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Abstract

In this paper, we propose a new scalar multiplication algo-
rithm on elliptic curves over GF(3m). It combines original
Montgomery ladder algorithm and the ternary representa-
tion of the scalar, which makes full use of cubing. In addi-
tion, in order to improve performance, we have presented
new composite operation formulas which are 2P1+P2 and
3P1, and applied them to the improved scalar multiplica-
tion algorithm. Based on the original Montgomery lad-
der algorithm, it can resist Simple Power Attack (SPA).
In the experimental analysis, we set the ratio of inversion
and multiplication to a dynamic value. Results show that
with respect to previous algorithm, the average efficiency
of proposed scalar multiplication algorithm is increased
by 7.8 % to 11.3 % in affine coordinate, and 4.0 % to
17.9 % in projective coordinate.
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Elliptic Curve Cryptography; Montgomery Ladder Algo-
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1 Introduction

Elliptic Curve Cryptography (ECC) was introduced inde-
pendently by Koblitz [9] and Victor Miller [16] in around
1985. Its key size is smaller than RSA with the equiva-
lent security, for example, elliptic curve with the key of
160 bits is competitive with RSA with the key of 1024
bits. This can be especially an advantage for applica-
tions where resources are limited, such as smart cards,
embedded devices and mobile phones. Its safety is based
on the difficulty of elliptic curve discrete logarithm prob-
lem (ECDLP). ECC is used for encryption, decryption,
digital signature and verification [5, 7, 8, 18, 22, 28]. The
factors that affect the execution rate of ECC algorithm
are generally as follows: The choice of coordinates, scalar
multiplication, the selection of elliptic curves. One of the
decisive factors is the calculated rate of scalar multiplica-
tion. Scalar multiplication, defined as [k ]P=P+P+. . .+P,

where k is an integer and P is an elliptic curve point, is
a major and time-consuming operation in ECC. Scalar
multiplication operations can be divided into two layers:
the top layer and the bottom layer. Among them, the top
layer operation is basic point operation on elliptic curve,
such as point addition and point doubling, and the bot-
tom layer operation is underlying field operation, such as
inverse, multiplication, squaring, and so on.

In recent years, GF(2m)-ECC and GF(p)-ECC have
been well studied. There are a lot of methods to improve
the elliptic curve scalar multiplication, such as double-
and-add [11], non-adjacent form (NAF) [20] and so on,
while GF(3m)-ECC have been less studied due to their
efficiency factors. So the research of fast and security
scalar multiplication on the elliptic curve over GF(3m)
has become one of the hot research topics. GF(3m)-ECC,
as a special type of GF(pm)-ECC, has some properties of
fast computation similar to GF(2m)-ECC, but it has own
special properties and is suitable as a carrier of secure
password algorithm [12,19,24,26].

In 1987, Montgomery [17] proposed a fast algorithm
for calculating the elliptic curve scalar multiplication kP
that resists Simple Power Attack(SPA) attacks. SPA is
a type of side channel attack proposed by literature [10].
The basic idea is: Integer k is expanded into binary form,
which is computed cyclically from left to right. And there
are one point doubling and one point addition operations
in each cycle. Because of the same computational pattern
and cost in every loop iteration, this algorithm prevents
SPA. However, the original Montgomery ladder algorithm
has the demerit of slow performance. In this paper, a
scalar k is represented as ternary form instead of binary
form. The length of the ternary expression is shorter
than binary expression. Based on Montgomery’s idea,
a new algorithm was proposed by Lopez and Dahab [15]
in 1999, and it was used for calculating the elliptic curve
scalar multiplication over GF(2m). By using a new set
of point addition and point doubling calculation formu-
las, every iteration requires only the x-coordinate of the
point to be calculated, and the y-coordinate is restored
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at the end of the algorithm. Smart and Westwood [27]
first pointed out that ordinary elliptic curves over finite
fields of characteristic three is an alternative for imple-
menting elliptic curve cryptosystems, and it is at most
50% slower than the equivalent system over finite fields of
characteristic two. After that, these elliptic curves were
extensively studied by many papers [3, 4, 12, 27]. The lit-
erature [29] proposed point addition and point doubling
calculation formulas that omit the calculation of the Y-
coordinate, and remove the inverse operation, thereby im-
proving the Montgomery algorithm over GF(3m). The lit-
erature [3] improved further point addition, doubling and
tripling operation over GF(3m). In 2013, Gu et al. [4]
gave the reason why the Montgomery ladder algorithm
performs worse over ternary fields than binary fields. In
2015, Zhou et al. [25] deduced a formula of calculating
3k P directly under the affine coordinates. Yu et al. [30]
optimized Projective Montgomery Algorithm over the fi-
nite field with characteristic of 3 by using co-Z tricks, and
the Y coordinate is not calculated in the middle of the
loop. Robert and Negre [1] first presented thirding point
formula together with our third-and-add and parallel ap-
proaches for scalar multiplication.

