∗ 85.05 ± 1.05∗ 89.13 ± 0.74

and augmented samples for training. By keeping the CNN parameters the same as in

the pixel-based classification experiments, it is evident from the results in Tables 3.5

and 3.6 that the classification accuracy can be significantly improved with spectral-

group based representation. The reason is that 3D operation better characterizes the

spatial and structural properties of the hyperspectral data. Both our method and 3D-

CNN-LR [119] outperform the rest of the methods, showing the power of deep neural
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Table 3.8: Improved classification accuracies on different Datasets. A ‘*’ denotes
that the best average accuracy (shown in bold) is significantly better than the accu-
racy achieved by the corresponding method according to a statistical paired t-test for

comparing classifiers.

Dataset
MPM-LBP-AL

[139]

MLRsubMLL

[81]

WHED

[158]

3D-CNN-LR

[119]

Proposed

Method

Indian

Pines

OA (%) 92.91 ± 1.24 91.85 ± 0.83 90.15 ± 1.95 98.25 ± 0.78 99.15 ± 0.16

AA (%) 92.35 ± 1.90∗ 91.95 ± 0.74∗ 90.85 ± 2.05∗ 99.27 ± 0.12 99.41 ± 0.04

Pavia

University

OA (%) 92.19 ± 0.50 94.77 ± 1.09 87.85 ± 1.75 98.80 ± 0.28 99.63 ± 0.07

AA (%) 93.85 ± 0.16∗ 95.35 ± 0.71∗ 86.50 ± 2.56∗ 99.60 ± 0.07 99.79 ± 0.03

Griffith-

USGS

OA (%) 69.89 ± 1.47 74.29 ± 0.66 70.20 ± 2.33 82.53 ± 0.69 88.92 ± 0.17

AA (%) 70.19 ± 2.47∗ 75.06 ± 1.20∗ 71.85 ± 2.50∗ 83.04 ± 0.91∗ 89.13 ± 0.74

networks. Our method significantly outperforms 3D-CNN-LR [119] on Griffith-USGS

dataset, which proves the usefulness of the proposed paradigm.

Since it is a common practice to compare the accuracy of an initial classification and im-

proved classification by an additonal step in hyperspectral remote sensing [81, 139], we

evaluated the effectiveness of the later stages of our framework with MLRsubMLL [81]

and WHED [158] which included explicit segmentation stages as additional steps. Sim-

ilarly, we further report the improved accuracy of 3D-CNN-LR [119] since this method

included L2 regularization and dropout in the training process to improve the initial

coarse classification results. We also report the final accuracies obtained by MPM-LBP-

AL [139] in which active learning was used in the later stages of their algorithm to

improve the accuracy previously obtained by estimating the marginal inference for the

whole image. We tested the usefulness of deconvolution by (1) running the method

without using deconvolution at all, (2) using deconvolution during CRF unary potential

calculation and (3) using deconvolution during CRF pairwise potential calculation stage.

It is important to note that we prefer to include deconvolution into pairwise potential

calculation stage as this step plays a major role in constructing accurate segments by

connecting regions that actually belong to the same segment. Therefore, we applied

deconvolution in the deep pairwise potential calculation stage rather than using it in

other stages.

Table 3.8 reports the improved classification accuracies on three datasets respectively.

The results show that our proposed 3DCNN-CRF outperforms the methods MLRsubMLL [81],
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MPM-LBP-AL [139], 3D-CNN-LR [119] and WHED [158]. The integrated 3DCNN-

based pairwise potentials defined on both spatial and spectral dimensions significantly

improved the coarse-level prediction rather than doing local smoothness. During our

experiments, we observed that the classification map produced by the initial CNN was

too coarse for the Griffith-USGS dataset since we collected images from different scenes.

Those scenes varied significantly in terms of resolution and contrast, and hence intro-

duced more challenges in producing an improved classification map. After integrating

CRF potentials, an approximately 7% increase in accuracy was observed (Table IV),

leading to significant advantages over the baseline methods. Deconvolution network is

capable of improving of the final output, particularly when it is used during the pair-

wise potential calculation, by effectively improving the accuracy on connecting regions

that belong to the same segment. The idea of integrating deconvolution into pairwise

potential computation was supported by the results this option outperforms the other

two versions where deconvolution was not used at all and was used in calculating unary

potentials.

Fig. 3.3 illustrates the classification results from the two stages of our method on the

Indian Pines, Pavia University and Griffith-USGS datasets respectively. The first and

the second columns are the ground truth and the initial classification map on each

dataset generated by 3D-CNN, respectively. The third column contains binary error

maps obtained by comparing the classification results with the ground truth. The white

pixels indicate the parts of the image that are incorrectly classified. The fourth column

shows the final improved classification outcome using deep CRF and deconvolution,

whose error maps are presented in the last column. The differences between the binary

maps represented in columns (c) and (e) show that the number of incorrectly classified

pixels are significantly decreased after introducing the deep CRF. This suggests the

usefulness of 3DCNN-CRF for classifying hyperspectral images.
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Figure 3.3: (a) Ground truth; (b) 3D-CNN-based classification; (c) difference map
with ground truth; (d) improved classification by deep CRF with deconvolution; and

(e) difference map after final classification.

3.5.7 Performance Analysis and Parameter Settings

Effect of Few Spectral Bands

In our algorithm, we propose to use spectral groups instead of the whole spectrum to

construct the spectral-spatial representation of our hyperspectral data during the first

stage. This better characterizes a range of spectral variability among the entire spectral

signature of the data. Although during the training of CNNs, the large number of

spectral groups results in a large number of feature maps, these are able to capture

the local image information well and precisely, as well as can contribute to describing

the underlying materials which are very significant for classifying hyperspectral images.

Furthermore, we augmented training samples from these band groups which (1) increased
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the size of the training samples significantly and (2) generated more effective spectral-

spatial representation of samples from different wavelengths. During the experiments,

we observed that with small spectral groups, we were able to detect a wider range of

spectral information from our input data and hence we achieved better classification

accuracy than that of using the entire spectrum. Moreover, we also analysed on the

number of optimal bands to be added in individual spectral groups by connecting this

step with the data augmentation process. Since different wavelength groups capture

different underlying material information, we chose the size of the spectral groups by

testing on a various number of bands and measuring the corresponding accuracies. We

discovered that the optimal number of bands should be 25 for Indian Pines and Pavia

University, and 20 for Griffith-USGS. Table 3.9 shows the relative comparison between

these two settings of using spectral groups for the initial classification by 3D-CNN. The

analysis of choosing the optimal number of bands for respective datasets is given in

Fig. 3.4 where the whole spectral cube denotes all the bands used for representing the

spectral cube and smaller spectral groups denote the smaller number of bands in the

spectral groups.

Table 3.9: Effect of fewer spectral groups

Dataset
Accuracy (%) with

Whole Spectral Cube
Accuracy (%) with

Smaller Spectral Groups

Indian Pines 96.80 ± 1.01 99.20 ± 0.09

Pavia University 97.80 ± 1.05 99.69 ± 0.03

Griffith-USGS 79.65 ± 0.65 84.98 ± 0.86

Figure 3.4: Classification results of different numbers of bands in spectral groups.
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Effect of Data Augmentation

During the experiments, we chose different numbers of training samples and augmented

the size accordingly. We observed that increasing the numbers of training samples from

different band groups had evidently improved the overall performance of our algorithm.

Moreover, we also tested other methods with the same experimental settings and no-

ticed the improved performance achieved by those as well. Fig. 3.5 show the effect of

various number of training samples which were used in data augmentation in the overall

classification accuracy computed from different spectral groups for all three datasets re-

spectively. Comparisons with other baseline methods for the various number of training

samples were also demonstrated in Fig. 3.5. We also reported the overall accuracies

obtained by our proposed method with and without augmenting data in Table 3.10 for

all three datasets experimented. We observed that, the accuracy improved by almost

35% when only 3 samples were used for training the CNNs. It is quite evident from

this analysis that the data augmentation had eventually contributed in improving the

performance of the CNNs when limited training data are available.

Table 3.10: Effect of Data Augmentation on OA (%) for all three datasets.

No. of Training

Samples/Class

Indian Pines Pavia University Griffith-USGS

Without

Augmenting

With

Augmenting

Without

Augmenting

With

Augmenting

Without

Augmenting

With

Augmenting

3 19.91 57.89 13.66 39.55 14.25 37.95

5 27.57 70.34 22.58 58.44 18.30 54.21

7 30.63 80.91 29.95 73.65 25.81 64.93

9 35.28 86.60 37.05 83.12 30.05 71.16

11 39.05 90.48 41.15 92.45 33.80 78.35

13 43.85 96.87 43.75 97.41 39.44 82.38

15 47.90 98.89 46.65 99.12 43.25 86.25

Effect of Depth in CNNs

An important observation can be made from the results reported earlier in terms of

the depth of the networks. Undoubtedly, depth helps in improving the classification

accuracy but adding too many layers introduces the curse of overfitting and may also

downgrade the accuracy as well. It is widely accepted that minimizing both training and
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(a) (b)

(c)

Figure 3.5: OAs with different numbers of training samples/class in all baseline meth-
ods for (a) Indian Pines, (b) Pavia University, and (c) Griffith-USGS.

validation losses are important in a well trained network. If the training loss is small

and the validation loss is large, it means that the network is overfitted and will not

generalize well for the testing samples. Therefore, we optimized the CNNs using trial

and error approach and determined the number of nodes in the hidden layers, learning

rate, kernel size and number of convolution layers. During our experiments, we started

with a small number of convolution layers and gradually increase it and monitored the

training and validation losses with the changing number of layers. The effect of depth

of the convolution layers for the initial classification stage of our algorithm is illustrated

in Fig. 3.6 for the three datasets experimented.
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(a) (b)

(c)

Figure 3.6: Training and validation losses for (a) Indian Pines, (b) Pavia University,
and (c) Griffith-USGS.

Influence of Spatial Size of Kernels

The spatial size of kernels also plays an important role in the final classification per-

formance. Small receptive fields of convolution kernels generally result in better perfor-

mance because in this way it is possible to learn finer details from the input. During

our experiments, we varied the spatial size of the kernels between three to nine. Fig. 3.7

shows that 5 × 5 × L is an optimal size for all the three datasets, where L is the num-

ber of spectral bands in each band group. We found that a larger size kernel such as

9× 9× L ignored and skipped some essential details in the images. On the other hand,

a smaller size kernel such as 3 × 3 × L provided overly detailed local information and

therefore, created confusions in classification eventually. Hence, the determination of an
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optimal size of the kernel is important in finding the most discriminative features for

classification.

Figure 3.7: Effect of spatial size in convolution kernels

Influence of ReLU

Compared to sigmoid functions, ReLU obtains better performance in terms of both

complexity and accuracy [159] (shown in Table 3.11). According to our experiments,

we found out that with ReLU, we achieved convergence faster than sigmoid function.

For Griffith-USGS, CNN with ReLU reaches convergence almost two times faster than

the same network with sigmoid. Performance was also consistently better for the other

two datasets with ReLU. Furthermore, the models with ReLU can lead to lower training

error at the end of training.

Table 3.11: Effect of ReLU

Dataset
Accuracy (%) Runtime (in minutes)

Sigmoid ReLU Sigmoid ReLU

Indian Pines 98.15 99.41 57 36

Pavia University 99.04 99.79 77 49

Griffith-USGS 85.97 89.13 912 512
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3.5.8 Analysis of Computation Cost

Here, we calculate the computational cost of classifying an image with our trained model.

The total cost of 3DCNN-CRF combines the computational complexities for (1) gener-

ating spectral-spatial features by CNN and (2) improving classification performance by

deep CRF. Generally, the convolution operations impose a significant time constraint on

the time complexity of 3D-CNN which is computed in terms of the number of convolution

layers, number and size of kernels and size of the intermediate feature maps [160]. The

generated feature map by 3D-CNN is formulated as a CRF graph in which the voxels

are represented as individual nodes. Therefore, the time complexity of CRF is computed

in terms of the number of edges between the nodes as well as the size of the label set,

which is quadratic in general. However, the use of highly efficient approximations for

high-dimensional filtering during the message passing of mean field inference algorithm

reduced the time complexity to linear in the number of labels and in the number of edges

in the CRF model [153]. Hence, the total time complexity of our algorithm is given by:

O

(
D∑
l=1

Kl−1.R
2
l .Kl.d

2
l

)
+O(E.Y ) (3.15)

Here, l is the current convolutional layer, D is the number of convolutional layers, Kl

is the number of kernels in the l-th layer, Kl−1 is also known as the number of input

channels in the l-th layer, Rl is the spatial size of the kernel and dl is the spatial size of

the intermediate feature maps. E is the number of edges in the CRF graph formulated

from the initial CNN and Y is the size of the label set.

We compared the testing time for all methods included in the experiments. Since the

baseline methods used in our experiments were implemented on CPU, therefore, for a

fair comparison, we also chose to run our algorithm on CPU instead of GPU that is

widely used for deep learning approaches. All methods were implemented in Matlab

and few C modules, and run on a desktop computer with Intel Core i5-4570 @ 3.2GHz

8G memory, with a Windows 7 system. The results are shown in Table 3.12. The testing

stage of the deep learning algorithms is very fast and is close to the time required by

other baseline methods. This is an important property for real applications as the model
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training can be undertaken offline but the application of the trained model on new data

has higher efficiency requirements.

Table 3.12: Running time comparison (measured in minutes)

Methods Dataset Testing Time

Indian Pines 0.63
Pavia University 0.91MPM-LBP-AL [139]
Griffith-USGS 0.93

Indian Pines 0.58
Pavia University 0.88MLRsubMLL [81]
Griffith-USGS 0.91

Indian Pines 0.77
Pavia University 1.14WHED [158]
Griffith-USGS 1.15

Indian Pines 0.91
Pavia University 1.123D-CNN-LR [119]
Griffith-USGS 1.09

Indian Pines 0.79
Pavia University 1.05Proposed Method
Griffith-USGS 1.08

3.6 Conclusions

In this chapter, we presented an efficient CRF-CNN based deep learning algorithm for

classifying hyperspectral images. To utilize the full strength of deep models for com-

plex computer vision tasks, we constructed a powerful spatial-spectral representation of

hyperspectral data. We applied 3D-CNN in a range of more effective spectral-spatial

representative band groups to extract initial features. To further facilitate the classifica-

tion task, we integrated CRF with 3D-CNN into an end-to-end framework in which the

parameters of CRF were calculated using CNN, therefore making it a deep CRF. The

initial prediction results coming from this 3DCNN-CRF architecture was further im-

proved by using a deconvolution block inside of the CRF pairwise potential calculations.

Moreover, to overcome the problem of over-fitting, we employed data augmentation tech-

niques and increased the size of training samples for training the CNNs. This effectively

improved the overall performance of our deep network to a significant extent.
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In summary, to achieve the improvement of the hyperspectral image classification per-

formance, our proposed 3DCNN-CRF architecture contains several important efficient

stages that not only optimize the calculations of such computationally expensive task

but also improved the initial prediction results obtained by the initial CNN algorithm.

With 3DCNN-CRF, we can fully exploit the usefulness of CRF in the context of clas-

sification by integrating it completely inside of a deep learning algorithm. We further

evaluated the usefulness of our method by comparing it with several state-of-the-art

methods and achieved promising results.





Chapter 4

Combining Unmixing and Deep

Feature Learning for

Hyperspectral Image

Classification

In this chapter, we propose an integrated method which combines unmixing results

into a deep feature learning model in order to classify hyperspectral data. The model

generates superpixels from abundance estimations of the underlying materials of the

image and provides these abundance-guided information as features to a deep model.

Our proposed deep model is formulated as an RNN. It receives significant spectral-

spatial information in the data to produce better and powerful features so as to achieve

improved classification performance.

4.1 Introduction

One of the critical challenges of HSI processing is the problem of mixed pixels. Usually,

when the spectral resolution increases, the spatial resolution decreases. In case of high

altitude sensors covering wide areas, low spatial resolution is a common problem [161].

81
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These limitations significantly affect the performance of methods used to analyze and

process HSI data. In particular, classification tasks suffer greatly due to the problem

of mixed pixels in which case a pixel may contain more than one material/class. The

combination of mixed and pure pixels also happen in high spatial resolution images [162].

The notion of a pure material can be application dependent. Suppose an HSI contains

materials such as bricks, roads, water, plants, soil, cement, which gives a general as-

sumption of the presence of six classes. However, if the percentage of pixels covered by

cement is comparatively too small, then it may not be necessary to define an indepen-

dent class for cement. It also depends on if the estimates on the proportion of cement is

indeed required. Similarly, if the application demands distinguishing between two types

of plants, then two plant classes must be created based on their spectral signatures.

