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a b s t r a c t

How can you tell whether a particular sports dataset really adds value, particularly with
regard to betting effectiveness? The method introduced in this paper provides a way for
any analyst in almost any sport to attempt to determine the additional value of almost any
dataset. It relies on the use of deep learning, comprehensive historical box score statistics,
and the existence of betting markets. When the method is applied as an illustration to a
novel dataset for the NBA, it is shown to provide more information than regular box score
statistics alone, and appears to generate above-breakeven wagering profits.
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Forecasters. This is an open access article under the CC BY license
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1. Introduction

How can you tell whether a particular sports dataset
really adds value?

This is a new concern. Until recently, there were so
few datasets that anything different almost always added
value. In the past few years, though, so many new datasets
have emerged across all major sports—including data de-
rived from optical tracking, body sensors, computer vision,
and GPS and RFID location systems (see Barlow, 2015)—
that it is no longer clear whether the new datasets make
anymarginal contribution at all relative towhatwe already
had before. However, we do not have good analytics for
deciding which datasets add enough value to warrant fur-
ther investment and which do not. Our industry’s earlier
thirst for data has been quenched andwe are now at risk of
drowning.

There are several difficulties in deciding whether an
additional piece of data adds value to an existing corpus of
knowledge, because the important issue for practitioners
is not the data itself but the insights available from it. One
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difficulty is consistency: if you ask one genius to extract
all possible insights from dataset X , and another genius to
extract all possible insights from datasets X + Y , the first
genius may be smarter or luckier or both, and get more in-
sights from less data, in which case we would erroneously
conclude that dataset Y is not necessary; or the second
genius might get more insights, but have obtained those
insights from X as well. Another difficulty is congruity:
one dataset might be raw video footage while another is
textual scouting reports; the processes by which insights
are extracted are likely to differ substantially between the
two, thus adding another layer of potential noise. The third
difficulty is comparability: if the two geniuses come up
with different insights, how can we decide which are more
important, or whether they complement each other?

These issues apply to all questions of dataset evaluation.
In many sports, though, we are blessed with one recent
machine learning innovation and two natural phenomena
that we can harness to answer all three difficulties.

To address consistency, we will use a deep-learning
algorithm to extract insights automatically from both the
original and augmented datasets. This ensures that an
equal amount of machine intelligence is applied to both.
Deep learning is a term for artificial hierarchical neural net-
works that have proven recently to be remarkably robust
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and effective algorithms in various domains; see Schmid-
huber (2015) for an overview and survey of their numer-
ous victories in pattern recognition and machine learning.
Roughly speaking, deep learning differs from other ma-
chine learning techniques in that it seems to be the best
at mimicking the human mind for learning complex hier-
archical patterns from past examples, and it has set many
modern records, such as beating humans in the game of Go,
image recognition, automatic captioning, and more.

To address congruity, we will use quantitative sum-
mary statistics drawn from the datasets, so that we are
essentially comparing one enhanced box score with an-
other. This puts the datasets on an equal footing. One of
the advantages of deep learning is the ability to use large
numbers of factors, meaning thatwe do not need to restrict
the number of columns from either source, but can instead
use essentially all available information from both.

To address comparability, we rely on a convenient and
beautiful natural phenomenon in sports: the existence of
robust and healthy betting markets. This is the primary
distinguishing characteristic of sports datasets that allows
us to use the approachpresentedhere; for example, there is
no known predictive market for the evaluation of medical
datasets. Even in sports, if the new data cannot help you
make more money than the old data could, it is possible
that they might still be useful in an explanatory or other
role; but if the new data can improve predictability in
sports markets, then we know for sure that they have
significantly and substantially more value than the old.

1.1. Novelty of research

The issue of evaluating datasets in a sea of available
choices is a novel one, as is the solution presented here.
Of course, research into the evaluation of which of sev-
eral machine learning models is best has been done;
Fawcett (2006) provides a recent introduction to a stan-
dard approach. Research into deep learning is also growing
rapidly; see Schmidhuber (2015) for a recent overview, as
noted above.

Here, though, we fix the machine learning algorithm
to be deep learning, and instead vary the datasets. Fur-
thermore, we take the practitioner’s viewpoint by using
an established dataset as the base and augmenting it with
new data to test whether the marginal contribution is
significant or not. Finally, we compare the result with the
betting markets to see whether or not the new data does
a better job of predicting outcomes. Deep learning was
chosen because of its broad success inmany areas, as noted
above.

