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Abstract——This paper develops a novel approach to track pow‐
er system state evolution based on the maximum correntropy
criterion, due to its robustness against non-Gaussian errors. It
includes the temporal aspects on the estimation process within
a maximum-correntropy-based extended Kalman filter
(MCEKF), which is able to deal with both nonlinear superviso‐
ry control and data acquisition (SCADA) and phasor measure‐
ment unit (PMU) measurement models. By representing the be‐
havior of the state variables with a nonparametric model within
the kernel density estimation, it is possible to include abrupt
state transitions as part of the process noise with non-Gaussian
characteristics. Also, a novel strategy to update the size of Par‐
zen windows in the kernel estimation is proposed to suppress
the effects of suspect samples. By properly adjusting the kernel
bandwidth, the proposed MCEKF keeps its accuracy during
sudden load changes and contingencies, or in the presence of
bad data. Simulations with IEEE test systems and the Brazilian
interconnected system are carried out. The results show that
the method deals with non-Gaussian noises in both the process
and measurement, and provides accurate estimates of the sys‐
tem state under normal and abnormal conditions.

Index Terms——Tracking state estimation, Kalman filter, maxi‐
mum correntropy, power system, Parzen window.

I. INTRODUCTION

UTILITIES rely on power system state estimation as a
crucial computation tool in their control centers, which

is capable of increasing the situational awareness about the
power system condition in real time [1]. The increased adop‐
tion of new sensors in power systems, such as the phasor
measurement units (PMUs), is currently driving changes in
the operation of power systems towards a more data-driven
and interconnected way. The fast sampling of these new sen‐

sors enables an important extension of state estimation for‐
mulation towards time-variant models [2]. The goal is to
evaluate the operation condition under both normal and ab‐
normal conditions, enabling a deeper understanding of pow‐
er system behaviors.

The representation of system evolution in the time do‐
main, instead of a static state model of the power system,
has motivated the development of the so-called dynamic
state estimators and the quasi-steady state estimators [2].
Even though the idea of including time domain aspects has
been considered since the propositions of the first state esti‐
mators [3] - [5], it is only recently that this idea has gained
new thrust with the increasing complexity of power systems
and the advances in computation technologies [2]. Both dy‐
namic and quasi-steady state approaches represent advances
in terms of detailing in the estimation: the first aims at esti‐
mating the network state and the internal states of control‐
lers, loads and machines, while the second focuses on the
complex nodal voltages of the network and its operation con‐
straints.

Despite their different model resolution, these estimators
mostly rely on the Kalman filter theory or its variations such
as the conventional linear [6], nonlinear extended [7], un‐
scented [8] and cubature-based [9] versions to solve the esti‐
mation problem. These methods include a state space model
in the form of a Markov chain process under multivariate
Gaussian measurement and process noises. Despite the accu‐
rate results shown in the theory, the formulation of classical
Kalman filter is prone to practical drawbacks related to the
Gaussian hypothesis, such as the presence of bad data (gross
errors or outliers) or non-Gaussian measurement noise, as
demonstrated with practical data from PMUs in [10].

This limitation has motivated the development of robust
approaches as the H-infinite [11], generalized maximum like‐
lihood [12], polynomial-chaos loss function [13], robust hy‐
brid [14], the least absolute value criterion [15], and the cu‐
bature robust [16] approaches. All these estimators are wide‐
ly applied in the literature, and show good performance
when dealing with bad data and non-Gaussian noise. None‐
theless, they all rely on the basic assumption that the Mar‐
kov chain is a general probabilistic representation of the sys‐
tem temporal relation, which is a severe limitation since the
structural changes on the system may occur [17].
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Such assumption is translated into a belief that the system
state evolution is a smooth process, and that the correct tran‐
sition matrices (or state transition function or dynamic mod‐
els of machines and controllers) are available to build the
correct state space model. However, this is questionable, be‐
cause the switching operations, sudden load or generation
changes or failure events may abruptly change the condition
of the network and introduce discrete discontinuities. To deal
with such transitions, some adaptive techniques have been
explored in [18] that basically adopt a different set of rules
to interchange among different estimators or transition matri‐
ces. Nonetheless, such different decision rules limit their gen‐
eralization in unpredicted scenarios and hamper their adop‐
tion by utilities.