Fortunately, by applying unmixing process, pixels in the spectra can be decomposed

into a collection of spectral signatures, called endmembers, directly from data without

much prior knowledge. These endmembers are represented as a set of fractional estima-

tions called abundances. Among different unmixing techniques, methods based on linear

mixing model considers each pixel as a linear combination of endmembers.

Linear mixture models can be further divided into three categories: geometry, sparse

regression and statistics based. Geometry based methods [163] exploit the geometric re-

lationships among the endmembers and estimate their abundances. Sparsity constraint

is often applied to sparse regression methods [164] to select few endmembers with high

variance of material reflectance. Spatial regularization term can also be included in the

spectral domain using prior information about the endmembers to unmix the data [165].

Statistical unmixing methods such as NMF [166] decompose the image into nonnega-

tive endmember and abundance matrices. Various constraints such as sparsity [167],

combination of spectral and spatial constraints [168] for smoothing of endmembers or

maintaining manifold structure of unmixed data [169] have been applied.

Along with pixel based unmixing methods, region based methods [170] have also been

developed. It is quite interesting to explore the relationships among the regions in an

HSI because there is a high possibility that the same endmembers may appear in a local

neighborhood or in other homogeneous regions. Therefore, it is important to not only
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consider the consistency of abundance of those endmembers in a homogeneous region

but also discriminate the contributions of those endmembers from other regions across

the image. To address this property, Tong et al. [171] proposed a novel region based

NMF (R-NMF) method that forces consistent abundances within each homogeneous

region and also separates the contribution from endmembers among the regions.

Using unmixing results to improve classification performance has also been investigated

in the literature where unmixing has been used as a dimensionality reduction process

and later classify images [172]. Villa et al. [173] proposed a semi-supervised method

which uses linear spectral unmixing method to label data samples for classification. In

a supervised classification method [174], probabilistic SVM was used to get preliminary

classification map so that mixed pixels can be identified. Then a spectral unmixing

method based on fully constrained least squares (FCLS) method was adopted to solve

sub-pixel mixing problem in the final classification map. A similar approach was also

discussed in [175] where the mixture-tuned matched filtering (MTMF) method was used

to get the abundance map which was used as the input to the classification step. All

these approaches treated the whole spectral information together without investigating

further into the contribution from specific wavelength ranges or band groups in the

unmixing step. Therefore, abundance information from different range of wavelengths

has not been sufficiently explored and utilized to benefit the classification step.

In addition to the existing spectral-spatial classification methods, superpixel techniques

have also been used to extract spatial information in the feature extraction process [176].

Superpixels consist of regions containing a set of adjacent pixels that share spectral

similarities. The advantage of adopting superpixel-based methods for classification is

that the pixels in the same superpixel are more likely to belong to the same class. In

this context, it is highly likely that the use of unmixing results can play an important role

in generating more effective superpixels. Hence, it would be interesting to investigate the

potential of providing such additional information to a deep model to better characterize

the data.

In this chapter, we propose to utilize unmixing results in the form of abundance matrices

as the input to our model for classifying HSI data. We use a region based NMF method
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for structure consistency and preservation during the unmixing step [171]. We argue that

the derived abundance matrices contain significant information about the underlying

endmembers in the regions for classification. Furthermore, instead of providing only

one instance of abundance matrix for each endmember, we intend to provide multiple

instances of abundance matrices which will be obtained from different band groups along

the spectral channel. Such representation is very useful for deep learning framework as

the model will be able to receive sufficient information to identify interesting patterns

within the data. In this way, the problem of limited training samples of hyperspectral

data can be resolved to a significant extent which can facilitate the powerful classification

ability of deep learning models. To the best of our knowledge, this is the first work that

combines abundance maps across different wavelength groups as an unmixing output

with deep feature learning for HSI classification.

In our method, we first obtain abundance matrices for each pixel along the group of

bands of an HSI. Then we extend the simple linear iterative clustering (SLIC) algorithm

to generate superpixels by utilizing the abundance estimations obtained from the un-

mixing algorithm. We further introduce KD-estimated PDF to describe the spectral

distribution of the superpixels. After that we provide these abundance information-

guided superpixels as input to an integrated CNN-CRF model for performing the final

classification. In our approach, we formulate mean-field approximate inference for the

dense CRF with Gaussian pairwise potentials as an RNN to improve the coarse outputs

obtained from a traditional CNN. Our framework is illustrated in Fig. 4.1.

The rest of this chapter is organized as follows. Section 4.2 describes the unmixing

method that we extended to generate abundance information for each endmember from

different groups of wavelengths. Section 4.3 presents our proposed KD-estimated SLIC

algorithm for superpixel extraction. Section 4.4 gives our proposed architecture of the

RNN formulated deep model. Section 4.5 presents the experimental results on four

datasets along with detailed parameter analysis. Finally, conclusions are drawn in Sec-

tion 4.6.
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Figure 4.1: Our proposed architecture: (a) original hyperspectral cube with B bands.
(b) different band groups consisting of L bands (L � B) each (c) resulting feature
maps after region-based NMF (d) resulting superpixels (e) RNN formulated CNN-CRF

model (f) classification map.

4.2 Generating Unmixing Results

In this section, we briefly explain the unmixing procedure presented in [171] that is

used in our method to generate abundance matrix for each endmember. We extend this

approach by considering abundance information from different groups of wavelengths

across the spectral channels to capture distinct spectral-spatial estimations of each end-

member in the image.

4.2.1 Region Based NMF for Structure Consistency and Preservation

At first, an HSI H is segmented into a set of Q homogeneous regions R1, R2, . . . , RQ

using a graph-based method [177]. In this method, each pixel in H is represented as a

vertex vi ∈ V , i = 1, 2, . . . , N and neighbouring pixels vi, vj are connected by an edge

whose weight represents the distance between the connecting pixels. This algorithm

merges the pixels to construct homogeneous regions by using two important criteria:

maximum internal difference D1 and minimum connecting weight D2. D1 is the largest

weight in a minimum spanning tree MST(R) [178] of a homogeneous region R defined
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for all vi, vj ∈ R, (vi, vj) ∈MST (R) as:

D1 = Wmax(vi, vj) +
α

R
(4.1)

α is a parameter that controls the contributions from small regions. D2 between regions

R1 and R2 is defined for all vi ∈ R1, vj ∈ R2, (vi, vj) ∈MST (R) as:

D2 = Wmin(vi, vj) (4.2)

If for two homogeneous regions D1 > D2, these two regions are merged. Otherwise, they

are not merged.

After we obtain the homogeneous regions, the mean abundance spectral response tq

is estimated from the mean values of spectral responses for each region Rq. Within

homogeneous region, the spectral responses for each pixel should be similar and as a

result, the abundance of every pixel should be similar as well. A constraint between

mean abundance tq and estimated abundance vector aq ∈ A for each pixel of the region

is set to apply the structure consistency in the region. With this constraint, the objective

function to minimise for region Rq is defined as [171]:

F (Mq,Aq) =
1

2
||Hq −MqAq||2F +

Q∑
q=1

∑
n∈Rq

||rqτ2q ||1/2 (4.3)

+η

Q∑
q=1

∑
n∈Rq

||an − tq||22

where Hq contains the raw spectral responses of pixels in the homogeneous region Rq,

Mq and Aq are the estimated endmember matrix and abundance matrix, respectively.

The second term controls the sparsity of abundance in Rq and τ controls the contri-

bution of this sparsity. The third term is responsible for controlling the consistency

of the estimated abundance in Rq in which η controls the contribution from structure

consistency.

Next, structure preserving constraint is applied to discover the relationship between the

homogeneous regions to separate their contribution across the image. This constraint
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helps in preserving the local affinity of data distribution both before and after the matrix

factorization. Also, it avoids the effect of distant repulsion [179] which is a distortion

done by the distant data points. The distant repulsion causes different materials to con-

tain different abundance while local affinity ensures that the same material in different

regions shall have similar abundance. Graph regularization is applied later to preserve

the structural information where the vertices represent the reflectance at different data

points. Details of this approach and the optimization process can be found in [171].

4.2.2 Band Group based Abundance Estimation

In this chapter, we estimate the abundance of each endmember for groups of bands

spanning over the entire spectral channels. Therefore, instead of calculating abundance

over the entire spectra at once as in [171], we calculate abundances for a number of band

groups with the goal to capture subtle spectral-spatial contribution from the image.

In this way, each band group leads to distinct estimation of endmembers and their

abundance. Such band grouping strategy has several advantages. Firstly, smaller band

groups provide better spectral-spatial estimation locally. Secondly, different band groups

capture spectral information in different ranges of wavelengths which can contribute in

classification performance by providing more material based information to the classifier.

Finally, a large number of abundance maps representing the endmembers of the image

are expected to benefit the CNN in terms of both sufficient amount of training samples

and useful spectral-spatial information as input to start the training with.

We group the original B bands into segments of L bands where L << B. Therefore,

endmember and abundance matrices can be estimated from each band group in a multi-

task manner by the following linear mixture models as:

H1 = M1A1 + E1

H2 = M2A2 + E2

. . . (4.4)

HJ = MJAJ + EJ
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where J is the total number of band groups. Mg and Ag are the group-wise endmembers

and abundances, where g = 1, . . . , J . Eg is the corresponding additive noise.

For each band group, the unmixing step follows the method in [171] with all parameters

remaining the same across band groups. The sparsity constraint τ , however, is band

group dependent and is defined as:

τg =
1√
L

L∑
l=1

√
N − ||hl||1/||hl||2√

N − 1
(4.5)

where hl is the spectral responses in the l -th band and N is the total number of pixels

in the image.

Furthermore, the local affinity and distance repulsion calculation are also undertaken

within each band group. Finally, we obtain K × J abundance maps where K is the

number of endmembers in each band group.

4.3 Forming Superpixels

An ideal superpixel algorithm should result in a properly connected set of pixels which

belong to exactly one semantic region. The algorithm should also contain the property

of being as regular as possible for features that require spatial support. Therefore, it is

desirable to define an energy function that integrates an appearance term for coherency,

a smooth constraint term and a connectivity term.

In this chapter, we extend the SLIC algorithm [180] [181], a modified version of K-

means algorithm, to produce superpixels by using both the spectral and spatial features

of every individual pixel represented by utilizing the abundance matrices obtained from

the unmixing algorithm earlier. The parameters of the algorithm control the size and

the regularity of the superpixels with fast computation speed and good accuracy. It

is also expected to generalize well to multiple spectral bands. Our modified version of

SLIC has the following basic steps:



Chapter 4. Combining Unmixing and Deep Feature Learning for Hyperspectral Image
Classification 89

1. Construct a feature vector ω(xi, yi) = (ϑxi , ϑyi ,A(xi, yi)) for every pixel i in the

image, where xi and yi are the spatial location of the pixel i, A(xi, yi) is the vector

containing the estimated abundance values for each endmember across the group of

bands and ϑ is a parameter that trades off the contribution of spatial and spectral

information. It can be computed as the ratio m
S , where the size of a superpixel is

assumed to be S×S and the value of m controls the regularity of the superpixels.

We will illustrate the effect on the choices of values of S and m in the experiments.

2. Define an initial set of cluster centers Ck = ω(xk, yk) on a grid of step size S.

After that each cluster center is moved to the lowest gradient position in an n×n

neighborhood.

3. Assign each pixel i to the closest cluster center by computing the Euclidean dis-

tances ||ω(xi, yi)−ω(xk, yk)||. We can accelerate this step by simplifying the search

of the cluster centers within a 2S × 2S neighborhood.

4. Instead of taking the mean value of the pixels to update the cluster centers of

the superpixels, we introduce a KD-estimated PDF to describe the spectral dis-

tribution of the superpixels. The spectral distribution Prk(c) of a superpixel rk

is:

Prk(µk) =
1

nkh

k∑
i=1

ψ

(
µk − cxi

h

)
(4.6)

where µk is the mean of the superpixel’s spectral feature, cxi is the spectral vector

of pixel xi and nk is the total number of pixels in rk. ψ(.) places a kernel density

around each superpixel and h is the bandwidth of the kernel smoothing window.

Here, the widely used Gaussian kernel is adopted to estimate PDF because of

its key advantages, such as, continuity, differentiability and locality [30]. The

choice of the value of h is very important as it controls the smoothness of the

resulting probability density curve. Selecting too large h may result in over-smooth

estimator, while a too small h may produce an estimator with statistical instability.

For our work, we choose h experimentally such that h ∈ [0.05, 0.20] for feature

values between [0,1]. Once we obtain these KD-estimated probability distribution

for the values of the pixels in each superpixel, we update the cluster centers which

will be more better representation of the spectral distribution of the superpixels.
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5. Repeat the process iteratively until the distance between the successive cluster

center updates is below a threshold.

6. Finally, a post-processing step enforces connectivity by reassigning disjoint seg-

ments to nearby cluster.

The procedure of our proposed superpixel extraction algorithm is described in Algo-

rithm 3

Algorithm 3: Superpixel Extraction Procedure

Data: Hyperspectral image H, Abundance Matrices A1,A2, . . . ,AN

where N is the total number of pixels in H.
/* Initialization */
1. Construct ω(xi, yi) = (ϑxi , ϑyi ,A(xi, yi)) for every pixel i
2. Initialize cluster centers Ck = ω(xk, yk) at regular grid steps S.
3. Move Ck to the lowest gradient position in a 3× 3 neighborhood.
4. Set label y(i) = −1 for each pixel i.
5. Set distance d(i) =∞ for each pixel i.
/* Assignment */

1: while not converged do
2: for each cluster center Ck do
3: for each pixel in a 2S × 2S region around Ck do
4: Compute D = ||ω(xi, yi)− ω(xk, yk)||
5: if D < d(i) then
6: Set d(i) = D
7: Set y(i) = k
8: end if
9: end for

10: end for
/* Update */
1. Compute KD-estimated PDF for every superpixel Rk using Eq. (4.6)
2. Update cluster centers

11: end while

Output: Generated Superpixels r1, r2, . . .

4.4 A CNN-CRF Model for Superpixel Labelling

In this section, we present a classification model that combines the properties of both

CNN and CRF in different stages to classify the superpixels obtained earlier. We use

CNN to generate an initial classification output which are later provided as input to

CRF to improve the results.
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4.4.1 Feature Learning and Initial Classification Using CNN

In this section, we explain the process of using the abundance matrix-guided superpixels

as the input to the CNN for generating features and later classifying HSI data. In our

method, instead of using pixel-based raw data, we treat the superpixels as input to

the CNN. These abundance matrices contain the estimation of contribution that each

endmember has in each band group. Therefore, our CNN implicitly receives spectral

information across the entire spectral bands through these abundance matrices in spite

of using convolution operations across the spatial domain only. For Y classes and J

band groups, we have Y × J abundance matrices to be provided as the input to the

CNN.

Our CNN includes several convolution layers, pooling layers, batch normalization (BN),

fully connected layers and ReLU as the activation function. After every pooling opera-

tion, we apply BN to the respective layer of the network (except for the output layer)

in order to prevent the model from collapsing all samples to a single point. In this way,

we normalize the responses to have zero mean and unit variance over the entire batch.

ReLU activation functions are performed at each layer in order to allow gradients to

flow backward the layer. After obtaining the convolved features, the feature maps are

then flattened into a feature vector and fed into a fully-connected layer which extracts

the final learned deep features. Finally, we use logistic regression (LR) as a classifier to

generate the required classified labels of the superpixels. The detailed architecture of

the CNN is provided in Section 4.5.2.

During the CNN training, all the connections/weights are being updated by using the

gradient descent back propagation algorithm. We randomly initialize the model pa-

rameters. A cost function is required to update the weights during the training. In our

training process, we use mini-batch update procedure which is computed on a mini-batch

of inputs [182]:

d = −1

s
[yilog(zi) + (1− yi)log(1− zi)] (4.7)

where s is the mini-batch size, yi and zi are the i-th predicted label and label in the

mini-batch respectively. We aim to optimize cost d using stochastic gradient descent.
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LR uses soft-max function to classify the learned features from the CNN. For the given

input X, the probability that the input belongs to class i over all classes in Y can be

calculated as:

P (yi|X,W ) =
eWiI∑
Y

eWY I (4.8)

where W are the weights of the LR layer.

We propose to train our CNN with local spatial-spectral information through the use of

abundance matrices so as to let different wavelength ranges make distinct contribution to

the classification outcome. Because the convolution kernels are applied to each of these

different abundance matrices, there is a high possibility that the intermediate feature

maps will become more meaningful and interesting throughout the training.

