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Abstract
Censored data are characteristics of many bioassays in HIV/AIDS studies where assays may

not be sensitive enough to determine gradations in viral load determination among those below
a detectable threshold. Not accounting for such left-censoring appropriately can lead to biased
parameter estimates in most data analysis. To properly adjust for left-censoring, this paper presents
an extension of the Tobit model for fitting nonlinear dynamic mixed-effects models with skew
distributions. Such extensions allow one to specify the conditional distributions for viral load
response to account for left-censoring, skewness and heaviness in the tails of the distributions of
the response variable. A Bayesian modeling approach via Markov Chain Monte Carlo (MCMC)
algorithm is used to estimate model parameters. The proposed methods are illustrated using real
data from an HIV/AIDS study.
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1 Introduction

In AIDS studies, researchers have recently shown great interest in modeling
viral load (plasma HIV-1 RNA copies) data after initiation of a potent an-
tiretroviral (ARV) treatment (Paxton et al., 1997; Coombs et al., 1998). Viral
load is a measure of the amount of actively replicating virus and is used as a
marker of disease progression among HIV-infected patients. Viral load mea-
surements are often subject to left censoring due to a lower limit of quantifica-
tion. A limit of detection (LOD) depends upon the assay used, ranging from
500 copies/ml for the first assays available in the mid-nineties to 50 copies/ml
for today’s ultra sensitive assay (Schockmel et al., 1997). Despite the improve-
ment in assay sensitivity recently, left censoring of viral load data still remains
a critical issue, and the methods proposed in the literature for addressing this
issue use either the observed LOD or some arbitrary value, such as LOD/2
(Hornung and Reed, 1990; Huang and Dagne, 2010). Those approaches usu-
ally lead to biased predictions that are systematically higher than predictions
based on the true unknown values of LOD (Paxton et al., 1997; Hughes, 1999;
Jacqmin-Gadda et al., 2000; Thiébaut et al., 2006). Thus, the objective of this
paper is to correctly model left-censored data and explore the use of flexible
skew-elliptical distributions to properly account for skewness and heaviness in
tails of an asymmetrical distribution of viral loads.

Our approach is to treat all left-censored observations as missing values
of a latent variable, instead of replacing them by an arbitrary value as is usually
done in the literature (Reilly et al., 2004; Scirica, 2007; Huang and Dagne,
2010), and those above LOD as observed values for making inference about
HIV viral dynamics. For modeling left-censored data, the standard linear Tobit
model often uses the maximum likelihood estimation (MLE) method (Lynn,
2001; Thiébaut et al., 2006; Sattar et al., 2011) to estimate the parameters
of interest. However, its drawback is that it gives inconsistent results when
the normality assumption is violated (Arabmazar and Schmidt, 1982; Lorimer
and Kiermeier, 2007).

To address these issues in the context of left-censoring and skewness, we
propose to use skew-elliptical distributions (Sahu et al, 2003; Genton, 2004)
instead of the normal distribution which is currently used. Skew-elliptical
distributions in which multivariate skew-normal (SN) and skew-t (ST) distri-
butions are special cases are appropriate for analyzing skewed data such as
those presented in Figure 1. Figure 1(a) displays the histogram of repeated
viral load measurements (in natural log scale) for 44 subjects enrolled in the
AIDS clinical trial study–A5055 (Acosta, 2004). It seems that for this data set,
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which is analyzed in this paper, the viral load responses are highly skewed even
after log-transformation. To properly analyze such skewed and left-censored
data, we develop a nonlinear dynamic mixed-effects model using skew-elliptical
distributions under a Bayesian approach. A Bayesian method via MCMC also
allows us to treat the left-censored observations as missing values and to pre-
dict them using a predictive posterior distribution.
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Figure 1: (a) The histogram of viral load; (b) spaghetti plot of viral load (in
log scale) measured from 44 patients in an AIDS clinical trial study. The
horizontal line represents the value of LOD at log(50)

A flexible hierarchical representation of our proposed skew-elliptical
models makes it easier to implement the MCMC algorithm using a freely avail-
able WinBUGS software (Lunn, 2000) and has a computational effort similar
to the one necessary to fit the normal version of the models. In particular, the
multivariate skew-normal Tobit model and multivariate skew-t model are fit
to AIDS data to compare their performance with that of the standard normal
Tobit model. The rest of the paper is organized as follows. In Section 2, we
develop nonlinear mixed-effects (NLME) Tobit models with multivariate skew-
elliptical distributions in general forms. In Section 3, we present the Bayesian
inferential procedures. The proposed methodologies are illustrated using the
AIDS data set and the results are reported in Section 4. Finally, the paper
concludes with discussions in Section 5.
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2 Skew-elliptical nonlinear mixed-effects mod-

els

2.1 Motivating data

Our research was motivated by the A5055 study considered in (Acosta et al.,
2004; Huang et al, 2006). In this study, 44 HIV-1 infected patients were treated
with a potent ARV regimen. RNA viral load was measured in copies/mL at
study days 0, 7, 14, 28, 56, 84, 112, 140 and 168 of follow-up. Covariates such
as CD4 cell counts were also measured throughout the study. Among the 44
eligible patients, the number of viral load measurements for each patient varies
from 3 to 9 measurements, with an average of 8.11 and a standard deviation of
1.40. In this study, the viral load detectable limit is 50 copies/mL, and there
are 54 out of 357 (about 15 percent) of all viral load measurements that are
below the LOD. The HIV-1 RNA measures below this limit are not considered
reliable, therefore we impute them based on the Tobit model discussed in the
next Section.