This work is an effort towards a new interpretation of the
state estimation problem that can encompass both the statisti‐
cal robustness and flexibility to overcome system transitions
in a single framework. By exploiting information theory con‐
cepts and modelling the noise characteristics through a ker‐
nel density estimation approach, this paper proposes a maxi‐
mum-correntropy-based extended Kalman filter (MCEKF) to
track power system state evolution. As shown in the initial
work in [19], by incorporating information theory concepts
within the traditional Kalman filter, it is possible to increase
the accuracy without relying on the assumption of a Gauss‐
ian distribution for the measurement and process noises.

The first application of information theory in the power
system static state estimation problem has been reported in
the seminal work in [20], which proposes the adoption of
the correntropy concept [21] in state estimation. It has been
followed by many efforts that show an increase in the robust‐
ness against bad data in challenging scenarios such as the
case of leverage points and critical measurements [22], [23],
and recently, for detecting topology errors [24]. Such meth‐
ods still focus on static steady state measurement models.

New approaches have come to light, addressing the tempo‐
ral aspects of the estimation problem based on the correntro‐
py concept [25]-[27]. Reference [25] includes a quasi-steady
state estimator only for supervisory control and data acquisi‐
tion (SCADA) measurements, while [26] includes a dynamic
state estimator only for PMUs. Reference [27] uses the gen‐
eralized correntropy concept within an unscented Kalman fil‐
ter to improve the robustness against outliers. This paper ex‐
tends these efforts with a new MCEKF version, enabling the
incorporation of both SCADA and PMU measurements in
the estimation process, a more practical approach to repre‐
sent realistic metering systems. It also presents a novel way
to deal with suspect samples and system transitions by per‐
forming a new special adjustment on the kernel size in the
estimation process during the occurrence of such events. The
main contributions of this paper can be summarized as fol‐
lows.

1) A new concept is applied for the state variables, name‐
ly state evolution, which is formulated as a nonparametric
probabilistic model for the state that encompasses the possi‐
bility of different state values and transitions.

2) The MCEKF is applied for tracking state estimation of
power systems. This is a type of quasi-steady state estimator
based on a modified-Newton algorithm, which is able to

deal with nonlinear models from both SCADA and PMUs.
3) A novel method is proposed to suppress the effect of

suspect samples and abrupt system transitions through a spe‐
cial adjustment of the kernel Parzen window sizes.

Simulation results on the IEEE test systems and the Brazil‐
ian interconnected system show that the MCEKF model pro‐
vides an accurate state of the network even during severe
and abrupt changes such as sudden load changes and contin‐
gencies.

II. THEORETICAL BACKGROUND

A. Power System Static State Estimation

A nonlinear measurement model formulates the static state
estimation problem for a power system with m measure‐
ments and n state variables [1], [2]:

z = h(x)+ e (1)

where z is the measurement vector (m × 1); x is the state vec‐
tor (n × 1); h(x) is the set of nonlinear equations that relates
the measured electrical quantities with the state; and e is the
random error vector (m × 1) that represents the measurement
noise. Traditional state estimation assumes the noise vector
as multivariate Gaussian independent random variables, with
zero mean and known covariance matrix R (m × m). The
state vector is typically composed of the complex nodal volt‐
age of the system, represented in rectangular coordinates in
this work.