4.4.2 Refine Superpixel Labelling Using Conditional Random Fields

In this section, we briefly explain how we used CRF for superpixel-wise labelling. The

CRF models superpixel labels as random variables that form an MRF when conditioned

upon a global observation which is considered to be the spectral spatial properties of

the superpixels [183]. In a fully connected pairwise CRF model, the energy of label

assignment of a superpixel is given by the following equation:

E(x) =
∑
i

φ(yi) +
∑
i 6=j

ψ(yi, yj) (4.9)

where the first term represents the unary potential of the inverse likelihood of the super-

pixel i taking a particular label yi and the second term is the pairwise potential between

two superpixels i and j for assigning two labels yi, yj simultaneously.

In our model, the unary energies are obtained from the CNN which predicts the labels

for the superpixels but it does not consider the smoothness and consistence of the label

assignments. The pairwise energies contain a smoothness term that encourages assigning

similar labels to superpixels with similar properties. As in [153], we model the pairwise
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energies as weighted Gaussians as follows:

ψ(yi, yj) = ϕ(yi, yj)
F∑
f=1

w(f)k
(f)
G (vi, vj) (4.10)

where ϕ(.) is the label compatibility function which encodes a Potts model, i.e., ϕ(yi, yj) =

1yi 6=yj . The Potts model effectively penalizes the case where two superpixels i and j are

assigned different labels when
∑F

f=1w
(f)k

(f)
G is large. The efficient approximate infer-

ence requires the kernels k(f)(., .) to be Gaussian kernels computed over elements of the

feature vector vi that describes superpixel i with a scalar weight wf . By minimizing the

CRF energy, we obtain the most probable label assignment for the superpixels which

is intractable. Therefore, we use the mean-field approximation algorithm to the CRF

distribution for maximum posterior marginal inference. This is done by approximating

the CRF distribution P (X) by a simpler distribution Q(X) which is expressed as the

product of independent marginal distributions Q(X) =
∏
iQi(Xi). We present the steps

of this inference algorithm next.

4.4.3 Mean-field Iteration of CRF Inference for Superpixel Labelling

Unlike standard CNNs in which filters are fixed after training, we employ edge-preserving

Gaussian spatial and bilateral filters for approximating mean-field inference in each

iteration. These filters depend on the original spatial and appearance information of the

superpixels. As in [153], we reformulate the steps of the inference as layers. In order

to do this, we are required to back-propagate the error differentials to previous layers

which are calculated based on the input. The steps are discussed in the following:

Initialization

The first step is the initialization in which the following operation is performed:

Qi(y)← 1

Zi
exp(Ui(y)) (4.11)
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where Zi =
∑

y exp(Ui(y)). Note that Ui(y) denotes the negative of the unary energy.

This operation is simply applying a soft-max function over the unary potential across

all the labels at each superpixel. The error differentials obtained from this output can

be passed backward to the unary potential inputs.

Message Passing

The second step is the message passing which is applying F Gaussian filters on the

current estimation of the predictions of the superpixels. We use two Gaussian kernels:

spatial and bilateral kernels. The filter coefficients are obtained from the spectral and

spatial features of the superpixels. This reflects how strongly two superpixels are related

to each other. For simplification, we keep the bandwidth values of the kernels fixed. By

using back-propagation, we calculate error derivatives on the filter responses and send

those through the same Gaussian filters in backward direction.

Weighting Filter Outputs

The next step is to take the weighted sum of the F filter outputs from the previous

step for each label of the superpixels. When each label is considered, it can be viewed

as the usual convolution with a 1 × 1 filter with F input channels and one output

channel. The error can be calculated since both inputs and outputs are known during

back-propagation. This allows an automatic learning of filter weights. To facilitate

the process of increasing the ability of discrimination among various classes, we set

independent kernel weights for each individual class. Although it increases the number of

trainable parameters, the independent weights will complement the relative importance

of both kernels in improving class-specific decisions.

Compatibility Transform

In this step, a label compatibility function ϕ(y, y′) is applied in order to test the com-

patibility between two labels y and y′ received from the previous step. A fixed penalty

is given when two superpixels containing similar properties are assigned different labels,
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given by the Potts model ϕ(y, y′) = [y 6= y′], where [.] is the Iverson bracket [184]. This

Iverson bracket evaluates the logical proposition and based on the results, the penalty

is given. A limitation of this model is that it assigns the same penalty for all pairs of

labels. It is not desirable, specifically for remote sensing images where the geographical

locations have significant effects in the classification. For example, the pair “crops” and

“trees” should have smaller penalty than that of “building” and “water”. Therefore, we

learn ϕ directly from data and fix it with the Potts model.

This compatibility transform step can be viewed as another convolution layer where

the spatial receptive field of the filter 1 × 1 filter and the number of input and output

channels are equal. Updating the weights of the filters during back-propagation will

eventually learn ϕ. As done in other steps, the error differentials from the outputs of

this step are transferred backward to the input.

Adding Unary Potentials

In this step, the outputs from the compatibility transform step is subtracted from the

initial unary inputs. The error differentials at the end of the step are transferred back

to the inputs.

Normalization

Finally, the normalization step of the iteration can be expressed as another softmax

operation. The error differentials at the end of the step are transferred back to the

inputs using the softmax’s backward pass.

The steps of the mean-field inference algorithm is listed in Algorithm 4.

4.4.4 Using Mean-field Iterations as RNN

In this section, we present an end-to-end learning framework after formulate the mean-

field iterations as an RNN. As shown in the previous section, we organize each t-th
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Algorithm 4: Mean-field Inference Algorithm

Data: Set of Labels y1, y2, . . . (initially classifier by CNN).
/* Initialization */

Q
(1)
i (y)← 1

Zi
exp(Ui(y)) for all superpixel i

1: while not converged do
2: /* Message Passing */

Q
(2)
i (y)←

∑
j 6=i

k(f)(vi, vj)Q
(1)
j (y) for all kernels and superpixels i and j

3: /* Weighting Filter Outputs */

Q
(3)
i (y)←

∑
f

w(f)Q
(2)
i (y)

4: /* Compatibility Transform */

Q
(4)
i (y)←

∑
y′∈L

ϕ(y, y′)Q
(3)
i (y)

5: /* Adding Unary Potentials */

Q
(5)
i (y)← Ui(y)−Q(4)

i (y)
6: /* Normalization */

Q
(6)
i (y)← 1

Zi
expQ

(5)
i (y)

7: end while

Output: Improved Classified Labels

iteration of the mean-field inference as a stack of layers from which we obtain an estima-

tion of marginal probabilities Qt. Therefore, given an image H and the superpixel-wise

unary potential values U , we can estimate the next set of marginal probabilities after

one mean-field iteration by

Qt+1 = fθ(U,Qt,H) (4.12)

where the vector θ represents the CRF parameters such as the weights, compatibility

function and Gaussian kernel.

Hence, the next mean-field iterations can be implemented by repeating the same stack

of layers in such a way that each new iteration receives an estimation of Qt−1 marginal

probabilities from the previous iteration and the abundance matrix-guided unary po-

tential in their original form. This iterative procedure can be formulated as an RNN

as we save the state of each individual mean-field iteration in an equivalent long term

short memory (LSTM) gate. This complete system is end-to-end trainable by back

propagation algorithm.

In the forward pass of the network, when the execution enters the combined part of CRF

and RNN, it falls into the loop of the RNN and perform I number of iterations. In this
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stage, the computation for updating the weights is performed inside the loop of RNN.

After an output is obtained from the loop, the following stages of the deep network can

continue the forward pass with a softmax layer included at the end in order to produce

the final labels of the superpixels.

During backward pass of the network, the error differentials of the output go through

same I number of iterations inside the loop of the RNN before reaching RNN’s input.

After that it gradually backpropagates toward the CNN that generates the initial U .

It is to be noted that the error differentials are calculated inside each iteration of the

loop of the mean-field algorithm explained in the previous section. The procedure of

mean-filed inference iterations as RNN is illustrated in Fig. 4.2.

Figure 4.2: CRF mean-field iterations as RNN

4.5 Experiments

Having presented our method in the previous sections, we now demonstrate the effec-

tiveness of our proposed method. A series of experiments have been done to evaluate

the performance of the proposed methods based on the following stages:

1. We evaluate the performance of our proposed abundance information-guided su-

perpixel extraction procedure by comparing with standard SLIC algorithm.
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2. We evaluate the effectiveness of including band group-based abundance matrices

as input to the classification models by testing on widely used classifiers in remote

sensing domain.

3. We further evaluate the usefulness of our CNN-CRF model by comparing with

other classification methods.

However, before performing the evaluation processes, we define our datasets and tune

the parameters to determine optimal values for use in the classifiers.

4.5.1 Data Sets

In the experiments, we used three widely used hyperspectral datasets, i.e., Indian Pines,

Pavia University and Salinas. For better evaluation of our proposed method, we used a

new dataset “Griffith-USGS” that we introduced in section 3.5.2 in Chapter 3. In our

method, we extract abundance-information guided superpixels from each band group

along the spectral channels which gives us multiple estimations of abundance informa-

tion. As a result, we obtain a large number of abundance maps representing the end-

members for each pixel that eventually benefits our deep model with sufficient amount of

training samples without using an explicit data augmentation procedure that we imple-

mented in Chapter 3. We split the available samples into training and testing sets and

perform a 10-fold cross validation to select training samples for each class. We use 90%

of the total number of training samples to learn the weights and biases of the neurons

and the remaining 10% to validate and further update the design of the architecture.

With the large number of available samples, we are able to address the issue of overfit-

ting and can select small number of training samples which are still sufficient to train

our proposed deep model. We report the total number of training and testing samples

for each class used on the three datasets in Tables 4.1, 4.2, 4.3 and 4.4.

4.5.2 Parameter Analysis of the Classifier Used

In this chapter, we use unmixing as an important feature extraction approach to be

provided abundance maps as the input for classification. That is why we evaluated the
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Table 4.1: Number of Training and Testing Samples Distribution for Each Class on
Indian Pines Dataset

Class Training Samples Testing Samples

Alfalfa 33 29

Corn-notill 670 1309

Corn-mintill 496 685

Corn 140 125

Grass-pasture 305 356

Grass-trees 477 661

Grass-pasture-mowed 15 15

Hay-windrowed 322 389

Oats 16 10

Soybean-notill 766 840

Soybean-mintill 1009 2260

Soybean-clean 339 463

Wheat 194 165

Woods 624 1095

Buildings-Grass-Trees-Drives 289 298

Stone-Steel-Towers 66 59

Total 5761 8759

Table 4.2: Number of Training and Testing Samples Distribution for Each Class on
Pavia University Dataset

Class Training Samples Testing Samples

Asphalt 3170 5592

Meadows 6293 14890

Gravel 675 1569

Trees 1016 2710

Painted metal sheets 636 1185

Bare Soil 2316 4712

Bitumen 532 1105

Self-Blocking Bricks 1491 3427

Shadows 713 806

Total 16842 35996

effectiveness of including unmixing results not only for our proposed CNN model but

also for state-of-the-art classifiers as well. In this regard, we compared and evaluated the

performance of RF, SVM, and K NN to observe the rate of improvement these classifiers

achieve after incorporating unmixing results in the form of abundance matrices.

Use of appropriate parameters play an important role in classification accuracy with RF,

SVM, and K NN. For each classifier, we performed a parameter tuning process to choose

the optimal parameters based on the highest classification accuracy. We now present
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Table 4.3: Number of Training and Testing Samples Distribution for Each Class on
Salinas Dataset

Class Training Samples Testing Samples

Brocoli green weeds 1 1631 1812

Brocoli green weeds 2 3155 3505

Fallow 1522 1691

Fallow rough plow 1010 1122

Fallow smooth 2181 2423

Stubble 3303 3670

Celery 2967 3297

Grapes untrained 9914 11016

Soil vinyard develop 5401 6001

Corn senesced green weeds 2745 3050

Lettuce romaine 4wk 735 817

Lettuce romaine 5wk 1534 1704

Lettuce romaine 6wk 710 789

Lettuce romaine 7wk 803 892

Vinyard untrained 6330 7033

Vinyard vertical trellis 1419 1577

Total 45359 50399

Table 4.4: Number of Training and Testing Samples Distribution for Each Class on
Griffith-USGS Dataset

Class Training Samples Testing Samples

Road 2113 1690

Water 2033 1509

Building 1744 1379

Grass 1936 1778

Tree 2109 1624

Soil 1699 1265

Total 11634 9245

the parameter tuning process for each of these classifiers. Also, for a fair comparison

with our proposed deep model, we followed the same experimental settings explained

in Section 4.5.1 to select the training and testing samples for classification with the

following classifiers on each dataset.

Support Vector Machine (SVM)

For remote sensing image covering large land cover areas, radial basis function (RBF)

kernel of the SVM classifier is widely used and produces good results. Hence, we used

RBF kernel for implementing the SVM classifier for evaluation purposes. For RBF



Chapter 4. Combining Unmixing and Deep Feature Learning for Hyperspectral Image
Classification 101

kernel, two parameters need to be set properly: (1) the optimum parameters of cost

(C ) which is soft margin cost function that controls the influence of misclassification

and (2) the kernel width (γ) which is the inverse of the standard deviation of the RBF

kernel (Gaussian function) and is used as similarity measure between two points. Larger

C may cause over-fitting of the model and an increasing γ may affect the shape of the

class-separating hyperplane. We followed the study carried out in [185] and tuned the

parameters by taking ten values of C (2−2, 2−1, 20,21,22,23,24,25,26,27) and ten values

of γ (2−5, 2−4, 2−3,2−2, 2−1, 20,21,22,23,24) and tested on all four datasets.

Random Forest (RF)

The number of trees in RF significantly affect the classification performance. Using more

than the required number of trees may lead to inaccurate classification results. With

the optimal number of trees, RF can provide stable classification output. To find the

optimal value for the number of trees, we tested the values 100, 200, 300, 500 and 1000

on all four datasets.

K -Nearest Neighbor (KNN)

K NN finds a group of k samples that are nearest to unknown samples based on distance

functions. The class of these unknown samples are determined by computing the average

of the class attributes of the K nearest neighbor. Hence, the value of k plays a significant

role in classification performance. To find the optimal value of K, we experimented from

1 to 20 for all datasets.

Findings from Parameter Analysis

As mentioned before, we experimented on several values of C and γ and the optimal

parameters for the SVM model were chosen based on the lowest classification error on

each dataset. Tables 4.5, 4.6, 4.7 and 4.8 show the relationship between the classification

error and the SVM parameters. According to our experiments, lower classification error

was observed for high values of C and low values of γ on each datasets. On the other
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hand, classification error increased for low values of C and with both high and low values

of γ.