2.2 Model specification

In AIDS studies, either viral load or CD4 count or both may be treated as
outcome variables. However, CD4 count is more often used as an outcome
variable for long follow-up trials or advanced patient populations. But for
trials (e.g., A5055) which have short follow-up periods, viral load is often used
as an outcome variable of interest, and CD4 count is considered as a covariate
to help predict viral load in the HIV dynamic models considered here. The
viral load is measured by the numbers of HIV-1 RNA copies per mL in plasma,
and it is subject to left censoring due to limitation of the assay. An approach we
present in this paper treats censored values as latent (unobserved) continuous
observations that have been left-censored. This idea was popularized by Tobit
(Tobin, 1958) and the resulting model is commonly referred to as the Tobit
model. Analytically, letting y∗ij(t) denote the latent HIV viral load (on log
scale) that would be measured if the assay did not have a lower detectible
limit τij for patient i (i = 1, ..., m) at occasion j (j = 1, ..., ni), the Tobit
model can be formulated as:

yij(t) =

{

y∗ij(t), if y∗ij(t) > τij
missing, if y∗ij(t) ≤ τij,

(1)
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where τij is a non-stochastic LOD, which in our example is equivalent to
log(50). Note that the value of yij(t) is missing when y∗ij(t) is less than or equal
to τij , and the missingness process, as a reviewer pointed out, is informative
since the probability of missingness depends on an unobserved value where the
process is known.

Let yi = (yi1(t), · · · , yini
(t))T , and X i be an ni × q time-invariant and

time-varying covariates (e.g., CD4 value) measured from the ith subject. For
modeling the response variable yi, a viral dynamic model can be derived from
a dynamic compartmental analysis (Huang et al., 2006; Ho et al., 1995; Wu
and Ding, 1999), which is represented by the following NLME Tobit model.

yi = h(ti,Xi,β, bi) + ei, (2)

where h(·) is a known nonlinear dynamic function (a specific example is given
in equation (8) of Section 4 below), ti = (ti1, · · · , tini

)T is time points at which
measurements are taken, β is a q×1 vector of population level parameters asso-
ciated with fixed-effects, and bi is an s−dimensional random effects for subject
i, which is distributed as normal with mean zero and variance-covariance ma-
trix Σb. The within-subject random error from (2) is ei = (ei1, . . . , eini

)T , and
we assume that it follows a multivariate skew-elliptical distribution (Sahu et
al., 2003; Azzalini and Dalla-Valle, 1996; Arellano-Valle and Genton, 2005)
in order to incorporate skewness which is very often inherent in virologic re-
sponses (Genton, 2004). Thus, conditional on bi, the response variable yi is
distributed as

yi|bi;β,Σni
,∆ni

, gni ∼ SEni
(h(ti,X i,β, bi),Σni

,∆ni
, gni) , (3)

where SEni
(µi,Σni

,∆ni
, gni) refers to a ni−dimensional skew-elliptical dis-

tribution with ni−dimensional location vector µi, ni−dimensional scale ma-
trix Σni

, ni−dimensional skewness matrix ∆ni
, and a density generator func-

tion gni. The two commonly used density generator functions are gni(u) =

(2π)−ni/2exp(−u/2) and gni(u) = Γ((ν+ni)/2)

Γ(ν/2)(νπ)ni/2

× (1 + u/ν)−(ν+ni)/2 for u > 0, where ν > 0 is the degrees of freedom parame-
ter. These functions lead to the multivariate SN and ST models, respectively.

For purpose of accounting both skewness and heaviness in tails, we fo-
cus our attention to the multivariate ST distribution for the conditional model
yi|β, bi,Σni

,∆ni
∼ STν (h(ti,X i,β, bi),Σni

,∆ni
), where the conditional mul-
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tivariate ST density function is given by

f(yi|bi) = ηni
|Qni

|−1/2

[

1 +
(yi−h(ti,X i,β,bi))TQ−1

ni
(yi−h(ti,X i,β,bi))

ν

]− ν+ni
2

×
∫∞
0

tν(z|∆ni
Q−1

ni
(yi − h(ti,Xi,β, bi)), D

∗
i )dz

(4)

where ηni
= 2niΓ((ν+ni)/2)