Our contributions in this paper are divided three levels:

• We review researches about scalar multiplication over
GF(2m), GF(p) and GF(3m) in recent years, and re-
lated theory about ECC.

• Different from original Montgomery ladder algo-
rithm, an improved ternary Montgomery ladder al-
gorithm over GF(3m) is proposed. Furthermore, in
order to increase the speed of scalar multiplication,
we develop composite operation formulas in the un-
derlying field.

• The proposed algorithm can be applied in elliptic
curve cryptography. This algorithm has many ad-
vantages over the existing ones, and it has better
performance and higher security naturally.

The remainder of this paper is organized as follows. The
next section reviews the necessary background for arith-
metic on elliptic curves over GF(3m), ordinary ternary
form of k, and related scalar multiplication. In Section 3,
we present the improved ternary Montgomery ladder al-
gorithm. Additionally, we derive composite operation for-
mulas which are 2P1 + P2 and 3P1. In Section 4, we give
some comparison with other algorithms under different
coordinate system. Finally, in Section 5, we draw some
concluding remarks.

2 Background

2.1 Elliptic Curve Cryptography

An elliptic curve E over a finite field K is defined by the
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

where a1, a2, a3, a4, a6 ∈ K, and∆ 6= 0, the ∆ is discrimi-
nant of E.

When the characteristic of K is equal to 3, we use the
non-supersingular form of an elliptic curve given for a 6= 0
by

y2 = x3 + ax2 + b. (2)

where a, b ∈ K, and ∆ = −a3b 6= 0.
P1 = (x1, y1) 6= O and P2 = (x2, y2) 6= O is two differ-

ent points on the elliptic curve, then the sum of them is
P3 = (x3, y3) computed by

x3 = λ2 − x1 − x2 − a, y3 = λ(x1 − x3)− y1, (3)

where λ =
y2 − y1
x2 − x1

.

The doubling of the point P1 = (x1, y1) 6= O is the
point P3 = (x3, y3) given by

x3 = λ2 + x1 − a, y3 = λ(x1 − x3)− y1, (4)

where λ =
ax1
y1

.

Both doubling and addition formulae require 1I+2M+
1S, where I,M, S is the cost of a field inverse, multipli-
cation and squaring, respectively.

2.2 Elliptic Curve over Fields of Charac-
teristic Three

For elliptic curves over fields of characteristic three, we
know some basic facts [27]: polynomial g(z), as an element
in the field F3m = F3[z]/M(z), the cubing rule can be
shown as follows:

g(z)3 = g(z3) (mod M(z)).

The square uses the same algorithm as multiplication,
so it is regarded as equivalent to multiplication. Multiply-
ing and squaring field elements are similar in complexity
and are not too expensive, but more costly than cubing.
The computing speed of cubing is at least ten times faster
than that of multiplication or squaring. Since the charac-
teristic of the elliptic curve is 3, so we can simplify cubic
computation with Frobenius self-homomorphism [6], and
computational overhead of cubic can be negligible, com-
pared to other operations. Addition and subtraction can
be ignored as well [2]. Although, the cubing in ternary
fields can be implemented by previous efficient methods,
the original Montgomery ladder algorithm do not make
full use of cubing [4]. In Section 3, we propose an im-
proved ternary Montgomery ladder algorithm. Here, the
ternary expression is useful to reduce the length of the
scalar representation.