Table 4.5: Relationship between classification error and parameters (C and γ) of the
SVM classifier obtained from Indian Pines. Values shown in blue in every row represent

the lowest error for each C against all values of γ.

cost

128 0.081 0.034 0.044 0.033 0.039 0.069 0.177 0.172 0.172 0.198
64 0.077 0.013 0.037 0.029 0.036 0.048 0.127 0.151 0.161 0.215
32 0.061 0.027 0.031 0.042 0.059 0.056 0.091 0.125 0.154 0.187
16 0.083 0.031 0.021 0.049 0.055 0.061 0.088 0.105 0.145 0.162
8 0.097 0.053 0.049 0.097 0.039 0.063 0.088 0.096 0.105 0.172
4 0.117 0.082 0.087 0.114 0.057 0.085 0.116 0.121 0.133 0.196
2 0.138 0.141 0.136 0.131 0.098 0.119 0.138 0.165 0.188 0.265
1 0.184 0.163 0.155 0.172 0.139 0.147 0.148 0.236 0.298 0.347

0.5 0.225 0.208 0.193 0.201 0.165 0.155 0.149 0.269 0.355 0.409
0.25 0.274 0.248 0.245 0.238 0.231 0.197 0.279 0.351 0.402 0.445

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16
gamma

Table 4.6: Relationship between classification error and parameters (C and γ) of
the SVM classifier obtained from Pavia University. Values shown in blue in every row

represent the lowest error for each C against all values of γ.

cost

128 0.038 0.055 0.059 0.063 0.071 0.093 0.159 0.191 0.223 0.236
64 0.049 0.045 0.038 0.041 0.049 0.058 0.096 0.098 0.116 0.175
32 0.046 0.044 0.031 0.019 0.038 0.045 0.077 0.112 0.138 0.145
16 0.074 0.064 0.061 0.055 0.021 0.029 0.065 0.166 0.176 0.196
8 0.115 0.095 0.084 0.122 0.084 0.031 0.087 0.171 0.181 0.223
4 0.132 0.104 0.089 0.105 0.098 0.033 0.129 0.189 0.198 0.269
2 0.187 0.165 0.134 0.119 0.098 0.065 0.142 0.194 0.221 0.394
1 0.261 0.225 0.183 0.144 0.119 0.146 0.155 0.216 0.275 0.433

0.5 0.301 0.288 0.227 0.156 0.126 0.161 0.175 0.255 0.349 0.407
0.25 0.433 0.375 0.334 0.217 0.155 0.185 0.266 0.355 0.453 0.526

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16
gamma

In case of finding the optimal parameters of RF classifier, different datasets produced

lower classification errors for values between 200 and 400. However, the classification

accuracy decreased for all datasets for values greater than 400. We also evaluated the

classification accuracy by testing the effect of different number of splits in accordance

with the number of trees. Fig. 4.3 shows the effect of the number of trees and the number

of splits on the overall accuracy.
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Table 4.7: Relationship between classification error and parameters (C and γ) of the
SVM classifier obtained from Salinas. Values shown in blue in every row represent the

lowest error for each C against all values of γ.

cost

128 0.085 0.072 0.055 0.084 0.113 0.075 0.165 0.176 0.196 0.322
64 0.077 0.065 0.035 0.044 0.086 0.041 0.144 0.189 0.201 0.336
32 0.071 0.047 0.029 0.017 0.078 0.088 0.183 0.198 0.223 0.341
16 0.023 0.055 0.032 0.021 0.075 0.147 0.193 0.209 0.223 0.355
8 0.039 0.055 0.044 0.029 0.086 0.142 0.223 0.234 0.275 0.397
4 0.043 0.059 0.058 0.040 0.121 0.139 0.224 0.265 0.282 0.393
2 0.049 0.063 0.065 0.056 0.147 0.137 0.224 0.275 0.291 0.393
1 0.054 0.066 0.072 0.066 0.153 0.141 0.277 0.284 0.302 0.391

0.5 0.066 0.071 0.079 0.074 0.167 0.155 0.283 0.294 0.302 0.482
0.25 0.069 0.074 0.081 0.085 0.172 0.175 0.283 0.301 0.352 0.483

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16
gamma

Table 4.8: Relationship between classification error and parameters (C and γ) of
the SVM classifier obtained from Griffith-USGS. Values shown in blue in every row

represent the lowest error for each C against all values of γ.

cost

128 0.019 0.027 0.031 0.045 0.075 0.103 0.193 0.242 0.264 0.311
64 0.023 0.025 0.029 0.048 0.058 0.075 0.079 0.253 0.285 0.311
32 0.029 0.018 0.029 0.048 0.031 0.023 0.048 0.265 0.285 0.345
16 0.031 0.023 0.014 0.053 0.055 0.097 0.088 0.281 0.291 0.349
8 0.037 0.035 0.017 0.045 0.069 0.109 0.126 0.284 0.294 0.366
4 0.045 0.033 0.019 0.045 0.071 0.122 0.158 0.292 0.332 0.366
2 0.051 0.038 0.021 0.025 0.083 0.136 0.194 0.292 0.336 0.381
1 0.052 0.045 0.029 0.019 0.096 0.184 0.232 0.333 0.382 0.401

0.5 0.064 0.049 0.032 0.021 0.103 0.194 0.291 0.371 0.391 0.411
0.25 0.075 0.051 0.037 0.023 0.115 0.207 0.299 0.391 0.483 0.483

0.03125 0.0625 0.125 0.25 0.5 1 2 4 8 16
gamma

According to our experiments for K NN classifier, it is evident that increasing the value

of k increases the classification error as well. Although we found different k values for

different datasets, smaller values of k produced lower classification error consistently

across all datasets. Fig. 4.4 shows the effect of the number of trees and the number of

splits on the overall accuracy.

The optimal parameters of the classifiers SVM, RF and K NN for different datasets are

provided in Table 4.9.
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(a) (b)

(c) (d)

Figure 4.3: Effect of the number of trees and the number of random splits on the
overall accuracy for RF classification obtained from different datasets: (a) Indian Pines

(b) Pavia University (c) Salinas (d) Griffith-USGS.

Table 4.9: Optimal Parameters for SVM, RF and kNN

Dataset
Support Vector Machine Random Forest K Nearest Neighbor
Gamma Cost Number of Trees Value of k

Indian Pines 0.0625 64 200 7

Pavia University 0.25 32 300 5

Salinas 0.25 32 300 5

GU-USGS 0.125 16 200 6

Design of the CNNs

For the CNN used in our method, we experimented on different kernel sizes: 5×5, 6×6,

8×8, 10×10, 12×12, 14×14 and 15×15 and found out that smaller kernel sizes resulted

in the best testing classification accuracies on each dataset. Depending on the datasets,

we adopted three to five convolution layers and two to three pooling layers with 2 × 2

pooling kernel in each layer. ReLU layers were used as well and cut off the features that
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(a) (b)

(c) (d)

Figure 4.4: Relationship between classification error (y-axis) and k value (x-axis)
for K NN classification obtained from different datasets: (a) Indian Pines (b) Pavia

University (c) Salinas (d) Griffith-USGS.

were less than 0. The size of the mini-batch was set to 10. For the logistic regression,

the learning rate was set to 0.005 and the number of epochs was 650. The weights were

randomly initialized and gradually trained using the back propagation algorithm. Each

convolution kernel extracted distinct features from the abundance matrices as input

which conveyed meaningful structural information about the data. The architecture of

the CNNs used in our method is explained in Table 4.10. We decided on the number of

convolution and pooling layers after carefully evaluating the training and testing losses

on all datasets.
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Table 4.10: Architecture of the CNN

Dataset Layer Convolution Layer Pooling Layer BN Activation Function

Indian
Pines

1 5 Ö 5 2 Ö 2 Yes ReLU
2 5 Ö 5 No No ReLU
3 5 Ö 5 2 Ö 2 Yes ReLU

Pavia
University

1 6 Ö 6 2 Ö 2 Yes ReLU
2 6 Ö 6 No No ReLU
3 6 Ö 6 2 Ö 2 Yes ReLU
4 6 Ö 6 2 Ö 2 Yes ReLU

Salinas

1 6 Ö 6 2 Ö 2 Yes ReLU
2 6 Ö 6 No No ReLU
3 6 Ö 6 2 Ö 2 Yes ReLU
4 6 Ö 6 2 Ö 2 Yes ReLU

Griffith-
USGS

1 5 Ö 5 2 Ö 2 Yes ReLU
2 5 Ö 5 No No ReLU
3 5 Ö 5 2 Ö 2 Yes ReLU
4 5 Ö 5 No No ReLU
5 5 Ö 5 2 Ö 2 Yes ReLU

4.5.3 Abundance Information-guided Superpixels as Input

We generated multiple abundance matrices for each spectral signature from 20 groups

of bands across the spectral channel. Fig. 4.5 shows an example of measuring an end-

member “water” with its estimated abundances across various groups of bands. It can

be observed that different band groups provide different estimations for the abundances

as realized by the brightness of the pixels covering the region, though most of them are

quite consistent with each other.

(a) (b) (c) (d) (e) (f)

Figure 4.5: (a) Original image; (b) ground truth; (c-f ) abundance maps of water in
different band groups.

As mentioned in our methodology, instead of taking the mean value of the pixels to up-

date the cluster centers of the superpixels, we introduce a KD-estimated PDF to describe

the spectral distribution of the superpixels and update the cluster centers accordingly.
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Along with this, the feature vectors representing the pixels contain the estimated abun-

dance values for each endmember across the group of bands. To test the usefulness of

including band group-based abundance information into the superpixel extraction pro-

cedure, we compared our proposed approach with [186], in which the authors proposed

a deep model that was used to perform superpixel-level labelling. We also incorporated

the same deep model for classification purposes. Table 4.11 shows the effect of providing

unmixing results as input to generate superpixels and finally classifying the image.

Table 4.11: Effect of Unmixing Information-guided Superpixels. Best OAs(%) shown
in bold on each dataset.

Dataset Alam et al. [186] Proposed Method

Indian Pines 96.60 ± 1.32 99.25 ± 0.30

Pavia University 97.12 ± 1.07 99.30 ± 0.22

Salinas 94.50 ± 1.65 98.15 ± 0.45

GU-USGS 75.81 ± 1.46 83.66 ± 0.83

From Table 4.11, we see that the inclusion of abundance information-guided superpixels

as input increased the classification accuracy of the deep model. The compared method

used the standard SLIC algorithm to generate the superpixels whereas we extended the

algorithm by introducing KD-estimated PDF to describe the spectral distribution of the

superpixels. The iterative update of the cluster centers by employing KD estimation

improved the superpixel generation process. Hence, we conclude that the inclusion of

abundance information significantly complemented the superpixel extraction and even-

tually improved the classification performance.

4.5.4 Abundance Information as Input for Traditional Classifiers

Next, we evaluated the performances of the classifiers for using unmixing output as an

input to the model. At first, we simply executed the classifiers SVM, RF, kNN with the

optimal parameters computed earlier by giving raw spectral information for the pixels.

We also tested a standard CNN with the architecture provided in Table 4.10 and provided

raw data as input. After this, we replaced the raw spectral information with the band

group based abundance matrices computed earlier to train the model. Later, we made

a comparison between these two different input information to test the usefulness of
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unmixing output. For performance evaluation, we calculated the overall accuracy (OA)

with the corresponding standard deviations. From Tables 4.12, 4.13, 4.14, 4.15, we see

that the classification accuracies of all the classifiers improved quite significantly after

including abundance information as input. Also, to justify the usefulness of generating

abundance matrices for smaller band groups instead of whole spectral channel at once,

we executed our method in two settings: (1) abundance matrices generated from the

whole spectral channels and (2) band group based abundance matrices. Results show

that band groups lead to superior performance. With different wavelength ranges, the

abundance information captured better local information distinct to each group and

hence, the variety of spectral-spatial information had been estimated for each underlying

endmember. Thanks to these advantages, all the classifiers were able to classify the pixels

better than its counterpart where abundance information were collected from the whole

spectral channel at once.

Table 4.12: Classification accuracies by SVM. Best OAs(%) shown in bold on each
dataset.

Dataset
Raw
Input

Abundance Matrices
Whole Spectra Band Group

Indian Pines 90.13 ± 2.71 94.65 ± 1.18 97.35 ± 1.09

Pavia University 91.77 ± 1.90 95.69 ± 2.27 97.90 ± 1.89

Salinas 89.57 ± 1.60 93.35 ± 1.45 96.78 ± 2.79

GU-USGS 67.40 ± 1.89 72.24 ± 2.04 76.54 ± 2.01

Table 4.13: Classification accuracies by RF. Best OAs(%) shown in bold on each
dataset.

Dataset
Raw
Input

Abundance Matrices
Whole Spectra Band Group

Indian Pines 89.37 ± 0.85 93.21 ± 1.56 96.75 ± 2.15

Pavia University 92.80 ± 1.05 95.92 ± 0.66 98.12 ± 0.51

Salinas 90.07 ± 1.22 94.71 ± 0.75 96.80 ± 0.65

GU-USGS 69.10 ± 2.44 75.60 ± 1.50 77.90 ± 1.75

4.5.5 Testing Proposed CNN-CRF model

At this stage, we evaluate the effectiveness of the proposed CNN-CRF model by com-

paring with other spectral-spatial classification methods which included additional steps

to improve the initial classification step. Since we introduced CRF in our framework
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Table 4.14: Classification accuracies by K NN. Best OAs(%) shown in bold on each
dataset.

Dataset
Raw
Input

Abundance Matrices
Whole Spectra Band Group

Indian Pines 85.17 ± 2.35 89.80 ± 1.59 92.88 ± 1.05

Pavia University 88.70 ± 2.15 91.06 ± 2.80 93.77 ± 1.60

Salinas 87.00 ± 1.36 89.95 ± 1.11 92.15 ± 1.25

GU-USGS 63.75 ± 1.50 69.50 ± 2.36 72.65 ± 2.60

Table 4.15: Classification accuracies by standard CNN. Best OAs(%) shown in bold
on each dataset.

Dataset
Raw
Input

Abundance Matrices
Whole Spectra Band Group

Indian Pines 91.10 ± 1.42 94.95 ± 0.90 97.92 ± 0.55

Pavia University 93.35 ± 1.40 96.69 ± 1.30 99.05 ± 0.25

Salinas 91.40 ± 0.90 95.60 ± 1.46 98.10 ± 0.60

GU-USGS 74.40 ± 2.90 80.50 ± 1.70 82.00 ± 2.32

to improve the initial CNN classification, it is important to test the usefulness of the

proposed integration of CRF with CNN.

Our first baseline method RoF-MRF [187] introduces rotation forests, a variation of

the standard random forest algorithm that uses feature extraction and subset features

to promote both the diversity and the accuracy of the individual classifiers. In this

method, four feature extraction methods: PCA, neighborhood preserving embedding

(NPE), linear local tangent space alignment (LLTSA) and linearity preserving projection

(LPP), are used in rotation forests to obtain the class probabilities based on spectral

information. Later, spatial contextual information, modeled by MRF prior, is used to

improve the classification results.

Our second baseline method MLRsubMLL [81] integrates spectral and spatial informa-

tion into a Bayesian framework. In this method, a multinomial logistic regression (MLR)

algorithm is used to learn the posterior probability distributions from the spectral in-

formation. Moreover, a subspace projection method is used to characterize noisy and

mixed pixels. Later, spatial information is added using a multilevel logistic MRF prior.

We further made comparisons with “FCLS-SVM” [174] which generates abundance maps

from whole spectral channel and uses them to improve the coarse classification by SVM.
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Table 4.16: Comparison of classification accuracies with different methods. Best
OAs(%) shown in bold on each dataset.

Dataset
RoF-MRF

[187]
MLRsubMLL

[81]
FCLS-SVM

[174]
Proposed Method

Indian Pines 95.71 ± 1.44 93.70 ± 1.75 94.90 ± 1.48 98.25 ± 0.30

Pavia University 94.52 ± 0.79 95.65 ± 1.52 96.10 ± 1.15 99.30 ± 0.22

Salinas 93.18 ± 2.08 95.05 ± 1.25 93.28 ± 2.00 98.15 ± 0.45

GU-USGS 76.17 ± 2.35 79.15 ± 2.75 75.59 ± 2.42 87.05 ± 0.83

It does this by applying a fully constrained least squares (FCLS) method to every unla-

beled pixel in order to obtain the abundance estimation of each land cover type. Finally,

spatial regularization by simulated annealing is performed to obtain the refined classifi-

cation output.

Table 4.16 shows the comparison of classification accuracies with the mentioned baseline

methods. It can be seen that our proposed method outperforms the other methods by

3% - 5% on Indian Pines, Pavia University and Salinas. On Griffith-USGS, our method

outperforms the other methods by 8% - 12%. We can draw two significant conclusions

from these results. Firstly, the use of abundance matrices provide useful information

as input for the classifier. Secondly, CNN is able to learn better features from those

abundance matrices as it achieves significantly better classification accuracy than SVM

which also considers abundance matrices under the same experimental settings.

Fig. 4.6 shows the intermediate features generated during the CNN training. We can

observe that the four convolutions layers used in our model gradually constructed more

structured representation of the data.

Fig. 4.7 illustrates the CNN based classification results on our dataset. The first column

is the ground truth. The second column is the classification map generated by the CNN.

The third column is a binary map that shows the effect of corresponding misclassification

obtained by comparing with the ground truth. The white pixels indicate the parts of

the image that were not correctly classified. It can be seen that maximum amount

of misclassification happens in cases of classifying “road” and “soil”. Comparatively

greater spectral similarities shared by these two different materials might possibly have
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Figure 4.6: Working of CNN: sequence of abundance maps generated from the original
image and fed into CNN to generate layer-wise features.

led to such misclassification. In the future, we plan to combine more distinctive features

in the unmixing and classification approaches to solve such complicated cases.

4.6 Conclusions

In this chapter, we presented a CNN based classification model by incorporating unmix-

ing results during the training procedure of the model. We extended an existing region

based structure preserving nonnegative matrix factorization method to estimate the indi-

vidual spectral responses from different materials in different groups of wavelengths. The

estimated abundance maps of the materials were used as important features to generate

superpixels. We further extended an existing superpixel extraction algorithm by intro-

ducing KD-estimated PDF to describe the spectral distribution of the superpixels and

update the cluster centers accordingly. These abundance information-guided superpixels

were provided as input to train an CRF-CNN integrated deep model. Instead of learning
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Figure 4.7: (a) Ground truth; (b) CNN-based classification; (c) difference map with
ground truth.

from raw data, our proposed model receives significant spectral-spatial information in

the data to produce better and powerful features so as to achieve improved classification

performance. Comparison with several state-of-art methods shows the potential of using

unmixing in deep learning-based classification framework.