Γ(ν/2)(νπ)ni/2
, tν(·|ζ,Ω) is a ni−variate t-distribution with ν de-

grees of freedom, location ζ, and scale Ω, and Qni
= Σni

+ ∆2
ni
, Di =

[yi − h(ti,X i,β, bi)]
TQ−1

ni
[yi − h(ti,X i,β, bi)], D

∗
i = ν+Di

ν+ni
(I −∆ni

Q−1
ni
∆ni

),
∆ni

= diag(δ1, δ2, · · · , δni
) is a diagonal matrix with skewness vector δni

=
(δ1, · · · , δni

)T and its elements determine the level of skewness. For example,
if δj > 0, then the density is skewed to the right in the jth dimension, while
it is skewed to the left when δj < 0. However, if δj = 0 for all j we get a
symmetric multivariate t distribution. For a full discussion of the properties
of this distribution, see Sahu et al. (2003), Liu and Dey (2004) and the Ap-
pendix. When ν → ∞ in (4), the multivariate ST distribution approaches
the multivariate SN distribution and reduces to the multivariate normal dis-
tribution when ∆ni

= 0. Furthermore, for a finite ν and for ni = 1 for all i,
it becomes the univariate skew-t distribution (Azzalini and Capitanio, 2003).
The parameters of model (4) are estimated using a Bayesian approach which
is discussed below.

3 Bayesian modeling approach

In this section, we now describe a Bayesian estimation procedure for the model
(3) with the ST distribution. Bayesian analysis rests upon computing the pos-
terior probability distribution for model parameters. The posterior probability
distribution is the conditional probability distribution of the unknown param-
eters, given the observed data and weighted by the prior information. To
obtain such posterior distributions for the model parameters, first, we present
the likelihood function for the observed data under the ST NLME Tobit model.
Before doing this, we denote that the observed dependent variable yij = y∗ij
if cij = 0, and yij is left censored if cij = 1, where cij is a censoring indica-
tor, and the latent variable y∗ij was discussed in Section 2. Let f(·|·), F (·|·)
denote a probability density function (pdf) and cumulative density function
(cdf) of ST, respectively. Conditional on the random variables and some un-
known parameters, a detectable measurement yij contributes f(yij|bi), whereas
a non-detectable measurement contributes F (τij |bi) ≡ Pr(yij < τij |bi) in the
likelihood. We assume that Σni

= σ2Ini
and letting Θ = (β, σ2, δni

,Σb, ν)
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be the collection of unknown parameters, the joint distribution (likelihood
function) of the observed data y = (yT

1 , · · · ,yT
m)

T is

f(y|Θ) =
m
∏

i=1

∫

[

ni
∏

j=1

(f(yij|tij ,X i, bi,Θ))1−cij (F (τij|tij ,X i, bi,Θ))cij

]

×f(bi|Σb)dbi.
(5)

Directly using the likelihood in (5) is computationally challenging since
it requires the calculation of complex integrals. An alternative is to use
the MCMC procedure for estimating the model parameters by exploiting the
stochastic representation of the ST distribution given in Sahu et al. (2003).
In order to specify the model (3) for MCMC computation it can be shown
that, by introducing a random variable vector wi = (wi1, . . . , wini

)T , the dis-
tribution of yi conditional on random-effects bi and wi can be hierarchically
formulated as follows.

yi|bi,wi;β, σ
2, δni

, ν ∼ tν (h(ti,X i,β, bi) +∆ni
[wi − J(ν)1ni

], σ2Ini
) ,

wi|σ2 ∼ tν(0, σ
2Ini

)I(wi > 0), bi|Σb ∼ N (0,Σb) ,
β ∼ Nq(β0,Λ), ν ∼ exp(λ)I(ν > 3),
σ2 ∼ IG(ω1, ω2), Σb ∼ IW (Ωb, ζb), δni

∼ N(0,Ψ),
(6)

where J(ν) = (ν/π)1/2Γ((ν − 1)/2)/Γ(ν/2) and 1ni
is a vector of unity of

size ni, wi is a latent variable whose distribution is a truncated multivariate
t-distribution, I(·) is an indicator function, tν(µ,A) denote the multivariate
t−distribution with location parameter µ, scale parameter A and degrees of
freedom ν. The degrees of freedom parameter ν is assumed to have an expo-
nential distribution with a range of support greater than 3 for accommodating
an ST distribution with parameters of location, scale and skewness. The vari-
ance parameters σ2 and Σb are assumed to have inverse gamma distribution
(IG) and inverse Wishart (IW ) distribution, respectively, in order to guarantee
proper posteriors. The hyper-parameter matrices Λ, Ωb and Ψ are assumed
to be diagonal for ease of implementation.

Next, we write down the joint posterior distribution for the unknown
model parameters in (6) based on the observed data y as follow.