A curve of the form y2 = x3 + ax2 + b is used in this
paper, and it has a point of order three and the order of
the group is divisible by three. It needs to meet some re-
quirements, for example, there is group order 3×p, where
p is a prime, and it can be performed in the subgroup of
size p.
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2.3 Ordinary Ternary Form

According to the traditional division algorithm,
An arbitrary positive integer k is expressed as
k=(kn−1, · · · , k1, k0)3, where kn−1=1 or 2, and
ki ∈ {0, 1, 2}, i = 0, 1, · · · , n− 2.

Algorithm 1 Ordinary Ternary Form

1: Input: A positive integer k
2: Output: k=(kn−1, · · · , k1, k0)3, with kn−1=1 or 2

and ki ∈ {0, 1, 2}.
3: i← 0
4: while k > 0 do
5: if k mod 3 = 2 then
6: ki ← 2
7: k = bk/3c
8: end if
9: if k mod 3 = 1 then

10: ki ← 1
11: k = bk/3c
12: end if
13: if k mod 3 = 0 then
14: ki ← 0
15: k = k/3
16: end if
17: i← i+ 1
18: end while
19: Output k.
20: End

Algorithm 1 correctness:

1) The result of k mod 3 in this algorithm is only 2, 1
and 0, and the ratio of 2, 1, and 0 is 1/3 [13], on
average.

2) A branch is always performed in the loop, so k will
certainly continue to decrease after k ← k/3, the
program ends the loop when the final result of k is
0. Therefore,any positive integer k will certainly be
turned into an ordinary ternary string, after the cir-
cular execution of Algorithm 1.

Example 1. A positive integer k = 520
i← 0
k0 ← 1, k = 173, i← 1
k1 ← 2, k = 57, i← 2
k2 ← 0, k = 19, i← 3
k3 ← 1, k = 6, i← 4
k4 ← 0, k = 2, i← 5
k5 ← 2, k = 0, i← 6
Output k = {2, 0, 1, 0, 2, 1}

2.4 Scalar Multiplication

2.4.1 Ordinary Ternary Form Scalar Multiplica-
tion

Ordinary ternary form scalar multiplication is expressed
as left-to-right form, and Algorithm 2 describes corre-
sponding elliptic curve scalar multiplication.

kP =

n−1∑
i=0

ki3
iP = 3(· · · 3(3kn−1P + kn−2P ) + · · · ) + k0P.

Algorithm 2 Ordinary ternary form scalar multiplica-
tion algorithm

1: Input: P = (x, y) ∈ E(GF (2m)), and k =
(kn−1, kn−2, · · · , k1, k0)3

2: Output: Q = kP ∈ E(GF (2m)).
3: R0 ← O
4: for i = n− 1, · · · , 0 do
5: R0 = 3R0

6: R1 = R0 + P
7: R2 = R0 + 2P
8: R0 = Rki

9: end for
10: Return Q = R0

11: End

The algorithm requires (n)-time triple, (n)-time double
and 2(n)-time addition. Each loop performs the same
point operation whatever the key bit is, so attacker can
not guess the value of scalar k from power trace of point
multiplication, i.e., Algorithm 2 can resist SPA.

2.4.2 A Left-to-Right Montgomery Ladder

The well-known Montgomery ladder for speeding up the
scalar multiplication, which was initially proposed and
utilized for Montgomery form elliptic curves [17], can be
adapted to Weierstrass form curves. Algorithm 3 de-
scribes the classical left-to-right Montgomery ladder ap-
proach for point multiplication [21].

The algorithm requires (n-1)-time double and (n-1)-
time addition. Each loop performs one point doubling and
one point addition operations, so this algorithm prevents
SPA. Furthermore, given a base point P, and there is no
change in the difference between the input points R0 and
R1, i.e., R1−R0 = P . This algorithm can also be applied
to elliptic curve over GF(3m) [30].