Chapter 5

Triplet Constrained Generative

Adversarial Networks for

Hyperspectral Image

Classification

In this chapter, we present a GAN-based spectral-spatial method for HSI classification.

The proposed model adopts triplet constraints for the data and integrates them into the

discriminator to improve its multi-class classification ability. Furthermore, the genera-

tor’s capacity of producing fake samples is improved by providing intermediate feedback

from the discriminator’s features. We perform detailed experiments to support the idea

of triplet-constrained GAN model in order to improve the classification performance.

5.1 Introduction

Deep models have contributed significantly in HSI classification as we demonstrated in

the previous chapters. However, deep models suffer from the problem of overfitting due

to limited training samples. Unfortunately, the issue of inadequate training samples

is very common in remote sensing applications since collecting ground truth data is

113
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both time consuming and expensive. As a result, deep models often perform well during

training but fail to accurately classify data during testing. We have proposed to generate

virtual samples by using sample fusion and transformation operations in the previous

chapter and significantly increased the number of training samples.

Instead of acquiring virtual samples in data preparation, the training samples can also

be increased by integrating deep learning-based approaches into the classification frame-

work. Generative Adversarial Networks (GANs) [115] is such a technique that can be

adopted as a regularization method to overcome overfitting and increase training sam-

ples. GAN, first proposed in [115] by Goodfellow, trains a generator and a discriminator

simultaneously. Most traditional deep learning-, based classification models are dis-

criminative in nature, mapping a high-dimensional input to a much simpler output. A

generative network instead tries to generate rich, high-dimensional outputs, for instance

an image, from a relatively simpler input vector.

The idea introduced by Goodfellow is to train a discriminative model and a genera-

tive network simultaneously, by designing their respective cost functions such that their

training procedures encourage them to compete against each other. Generator tries to

generate new data that look like the original samples. Discriminator tries to discrim-

inate between real data and the fake data from the generator. This discrimination is

represented by mapping the data input to scalars that denote the probability that the

corresponding input is real data. In the ideal case where the networks have sufficient

representational power and the training process converges towards the global optimum,

generator will produce samples with a distribution that matches the distribution of the

real data, and discriminator will detect any subtle difference between the generated and

the real distributions. Through the competition of both networks done in an adversarial

manner, discriminator will be trained continuously and effectively. Hence, the problem

of overfitting caused due to limited training samples can be avoided.

In spite of the promising architecture of the traditional GAN, very few works have been

done on adopting GANs in the field of remote sensing. To handle the extremely time

consuming process of labeling huge amount of remote sensing data, GANs can be adopted

because the required quantity of training data may be provided by the generator during
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the training. In this regard, Lin et al. [22] proposed a multiple-layer feature-matching

generative adversarial networks (MARTA GANs) to learn a representation using only

unlabeled data. In [7], Xu et al. introduced the scaled exponential linear units instead of

ReLU and batch normalization to produce high-quality and large-sized remote sensing

images.

Some GAN-based approaches have been introduced for remote sensing classification task

in a semi-supervised setting. He et al. [23] proposed a semi-supervised learning model

in which three-dimensional bilateral filter (3DBF) was adopted to extract the spectral-

spatial features from the hyperspectral data. The GANs were subsequently trained on

those spectral-spatial features by adding samples from the generator to the features and

increasing the dimension of the classification output. Ying et al. [24] proposed a semi-

supervised 1D-GAN (HSGAN) to enable the automatic extraction of spectral features for

HSI classification. In their proposed method, the model is trained on unlabled samples

first to contain the features of all samples and then the model is transformed into a

classification framework by adding a softmax layer.

Zhu et al. [140] introduced a 3D-GAN in which the generated fake samples were used

with real samples to increase the number of training samples. The framework includes

two schemes: spectral classifier and spectral-spatial classifiers. The adversarial training

is adopted by a regularization technique. Along with the task of separating fake samples

from real ones, the classification part also includes an additional softmax classifier to

perform multi-class classification.

In the multi-class remote sensing image classification setting, the above mentioned works

paid little attention to increasing the class-specific discrimination capability of the model.

It is not entirely clear how the model is contributing to separating the real classes from

fake ones in a GANs framework. Hence, the potential of GANs in a remote sensing

classification task is limited to training sample augmentation, rather than improving

the performance of multi-class classification.

In this context, spectral-spatial features can be further exploited to design important

constraints for the training of GAN-based models to improve the classification capability

of the discriminator in separating individual classes. Instead of using additional steps
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to improve classification performance, spectral-spatial characteristics of the available

samples can be compared in the feature space to measure similarities between samples.

In this regard, 3D Convolutional Neural Network (CNN) can be learned to build powerful

embedding as feature vectors. This embedding is expected to provide useful cues for

the subsequent classification of HSI data, i.e., enable minimizing the differences between

samples in the same class and maximizing differences between samples in difference

classes. This is the motivation of our work.

In this regard, the concept of “triplet constraint” [188] can be adopted to directly learn

an embedding from data to a Euclidean space where the distances between samples

correspond to data similarity. Here triplet refers to three data samples among which the

distances will be measured. The network produces output as a compact embedding using

the triplet-based loss function by measuring the distance between the triplet samples.

The use of triplet loss in classification can be tricky because if applied naively, it may

produce inaccurate results. An essential idea of learning with the triplet loss is the

selection of triplets in order to ensure a stable training process. However, there is no

standard procedure defined for selecting “good” triplets. Furthermore, mining hard

triplets may cause unstable training too. We propose that spectral-spatial properties

of the data can play a significant role in selecting the triplets and compute the loss

accordingly.

In this chapter, we develop a novel GANs model for hyperspectral remote sensing data

classification. With the parallel training processes of generator-discriminator, we in-

crease the training samples and overcome the overfitting problem experienced by CNNs

in image classification. Moreover, to improve the multi-class classification accuracy of

the discriminator, we include triplet constraints into the loss function. We supply the

samples in a batch and learn a Euclidean embedding for the samples using a 3D CNN

network. To implement the idea, we extend the “triplet constraint” [188] to remote

sensing images. We train the network in such a way that the squared distances in the

embedding space correspond directly to the similarity between the samples. Those sam-

ples in the same class should have smaller distances and samples in different classes have
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larger distances. Then 3D CNN-based discriminator computes the loss of the model by

separating the positive pair of samples from the negative sample using a distance margin.

In addition, to improve the quality of the fake samples, we propose to use intermediate

features of the discriminator to build the perceptual loss. In this way, the generator

is expected to produce fake data that are highly similar to the real data and eventu-

ally not recognizable as fake samples by the discriminator. We also propose to adopt

Wasserstein distance, a function defined to measure the distance between two probabil-

ity distributions, from WGAN [189] to formulate our objective function. To improve

the optimization of the discriminator and to prevent the issue of weight clipping of

WGAN, we propose to optimize the expectation using a softmax cross entropy. The

main contributions of this paper are as follows:

� A 3D-GAN architecture (“Triplet-3D-GAN”) is proposed for classifying remote

sensing images by employing GANs and 3D CNN.

� Spectral-spatial triplet constraints are included in generating real samples dur-

ing the training in order to improve the multi-class classification ability of the

discriminator.

� Performance of the generator is further improved by receiving feedback of the

intermediate features from the discriminator.

� The adversarial samples are used along with the real samples to adjust the training

of the proposed GANs model and thus, address the overfitting problem of CNN

for remote sensing images.

� Under the setting of using small number of training samples, our model is tested

on standard hyperspectral datasets and achieves the state-of-the-art performance.

The rest of this chapter is organized as follows. Section 5.2 gives a detailed overview of

the standard GAN formulation and its variants that are adopted in this work. Section 5.3

provides a description of the proposed triplet construction method for the formulation

of discriminator’s loss function. Section 5.4 introduces the detailed formulation of our
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proposed GAN architecture. Section 5.6 presents the experimental results and finally,

conclusions are drawn in Section 5.7.

5.2 Background on GAN

A GANs model trains two networks, a discriminatorD and a generatorG, simultaneously

in an adversarial manner. G captures the data distribution and D tries to differentiate

between fake samples from real ones by estimating the probability on whether a sample

comes from the real data or G. To learn a generator distribution pg over data x, G

samples noise z and builds a mapping function G(z, θg) from a prior noise distribution

pz to the data space, and produces fake samples x̂. D receives either real data x or fake

samples x̂ as input and emits a probability indicating whether the received data is a real

training sample or a fake sample drawn from the fake distribution pz.

During the training of D, the parameters of D are adjusted in order to assign correct

labels to both real and fake samples while the weights of G are kept fixed. For every

sample x ∈ pr, where pr is the data distribution over real sample x, the goal of the

training is to maximize D(x) for every sample from the real data and minimize D(G(z))

for every sample from the fake samples drawn from G’s fake distribution pz. Therefore,

the adversarial loss function of the model during the training of D is expressed as follows:

L(G,D) = Ex∼pr [logD(x)] + Ex̂∼pz [log(1−D(G(z)))] (5.1)

Here, L(G,D) is the loss function of the GAN and E (.) is the expectation operator.

During the training of G, the weights of D are kept fixed and the parameters of G

are adjusted in order to minimize log(1 − D(G(z))) because D produces a probability

estimation that ranges between 0 and 1. This is called perceptual loss as it encourages

the generated samples to be similar to the samples drawn from the real data distribution.

Hence, the aim of the optimization during the training of a GAN is to solve a mimimax

problem that is defined as follows:

min
G

max
D
L(G,D) = Ex∼pr [logD(x)] + Ex̂∼pz [log(1−D(G(z)))] (5.2)
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Fig. 5.1 illustrates a typical architecture of a GAN-based classification framework.

Figure 5.1: A typical GAN-based classification framework

However, if D is optimally trained before each generator parameter update, it is guar-

anteed that D(x) = 1, ∀x ∈ pr and D(x) = 0, ∀x ∈ pz. As a result, the loss function falls

to zero and it ends up with no gradient to update the loss during learning iterations.

To address this issue, Arjovsky et al. [189] proposed an improved GAN called WGAN

in which the Earth-Mover (also called Wasserstein-1) distance was used to measure the

distance between two distributions as the minimum necessary work to transform one

distribution to the other. Since it is intractable to exhaust all the possible joint distri-

butions in
∏

(pr, pz) to compute infγ∼
∏

(pr,pz) (γ is the expected cost of the travelling

distance of two points from two distributions), a smart transformation of the formula

was proposed based on the Kantorovich-Rubinstein duality to obtain [189]:

min
G

max
D∈κ

E
x∼pr

[D(x)]− E
x̃∼pz

[D(x̃))] (5.3)

where κ is the set of 1-Lipschitz functions. The WGAN results in a critic function whose

gradient with respect to its input performs well compared to the standard GAN as the

optimization of the generator is easier.

Despite the improvement on the training of GANs, poor samples can still be generated

or the model may fail to converge. This happens mainly due to weight clipping within a

compact space in WGAN to enforce a Lipschitz constraint which may lead to undesired
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behaviour. To further improve the training, Gulrajani et al. [190] proposed an alternative

clipping weights by penalizing the norm of gradient of the critic with respect to its input.

Hence, the new objective function is defined as:

L = E
x̃∼pz

[D(x̃))]− E
x∼pr

[D(x))] + λ E
x̂∈pz

[(||∇x̂D(x̂)||2 − 1)2] (5.4)

The first term is the original critic loss and the second term is the gradient penalty.

During a training iteration, an interpolated sample is drawn randomly from anywhere

on the straight line segment between a real sample and a generated sample. The gradient

of D at this point is evaluated and penalizes proportionally to the square deviation from

a gradient of 1. This enforces the WGAN requirement that D respects the 1-Lipschitz

constraint [190].

5.3 Construction of Triplet Constraint

In this method, we intend to construct an embedding f(x) from a real sample x into a

feature space in a way to measure the squared distance between all samples such that

the distance between samples belonging to the same class is small and distance between

samples of difference classes is large. We design a loss function with an end-to-end

learning inside a GAN. The motivation is that the loss encourages the samples of the

same class to be projected onto a single point in the embedded space. Moreover, the

loss also tries to enforce a margin between each pair of samples from the same class to

all other samples. In this way, a manifold is formed by containing the samples for one

class and enforcing the discrimination against other classes at the same time.

5.3.1 Triplet Loss

A key concept in our model is the triplet [188]. Each triplet has three samples, with two

samples belonging to the same class (positive samples) and one sample belonging to a

different class (negative sample). One of the positive samples is termed as an “anchor”

sample to which the distance will be compared. In the embedding process, x is embedded



Chapter 5. Triplet Constrained Generative Adversarial Networks for Hyperspectral
Image Classification 121

into a D-dimensional Euclidean space. Given an image sample xai (anchor), i ∈ 1, · · · ,M

where i is the index of the triplet and M is the number of all possible triplets of samples,

we enforce a relationship so it is closer to all positive samples xpi than it is to any other

negative sample xni (negative) along the spectral channel λ ∈ B, where B is the set of

spectral bands. Formally, this relationship on a triplet f(xai )λ, f(xpi )λ, f(xni )λ ∈ T is:

||f(xai )λ − f(xpi )λ||
2
2 + α < ||f(xai )λ − f(xni )λ||22 (5.5)

where α is a margin that is enforced between the positive and negative pair of samples

and T is the set of all possible triplets of samples in the training set. Therefore, the

triplet loss to be minimized is calculated as:

Lt =

M∑
i

(||f(xai )λ − f(xpi )λ||
2
2 − ||f(xai )λ − f(xni )λ||22 + α) (5.6)

In this way, many triplets are generated to fulfil the constraint in Eq. (5.5). However, us-

ing all possible triplets will cause slow convergence and not every triplet may contribute.

Hence, it is important to select effective triplets accordingly.

5.3.2 Selecting Triplets

The purpose of including triplet constraints is to improve the multi-class classifica-

tion performance of our proposed GAN-based model by learning a feature embedding

network to extract spectral-spatial features from HSI data. In order to ensure a fast

convergence, it is important to select triplets that violate the triplet constraint property

defined in Eq. (5.5). This means that we want to select positive samples that satisfy

argmaxxpi ||f(xai )λ−f(xpi )λ||22 in which case the obtained features can discriminate sam-

ples with large variation from the same class (i.e., hard positive examples). Similarly,

we want to select negative samples that satisfy argminxni ||f(xai )λ − f(xni )λ||22 in which

case the obtained features can discriminate samples that are spectrally similar but from

different classes (i.e., hard negative examples).

Since it is not computationally feasible to obtain argmax and argmin across the entire

training set, we divide our training set into several subsets and save our 3D CNN network
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in every n step during the training of those subsets to mark network checkpoints. Then,

we generate triplets in every n step using the most recent network checkpoint and com-

pute the argmax and argmin on the subset accordingly. We use small mini-batches to

supply the samples which should be a meaningful representation of the positive anchor

and negative anchor distances.

In [191], we selected the anchor sample in a random manner and computed the distances

accordingly. Selecting anchor sample randomly has some disadvantages. If the selected

sample itself is not an effective representative of useful spectral information, the triplet

constraint property with other samples in the mini-batch may fail. As a result of not

selecting a “good” anchor sample, it introduces chances of obtaining zero or less effective

pair of anchor-positive and anchor-negative samples. On the other hand, there may be

other samples in the mini-batch which can better describe the spectral properties of the

respective classes. Selecting those samples should produce more useful triplets and can

improve the multi-class classification of the discriminator significantly.

Therefore, we extend this approach of selecting anchor samples by considering each

sample in the mini-batch as an anchor sample. In this way, every sample in the mini-

batch will be regarded as an anchor sample once and the distance to the positive and

negative samples will be computed accordingly. By doing so, the possibility of selecting

good anchor-positive and anchor-negative pair of samples is higher.

A major limitation of the triplet loss is that as the dataset gets larger, the possible

number of triplets grows cubically, resulting in an expensive and impractical training.

Therefore, it is very important to mine “hard” triplets for learning. In our cases, spec-

trally similar but different materials can help in building better triplets and hence, we

select hard negative samples to form the triplets in our method. In this regard, in case of

selecting the positive samples, we consider all anchor-positive pairs in the mini-batches

instead of selective anchor-positive pairs to utilize such local structure information of

the data.

In case of selecting negative samples, we consider the samples which are spectrally

close to the positive samples since it will introduce challenges to the training process.