1.2. Academic rigor/validity of the model

We ensure the model’s validity by using a standard
deep learning algorithm applied to historical data that
has not been exposed to betting markets to evaluate the
performance in futurewagering. Further, we roll themodel
forward on a daily basis, avoiding lookahead bias andmain-
taining a strict out-of-sample test. Finally, the same model
is applied to previously unseen results, namely the 2015–
2016National Basketball Association (NBA) season, and the
results continue to be substantially and significantly above
break-even, without any modification to the model. Thus,
the model passes the ultimate test of model validity.

1.3. Reproducibility

Everything shown in this paper is reproducible. The data
on betting markets are easily available through a range of
sources; the NBA’s boxscore and similar data are available
through their website; the deep learning algorithm uses
the free open-source h2o library; and the augmented data
are routinely made available both to researchers and to
writers (see Csapo & Raab, 2014). Finally, because the data
are objective and well-defined, they could, in principle, be
re-collected from video footage by anyone.

1.4. Application and interest/impact

The particular application in this paper is to the NBA.
Extensions to other professional basketball leagues around
the world, or to college basketball, would be straightfor-
ward. Extensions to other sports would take longer since
onemust first develop the augmented dataset, but, in prin-
ciple, there is no obstacle.

Further, in addition to evaluating the dataset considered
here, the approach is viable for any such question on any
dataset. The only requirements are that the old and new
datasets be in the same form (i.e., quantitative columns
of information), and that there exist market forecasting
results that the data could help predict. Note however that,
even with this approach, it would still be possible for a
particularly subtle pattern or value of the dataset to remain
undetected.

Thus, the approach presented here has an impact for
virtually all modern and popular sports.

2. Data

Datasets need to be combined with intelligence in or-
der for actionable value to be derived. The novel method
proposed here involves the standardization of intelligence
across datasets by using deep learning, a machine learn-
ing algorithm that mimics human intelligence by using
high-level hierarchical abstractions and structures. Deep
learning is used to try to beat historical sports wagering
lines. If the original dataset does not beat the market lines
but the augmented dataset does, then the additional data
conclusively add value.

The specific dataset used here is from Vantage Sports,
where highly trained human analysts tabulate dozens of
unique metrics for every NBA game, including whether
a hand was up on defense for each field goal attempt,
whether a screen was used or rejected, solid or not solid,
split or not split, and more. See Table 1 for a comparison of
this dataset with the boxscore and optical datasets.

The original dataset is all publicly availableNBAdata, in-
cluding boxscore and optical data. The augmented dataset
adds the Vantage data as well. The Vegas lines used are
the closing lines, which are the hardest to beat. Note that,
although injuries are not included in any of the data sets,
they are certainly important, and a clean injury dataset
would probably improve the results further.

In terms of typical file sizes, rows, and numbers of data
points, all on a per-game basis, boxscore and play-by-play
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Table 1
Data vs. information vs. knowledge for various basketball datasets.

Data source File size Rows Data points Information Knowledge

Boxscores and play-by-play 25k ∼100 ∼700 Medium Medium
Optical data 40,000k ∼100,000 ∼2,000,000 Low Medium
Vantage data 500k ∼3000 ∼16,000 High High

data have the lowest values and optical data the highest,
while the Vantage dataset is in the middle.

As the boxscore and play-by-play data include some ba-
sic information about every possession, the file is typically
about 100 rows, with about 700 data points.

The optical dataset includes two-dimensional court co-
ordinates for all ten players and three-dimensional coordi-
nates for the ball, both at 25 frames per second. However,
since not all players are tracked at all times (for example,
during free throws), the overall number of coordinate in-
formation rows is usually less than the theoretical maxi-
mumof (a) 2 coordinates× 10 players tracked× 25 frames
per second × 60 s × 48 min plus (b) 3 coordinates for the
ball × 25 frames per second × 60 s × 48 min, which is
about one and a half million.

The Vantage dataset has fewer data points than optical
but more information, because it reports not merely loca-
tion data that needs to be processed into basketball intel-
ligence, but the actionable information itself: was there a
screen, was it used, was there a cut, was there a closeout
opportunity, did the closeout happen, did the defender
keep his player in front of him, etc. Both the process and the
output of Vantage data are discussed in more detail below.