3 Proposed Algorithm

In this part, we propose a new efficient scalar multipli-
cation algorithm based on the Montgomery ladder algo-
rithm. The scalar k is represented as a ternary form,
and the new algorithm is extended to elliptic curves over
GF(3m).
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Algorithm 3 Left-To-Right Montgomery Ladder Algo-
rithm
1: Input: P = (x, y) ∈ E(GF (2m)), and k =

(1, kn−2, · · · , k1, k0)2
2: Output: Q = kP ∈ E(GF (2m)).
3: R0 = P ; R1 = 2P
4: for i = n− 2, · · · , 0 do
5: if ki = 1 then
6: R0 = R0 +R1; R1 = 2R1

7: end if
8: if ki = 0 then
9: R1 = R0 +R1; R0 = 2R0

10: end if
11: end for
12: Return Q = R0

13: End

3.1 The Improved Ternary Montgomery
Ladder Algorithm

Given a positive integer k, and it is expressed as ternary
form k = 3n−1kn−1 + · · ·+ 3k1 + k0, where kn−1=1 or 2.

Definition 1. The value of scalar multiplication is stored

in R0. We define R
(i)
0 = (

∑i
j=1 kn−j3

i−j)P as the value
of R0 at the end of the ( i-1)-round loop in the algorithm,

where 1 ≤ i ≤ n, j ≤ i and R
(i)
0 is a point on the elliptic

curve. Especially, for i = 1, R
(1)
0 = (

∑1
j=1 kn−130)P =

kn−1P is an initial value in the algorithm.

Similarly, R
(i)
1 is defined as R

(i)
1 = (

∑i
j=1 kn−j3

i−j)P ,

and it also holds R
(i)
1 = R

(i)
0 +P . Then, R

(i+1)
0 and R

(i+1)
1

are computed by using R
(i)
0 and R

(i)
1 , and they depend on

the value of kn−i−1, as follows:

if kn−i−1 = 0, R
(i+1)
0 = 3R

(i)
0 ,

R
(i+1)
1 = 2R

(i)
0 +R

(i)
1

if kn−i−1 = 1, R
(i+1)
0 = 2R

(i)
0 +R

(i)
1 ,

R
(i+1)
1 = 2R

(i)
1 +R

(i)
0

if kn−i−1 = 2, R
(i+1)
0 = 2R

(i)
1 +R

(i)
0 ,

R
(i+1)
1 = 3R

(i)
1

(5)

Therefore, in the calculation of R
(i+1)
0 and R

(i+1)
1 , two

composite operations 2P1 + P2 and 3P1 are involved,

where P1 and P2 are R
(i)
0 or R

(i)
1 . R

(i)
1 − R

(i)
0 = P is

still valid. Algorithm 4 describes the improved ternary
Montgomery ladder algorithm over finite fields of charac-
teristic three, and in the following, the algorithm is veri-
fied by giving an example.

Notice that at each iteration of Algorithm 4, the vari-
able R0 is updated as

R0 =

 3R0, if ki = 0
2R0 +R1, if ki = 1
2R1 +R0, if ki = 2

(6)

Algorithm 4 The Improved Ternary Montgomery Lad-
der Algorithm over GF(3m)

1: Input: P = (x, y) ∈ E(GF (3m)), and k =
(kn−1, kn−2, · · · , k1, k0)3, where kn−1 = 1 or 2

2: Output: Q = kP ∈ E(GF (3m)).
3: R0 = kn−1P , R1 = (kn−1 + 1)P
4: for i = n− 2, · · · , 0 do
5: if ki = 0 then
6: R2 = 3R0, R1 = 2R0 +R1