The local minima caused during the training of the model while selecting the hardest
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negative samples can result in a collapsed model (f(x) = 0) [188]. Therefore, we select

the negative samples as follows:

||f(xai )λ − f(xpi )λ||
2
2 < ||f(xai )λ − f(xni )λ||22 (5.7)

In this way, we consider the negative samples which are further away from the anchor

than the positive samples but the squared distance is still close to the anchor-positive

distance. Since these negative samples lie within α, we consider samples whose spectral

properties are close to the positive samples. Fig. 5.2 illustrates the process of learning

triplet constraint-based embedding by a 3D-CNN.

Figure 5.2: Learning triplet constraint-based embedding through 3D-CNN

5.4 Formulation of Triplet Constraint-based 3D-GAN

In this section, we present a deep architecture based on the theory of WGAN, whose

objective function includes additional loss functions to integrate triplet constraints. We

supply training data that satisfy triplet constraint property to the generator. The pur-

pose of doing so is to increase the multi-class classification capabilities of the discrimina-

tor since triplets are believed to be useful estimation of spectral-spatial characteristics

of HSI data and may contribute considerably in accurate classification. Therefore, the

parameters are optimized based on the multi-classification loss. We now present the loss

functions of G and D to be used in our proposed model.
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5.4.1 Designing Loss Functions

In our model, we supply label of the data to both D and G. The label is expected to

add useful information that maximizes the classification abilities of D and generative

abilities of G.

G produces fake samples, x̂ = G(z, θz) with parameters θz, where z obeys a prior

noise distribution pz. G also receives the class labels of our original training data C =

{y1, y2, . . . , yY }, where Y is the number of classes of the HSI data. However, to obtain

a more effective perceptual loss, we propose to use the intermediate features from D to

build the perceptual loss. In this way, the computational overhead is reduced through

the reuse of the extracted features by D. We define the perceptual loss for G as:

Lρ =
L∑
i=1

(||Ex∼prfi(x)− Ex̂∼pzfi(G(z))||22) (5.8)

where, L is the number of convolution layers, fi(x) is the feature map computed by the

i -th convolution layer (after the activation function layer) within D.

In our model, D receives both real data x which are selected after satisfying triplet

constraints and fake data x̂ generated by G. Therefore, it is very crucial for D to

separate real samples from the generated fake ones. Hence, D tries to maximize the

log-likelihood of the correct source of data U = {real, fake}.

LU = E[logP (U = real|x)] + E[logP (U = fake|x̂)] (5.9)

The role of D in our model is not only just to differentiate real samples from fake ones but

also to accurately classify different classes of the data. We use Wasserstein distance from

WGAN [189] to formulate objectives for optimization of D’s multi-class classification

task. As mentioned in Section 5.2, discriminators in WGAN are constrained to be 1-

Lipschitz functions and their losses are constructed using the Kantorovich-Rubinstein

duality. Therefore, we formulated the improved WGAN-GP [190] in which a gradient

penalty term was included to address the extremely distributed weights because of the

weight clipping scheme. Along with this, we propose to remove the last activation



Chapter 5. Triplet Constrained Generative Adversarial Networks for Hyperspectral
Image Classification 125

in D to prevent the weights from growing too large and we optimize the expectation

using softmax cross-entropy. By imposing the gradient penalty [190] together with the

removal of the last activation, softmax cross-entropy and BN, an effective and efficient

approximation of K-Lipschitz function can be done during D’s multi-class classification

task.

Therefore, the objective function of the discriminator includes another term containing

the log-likelihood of the correct class labels of our HSI data:

LC = E[logP (C = y|x)] + E[logP (C = y|x̂)] + δ E
x̂∈pz

[(||∇x̂D(x̂)||2 − 1)2] (5.10)

where δ is the gradient penalty co-efficient.

As mentioned in Section 5.3.2, we apply triplet constraints on the training samples to

select triplets for D to improve its multi-class classification capability. Considering the

computation overhead caused by all possible combinations of the triplets, we propose

an alternative organization to the standard way of using the triplet loss. The basic idea

is: we randomly sample C classes (C < Y where Y is the total number of classes) and

then randomly select S samples of each class, thus resulting in a batch of CS samples.

Now, for each sample s in the batch, we select all positive and the hard negative samples

within the batch when forming the triplets for the loss:

Ltriplet =

All Anchors︷ ︸︸ ︷
Y∑
y=1

S∑
s=1

α+

All Positives︷ ︸︸ ︷
S∑
p=1
p6=a

||xai − x
p
i ||

2
2−

Hard Negatives︷ ︸︸ ︷
min

j=1,...,Y
n=1,...,S
j 6=i

||xai − xnj ||22

 (5.11)

where a, p and n denote the anchor, positive and negative samples respectively.

Our proposed approach of constructing triplets in our model is summarized in Algo-

rithm 5.

Adding the triplet loss to the objective function (Eq. 5.9) of D for evaluating correct

class labels gives us the overall objective function for our proposed GAN model as:

L = LU + LC + Ltriplet + Lρ (5.12)
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Algorithm 5: Triplet Construction Algorithm

Data: T Input Samples {X1, X2,. . . ,XT }, Y target classes in {y1, y2,. . . ,Y }
1: while training sample i : 1→ T do
2: for b = 1, 2, . . . , B do
3: Select C classes where C < Y
4: for i = 1, 2, . . . , C do
5: Draw S samples and add them into Batch Bb
6: end for
7: end for
8: for b = 1, 2, . . . , B do
9: while length(Bb) < S do

10: Randomly select xi, xj , xk ∈ Bb
11: if xi 6= anchor then
12: Select xi ← xai as an anchor sample
13: end if
14: Select xj ← xpj as a positive sample, where label(xi) = label(xj)
15: Select xk ← xnk as a negative sample, where label(xj) 6= label(xk)

16: Compute
∑S

p=1
p 6=a
||xai − x

p
i ||22

17: Compute min
j=1,...,Y
n=1,...,S
j 6=i

||xai − xnj ||22

18: Compute Ltriplet using Eq. (5.11)
19: end while
20: end for
21: end while

Output: Generated Triplets

5.5 Network Architecture

We propose a 3D-GAN architecture in this chapter, specifically designed for improving

the multi-class classification capability of the model. Both generator and discriminator

in our model are in the form of convolutional networks. Our proposed Triplet-3D-GAN

extracts effective spectral-spatial characteristics of the HSI data and achieves better

classification performance. We now present the architecture of our model followed by

describing the classification process.

5.5.1 Generator Architecture

The generator network of our model takes a vector of 100 random numbers drawn from

a uniform noise distribution as input and produces an image of size H ×W which is the

same size as the real data. The generator network consists of a fully connected layer
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reshaped into a tensor and used as an input to the convolution stack containing number of

fractionally-strided convolutional layers or deconvolution layers. A fractionally-strided

convolution can be interpreted as expanding the pixels by inserting zeros in between

them. Convolution over the expanded image will produce a larger or upsampled image.

We apply BN to each layer of the network, except for the output layer. In order to

prevent the generator from collapsing all samples to a single point, we normalize the

responses to have zero mean and unit variance over the entire mini-batch, as done

in [192]. LeakyReLU activation functions are performed at each layer (not in the output

layer) in order to allow gradients to flow backwards through the layer without constrain.

The generator network finally produces an image with five channels in the spectral

domain, as shown in Fig. 5.3.

Figure 5.3: Architecture of the generator.

5.5.2 Discriminator Architecture

In the proposed 3D-GAN model, the discriminator adopts a 3D CNN architecture [193].

During the 3D-CNN training, we use kernels of size 1× 1× d, where d > 1, to learn the

spectral features from the original datacube and to reduce the high dimensions of the

HSI data. With this kernel size, the relationship between pixels and their neighbors in

the spatial domain is not considered, but the convolution of a kernel size of 1×1 still has

the ability to integrate linear combinations of pixels in the spatial neighborhood. Hence,

convolution of kernel size of 1× 1× d can extract spectral features and preserve spatial

information. During the convolution operations, we use the tradition padding “Same”
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and “Valid” to reduce the dimensions of the feature maps. The “Same” padding reserves

the boundary and produces an output size to be the same as the input size when the

stride is one. On the other hand, the “Valid” padding does not apply any padding and

assumes that all dimensions are valid so that the input image fully gets covered by the

specified kernels and stride. The latter is used to reduce the dimensions of the feature

maps and retain extracted spectral features and spatial information.

We illustrate the proposed discriminator architecture in Fig. 5.4. Given an HSI H with

B channels, a small cube of size r × r ×B is selected from the original real data as the

input to D. Upon receiving the initial input, the first convolution layer which has n

kernels of 1× 1× L (L < B) with stride (1, 1, 2) and the “valid” padding, generates n

feature maps, each of size r × r × b. This convolution operation reduces the number of

bands to b = B−L+1
2 . These resulting feature maps are supplied to a block consisting of

a stack of l convolution layers. For each of the convolution layers inside this block, we

specify k kernels of size 1 × 1 × b with the “same” padding and stride 1 × 1 × 1. The

output of each convolution layer are k feature maps of size r× r× b. Merging all initial

input and output feature maps gives n + (k × l) feature maps. The resulting output

feature maps are further reshaped to produce one feature map with a size of r× r× b.

Figure 5.4: Architecture of the discriminator.

5.5.3 Generative Adversarial Samples for Classification

The proposed 3D-GAN is particularly designed for increasing the multi-class classifica-

tion ability of the discriminator through the use of triplet constraints. D receives both

real and fake samples as input with the generated fake data be taken as augmented

training samples. However, we apply triplet property for the real data only. In addition
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to Y for the real data, we add a new class label in order to specify every generated fake

sample.

To start with, the generated fake samples are forwarded through the network and are

assigned labels by computing the maximum values of the probability vectors. These fake

samples can then be used for training the network with the assigned labels, thus increase

the number of training samples. Because the fake samples do not belong to any real class,

the additional class label is used to classify these samples, making the model a Y + 1

classification problem. D uses sigmoid classifier to distinguish real and fake samples and

uses a cross-entropy softmax classifier to give the multi-class classification results. The

entire process of the proposed 3D GAN-based classification framework is illustrated in

Fig. 5.5. Our proposed 3D-GAN architecture is summarized in Algorithm 6.

Figure 5.5: 3D GAN-based HSI classification framework

5.6 Experiments

In this section, we present the experimental results on real-world hyperspectral remote

sensing images. Then we analyse the performance of the proposed method in comparison

with several alternatives. For better evaluation, we organize our experiments in the

following stages:

1. We evaluate the effectiveness of the feature extraction stage of a standard GAN

model by comparing its classification performance with other feature extraction

methods.
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Algorithm 6: Triplet Constrained 3D-GAN

Data: Gradient penalty co-efficient δ, Number of discriminator iterations nD,
initial discriminator parameters θD, initial generator parameters θG, batch
size m and Adam hyper-parameters %, β1, β2.

/* Initialization */
Set default values: δ = 10, nD = 5, % = 0.0001, β1 = 0, β2 = 0.9.

1: while θG not converged do
2: for t = 1, 2, . . . , nD do
3: for i = 1, 2, . . . ,m do
4: Sample a batch from the real data based on {x(i)}mi=1 ∼ Pr
5: Sample a batch of fake samples based on {z(i)}mi=1 ∼ p(z)
6: Compute L(i) ← LU + LC + Ltriplet using Eqs. (5.9), (5.10) & (5.11)
7: end for
8: Compute θD ← Adam(∇θD 1

m

∑m
i=1 L(i), θD, %, β1, β2)

9: Compute Sigmoid activation
10: Compute Soft-max activation a = exp(o)∑

k exp(ok)
; where o is the output of the final

layer of the network and first input to softmax classifier
11: Compute error T = yi-a
12: Back-propagate error to compute gradient δT

δoj
13: Update network parameter θD
14: end for
15: Sample a batch of fake data based on {z(i)}mi=1 ∼ p(z)
16: Compute θG ← Adam(∇θG 1

m

∑m
i=1−D(G(z)), θG, %, β1, β2)

17: end while

Output: Trained Discriminator parameters θD

2. We evaluate the performance of our proposed triplet constraint-based GAN model

by comparing its classification performance with other baseline spectral-spatial

classification methods.

3. We evaluate the important stages of our model in order to verify the usefulness of

those stages.

5.6.1 Hyperspectral Image Datasets

In the experiments, we used three widely used hyperspectral datasets, i.e., Indian Pines,

Pavia University and Salinas, in order to evaluate the effectiveness of our proposed

method. For better evaluation of our proposed method, we used a new dataset “Griffith-

USGS” that we introduced in Chapter 3. The number of available labelled samples per

every class are provided in Tables 5.1, 5.2, 5.3 and 5.4. To select the training and

testing samples, we followed the same experimental setting described in 3D-GAN [140]



Chapter 5. Triplet Constrained Generative Adversarial Networks for Hyperspectral
Image Classification 131

Table 5.1: Total Number of Available Samples for Each Class on Indian Pines Dataset

Class Samples

Alfalfa 46

Corn-notill 1428

Corn-mintill 830

Corn 237

Grass-pasture 483

Grass-trees 730

Grass-pasture-mowed 28

Hay-windrowed 478

Oats 20

Soybean-notill 972

Soybean-mintill 2455

Soybean-clean 593

Wheat 205

Woods 1265

Buildings-Grass-Trees-Drives 386

Stone-Steel-Towers 93

Total 10249

Table 5.2: Total Number of Available Samples for Each Class on Pavia University
Dataset

Class Samples

Asphalt 6631

Meadows 18649

Gravel 2099

Trees 3064

Painted metal sheets 1345

Bare Soil 5029

Bitumen 1330

Self-Blocking Bricks 3682

Shadows 947

Total 42776

to make a fair comparison with our method. During the training of GAN, we use 200

training samples to learn weights and biases of each neuron, and 100 training samples

as validation samples that are used to guide the design of proper architectures and to

identify whether the network is overfitted or not. For testing purposes, we use all the

samples in the data sets to verify the effectiveness of the trained network. We use a very

limited number of real samples for training and augment the training samples during

the course of the GAN training by generating fake samples.
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Table 5.3: Total Number of Available Samples for Each Class on Salinas Dataset

Class Samples

Alfalfa 2009

Corn-notill 3726

Corn-mintill 1976

Corn 1394

Grass-pasture 2678

Grass-trees 3959

Grass-pasture-mowed 3579

Hay-windrowed 11271

Oats 6203

Soybean-notill 3278

Soybean-mintill 1068

Soybean-clean 1927

Wheat 916

Woods 1070

Buildings-Grass-Trees-Drives 7268

Stone-Steel-Towers 1807

Total 54129

Table 5.4: Total Number of Available Samples for Each Class on Griffith-USGS
Dataset

Class Samples

Road 1734

Water 1574

Building 1481

Grass 1917

Tree 1772

Soil 1416

Total 9894

5.6.2 Design of the 3D-GAN Architecture

The detailed design of the generator G and the discriminator D in our model is discussed

in this section. G took 100 random numbers drawn from a uniform distribution as an

input of size 100× 1× 1. The first layer of G was fully connected which is just a matrix

multiplication. The result was shaped into a 3D tensor. After that five convolution

layers were used to learn its own spatial upsampling and upsample the feature maps to

produce a fake sample with a size of 64 × 64 × B (B is the number of bands for each

individual dataset). BN was used in each layer except the last layer. Table 5.5 presents

the architectures of the generators used for all datasets.
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Table 5.5: Architectures of the generators on all datasets

Dataset Layer Convolution BN Stride Padding Activation Function

Indian Pines,

Griffith-USG

1 5 Ö 5 Ö 1024 Yes 1 Ö 1 Ö 1 No LeakyReLU
2 5 Ö 5 Ö 512 Yes 1 Ö 1 Ö 2 Same LeakyReLU
3 5 Ö 5 Ö 256 Yes 1 Ö 1 Ö 2 Same LeakyReLU
4 5 Ö 5 Ö 256 Yes 1 Ö 1 Ö 1 Same LeakyReLU
5 5 Ö 5 Ö 200 No 1 Ö 1 Ö 2 Same LeakyReLU

Pavia

University

1 5 Ö 5 Ö 1024 Yes 1 Ö 1 Ö 1 No LeakyReLU
2 5 Ö 5 Ö 512 Yes 1 Ö 1 Ö 2 Same LeakyReLU
3 5 Ö 5 Ö 256 Yes 1 Ö 1 Ö 2 Same LeakyReLU
4 5 Ö 5 Ö 128 Yes 1 Ö 1 Ö 2 Same LeakyReLU
5 5 Ö 5 Ö 103 No 1 Ö 1 Ö 2 Same LeakyReLU

Salinas

1 5 Ö 5 Ö 1024 Yes 1 Ö 1 Ö 1 No LeakyReLU
2 5 Ö 5 Ö 512 Yes 1 Ö 1 Ö 2 Same LeakyReLU
3 5 Ö 5 Ö 256 Yes 1 Ö 1 Ö 2 Same LeakyReLU
4 5 Ö 5 Ö 256 Yes 1 Ö 1 Ö 1 Same LeakyReLU
5 5 Ö 5 Ö 204 No 1 Ö 1 Ö 2 Same LeakyReLU

For D, the first layer was supplied with both real and fake samples. The first two

convolution layers used a 1 × 1 × L kernel with “zero” padding and a stride of 2. The

rest of the convolution layers used a 1×1×b kernel with “same” padding and a stride of

1. BN was used in specific layers of the discriminator network as using it in each layer

may cause instability. We added a sigmoid classifier and a softmax classifier in parallel

at the end which were used to classify real/fake samples and individual classes of the

HSI respectively. Table 5.6 presents the architectures of the discriminators used on all

datasets. The size of the mini batch supplied to D was 100 and the learning rate was

set to 0.0002. The number of epochs was 600 for Indian Pines and Salinas and 700 for

Pavia University and for Griffith-USGS.