6
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f(Θ|y,X) ∝
m
∏

i=1

{
∫

[
ni
∏

j=1

tν(h(tij,X i,β, bi) + δij [wij − J(ν)], σ2)1−cij

×Fν(τij |h(tij ,X i,β, bi) + δij [wij − J(ν)], σ2)cij

×tν(wij |σ2)I(wij > 0)]|Σb|−1/2 exp(−0.5bTi Σ
−1
b bi)

×|Ψ|−1/2 exp(−0.5δT
ni
Ψ−1δni

)dbi}(σ2)−(ω1+1) exp(−ω2/σ
2)

×|Λ|−1/2 exp(−0.5(β − β0)
TΛ−1(β − β0))

×|Σb|−(ηb+s+1)/2 exp(−0.5tr(ΩbΣ
−1
b ))λ exp(−λν)I(ν > 3),

(7)
where ηb is the degree of freedom of inverse Wishart distribution. The inte-
grals in (7) are of high dimensions and also do not have closed forms. Thus,
it is quite complicated to obtain marginal posterior distributions for the pa-
rameters of interest, Θ. As an alternative, MCMC procedures can be used to
simulate direct draws from the full conditional distributions iteratively until
convergence is achieved using the Gibbs sampler along with the Metropolis-
Hastings algorithm. A single long chain (Geyer, 1992; Raftery and Lewis,
1992) is used for the proposed models. Geyer (1992) argues that using a single
longer chain is better than using a number of smaller chains with different
initial values. We follow this strategy in our empirical analysis after initial
sensitivity analysis.

The commonly used criteria for model selection like BIC and AIC are
not appropriate for the hierarchical models (in the presence of random ef-
fects), which complicate the counting of the true number of free parameters.
To overcome such a hurdle, Spiegelhalter et al. (2002) proposed a Bayesian
model comparison criterion, called Deviance Information Criterion (DIC). It
can easily be calculated from MCMC samples, and a smaller value of DIC
indicates a better fit.

4 Analysis of AIDS data using NLME Tobit

models

We illustrate the proposed methods by applying them to the A5055 data set
(Acosta et al., 2004) described in Section 2.1. As is evident from Figure 1(b),
the inter-patient variations in viral load appear to be large and these variations
appear to change over time. Previous studies suggest that the inter-patient
variation in viral load may be partially explained by time-varying CD4 cell
counts (Huang et al., 2006). Thus, we use CD4 as a covariate in the models to
be fitted next. A natural log-transformation is also used in the analysis of viral
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load data in order to stabilize the variation of measurement error and speed
up estimation algorithm. In addition, to avoid very small (large) estimates
which may be unstable, we rescale the original time t (in days) so that the
time scale is between 0 and 1.

4.1 Analytical framework

For modeling the viral load, viral dynamic models can be formulated through
a system of ordinary differential equations (Huang et al., 2006; Wu and Ding,
1999; Wu and Ding, 1998), especially for two infected cell compartments. It
has been thought that they produce a biphasic viral decay (Wu and Ding, 1999;
Perelson et al., 1997) in which an effective parametric model may be formulated
to estimate viral dynamic parameters. This model plays an important role in
modeling HIV dynamics and is defined as

yij(t) = h(tij ,X i,β, bi) + eij = log(V (tij ,Xi,β, bi)) + eij , (8)

where yij(t) is the natural logarithmic transformation of the observed total
viral load measurement for the ith patient (i = 1, · · · , 44) at the jth time
point (j = 1, · · · , ni), and the total viral load is expressed as

V (tij ,X i,β, bi)) = exp[α1i − λ1itij ] + exp[α2i − λ2ijtij ], (9)

where exp(α1i) + exp(α2i) is the baseline viral load at time t = 0 for patient
i, λ1i is the first-phase viral decay rate which may represent the minimum
turnover rate of productively infected cells (Perelson et al., 1997) and λ2ij is
the second-phase viral decay rate which may represent the minimum turnover
rate of latently or long-lived infected cells (Perelson et al., 1997). It is of
particular interest to estimate the viral decay rates λ1i and λ2ij because they
quantify the antiviral effect and hence can be used to assess the efficacy of the
antiviral treatments (Ding and Wu, 1999).

Looking at the profiles of the total viral load in logarithmic scale for the
44 patients in Figure 1(b), one can see that the rate change in viral load ap-
pears to vary substantially across patients, reflecting both biological variation
and systematic associations between and within subjects. Because the inter-
subject variations seem substantial, we include subject-specific parameters in
model (9). These subject-specific dynamic parameters are then modeled as
functions of covariates with fixed-effects and random-effects, describing the
association between changes in parameters and changes in covariate values
(Liu and Wu, 2007; Wu, 2002). Among potential covariates, it has been sug-
gested that variation in the dynamic parameters may be partially associated
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with CD4 cell count (Wu, 2002). Thus, we include CD4 which is associ-
ated with the second-phase viral decay rate for capturing viral rebound. The
subject-specific parameters in (9) are then expressed as

α1i = β1 + b1i, λ1i = β2 + b2i,
α2i = β3 + b3i, λ2ij = β4 + β5tij + β6CD4ij + b4i,

(10)

where β = (β1, β2, . . . , β6)
T are population-level parameters, and

bi = (b1i, . . . , b4i)
T are individual-level random-effects which are normally dis-

tributed with mean zero and variance Σb.
As shown in Figure 1(a), the histogram of the viral load in logarithms

scale clearly indicates its asymmetric nature and it seems logical to fit skew-
elliptical NLME model to the data, which also incorporates left-censoring.
Accordingly, we consider the following NLME Tobit models with ST and SN
distributions which are special cases of the skew-elliptical distribution as de-
scribed in detail in Section 2.