7: end if
8: if ki = 1 then
9: R2 = 2R0 +R1, R1 = 2R1 +R0

10: end if
11: if ki = 2 then
12: R2 = 2R1 +R0, R1 = 3R1

13: end if
14: R0 = R2

15: end for
16: Return Q = R0

17: End

Example 2. k = 520, k ={2,0,1,0,2,1}
R0 = 2P,R1 = 3P
k = 0, R0 = 3R0 = 6P,R1 = 2R0 +R1 = 7P
k = 1, R0 = 2R0 +R1 = 19P,R1 = 2R1 + 2R0 = 20P
k = 0, R0 = 3R0 = 57P,R1 = 2R0 +R1 = 58P
k = 2, R0 = 2R1 +R0 = 173P,R1 = 3R1 = 174P
k = 1, R0 = 2R0 +R1 = 520P,R1 = 2R1 + 2R0 = 521P
Output Q = 520P

and the variable R1 is updated as

R1 =

 2R0 +R1, if ki = 0
2R1 +R0, if ki = 1
3R1, if ki = 2

(7)

The new proposed algorithm preserves the advantages
of the original Montgomery ladder algorithm, the differ-
ence between input point R0 and R1 is not changed, i.e.,
R1 −R0 = P .

3.2 Composite Operation

Computing 2P1+P2. Let O is the identity element on the
elliptic curve, which is considered as a point at infinity.

Now given two points P1 = (x1, y1) and P2 =
(x2, y2) in E\{O} with x1 6= x2, their sum is the point
R = P1+P2 = (x3, y3) and is given by using Equation (3)

x3 = µ2
1 − a− x1 − x2, y3 = µ1(x1 − x3)− y1, (8)

where µ1 =
y2 − y1
x2 − x1

.

R is added to P1 to get point S = 2P1 + P2 = (x4, y4),
and coordinates of S is given by

x4 = µ2
2 − a− x1 − x3, y4 = (x1 − x4)µ2 − y1, (9)



International Journal of Network Security, Vol.21, No.3, PP.384-391, May 2019 (DOI: 10.6633/IJNS.201905 21(3).04) 388

where µ2 =
y3 − y1
x3 − x1

.

The calculation of y3 can be omitted by deform µ2 as

µ2 = −µ1 −
2y1

x3 − x1
= − y1

x1 − x3
− µ1.

x4 can be also computed as

x4 = µ2
2 − a− x1 − x3 = (µ2 − µ1)(µ2 + µ1) + x2.

In addition, letting h := (x2 − x1)2(2x1 + x2) − (y2 −
y1)2 + a(x2−x1)2,it follows that h = (x2−x1)2(x1−x3).
Defining H := h(x2 − x1) and I := H−1,we get

1

x2 − x1
= hI and

1

x1 − x3
= (x2 − x1)3I.

Therefore, there is no x3 is used when computing
2P1 + P2. In Algorithm 5, the computation of h,H, I, µ1

and µ2 requires 1 inversion, 2 squarings, 1 cubing and 8
multiplications. Similarly, Algorithm 6 is point tripling
algorithm.

Algorithm 5 Double-and-Add Algorithm for Elliptic
Curve over GF(3m)

1: Input: P1 = (x1, y1) 6= O, and P2 = (x2, y2) 6= O
2: Output: S = 2P1 + P2.
3: if x1 = x2 then
4: if y1 = y2 then
5: return 3P1

6: end if
7: if y1 6= y2 then
8: return P1

9: end if
10: X ← (x2 − x1)2;Y ← (y2 − y1)2

11: h← X(2x1 + x2)− Y + aX
12: if h=0 then
13: return O
14: end if
15: H ← h(x2 − x1); I ← H−1

16: µ1 ← hI(y2 − y1)
17: µ2 ← −y1X(x2 − x1)I − µ1

18: x4 ← (µ2 − µ1)(µ2 + µ1) + x2
19: y4 ← (x1 − x4)µ2 − y1
20: end if
21: Return (x4, y4)
22: End

4 Analysis of Algorithm

In this part, we first analyze the security of the new al-
gorithm. Then, in order to make the efficiency analysis
more accurate, we compare the new algorithm with pre-
vious algorithms over GF(3m) in different coordinate sys-
tems. And some practical results are listed in the table
below.