5.6.3 Feature Extraction by GAN

In this section, we evaluate the feature extraction stage of a standard GAN by comparing

the classification performance with other feature extraction methods. For classification

step, we used several widely used classifiers and report their classification performance.

During our experiments, we used several feature extraction methods such as LDA, PCA,

ICA and CNN. LDA is a supervised dimensionality reduction method which projects the

input data to a linear subspace consisting of the directions to maximize the separation
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Table 5.6: Architectures of the discriminators on all datasets

Dataset Layer Convolution BN Stride Padding Activation Function

Indian Pines,

Griffith-USGS

1 1 Ö 1 Ö 127 No 1 Ö 1 Ö 2 Valid LeakyReLU
2 1 Ö 1 Ö 18 No 1 Ö 1 Ö 2 Valid LeakyReLU
3 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
4 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
5 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same No

6
Nodes to classify real/fake Sigmoid

Nodes to classify multi classes Softmax

Pavia

University

1 1 Ö 1 Ö 30 No 1 Ö 1 Ö 2 Valid LeakyReLU
2 1 Ö 1 Ö 18 No 1 Ö 1 Ö 2 Valid LeakyReLU
3 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
4 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
5 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same No

6
Nodes to classify real/fake Sigmoid

Nodes to classify multi classes Softmax

Salinas

1 1 Ö 1 Ö 131 No 1 Ö 1 Ö 2 Valid LeakyReLU
2 1 Ö 1 Ö 18 No 1 Ö 1 Ö 2 Valid LeakyReLU
3 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
4 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same LeakyReLU
5 1 Ö 1 Ö 10 Yes 1 Ö 1 Ö 1 Same No

6
Nodes to classify real/fake Sigmoid

Nodes to classify multi classes Softmax

between classes. The capability of linearly extracting spectral and spatial features has

made LDA a reasonable choice for extracting features of HSIs. PCA, a statistical proce-

dure, is one of the most popular dimensionality reduction methods for HSIs. Since the

neighboring bands in an HSI are highly correlated, PCA can effectively transform the

original data to remove the correlation among the bands by using orthogonal transfor-

mations. ICA has also been exploited in hyperspectral remote sensing data analysis. It

is based on a well known unsupervised blind source separation (BSS) technique, which

identifies statistically independent components by considering only the observation of

mixture signals. The independent components can provide useful information related to

one or several classes in an HSI.

For deep feature extraction, we chose 1D-CNN architecture to obtain spectral features

only. At first, we reduced the number of spectral bands of the original data cube to 10

by PCA. One-dimenstional vectors representing the pixels in the HSI were supplied as

input to the model. It consisted of several convolutional and pooling layers. Logistic

regression (LR) was applied to adjust the weights and biases in the back-propagation



Chapter 5. Triplet Constrained Generative Adversarial Networks for Hyperspectral
Image Classification 135

during training. We used two convolution and two pooling layers for all datasets. After

the training, the learned features were used in conjunction with different classifiers.

To extract features with GAN, we also chose the architecture of a 1D-GAN to produce

spectral features only. All the training data and input noise were in the form of spectral

vectors. For a fair comparison, the number of spectral bands of the real data were

reduced to 10 by PCA first. G of the model received an input noise of size 1 × 1 × 1

which was passed through three deconvolution layers to be converted into 10× 1× 1. D

received both fake and real samples as the training data with corresponding labels. A

stride of 1 and zero padding were used during the experiment. Three convolution layers

were used and BN was included in specific layers as well.

In the experiments, we used RF, SVM, and K NN as the classifiers with the above-

mentioned features. The parameter tuning procedure was previously explained in Sec-

tion 4.5.2 in Chapter 4.

Tables 5.7, 5.8 and 5.9 report the classification accuracies in terms of OA(%) and AA(%)

obtained with different feature extraction and classification on all datasets. We report

the classification results in the form of mean ± standard deviation. Table 5.7 shows

that the deep learning-based models achieve better classification accuracy compared to

LDA, PCA and ICA. GAN features, particularly, achieves superior performance over all

other feature extraction methods.

Our detailed observations based on the overall accuracy results are given below:

� With SVM as the classifier, GAN features outperforms other feature extraction

methods by 5% − 14% on Indian Pines and Pavia University, 5% − 15% on Sali-

nas and 7% − 14% on Griffith-USGS. With RF as the classifier, GAN features

outperforms other feature extraction methods by 3% − 10% on Indian Pines and

Pavia University, 4%−8% on Salinas and 5%−10% on Griffith-USGS. With K NN

as the classifier, GAN features outperforms other feature extraction methods by

6% − 13% on Indian Pines, 9% − 14% on Pavia University, 7% − 15% on Salinas

and 4%− 13% on Griffith-USGS.
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Table 5.7: Classification accuracies obtained by support vector machine with different
feature extraction methods on all datasets. Best accuracies are shown in bold.

Dataset LDA PCA ICA CNN GAN

Indian
Pines

OA (%)
78.10
± 1.35

74.17
± 2.20

79.29
± 2.47

82.90
± 2.80

88.12
± 1.29

AA (%)
74.53
± 2.80

71.30
± 1.58

76.00
± 2.69

79.76
± 1.15

84.16
± 1.35

Pavia
University

OA (%)
83.97
± 1.70

76.24
± 1.00

84.02
± 1.40

84.82
± 1.19

90.97
± 2.00

AA (%)
80.36
± 1.37

72.51
± 1.70

80.52
± 0.58

81.00
± 0.85

87.81
± 1.19

Salinas
OA (%)

84.12
± 1.60

75.46
± 1.96

84.50
± 2.06

85.06
± 1.91

90.68
± 2.29

AA (%)
81.09
± 1.59

70.96
± 1.93

80.76
± 1.25

82.88
± 1.34

87.76
± 1.11

Griffith-USGS
OA (%)

57.46
± 1.94

54.44
± 1.38

60.61
± 1.33

63.60
± 1.05

68.64
± 1.50

AA (%)
54.33
± 2.57

50.18
± 1.15

57.73
± 1.94

60.55
± 1.20

64.60
± 2.36

Table 5.8: Classification accuracies obtained by random forest with different feature
extraction methods on all datasets. Best accuracies are shown in bold.

Dataset LDA PCA ICA CNN GAN

Indian
Pines

OA (%)
85.06
± 1.36

81.00
± 1.84

87.14
± 1.33

85.04
± 1.45

91.13
± 1.55

AA (%)
82.35
± 2.25

77.70
± 2.25

85.90
± 1.18

81.09
± 0.65

87.34
± 2.55

Pavia
University

OA (%)
89.19
± 0.92

83.90
± 1.50

89.69
± 1.27

90.89
± 1.21

93.67
± 0.80

AA (%)
84.20
± 1.23

79.70
± 2.15

85.13
± 2.10

87.66
± 2.11

89.82
± 2.45

Salinas
OA (%)

89.83
± 2.05

84.19
± 1.96

87.08
± 1.75

88.71
± 2.05

92.31
± 1.13

AA (%)
85.11
± 1.06

80.42
± 1.87

83.91
± 0.85

85.88
± 1.35

89.22
± 0.85

Griffith-USGS
OA (%)

63.53
± 1.45

60.39
± 2.18

65.60
± 1.77

65.54
± 1.25

70.70
± 1.45

AA (%)
59.37
± 1.95

57.81
± 1.09

61.90
± 1.65

61.27
± 0.75

66.01
± 1.54

� ICA performs consistently well compared to LDA and PCA with all classifiers on

each datasets.

� CNN features do not significantly outperform other shallow features. In some

cases, the difference in OA between CNN and ICA are very small. Since we did
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Table 5.9: Classification accuracies obtained by K NN with different feature extraction
methods on all datasets. Best accuracies are shown in bold.

Dataset LDA PCA ICA CNN GAN

Indian
Pines

OA (%)
76.15
± 1.20

73.65
± 1.78

78.11
± 2.45

80.05
± 1.70

86.35
± 0.35

AA (%)
73.90
± 1.40

70.40
± 2.15

75.09
± 0.90

75.16
± 2.00

83.68
± 2.16

Pavia
University

OA (%)
79.27
± 1.90

74.39
± 1.88

79.19
± 1.60

81.46
± 1.95

88.84
± 1.28

AA (%)
76.79
± 1.77

71.30
± 1.37

77.29
± 1.78

78.62
± 2.11

83.24
± 0.91

Salinas
OA (%)

80.19
± 2.35

74.34
± 0.77

80.92
± 1.12

83.74
± 1.50

89.00
± 1.53

AA (%)
75.65
± 1.48

71.03
± 1.00

76.08
± 0.75

80.70
± 1.89

86.19
± 1.63

Griffith-USGS
OA (%)

55.68
± 0.18

52.50
± 1.40

56.25
± 1.39

61.71
± 1.80

65.36
± 1.70

AA (%)
52.10
± 1.07

49.44
± 1.30

54.92
± 2.28

59.82
± 1.86

63.57
± 1.65

not augment the training samples, CNN performed badly on some classes. Hence,

it is evident that the small number of training samples restricted the performance.

� In the GAN-based model, we supplied both real and fake samples to the discrimi-

nator for training purposes. The higher accuracy of the model, therefore, indicates

the usefulness of the generated samples which have increased the number of train-

ing samples for the deep model and eventually improve the performance.

5.6.4 Comparing with Other Spectral-Spatial Classification Methods

to Evaluate Triplet Constraints

In this section, we evaluate the performance of our proposed triplet constraint-based

GAN model by comparing our model with other baseline spectral-spatial classification

methods. We first compared our method with [194], a spectral-spatial classification

approach based on a novel extrema-oriented connected filtering technique, referred to

as extended extinction profiles (EEP). This approach simplifies the input image by

discarding insignificant spatial details and preserves the geometrical characteristics of

other regions from the first informative features extracted by ICA or PCA. The resulting
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output is supplied to RF for classification. We experimented on both ICA and PCA and

reported the best results on all datasets. According to our experiments, best accuracies

were obtained using ICA on Pavia University, Salinas and Griffith-USGS whereas PCA

produced best accuracy on Indian Pines.

We further compared our method with few other deep models in order to present a fair

evaluation of our method. The first deep model is based on the extended morphological

profile (EMP). During our experiments, ten principal components (PC) were extracted

from the original data. After that we performed opening and closing operations on the

first five PCs on Indian Pines, seven PCs on Pavia University and Salinas and nine PCs

on Griffith-USGS to extract spatial information. The generated spatial features and

original spectral features are supplied to a standard CNN for classification.

The second deep model 3D-CNN-LR is based on 3D-CNN that learns the signal changes

in both spatial and spectral dimensions of HSIs. Proposed by Chen et al. [119], the

method is able to extract significant discriminative information for classification and

exploit powerful structural characteristics for HSI data. The classification accuracy is

further improved by using L2 regularization and dropout during training. The number of

available training samples are increased by generating virtual samples from real samples.

Finally, we compared our model with 3D-GAN [140], a recent GAN-based model to clas-

sify remote sensing images. This model generates fake samples to increase the number

of training samples for improving the classification performance. The discriminator in

the model reduces the number of spectral bands to three components by PCA and re-

serves the spatial information. The classification step also includes an additional softmax

classifier to perform multi-class classification.

Table 5.10 presents the classification results of our proposed Triplet-3D-GAN and other

baseline spectral-spatial methods. Our observation based on the overall accuracy results

is given below:

� Triplet-3D-GAN outperforms EEP and EMP-CNN by approximately 5% and 8%
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respectively on Indian Pines, approximately 4% and 6% respectively on Pavia Uni-

versity, approximately 3% and 4% respectively on Salinas. However, on Griffith-

USGS, it achieves a significant improvement over EEP and EMP-CNN by approx-

imately 16% and 15% respectively.

� Triplet-3D-GAN produces similar results as 3D-GAN [140] and 3D-CNN-LR [119]

on Indian Pines and Pavia University and slightly better on Salinas. However, it

outperforms both models by approximately 7% for Griffith-USGS. The integration

of triplet constraints into the training process of the discriminator for real data

has therefore improved the classification performance.

� Observing the increased accuracies by Triplet-3D-GAN, we also conclude that

the generated fake samples help the discriminator by supplying sufficient training

samples to improve the training process. It also indicates that the quality of the

generated samples is better and in turn, supports our idea of including perceptual

loss in the generator to improve the sample generation process.

Table 5.10: Comparison on classification accuracies obtained by different spectral-
spatial methods. Best accuracies are shown in bold.

Dataset
EEP
[194]

EMP-CNN
3D-CNN-LR

[119]
3D-GAN

[140]
Triplet-3D-GAN

Indian
Pines

OA (%)
93.25
± 1.37

90.75
± 1.05

98.25
± 0.78

98.10
± 0.47

98.19
± 0.05

AA (%)
93.15
± 1.60

91.85
± 2.45

99.27
± 0.12

99.05
± 0.27

99.15
± 0.07

Pavia
University

OA (%)
94.38
± 0.50

92.55
± 1.68

98.80
± 0.28

98.55
± 0.10

98.75
± 0.15

AA (%)
95.26
± 1.44

93.30
± 1.96

99.40
± 0.07

99.20
± 0.05

99.45
± 0.06

Salinas
OA (%)

95.88
± 0.29

94.18
± 1.00

98.05
± 0.15

97.00
± 0.85

98.90
± 0.10

AA (%)
95.56
± 0.84

94.20
± 0.65

98.90
± 0.19

98.83
± 0.09

99.25
± 0.03

Griffith-USGS
OA (%)

74.77
± 1.25

75.19
± 1.80

82.53
± 0.69

83.15
± 1.50

90.35
± 0.80

AA (%)
72.23
± 2.30

73.70
± 2.39

83.04
± 0.91

84.15
± 0.95

90.13
± 0.50
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5.6.5 Testing Important Stages of the Proposed Model

Evaluating Intermediate Features

First, we tested the effectiveness of including intermediate features obtained from the

discriminator into generator’s perceptual loss computation. We observed in Table 5.10

that Triplet-3D-GAN outperforms other methods significantly on Griffith-USGS com-

pared to other datasets. For indian pines, pavia university and salinas, there was not

enough space to significantly improve as the accuracies achieved by other methods on

these three datasets were already satisfactory. One of the main reasons of obtaining

such high accuracies is that the training and testing samples were selected from the

same scene. This increased the possibilities of significant misuse of spatial information

during training. Since training and testing samples were selected from different scenes

on Griffith-USGS, obtaining high accuracy became more challenging and hence, the use-

fulness of the proposed model can be better evaluated. Therefore, it is interesting to

analyse results on this dataset in more detail to investigate the improvement for individ-

ual classes. Hence, this particular experiment includes results from only Griffith-USGS.

To support our idea, we conduct experiments in two settings: (1) including intermediate

features and (2) excluding intermediate features in the perceptual loss.