The differences between data, information, and knowl-
edge have long been recognized in the field of knowledge
management and information science; see Zins (2007) for
a conceptual review and multiple definitions of what they
call ‘‘these three key concepts’’. The three concepts are
often visualized as a pyramid, with data on the bottom,
information above it, and knowledge above that, imply-
ing that information adds meaning to the arbitrariness of
data, and knowledge provides context. A fourth triangle,
wisdom, is sometimes added above knowledge to indicate
proper decision-making given the knowledge below.

The data points are the raw numbers coming from
the three sources, and for sheer volume, optical has the
most and play-by-play the fewest, while Vantage is in the
middle. However, the optical dataset contains the least
information, because the information embedded in where
a particular player was standing at a given time is very
small, especially when compared with the virtually iden-
tical numbers coming both before and after. In contrast,
the boxscore andplay-by-play datasets containmore infor-
mation: knowing that a particular player scored or assisted
in a basket is a small amount of data but a larger amount
of information. The Vantage data contains still more infor-
mation, as it includes not only who took the shot and who
assisted, but also who defended, where the shot was taken,
what kind of shot it was (e.g., turnaround, layup, fadeaway,
hook shot, floater, etc.), and the nature of the defense (was
a hand up, was the shot pressured, etc.).

Knowledge can be viewed as the insights extracted
from the meaningful information. There is indeed some
knowledge to be extracted from the boxscore and play-
by-play statistics, and much valuable work over the past
several decades has focused on just that, using a range
of metrics from boxscore metrics such as wins produced
(Berri, Schmidt, & Brook, 2007) to various forms of plus-
minusmetrics (Engelmann, 2015). Some knowledge can be
extracted from the optical data as well; see for example
McQueen et al.’s (2014) attempt to use machine learning
to recognize on-ball screens from the optical data.

Note that any knowledge that might possibly be ex-
tracted from the optical data is only a subset of the infor-
mation that is available from the Vantage dataset directly.
The information available from Vantage is greatest of all,
because it includes actionable basketball factswith embed-
ded meaning. Furthermore, the additional knowledge that
can be extracted from that large amount of information
is itself large, since adding context can help in ranking
players and teams based on the important metrics, evalu-
ating performances, aiding development, and searching for
underrated players, among other things.

A two-second clip exemplifies the differences among
these three data sources. The clip, annotated with Vantage
Sports data and described in interviews, is available from
Abbott (2015).

At the start of the second half of the March 6, 2015,
game against the visiting Cleveland Cavaliers, Jeff Teague
of the Atlanta Hawks started a play that eventually led to
a layup by Paul Millsap. The complete description of those
two seconds in the official play-by-play reads as follows:

This description contains four pieces of data: the scorer,
the passer, the shot outcome, and the shot type. These are
also pieces of information. In contrast, the corresponding
optical data has about 50 pairs of location data points for
each of the ten players plus 50 triplets of location data
points for the ball, a total of about 650 data points. How-
ever, none of that data is information. The corresponding
Vantage data points are shown in Table 2, consisting of 53
data points, all of which are also pieces of information.

2.1. NBA data

The NBA dataset is sourced from the nba.com website,
as along with some commonly calculated additional infor-
mation such as scheduling (back-to-back indicators, rest
days, etc.). Overall, about 50 metrics per game comprise
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Table 2
Vantage Sports data for the Jeff Teague assist to Paul Millsap play.

Jeff Teague: On-ball screen received
Location: Top key (3pt)
Outcome of received on-ball screen: Assist
Split?: Yes
Use of screen: Use screen

Kyrie irving: Screen for offensive player
On-ball screen defender response: Switch
On-ball screen keep-in-front: Not applicable
Location: Top key (3pt)
Screen outcome: Assist

Timofey Mozgov: On-ball screen by offensive player
Defender response to on-ball screen: Hedge or hard show
Keep-in-Front: No Keep-in-Front
Location: Top key (3pt)
Outcome of a no Keep-in-Front: Straight to basket
Screen outcome: Assist
Secondary on-ball screen defender response: Double-Team
Split?: Yes

Jeff Teague: Drive
Drive left: Drive left
Starting location: Right wing (3pt)
Ending location: High post