The maximization of the likelihood function results in the
weighted least squares (WLS) criterion to find the estimated
state, i.e., WLS snapshot state estimator. Under an indepen‐
dent multivariate Gaussian noise assumption, the optimiza‐
tion problem is written as:

max l(e|x)=∏
i = 1

m

f (ei|x)=∏
i = 1

m 1

2πR2
ii

e
-

(zi - hi (x))2

2R2
ii (2)

where l(·) and f (·) are the likelihood function and probability
distribution function of the conditional probability of the
measurement error given the state, respectively; and Rii is
the diagonal elements of R. Working with the above equa‐
tion, the estimated state x̂ can then be obtained by the un‐
constrained minimization problem:

x̂ =min(z - h(x))T R-1 (z - h(x)) (3)

B. Tracking State Estimation

The fast sampling of PMUs (from 1 to 120 samples per
second) and synchronization via global positioning system
(GPS) time stamps are strong motivations for formulating
the state estimation as a time-dependent problem. Besides
the PMU measurements, there are also measurements gath‐
ered from the SCADA system, which, thereby, still requires
a nonlinear measurement model in order to include all the in‐
formation available in the estimation.

Reference [2] provides a comprehensive definition of dif‐
ferent methods and objectives to include temporal aspects in
the estimation problem. Basically, they can be separated in:

1) Dynamic estimators, which encompass differential equa‐
tions, generator models, speed and excitation controllers of
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synchronous machines. These estimators aim at estimating
the dynamic state of the network and the internal variables
of loads and generators.

2) Forecasting-aided state estimators, which use a forecast‐
ing model to forecast the states in a subsequent instant
through smoothing functions for the state transition. These
estimators aim at the algebraic state and the complex nodal
voltages of the network.

3) Tracking state estimators, a particular case of the previ‐
ous one where variations are assumed small enough, so that
the forecasting corresponds to the last estimated state.

In this paper, we explore the tracking state estimation
problem, since it is one of the most affected by abrupt state
changes [2]. This approach may lead to fewer modifications
in static estimators (and network database), while obtaining
significant gains in terms of accuracy, which is a practical
advantage. Tracking state estimation consists in the follow‐
ing discrete time-variant nonlinear model:

{x t = x t - 1 +ω t

z t = h(x t)+ e t
(4)

where xt and x t - 1 are the state variable vectors (n × 1) at in‐
stant t and the previous one t - 1, respectively; zt is the mea‐
surement vector (m × 1) at instant t; et is the random error
vector (m × 1) that represents the measurement noise at in‐
stant t, with zero mean and known covariance matrix R (m ×
m); and ω t is the random error that represents process noise
with zero mean and known process noise covariance matrix
Q (n × n). Traditional tracking state estimation also assumes
the noise vectors as multivariate Gaussian independent ran‐
dom variables, and the state space corresponds to a hidden
Markov model, as described in (2) and illustrated in Fig. 1.

A notable conceptual trait in this formulation is that the
state variables are now modeled with a random component
ω t. Despite the fact that static state estimation in (1) carries
the notion of the estimator variance, it does not encompass
the hypothesis of different possible values for the state with‐
in the inference problem. The solution of the estimation
problem in such state space model corresponds to the well-
known Kalman filter algorithm based on the WLS criterion
[1] - [12]. It consists of a two-step recursive algorithm, with
the following formulation for the tracking state estimation
model:

1) Prediction step: the prior mean and covariance matrix
are given by:

x̂ t|t - 1 = x̂ t - 1 (5)

P t|t - 1 =P t - 1 +Q (6)

where t|t - 1 stands for the conditional relation between two

time-steps; P is the calculated state covariance matrix (n × n).
2) Updating step: the Kalman filter gain matrix K t (n × m),

the estimated posterior state x̂t and posterior covariance P t

are then updated:
K t =P t|t - 1 H T (HP t|t - 1 H T +R)-1 (7)

x̂ t = x̂ t|t - 1 +K t (z t -Hx̂ t|t - 1) (8)

P t = (I -K t H)P t|t - 1 (I -K t H)T +K t RK T
t (9)

where H is the Jacobian matrix (m × n) of the measurement
model; and I is the identity matrix (n × n). The nonlinear ver‐
sion of the above model corresponds to the WLS extended
Kalman filter (EKF) that performs linearization of the mea‐
surement equations, and the iterated EKF (IEKF) that up‐
dates such linearization iteratively, which presents more accu‐
rate results.