Algorithm 6 Tripling Algorithm for Elliptic Curve over
GF(3m)

1: Input: P1 = (x1, y1) 6= O
2: Output: S = 3P1.
3: if y1 = 0 then
4: return P1

5: end if
6: A← ax1;B ← x31 + b
7: C0 ← 1;C1 ← a(x31 + b) = aB
8: D ← y31
9: E ← B3 − bA3C2

0

10: F ← D3 − aDC2
1

11: x3 ← E
C2

1

12: y3 ← F
C3

1

13: Return (x3, y3)
14: End

4.1 Security Analysis

The basic idea of power analysis attack is to obtain its
key by analyzing the energy consumption during the op-
eration of the cryptographic device. Power analysis at-
tacks include Simple Power Analysis (SPA) and Differen-
tial Power Analysis (DPA). SPA [10,14,23] is a technique
that can directly analyze the power consumption infor-
mation, which is collected during the execution of the
encryption algorithm. It can retrieve its key through a
single leakage trace.

In this paper, the security is analyzed by taking I/M =
8.75, C/M = 1.37, S/M = 1 [27,29] for the cost of inverse,
cubing and squaring operation. For GF(3m), the cost of
computing 2P1 + P2 is 1I + 2S + C + 8M ≈ 1I + 11M .
And the cost of computing 3P1 is 1I + 2S + 6C + 3M ≈
1I + 11M . Because energy consumption of each iteration
is the same roughly whether ki = 0, 1, or 2, so side chan-
nel profile of 2P1 + P2 and 3P1 can not be distinguished.
Our algorithm is based on the original Montgomery lad-
der algorithm, so the this algorithm is able to resist SPA
attacks. Furthermore, this algorithm can resist the DPA
by randomizing the scalar.

4.2 Efficiency Analysis

Before we analyze the efficiency, we define β as a dynamic
ratio of inverse and multiplication [13]:

I

M
= β. (10)

In Algorithm 4, there are operation included tripling
and double-and-add or two double-and-add at each loop,
which depends on the value of the scalar k. The cost of
tripling and double-and-add is 2I + 4S + 7C + 11M , the
cost of two double-and-double is 2I + 4S + 2C + 16M , so
the average cost of each iteration, which is tripling and
double-and-add or two double-and-add, is 2I + 38

3 M +
16
3 C + 4S.
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Figure 1: The comparison between Algorithm 3 and Al-
gorithm 4 in the (a) m=101, (b) m=122, (c) m=162, (d)
m=379

4.2.1 Affine Coordinate

The proposed Algorithm 4 is compared with previous al-
gorithm in affine coordinate system. An analysis of the
costs of different scalar multiplication is shown in Table 1.

Given an integer k, the ternary (3-adic) expansion of
k is shorter than the binary (2-adic) expansion. Suppose
k is an n bit number, and n = dlog2 ke, the length of the
ternary expansion of k is m, and m = dlog3 ke, therefore,
n = m log2 3 ≈ 1.584m, i.e., 101-ternary is equivalent to
160-binary [27], 122, 162, 379-ternary is equivalent to 192,
256, 600-binary, respectively.

For example, comparing Algorithm 3 using formula 10,
11 in [29] and our algorithm, we can conclude that the
efficiency of the new algorithm is recorded in the following
formula:

ε = 1−
(2m− 2)β + ( 50m

3 −
50
3 )

(2mlog23− 2)β + (6mlog23− 6)
. (11)

Figure 1 (a)-(d) show that the comparison between
the original Montgomery ladder algorithm, i.e., Algo-
rithm 3, and the improved ternary Montgomery ladder
algorithm, i.e., Algorithm 4, in different data bits. Our
new algorithm can improve the computational efficiency
of scalar multiplication with the increase of β. Compared
with Algorithm 3 using formula 10, 11 in [29], the average
efficiency of the new algorithm can be increased by 6.6%
and 11.3% for different data bits, respectively, when β is
equal to 8 and 10.