Al Horford: On-ball screen set
Location: Top key (3pt)
Outcome of set on-ball screen: Assist
Outcome for screen setter: Roll
Receives ball?: No
Screen effort: Reroute defender

Kevin love: Help attempt
Help/Double-Team outcome: Assist
Keep-in-Front during help attempt: Keep-in-Front
Location: Center low post

Kevin love: FG attempt against
Closeout situation: No
Location: Right low post
Made shot: Yes
Shot clock: Shot clock at 5
Shot defense: Pressured
Shooter: Paul Millsap

Paul Millsap: Pre-acquisition action
Move: Post up

Paul Millsap: Shot attempt
Backboard: Yes
Defender (1): Kevin love
Defender (2): Timofey Mozgov
Dribbles: 0 Dribbles
Location: Center low post
Post-Acquisition location: Center low post
Pre-Acquisition location: Left hash
Made shot: Yes
Release: Reverse layup
Shot clock: Shot clock at 5
Shot defense: Pressured

the ‘‘standard’’ dataset, prior to augmenting. Due to space
concerns, Table 3 lists the standard abbreviations used in
the dataset. The exact definitions are easy to work out, but
can be found on their website in case of uncertainty. The
data collected are for the 2014–2015 NBA season.

Note that the standard metrics include certain met-
rics that are derived from the optical data and are made

available on a per-game basis. These include items such
as the total distance run, total touches, secondary assists,
passes, and contested, uncontested and defended at the
rim field goal attempts and makes. However, it should be
noted that these definitions of contested and defended are
based purely on proximity, and do not distinguish between
defenders that are contesting a shot activelywith a hand up
and those who just happen to be nearby.

2.2. Vantage Sports data

Vantage Sports captures data from broadcast footage
using a large team of fully trained full-time employees. The
analysts tag every tracked event for every player in the
game, after which the tags are cross-referenced and cross-
validated to ensure their validity.

The tags that are tracked by human eyes are intended
to represent the critical pieces of actionable basketball
intelligence that a coach, player, or general manager would
want to know about a game.

One example of this is contested shots. It is common
knowledge that having a hand up is the key to a good shot
defense (see Csapo & Raab, 2014), but no previous data
source has made that information available: it is not in
any boxscore, play-by-play, or optical database. However,
Vantage Sports has this data for every shot attempt, by
every player, on every team, in every game.

As another example, Vantage tracks whether a pass was
made to an open shot, regardless of whether or not the
shooter made it, because the passer should be rewarded
for making the correct pass regardless of the bounce of
the ball. Vantage also tracks active pressure (meaning ac-
tively moving hands, not just proximity) on the perimeter,
on sidelines, and on inbounds passes; rebounding efforts
and opportunities; screen offense and defense—did they
hedge? did they do a hard show? did the ballhandler split
the screen? and other subtags; close-out opportunities;
cuts; etc. Table 4 lists a representative sample of the met-
rics in the augmented dataset. The metrics are spelled
out here because they are unique. Further information is
available on the Vantage Sports enterprise website. The
data in this augmented dataset are also for the 2014–2015
season.

2.3. Betting markets

Historical betting market data for the 2014–2015 NBA
season can be sourced from a range of websites, e.g. ve-
gasinsiders.com. It is important to note that only closing
lines are used in historical testing. These are widely con-
sidered to be the hardest lines to beat, as they represent
the market’s best and final forecast; see for instance the
paper by Dare, Dennis, and Paul (2015), which shows that
opening NBA lines contain substantial biases when a high-
quality player is absent, but that all of the biases are even-
tually removed so that the closing line is a fair 50–50 bet.

There are two kinds of standard bets: spread bets and
over/unders. Spread bets predict that one of the teams will
win by a certain minimum margin of points. Over/unders
predict that the total points scored by the two teams com-
bined will exceed some threshold. More complex bets are
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Table 3
Metrics in the standard dataset.