Table 5.11: Evaluation of including intermediate features on Griffith-USGS

Class
Without

Intermediate
Features

With
Intermediate

Features

Road 65.50 ± 0.97 72.46 ± 2.27
Water 77.88 ± 2.10 78.22 ± 1.16

Building 77.40 ± 1.55 78.39 ± 0.88
Grass 77.85 ± 0.76 78.25 ± 1.00
Tree 74.55 ± 0.54 75.40 ± 1.11
Soil 67.86 ± 0.94 74.59 ± 0.38

OA (%) 73.80 ± 1.69 75.50 ± 1.59
AA (%) 73.51 ± 0.58 76.21 ± 0.50

Table 5.11 reports the classification accuracies obtained by including and excluding the

intermediate features into the perceptual loss. Although the accuracies improved slightly

for most classes after including intermediate features obtained from the discriminator,

we observe that the accuracies of the classes “road” and “Soil” increased significantly. It
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Table 5.12: Evaluation of Triplet Constraints on Griffith-USGS (Best Accuracies are
shown in bold)

Class
3D-CNN

[122]
3D-CNN-LR

[119]
Triplet-3D-CNN

Road 63.35 ± 1.71 73.59 ± 1.05 72.46 ± 2.27
Water 73.90 ± 0.66 75.11 ± 1.40 79.22 ± 1.16

Building 69.88 ± 0.57 79.12 ± 0.41 78.39 ± 0.88
Grass 70.15 ± 2.05 73.11 ± 2.71 78.25 ± 1.00
Tree 68.27 ± 0.96 70.05 ± 1.37 76.40 ± 1.11
Soil 65.33 ± 0.73 65.86 ± 1.26 74.59 ± 0.38

OA(%) 66.44 ± 2.21 67.91 ± 1.87 75.50 ± 1.59
AA(%) 68.48 ± 1.40 72.80 ± 1.96 76.55 ± 0.50

is clear that the sample generation process was benefited to some extent after including

intermediate feedback from the discriminator.

Evaluating Triplet Constraints

We used triplet constraint as an important feature embedding to be learned during the

training of 3D CNN for classification. The main purpose of using this constraint is to

improve the classification performance of 3D CNN instead of adopting additional post-

processing stages. Hence, to further validate the effectiveness of using triplets during

CNN training, we present additional comparisons with other 3D-CNN-based models.

The first baseline method 3D-CNN [122] employed a standard 3D CNN. The second

baseline method 3D-CNN-LR [119] used L2 regularization and dropout in the training

process to improve the classification results. We included triplet constraints into the

standard 3D-CNN which we call “Triplet-3D-CNN” and compared the classification

accuracy with 3D-CNN [122] and 3D-CNN-LR [119]. Table 5.12 reports the class-specific

OA and AA in order to demonstrate the effectiveness of using triplet constraints. To

make fair comparisons, we randomly selected 15% samples for training and the rest of

the available samples for testing. Also, we did not include augmented samples in 3D-

CNN-LR [119] since for this experiment, we included triplet constraints into our model

without augmented samples.

In Table 5.12, we see that Triplet-3D-CNN achieves better classification accuracy com-

pared to other methods. It is quite evident from the results that the use of triplet
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constraint provided useful spectral-spatial feature embedding for the classifier and im-

prove the classification performance.

Evaluating Augmented Fake Samples

Considering there is a high possibility that the synthesized samples are both realistic

and diverse, we used the fake spectra to augment the existing datasets. To support our

claim, we now evaluate the effectiveness of including those generated fake samples into

the training process. We randomly selected 100 fake samples generated by Triplet-3D-

GAN and included those into the training set. The original data had Y classes and the

generated fakes samples were supplied with a Y + 1-th label for training. We included

both real (10% from each class) samples and fake samples into training processes of

EMP-CNN and 3D-CNN-LR and measured their classification performances. For 3D-

CNN-LR, we did not include the augmented samples obtained by their proposed method.

Table 5.13 shows a comparison on accuracies obtained by those two methods with and

without augmented samples. It is evident from the results that accuracies increased

after including the Triplet-3D-GAN generated augmented samples in training.

Table 5.13: Evaluation of GAN-generated Augmented Samples in Training

Dataset EMP-CNN
EMP-CNN-
Augmented

3D-CNN-LR
3D-CNN-LR-
Augmented

Indian
Pines

OA (%) 83.15 ± 1.20 86.15 ± 0.65 85.08 ± 0.52 88.70 ± 1.00
AA (%) 83.11 ± 1.09 88.65 ± 0.05 85.29 ± 0.70 90.51 ± 1.03

Pavia
University

OA (%) 86.40 ± 1.38 90.05 ± 1.05 89.66 ± 0.71 93.85 ± 1.05
AA (%) 87.30 ± 1.44 91.62 ± 0.42 90.05 ± 1.56 94.55 ± 0.25

Salinas
OA (%) 86.18 ± 1.13 90.44 ± 1.69 90.16 ± 0.05 93.77 ± 1.80
AA (%) 85.07 ± 1.24 92.88 ± 0.10 90.85 ± 0.18 94.96 ± 0.43

Griffith-USGS
OA (%) 70.29 ± 0.90 75.20 ± 0.60 72.29 ± 1.40 76.05 ± 1.15
AA (%) 71.45 ± 1.30 76.66 ± 0.55 71.37 ± 0.90 77.15 ± 0.60

5.6.6 Parameter Analysis

Selection of the Optimal Parameters of SVM, RF and KNN.

To find the optimal parameters for SVM, RF and K NN, we followed the same procedures

defined in Section 4.5.2 in Chapter 4. The use of the optimal parameters for SVM are
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reflected in Table 5.7. The use of the optimal parameters for RF are reflected in Table 5.8

and in Table 5.10 for classifying with EEP. Similarly, the use of the optimal value of k

is reflected in Table 5.9. The optimal parameters of the classifiers on different datasets

are provided in Table 5.14.

Table 5.14: Optimal parameters for SVM, RF and K NN

Dataset
Support Vector Machine Random Forest K Nearest Neighbor
Gamma Cost Number of Trees Value of K

Indian Pines 0.125 32 200 7

Pavia University 0.0625 32 300 5

Salinas 0.25 16 300 5

GU-USGS 0.0625 16 300 6

Analysis on Selection of Triplets

As mentioned earlier, we considered all anchor-positive pairs during training. To validate

this option, we compared it with hard anchor-positive pairs in which case we selected

positive samples that were relatively close to the anchor samples than other positive

samples. Next, we evaluate the effectiveness of considering hard negative samples during

the triplet construction instead of taking all negative samples into account. We selected

negative samples which were spectrally close to the positive samples and did not consider

the samples for whose the squared distances were quite further to the anchor-positive

distance. Hence, it will be interesting to observe how the training and testing losses

behave in cases of selecting all positive-negative and hard positive-negative. Fig. 5.6

illustrates the comparison which shows that the training losses in (a) for both settings

are converging with the increasing iterations. But the testing loss of hard anchor-positive

pair setting keeps increasing after a pivoting point at 2000 iterations while that of all

anchor-positive pair setting keeps decreasing. Therefore, it can be deduced that selecting

hard samples does not cover all kinds of data distributions and on the other hand, all

anchor-positive samples avoid this problem by resulting in a more generalized outcome

over the testing set. The training losses in (b) for both settings are also converging with

the increasing iterations. But the testing loss of hard positive-negative pair setting keeps

decreasing after a pivoting point at 2000 iterations, while that of all positive-negative pair
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(a) (b)

Figure 5.6: Comparison of training and test losses between (a) all anchor-positive and
hard anchor-positive pairs, (b) all positive-negative and hard positive-negative pairs.

setting keeps increasing. Therefore, we conclude that selecting hard negative samples

captures better spectral-spatial representation of the data distributions and contributes

to the classification performance. On the other hand, selecting all negative samples fails

to construct better spectral-spatial representation and as a result, does not produce

generalized outcome over the testing set.

Evaluating Convergence During Training

In our model, we adopted the improved WGAN which has extended the standard WGAN

model by introducing gradient penalty term in the objective function to avoid weight

clipping issue. Furthermore, we included feedback from the discriminator’s intermediate

features into the perceptual loss in the generator. We also added triplet loss in the

discriminator’s objective function. Because our model is primarily based on the improved

WGAN, we still refer to it by the original term WGAN-GP.

In this experiment, we analyse the training losses encountered by the standard GAN,

WGAN and WGAN-GP in order to make a comparison on the respective convergences

achieved by the three GAN models. This experiment is very important in a sense

that the training losses are required to correlate well with the training progress for
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hyperparameter tuning and detecting overfitting. Fig. 5.7 presents a comparison on the

generator and discriminator losses over iterations for these three models.

(a) (b)

Figure 5.7: (a) Generator loss (b) discriminator loss over iterations for three models:
Original GAN, WGAN with weight clipping and WGAN-GP with gradient penalty.

From both figures, we observe that both WGAN and WGAN-GP losses decrease in a

regular pattern with training progress. However, the standard GAN objective results in a

fluctuating pattern and therefore, does not coincide with the training progress effectively.

Hence, we draw a conclusion that WGAN and WGAN-GP objectives effectively correlate

over the training iterations.

5.6.7 Visualization of the Generated Samples

In this section, we present some visualization of the fake samples generated by Triplet-

3D-GAN. According to [115], if the discriminator fails to separate real data from fake

ones, it can be deduced that the generator achieved better performance and the entire

adversarial network reaches the global optimality theory. We present some fake samples

generated by the generator in Figs 5.8, 5.9, 5.10 and 5.11 for Indian Pines, Pavia Univer-

sity, Salinas and Griffith-USGS respectively. We observe that there is indeed similarity

between the original and fake samples to some extent. From the results, it is evident that

the generated samples capture more details over the iterations during the adversarial

training.
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(a) (b) (c) (d)

Figure 5.8: Comparison of Real and generated fake data on Indian Pines (First
row - Soybeans-min, Second row - Soybeans-notill): (a) Real training data (b) First
corresponding fake data (c) Second corresponding fake data (d) Third corresponding

fake data

(a) (b) (c) (d)

Figure 5.9: Comparison of Real and generated fake data on Pavia University (First
row - Bricks, Second row - Meadows): (a) Real training data (b) First corresponding

fake data (c) Second corresponding fake data (d) Third corresponding fake data

5.7 Conclusion

In this chapter, we presented a GAN-based spectral-spatial classification method for

hyperspectral images. We mainly focused on improving the multi-class classification



Chapter 5. Triplet Constrained Generative Adversarial Networks for Hyperspectral
Image Classification 147

(a) (b) (c) (d)

Figure 5.10: Comparison of Real and generated fake data on Salinas (First row -
Stubble, Second row - Soil): (a) Real training data (b) First corresponding fake data

(c) Second corresponding fake data (d) Third corresponding fake data

(a) (b) (c) (d)

Figure 5.11: Comparison of Real and generated fake data on Griffith-USGS (First
row - Road, Second row - Water): (a) Real training data (b) First corresponding fake

data (c) Second corresponding fake data (d) Third corresponding fake data

ability of the discriminator of GAN models since little attention has been paid in the

past regarding this. To address this issue, we proposed to adopt the triplet constraint

property and extended it to build a useful feature embedding for remote sensing images

and further used it for classification task. With the inclusion of such powerful spectral-

spatial embeddings, our proposed GAN model achieves better classification accuracy
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compared to those of traditional CNN models and also, other shallow classification

models. Our proposed Triplet-3D-GAN network is based on the WGAN-GP architecture

and further includes feedback from discriminator’s intermediate features to improve the

quality of the generator’s sample generation process. Our architecture demonstrated

better performance during both feature extraction and classification stages. Since we

used the generated fake samples into the discriminator’s training stage, it contributed

immensely in mitigating the overfitting problem of a deep model. We presented both

quantitative and visual (generated fake samples) results which indicate the promising

potential of adopting GANs for remote sensing image classification.



Chapter 6

Conclusions

In this chapter, we summarize our main contributions toward the research of deep

learning-based spectral-spatial hyperspectral classification models and explore directions

for future work.

6.1 Contributions of the Thesis

With the recent development of advanced imaging instruments, HSI system has emerged

itself as an effective tool to analyse interesting problems in remote sensing. Focusing

on image understanding, the research has long attracted the attention from different

researchers because the analysis results, such as the classification, are the basis for many

different applications including monitoring quality parameters of agriculture materials,

automatic identification of minerals, detecting environmental changes, providing useful

security services etc.

The land-cover classification problem, characterizing a given geographical area of in-

terest, is a complex process that requires extracting and analysing useful spectral and

spatial information of HSI data. Although extensive research has been done on consid-

ering both spectral and spatial information, there is still a high demand on developing

novel spectral-spatial classification methods that can effectively extract highly compre-

hensive and discriminative representation of interested objects.

149
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This thesis introduces three novel deep learning-based models to effectively represent

spectral-spatial characteristics of hyperspectral data in the interest of classification of

remote sensing images. Each method addresses several fundamental and challenging

aspects related to the development of deep models for remote sensing image classification.

These methods are derived from traditional approaches in computer vision and then

significantly extended to hyperspectral images. The contributions and significance of

the proposed methods are summarized as follows.

In Chapter 3, we introduced a novel and optimized deep CRF model, which is formulated

in a deep modeling approach and is integrated with the advantages of both CNN and

CRF in representing spatial relationships in the data. The usefulness of integrating CNN

with CRFF is greatly complemented by the utilization of smaller-sized yet a large number

of spectral groups to provide more accurate local spectral-spatial structure description of

the data. We fabricated an expressive deep model by employing sample fusion strategy

to significantly increase the training samples which essentially addresses the drawback

of limited training samples of HSI data. The detailed experiments done in different

settings strongly support the idea of the proposed integration of CRF in a deep model

to improve classification performance.

In Chapter 4, we explored the possibilities of integrating estimated material-specific

abundance information results as input to deep models with a view to improve classifi-

cation performance. An additional contribution of our method is we generated effective

KD-estimated superpixels containing more useful information about specific materials

which complemented the unmixing performance. Treated as important cues, these abun-

dance estimations substantially contributed in improving the deep model’s capabilities in

generating more expressive, high level features of HSI data. Combining the unmixing re-

sults and widely used classifiers during experiments clearly indicates that hyperspectral

unmixing have outstanding potential in improving the HSI classification performance,

in general.

In Chapter 5, we investigated the potential of recently proposed generative adversar-

ial networks into the field of remote sensing and presented a model accordingly. The



Chapter 6. Conclusions 151

proposed model specifically considers the possibilities of improving the multi-class clas-

sification ability of the discriminator. The inclusion of triplet constraint in building

a powerful feature embedding provide discriminative information about the data that

eventually contribute in separating the individual classes. Furthermore, the intermediate

feedback from the discriminator improve the quality of the generated fake samples that

can be used as augmented samples during training, as demonstrated during experiments.

6.2 Future Work

This thesis has proposed three different spectral-spatial approaches to classify hyper-

spectral data based on deep networks. However, this is an initial work and more work

should be investigated in the future.

Based on our discoveries throughout our research, we believe that the excellent struc-

tured modelling capabilities of deep CRF potentials can immensely contribute in the

task of segmentation as well. It is, in fact, a common practice to use classification as an

initial step toward the final segmentation in many computer vision approaches. There is

also a high potential of further exploration of combining deep models with hyperspectral

unmixing results. However, it is not adequate to handle complex cases such as multi-

ple scattering effects, water-absorbed environments etc. with linear mixture models.

One way to deal with such scenarios is to use unsupervised approaches and keep the

endmembers and fractional abundances blind.

In these contexts, we are interested in exploring the following possibilities to further

exploit the potentials of deep networks for remote sensing image analysis:

� Specifically formulating the CRF potentials to construct semantic segments by

exploiting spectral-spatial characteristics of the data for applying in segmentation

task.

� Realizing that the adversarial model has excellent abilities to detect discrepancies

between the model predictions and the ground-truth, CRF pairwise potentials can

be supplied into a GAN model to formulate it as a segmentation task.



Chapter 6. Conclusions 152

� Since CRF inference takes extremely long time to converge, the possibilities of

reformulating a large proportion of the inference as convolutions can be explored.

This can possibly be achieved by introducing conditional independence assumption

to the full connected CRF to reduce the complexities of the pairwise potentials.

� Possibilities of including constraints such as spectral angle distance (SAD) instead

of the inner product operators at the intermediate layers to obtain more discrimi-

native features for extracting endmembers in an unmixing model.

� Activation functions such as ReLU and a normalization layer can help in effectively

applying sparsity and non-linearity for deep model-based unmixing model.

� In contrast to many unmixing approaches, stochastic gradient-based solver can be

adopted to better optimize the endmembers and the corresponding abundances.

� Following our findings of integrating triplet constraints in a deep modelling ap-

proach, further research can be carried out in the contexts of selecting triplets and

using the generated fake samples since these process are tricky and may introduce

additional problems, if not selected carefully.

Research in deep learning is continuously evolving. For remote sensing image applica-

tions, several deep models including SAEs, DBNs, GANs have been considerably suc-

cessful recently and therefore, open the possibilities of introducing new outlooks into

this field for further developments. The important limitation of deep models in image

analysis is the lack of available public training datasets, which can be a future endeav-

our of the remote sensing community. For classification and segmentation tasks, the

improvement of the network structure remains a challenge to establish a balance be-

tween the global context and the local details. Furthermore, in addition to land-cover

classification, the applications of remote sensing images for a variety of domains deserve

further research in the future.
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