Figure 2 shows the comparison of algorithms with the
scalar of the equivalent bits. From the graph of the vari-
ation of improved efficiency with the ratio of inverse and
multiplication, we can conclude that the larger the ratio
of I and M , the slower the rate of increasing in efficiency,
and Table 1 shows that the efficiency of the new Mont-
gomery ladder algorithm is increased by 7.8% and 11.0%,
compared to Algorithm 3 using formula 12 in [29] and [4],
when β is equal to 10.
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Figure 3: The comparison of algorithms in different coor-
dinates in [27]

4.2.2 Projective Coordinate

As is shown in Table 2, the proposed Algorithm 4 is com-
pared with previous algorithm, such as [27] and [30], in
projective coordinate system. The peculiarity of this ar-
ticle is the dynamic ratio β, resulting in a dynamic per-
centage. In this paper, we take a list of the efficiency at
special points.

Figure 3 shows the comparison of algorithms in dif-
ferent projective coordinates in [27], we can draw that
the efficiency decreases, as the ratio increases. For algo-
rithm in Lopez Dahab coordinate, it has a slow rate of
decline, compared with the other two projective coordi-
nates. Form Table 2, we draw that if we set the maximum
value of the ratio as 10, the efficiency is improved by 4.0%.

Figure 4 shows the comparison of algorithms in dif-
ferent projective coordinates in [30]. Compared with the
other two previous algorithm, the algorithm in Co-Z pro-
jective has higher efficiency. In addition, in Table 2, com-
pared our algorithm, previous algorithm is proposed by
5.0% in standard projective, when β is equal to 3, and
7.2% in scaled projective [3], when β is equal to 2, and
4.9% in Co-Z projective, when β is equal to 1.5, respec-
tively.
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Table 1: Timing costs of different algorithm in affine coordinate system

Algorithm Total costs(n = dlog2 ke,m = dlog3 ke) Total costs(#I + #M)
Formula 10,11 in [29] 2(n− 1)I + 4(n− 1)M + 2(n− 1)S (2n− 2)I + (6n− 6)M

Formula 12 in [29] 2(n− 1)I + 3(n− 1)M + 2(n− 1)C + 2(n− 1)S (2n− 2)I + (5n− 5)M
[4] (2n− 3)I + (3n− 5)M + (3n− 5)S (2n− 3)I + (6n− 10)M

Ours 2(m− 1)I + 38
3 (m− 1)M + 16

3 (m− 1)C + 4(m− 1)S (2m− 2)I + 50
3 (m− 1)M

Table 2: Timing costs of different algorithm in projective coordinate system

Algorithm Coordinate Each iteration’s costs Total costs(#M) I
M = β ε

Ref. [27](binary)

Standard projective 15M + 2S + 4C 17M 4 8.8%
Jacobian 13M + 5S + 5C 18M 5 6.9%

Lopez Dahab 17M + 7S + 2C 24M
8 17.9%
10 4.0%

Ref. [30](binary)

Standard projective 13M + 2S + 2C 15M 3 5.0%
Scaled projective [3] 14M + 3C 14M 2 7.2%

Co-Z projective 10M + 3S + C 13M 1.5 4.9%

Ours(ternary) Affine 2I + 38M
3 + 16C

3 + 4S 2I + 50M
3
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Figure 4: The comparison of algorithms in different coor-
dinates in [30]

In the actual experimental environment, I/M is differ-
ent and relatively large. Table 2 shows that the efficiency
of new algorithm varies from 4% to 17.9%, compared with
previous algorithm in projective coordinate system.

5 Conclusions

In this paper, we proposed an improved Montgomery lad-
der algorithm over GF(3m), and the scalar was expressed
in ternary form. In addition, we derived composite op-
eration formulas 2P1 + P2 and 3P1 with a lower compu-
tational cost. Based on the original Montgomery ladder
algorithm, it is able to resist SPA. In analyzing efficiency,
the difference with the past is that the ratio of I to M ,
which is set to a dynamic value. Correspondingly, in-
creased efficiency is also dynamic, ranging from 7.8% to
11.3% in affine coordinate, and from 4% to 17.9% in pro-

jective coordinate. Further work may include designing a
new scalar multiplication algorithm over GF(3m), and it
makes cubing operation faster.
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