• Model I: A nonlinear mixed-effects model with independent multivari-
ate normal distributions of random errors;

• Model II: A nonlinear mixed-effects model with independent multivari-
ate skew-normal distributions of random errors;

• Model III: A nonlinear mixed-effects model with independent multi-
variate skew-t distributions of random errors.

In order to carry out the Bayesian analysis for these models, we need
to prescribe the prior distributions for the parameters. Prior distributions
for the parameters involved are the same for the three models for comparison
purposes. In particular, (i) fixed-effects are taken to be independent normal
distribution N(0, 100) for each component of the population parameter vectors
β. (ii) For the precision parameter σ2, we assume an inverse gamma prior
distribution, IG(0.01, 0.01) so that the distribution has mean 1 and variance
100. (iii) The prior for the variance-covariance matrix of the random-effects
Σb is taken to be inverse Wishart distributions IW (Ωb, ζb) with covariance
matrix Ωb = diag(0.01, 0.01, 0.01, 0.01) and degrees of freedom ζb = 5. (iv)
For the skewness parameter δ , we choose independent normal distribution
N(0, 100), where we assume that δni

= δ1ni
to indicate that we are interested

in skewness of overall viral load data.
Based on the likelihood function and the prior distributions specified

above, the MCMC sampler was implemented using WinBUGS, and the pro-
gram codes are available from the first author upon request. Convergence of
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the MCMC implementation was assessed using standard tools (such as trace
plots, ACF plots) within WinBUGS, and it was achieved after 100,000 itera-
tions. After initial 100,000 burn-in iterations, every 40th MCMC sample there-
after is retained from the next 400,000 iterations, obtaining 10,000 samples for
subsequent posterior inference of the unknown parameters. The computational
burden is mild considering the highly non-linear nature of the models fitted.
To fit Model III (skew-t) it took about 4 hours on a Window PC with Intel
Core 2 Quad CPU 2.66GHz and RAM of 8.0 GB.

4.2 Results

Table 1 reports the values of DIC, which help us determine how assumptions
of skew-elliptical distributions may contribute to virologic response in contrast
to that of the normal distribution. First, we see that Model I with normality
assumption does not fit the data well since its DIC value (862.781) is the
biggest. Next, Model II with the SN distribution has a smaller DIC value
than that of Model I, showing that accounting for skewness gives a better
fit. Finally, Model III with the ST distribution has the smallest DIC value
(484.653) which gives a relatively better fit to the data where skewness and
heaviness at the tails may exist than either Model II or Model I .

Table 1: Comparison Indices among Model I (Normal), Model II (SN) and
Model III (ST)

Model Deviance pD DIC
I 791.471 71.310 862.781
II 561.221 51.986 613.206
III 404.323 80.330 484.653

To assess the goodness-of-fit of the three models, the plots of residuals
against fitted values (left panel), fitted values versus observed values (middle
panel) and Q-Q plots (right panel) are presented in Figure 2. The residuals for
Models II and III tend to have narrow ranges around zero than those of Model
I, implying a better fit. Looking at the plots of the observed values versus the
fitted values for the three models in the second column of Figure 2, it seems
that Model II and Model III provide better fit to the observed data compared
with Model I where the random error is assumed to be normal. In these
plots, the horizontal line refers to the lower detection limit, which is log(50).
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The observed values below this limit are unreliable and we do not know the
“true” values corresponding to them either. The best thing we can do is to
predict them based on the proposed Tobit models using posterior predictive
distributions of the viral load. The Q-Q plots in the right panel suggest that
both Model II (SN) and Model III (ST) give a better goodness-of-fit to the
data than that of Model I (normal). Furthermore, Model III does a relatively
better job in accounting heaviness in the tails in addition to skewness since the
extreme values at right side of the plot are closer to the straight line than those
of Model II. In the lower tail, however, the extreme values are not observed
values but rather predicted values from the posterior predictive distributions
of missing values below detection limit. The Q-Q plots at the lower tails for
both Models II and III seem to provide similar results because of a lesser effect
of kurtosis in these predicted viral loads.

Table 2 gives posterior means (PM), standard deviations (SD), and
the 95 percent credible intervals (in terms of the 2.5 and 97.5 percentiles)
of the parameters based on Models I, II and III. The findings in Table 2,
particularly for the fixed effects (β2, β4, β5, β6) which are parameters of the
first-phase decay rate λ1 and the second-phase decay rate λ2 in the exponential
HIV viral dynamics, show that the estimates are not all significantly different
from zero. Nevertheless, the estimate of β6 which is the coefficient of CD4
covariate is positive and significant since the 95% credible intervals do not
contain zero. This means that CD4 has a significantly positive effect on the
second-phase viral decay rate, suggesting that the CD4 covariate may be an
important predictor of the second-phase viral decay rate during the HIV-1
RNA process. An increase in CD4 cell count may be associated with a faster
viral decay in the late stage, because of the fact that higher CD4 cell counts
suggest a higher turnover rate of lymphocyte cells.