Scheduling:
Number of games in the last five days, back-to-back, rest days, list of
referees
Regular:
PTS_OFF_TOV,PTS,PTS_PAINT,PTS_2ND_CHANCE,PTS_FB,LARGEST_LEAD,
FTA_RATE,TM_TOV_PCT,OREB_PCT,BLK,PF,FTA,FTM,STL,TO,PLUS_MINUS
Portions:
PCT_PTS_2PT,PCT_PTS_2PT_MR,PCT_PTS_3PT,PCT_PTS_FB,PCT_PTS_FT,
PCT_PTS_OFF_TOV,PCT_PTS_PAINT,PCT_AST_2PM,PCT_UAST_2PM,
PCT_AST_3PM,PCT_UAST_3PM,PCT_AST_FGM,PCT_UAST_FGM
Ratios:
OFF_RATING,PIE,CFG_PCT,UFG_PCT,FG_PCT,DFG_PCT,EFG_PCT,FG3_PCT,
FT_PCT,PCT_FGA_2PT,PCT_FGA_3PT,TS_PCT,AST_PCT,AST_RATIO
Optical:
DIST,ORBC,DRBC,TCHS,SAST,FTAST,PASS,AST,CFGM,CFGA,UFGM,UFGA,
DFGM,DFGA

Table 4
Metrics in the augmented dataset.

Scoring:
Contest+ FG%, Open+ Freq., Open+ FG%, Points per Chance, . . .
Shot defense:
Block-to-Possession, Contest+, Points against per shot, Shots per
chance, . . .
Movement and involvement:
Offensive activity rate, Cut efficiency, Touches per chance, . . .
Turnovers, Disruptions, Fouling:
In-Air TO%, Unforced TO%, Effective bump%, Front post D%, Pressure
rate, . . .
Passing:
Indirect pass rate, Assist+ screen%, Deflected-pass rate, True
facilitation, . . .
Rebounding:
O/DBlockouts per 100 Opps, O/DReb pursuit rate, . . .
Screening offense and defense:
Screens received/Set per chance, Split%, Solid screen%, KIF%, Hedge%, . . .

also available, but for simplicity, the model is only ever
trained on these two, the most standard bets.

Note also that the standard betting cost is assumed
throughout this paper: losses cost 10%more thanwins pay.
For example, a $110 bet for the over/under to exceed 200
points will result in a $100 gain paid to you if the total is
201 or greater, a $110 loss paid by you if the total is 199
or lower, and the return of your original bet if the total is
exactly 200. (This tie situation is called a ‘‘push’’, and you
are placed in the same economic position as if your bet had
never been placed at all.) Thus, the breakeven probability
is 11/(11 + 10) = 52.381%.

(Finally, note that many sportsbooks have recently
begun offering even better odds of $105 on losses to
$100 on wins, leading to a breakeven probability of only
10.5/(10.5 + 10) = 51.2195%.)

3. Methods

Conceptually, the comparison for each dataset is done
as follows.

We begin with the 50th day of the season in order to
have a base of data from which to start, and create the
following training table each day. The columns indicate
the date of the game, the two teams, the market betting

lines, and a 20-game moving average of the (standard
or augmented) metrics for each team. We run two deep
learning algorithms for each dataset: one for predicting the
actual resulting spreads, and one for predicting the actual
resulting over/unders.

We find the best fitting model using a deep learning
algorithm with the standard parameters of h2o (Candel,
2015). Taking that best fitting model, we then apply it to
that day’s games to establish a prediction. The following
day, we extend the training set by one day, re-train, and
re-predict. In both cases, predictions that exceed equiprob-
ability significantly with statistical confidence at the 5%
level are assumed to be placed bets, while those that do
not are assumed to be skipped bets. This allows algorithms
to decide not only whether to bet over or under, but also
whether to bet at all. Again, the same procedure is followed
for both the standard dataset and the augmented dataset.
We then conglomerate the two strategies within each
dataset (spreads and over/unders) in order to compare the
two time series. In other words, for either dataset, given a
prediction on a bet, we test to see whether the probability
of winning differs statistically significantly from 50%. If it
does, it is a bet in that direction; otherwise, no bet.
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4. Results

In using this approach to evaluate the marginal value of
an additional dataset (namely parallel deep learning on the
two datasets, each attempting to outpredict the market),
there are four possible results.

First, it is possible that neither the original nor aug-
mented datasets can beat the breakeven probability of
52.381%. In this case, itwould be difficult to decidewhether
the augmented data are marginally valuable, since even
a random coin toss can achieve a 50% probability. This is
generally the most likely scenario, as it is actually quite
difficult to beat the markets. Thus, we would not be able
to simply conclude that the data are more valuable.

Second, it is possible that both the original and aug-
mented datasets can beat the breakeven probability. This
is the least likely scenario, as selection bias suggests that
you are unlikely to be searching for augmented data if
you are already able to beat the breakeven probability.
Nevertheless, it would still be possible to run a statistical
test in this case in order to determinewhether themarginal
contribution makes it worthwhile to change the predictive
algorithm and adopt the augmented dataset.

Third, it is possible that the original dataset exceeds the
breakeven probability but the augmented dataset does not.
This is quite unlikely in a general deep learning setting, as
the algorithm does not typically perform worse with more
inputs. If this is the result, it is most likely to be due to a
random perturbation (or an error in the machine learning
algorithm) rather than a significant decline.

Fourth, it is possible that the original dataset falls short
of the breakeven probability but the augmented dataset
exceeds it. This is themost exciting scenario, aswe can then
determine conclusively that the augmented dataset does
provide more value.

The results from the data above are as follows. There
were slightly under 1000 possible wagers for each type of
bet for each of the datasets over the sample period. Each
wager involved risking $110 to win $100. Among spread
bets, 257won, 223 lost, and 372were not bet, for awinning
percentage of 53.54%. Among over/unders, 250 won, 210
lost, and 392 were not bet, for a winning percentage of
54.35%.

Starting with an assumed initial bankroll of $5000, the
daily rolling deep learning algorithm using the standard
dataset is correct on 49% of wagers and ends the season
with $1700. This means that the standard dataset com-
bined with deep learning is unable to do better than a coin
toss. (Indeed, the 49% is not statistically significantly differ-
ent from 50%.) This should not be surprising, as the betting
markets are quite efficient, and we should expect them to
incorporate all standard publicly available information.

Using Vantage data, the algorithm is correct on 54% of
wagers and ends the season with $6500. The difference is
highly statistically significant (p-value < 0.01), and ex-
ceeds the breakeven probability. See Fig. 1 for a time series
graph of the two strategies combined.

The same comparison can be made across only the
spread trades or only the over/unders, and a similar picture
emerges. The augmented dataset improves each of those
kinds of bets, relative to the standard dataset.

By construction, all of these results are out-of-sample.
Furthermore, the model was also tested in ‘‘paper’’

trading for the start of the 2015–2016 season, making it
entirely out of sample. Without any modification to the
deep learningmodel for the augmented dataset, but simply
continuing as if the new season were an extension of the
old, the model continued to outperform the breakeven
probabilities, achieving a reported winning probability of
56.65% for bets on spreads and over/unders for the period
until December 13, 2015.

5. Conclusion

Themethod introduced in this paper provides a way for
any analyst in almost any sport to determine the additional
value of almost any dataset.

The method is uniquely suited for sports analytics be-
cause it requires both justifiable datasets and an associ-
ated, liquid wagering market that is likely to have pockets
of inefficiency. It would not apply to random data—deep
learning can’t predict the next coin toss—and it probably
would not apply to financial events where the markets are
likely to be very efficient. In the world of sports analytics,
though, the method outlined here can be used to have a
substantive and permanent impact on any sport that has a
healthy wagering market associated with it.

When we apply the method to NBA betting mar-
kets with both a standard, publicly-available dataset and
an augmented one that incorporates data from Vantage
Sports, we find that a rolling deep learning model with
the augmented data substantially and significantly outper-
forms a similar machine learning model with the standard
data over the 2014–2015 season. Furthermore, the perfor-
mancewhenusing the augmented data is above the betting
breakeven probability.

Finally, the same model without modifications con-
tinues to outperform others in subsequent markets and
games, yielding a winning probability that is in excess of
56% for bets on games between the start of the season on
October 27, 2015, until December 13, 2015.

Such a result is unprecedented and remarkable for two
reasons: first, an efficient market is notoriously difficult to
beat; and second, the result provides a conclusive demon-
stration of the power of the approach presented in this
paper. It also provides a new type of framework for inves-
tigating the profitability of a betting scheme.

Extensions to other professional or collegiate leagues
would be straightforward. In addition, extensions to other
professional or collegiate sports could also be pursued.
Finally, one caveat to remember, as discussed above, is that
it is possible that there could be value in the augmented
dataset but that the approach here might fail to find it;
since deep learning does seem to learn in the same way as
a human, it would be possible, as with a human, for it to fail
to find an existing pattern.
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Fig. 1. Cumulative balance of deep learning strategies using the standard (yellow) and augmented (blue) datasets for 2014–2015. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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