Even though the posterior means of β6 are slightly different in values
across the three models considered, there are marked differences in posterior
means of the precision parameter σ2 of the viral load: 1.949 for Model I,
0.4739 for Model II, and 0.4112 for Model III. The corresponding estimates
of the variances of the error terms for skew-normal and skew-t are computed
using the variance formulas given in Appendix A (equations (11-12)), and they
are 1.486 and 1.304, respectively. These results show that skew-t has smaller
error variability than skew-normal for our data. This fact is also confirmed by
the smaller value of DIC from Table 1 favoring skew-t, which shows a relatively
better fit in picking up the skewness and kurtosis simultaneously. Thus, Model
III, which is based on the ST distribution for the random error term, seems
a preferred model for use in modeling HIV-1 RNA viral load when there are
censoring and skewness in the data.
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Figure 2: Plots of goodness-of-fit statistics for three models: (i) The first
column has the residual plots against the fitted values, (ii) the second has
plots of the fitted against observed log(RNA) values, and (iii) the last column
has the Q-Q plots of residuals.
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Table 2: Estimated posterior means (PM) of fixed-effects, precision, skewness,
and degree of freedom parameters, standard deviation (SD) and 95% credible
intervals with lower limit (LCI) and upper limit (UCI) based on Models I-III.

Model β1 β2 β3 β4 β5 β6 σ δ ν
I PM 8.253 25.380 2.592 -4.073 2.122 2.873 1.949 – –

LCI 7.692 16.450 -1.355 -14.440 -4.292 1.597 1.498 – –

UCI 8.811 34.94 5.049 3.897 9.622 4.285 2.521 – –

SD 0.286 4.735 1.679 4.896 3.692 0.691 0.263 – –

II PM 8.267 24.590 2.751 -2.837 0.749 3.029 0.474 1.864 –

LCI 7.679 15.780 -0.314 -11.27 -4.954 1.722 0.016 0.486 –

UCI 8.836 33.900 5.167 4.462 6.742 4.488 1.689 2.417 –

SD 0.295 4.592 1.415 4.026 3.099 0.714 0.431 0.477 –

III PM 8.312 25.900 2.977 -2.425 0.460 2.885 0.411 1.748 139.1

LCI 7.679 16.240 -1.083 -12.45 -4.843 1.585 0.014 -0.181 4.191

UCI 8.920 35.290 5.387 5.147 6.899 4.391 1.524 2.406 634.5

SD 0.3154 4.776 1.633 4.469 3.21 0.727 0.391 0.569 178.0

The posterior mean of the skewness parameter (δ) of Model II (SN)
is 1.864 with 95% credible intervals (0.4857, 2.417), suggesting that there is a
positive and significant skewness in the data; this confirms the fact that the
distribution of the original data is skewed even after taking log-transformation.
Thus, incorporating skewness parameter in the modeling of the data is recom-
mended. Furthermore, when heaviness in the tails is taken into account using
the ST distribution, the estimate of the skewness parameter is 1.748 which is
positive indicating positive skewness but not statistically strong since the 95%
credible interval contains zero. This may be due to the fact that an additional
parameter ν for heaviness in the tails was estimated lessening the effect of
skewness.

We now focus on the lower end of the distribution of the viral load
where there is left-censoring. As it was mentioned in the introduction section,
the current assay techniques for quantifying HIV-RNA viral load may not give
accurate readings below a LOD, which in our data is 50 copies/mL. In our
analysis, we treated those inaccurate observed viral loads as missing values
and predict them using the proposed NLME Tobit models. Note that the
main advantage of our proposed Tobit models is their ability to predict the
true viral loads below LOD based on a latent variable approach with different
specifications of error distributions. The results of the fits of these models
for values below LOD are depicted in Figure 3, where the histograms show
the distribution of the observed but inaccurate values (upper left) LOD and
the predicted values (on log-scale) under normal, SN, and ST distributions
(Figures 3(b-d)). The dotted line shows the LOD value at log(50). It can
be seen from the histograms that most observed values are piled up in the

13

Dagne and Huang: Nonlinear mixed-effects Tobit model with multivariate skew-t distributions

Published by De Gruyter, 2012



lower end of the range in the first histogram (upper left) due to left-censoring,
whereas for the NLME Tobit models under all the three models (normal, SN
and ST), the predicted values of the unobserved viral load below LOD are
spread out as expected (see Figures 3(b-d)). However, for the case of NLME
Tobit model with normal error some predicted values exceeded the LOD, sug-
gesting bad fits. The NLME Tobit model with SN distribution (Model II)
shows an improvement over the NLME Tobit model with normal distribution
(Model I) by giving few predicted values greater than LOD. Likewise, NLME
Tobit model with ST distribution (Model III) provides better predictions than
that of Model I (see Figure 3(d)). When we compare Model II and Model
III in terms of their performance in predicting viral loads below LOD, we see
that Model III gives more plausible values in the sense that the distribution
of the predicted viral loads is portrayed as proportionally increasing towards
the LOD which is log(50). This distribution is relatively smooth and closely
fits the lower part of the whole distribution of the predicted viral load values
under Model III as expected implying that Model III with ST distribution is
the best model. This finding also confirms the conclusion made using DIC.

5 Discussion and conclusion

In this paper, we have considered a Bayesian approach for estimating param-
eters in asymmetric NLME Tobit models and compared them with the sym-
metric NLME Tobit models in the presence of left censoring due to a lower
limit detection and skewness. Among the models considered, Model III with
ST distribution for error term was found to be the best. This model has two
phases for describing the HIV dynamic process as given in (8). The first-phase
decay rate, which is assumed to be time invariant, is estimated as λ̂1 = 25.9,
while the second-phase decay rate, which is assumed to be time-varying, is
estimated as λ̂2 = −2.425 + 0.460t + 2.885CD4 on population level. These
first and second phase viral decay rates represent the minimum turnover rate
of productively infected cells and that of latently or long-lived infected cells,
respectively. For the second-phase decay rate λ̂2, the coefficient of CD4 is
positive and significantly different from zero (see Table 2). This suggests that
CD4 count is a clinically important predictor of the second-phase viral decay
rate during the treatment process. More rapid increase in CD4 cell count may
be associated with faster viral decay in the late stage. This may be explained
by the fact that higher CD4 cell count suggest a higher turnover rate of lym-
phocyte cells, which may cause a positive correlation between viral decay and
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Figure 3: Histograms of (a) inaccurate raw data below LOD (dotted line),
and predicted viral loads under (b) normal model, (c) SN model, and (d) ST
model.
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the CD4 cell count. We did not find the coefficient of time to be significant
for the second-phase viral decay though it shows a tendency for rebound.

We also found that Model III provides good predictions for unobserved
viral loads due to left-censoring (see Figure 3), which may be used for assessing
treatment efficacy and minimum viral levels after treatment. In this prediction,
we have assumed that the viral dynamic model continues to hold for left-
censored viral loads. This assumption may be reasonable because the bi-
exponential model considered here was derived based on reasonable biological
arguments rather than on empirical arguments (Wu and Ding, 1999). It is to
be noted that a Bayesian estimation procedure based on MCMC facilitates the
prediction as it gives the entire posterior predictive distribution of the viral
loads after accounting for uncertainties in censoring and CD4 counts.

There has been a limited research in Bayesian extensions of the Tobit
model (Hamilton, 1999; Wei, 1999). For example, Hamilton (1999) imple-
mented an extension of the Tobit model by allowing the error terms to follow
a t-distribution, rather than a normal distribution. In a similar manner, our
Model III allows the error term to follow a multivariate ST distribution. How-
ever, our model is novel in that it allows for non-symmetry (skewness). An
important advantage of this modeling alternative is that our model can be eas-
ily fitted using freely available WinBUGS software and has a computational
cost similar to the standard normal model. This makes our approach quite
powerful and accessible to practitioners and applied statisticians.

In order to examine the sensitivity of parameter estimates to the prior
distributions and initial values, we also conducted a sensitivity analysis using
different values of hyperparameters of prior distributions and different initial
values (data not shown). The results of the sensitivity analysis showed that
the estimated dynamic parameters were not sensitive to changes of both priors
and initial values. Thus, the final results are reasonable and robust, and the
conclusions of our analysis remain unchanged.

There are certain limitations to our study, though. The current study is
not intended to be an exhaustive study of the HIV dynamic models. We could
have fitted more elaborate nonlinear dynamic models with a larger number
of determinants of HIV viral loads. However, the purpose of this paper is to
explore the use of flexible skew-elliptical distributions and Bayesian methods
for extending the Tobit model to account for left-censoring and skewness, thus
allowing more realistic models to be constructed. Therefore, we chose a small
number of covariates, particularly CD4, that would be related to viral load, a
priori. However, it would be straightforward to extend the proposed methods
for incorporating several covariates including, as the editor pointed out, lagged
values of CD4 and a further study may be warranted to assess their impact.
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Another limitation of our proposed models is that they are based on
skew-elliptical (skew-normal and skew-t) distributions for the response vari-
able, and these distributions may not be robust enough with respect to nor-
mality for handling possible outliers or sub-populations. It is plausible to
extend the skew-elliptical distribution to account atypical data by using mix-
tures of skew-elliptical distributions similar to that of Moulton et al. (2002),
which used a mixture of Gaussian and Bernoulli distribution to account for
an excess of observations below detection limit. Another area where both
skew-normal and skew-t can be extended to make them robust is to use other
more flexible distributions such as nonparametric distributions, which follow a
Dirichlet process prior for model error and/or random effects. Recently, there
appear few papers focusing on left-censored data (e.g., Vock et al., 2011; Sat-
tar et al., 2011), which relaxed the normality assumption for random effects
by using a semi-nonparametric distribution. These, however, are beyond the
focus of this article, but a further study may be warranted and we are actively
investigating these interesting issues now.

In conclusion, we have examined the use of flexible Bayesian methods
for analyzing HIV viral load data, which allow one to incorporate left-censoring
and skewness in the observed data. We believe that these proposed methods
may have an important impact on HIV/AIDS research because, in the pres-
ence of left-censoring, skewness and heaviness in the tails of response variables,
appropriate inference for HIV dynamics is important for making reliable con-
clusions and appropriate clinical decisions.

Appendix: Multivariate skew distributions

A new class of multivariate skew elliptical distributions, which includes the
multivariate skew–normal(SN), skew-t (ST) and normal (N) distributions as
special cases, was introduced in the literature (Sahu et al., 2003; Genton, 2004;
Azzalini and Capitanio, 2003) to provide flexibility in capturing asymmetrical
behavior of response variables. The structure of the skew-elliptical distribution
was given in Section 2. The multivariate skew-normal(SN) and skew-t (ST)
distributions are described in details below. Assume an n-dimensional random
vector Y follows an n variate SN or ST distribution with location vector µ,
n × n positive (diagonal) dispersion matrix Σ and n × n skewness matrix
∆ = diag(δ1, δ2, . . . , δn) with skewness parameter vector δ = (δ1, δ2, . . . , δn)

T

and the degrees of freedom ν.

A.1 Skew-t distribution

An n-dimensional random vector Y follows an n-variate ST distribution if its
probability density function (pdf) is given by
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f(y|µ,Σ,∆, ν) = 2ntν(y|µ,Q)P (V > 0), (A.1)

where Q = Σ + ∆2, we denote the n-variate t distribution with parame-
ters µ, Q and degree of freedom ν by tν(µ,Q) and the corresponding pdf by
tν(y|µ,Q) henceforth, V follows the t distribution tν . We denote this distri-
bution by STν(µ,Σ,∆). In particular, when Σ = σ2In and ∆ = δIn, the
equation (A.1) simplifies to

f(y|µ, σ2, δ, ν) = 2n(σ2 + δ2)−n/2 Γ((ν+n)/2)

Γ(ν/2)(νπ)n/2

{

1 +
(y−µ)T (y−µ)

ν(σ2+δ2)

}−(ν+n)/2

×Fν

[

{

ν+(σ2+δ2)−1(y−µ)T (y−µ)

ν+n

}−1/2
δ(y−µ)

σ
√
σ2+δ2

]

,

where Fν(·) denotes the cumulative distribution function (cdf) of tν(0, In).
The mean and covariance matrix of the ST distribution STν(µ, σ

2In,∆)

are given by E(Y ) = µ+(ν/π)1/2 Γ((ν−1)/2)
Γ(ν/2)

δ and cov(Y ) =
[

σ2In +∆2
]

ν
ν−2

−
ν
π

[

Γ{(ν−1)/2}
Γ(ν/2)

]2

∆2.

It is noted that when δ = 0, the ST distribution reduces to usual t
distribution. In order to better understand the shape of a ST distribution,
plots of an univariate ST density as a function of the skewness parameter with
δ = −3, 0, 3 are shown in Figure 4(a).

A.2 Skew-normal distribution

An n-dimensional random vector Y follows an n-variate SN distribution, if its
pdf is given by

f(y|µ,Σ,∆) = 2n|Q|−1/2φn{Q−1/2(y − µ)}P (V > 0), (A.2)

where V ∼ N{∆Q−1(y−µ), In−∆Q−1∆}, and φn(·) is the pdf of N(0, In).
we denote the above distribution by SN(µ,Σ,∆). An appealing feature of
equation (A.2) is that it gives independent marginal when
Σ = diag(σ2

1, σ
2
2, . . . , σ

2
n). The pdf (A.2) thus reduces to

f(y|µ,Σ,∆) =
∏n

i=1

[

2√
σ2
i +δ2i

φ

{

yi−µi√
σ2
i +δ2i

}

Φ

{

δi
σi

yi−µi√
σ2
i +δ2i

}]

,

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution,
respectively.

The mean and covariance matrix are given by E(Y ) = µ+
√

2/πδ and
cov(Y ) = Σ+ (1− 2/π)∆2. It is noted that when δ = 0, the SN distribution
reduces to usual normal distribution. In addition, the SN distribution is a
special case of the ST distribution. That is, the ST distribution reduces to
the SN distribution when the degree of freedom ν → ∞. In order to better
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Figure 4: The univariate skew-t (df ν = 4) and skew-normal density functions
with precision σ2 = 1 and skewness parameter δ = 0,−3 and 3, respectively.

understand the shape of an SN distribution, plots of an univariate SN density
as a function of the skewness parameter with δ = −3, 0, and 3 are shown in
Figure 4(b).
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