C. Information Theory Concepts

Based on the information theory, the concept of correntro‐
py arises as a measure of similarity between two probability
distribution functions (PDFs) [19]-[24]. It has a strong rela‐
tion to the concept of entropy, which measures the informa‐
tion content of a PDF. The correntropy between two random
variables A and B is defined in (10) for a finite number of
samples.

V (AB)=E(kσ (A-B))=
1
N∑i = 1

N

kσ (Ai -Bi) (10)

where E(·) is the function to calculate the expectation; kσ (·) is
a kernel for the random variable in the sampled value; σ is
the kernel bandwidth (or size of the Parzen window in the
Parzen-Rosenblatt estimator [28]); and the subscript i repre‐
sents the limited number N of samples of random variables.
The concept of correntropy induces a distance function to
measure the similarity of two PDFs, the correntropy induced
metric (CIM). Depending upon the choice of kernel and size
of the bandwidth, this metric may vary from the L∞ to L0

norms. Due to such property, it can be tuned to become in‐
sensitive to outliers, pushing it towards the L0 norm (indiffer‐
ence in distance) [22].

Finally, the CIM distance motivates the creation of the
maximum correntropy criterion (MCC) to perform inference.
For instance, in a regression analysis, it aims at finding pa‐
rameter values that maximize the similarity among a set of
observations (ri = Ai -Bi).

Ŵ = max
W ÎΩ

1
N∑i = 1

N

kσ (ri) (11)

where Ŵ is the optimal parameter value; and Ω is the feasi‐
ble set for the parameters.

III. TRACKING POWER SYSTEM STATE EVOLUTION WITH

MCEKF

A. State Evolution Concept in Power Systems

The temporal aspect of the state estimation problem and
the probabilistic interpretation of the state variables provide
a conceptual framework to evaluate the network condition
under both measurement and system uncertainties. However,
it has a limitation related to the parametric model typically

xt�2

zt�2

h(xt�2)

xt�1

zt�1

h(xt�1)

xt

zt

h(xt)

xt+1

zt+1

h(xt+1)

Fig. 1. Representation of hidden Markov model for tracking state estima‐
tion problem.
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assumed for the process and measurement noises under con‐
ventional Kalman filter formulations. Many efforts have
been made to explore non-Gaussian noise situations [2], [10]-
[16] such as in the case of bad data, cyber-attacks or even
particular noise characteristic of PMUs.

This paper proposes a new interpretation regarding the
process noise towards a generalist non-Gaussian model
based on the kernel density estimation principle. During a se‐
quence of observations from the measurements, the state
variables can present different possible values, which induc‐
es the proposed concept of state evolution. Such different
values can be related to system transitions, which can be:

1) Systemic: due to sudden load variations, generation dis‐
patching or controller actions.

2) Structural: due to contingencies, switching operations
or changes in the network.

3) Random: due to intermittency or failures.
4) Induced: due to cyber-attacks or unsupervised switch‐

ing.
An illustration of such transitions in a power system ob‐

served by a measurement set, monitored by a state estima‐
tion process is illustrated in Fig. 2. Due to the contingencies,
changes in the controllers, natural load variation, and genera‐
tion intermittency, each algebraic state of the network may
present different values over time. The state evolution aims
at capturing such different possible values within a single
non-Gaussian PDF for the state.

The state evolution concept is defined by a set of state
vectors, and each element is related to a respective set of ob‐
servations at the instant t during an observation window Dt.

x = {x0x1x t - 1x tx t + 1xDt}= x t| tÎDt (12)

Associated with this set of state vectors, the underlying
PDF of the state can be obtained in a nonparametric manner
with the introduction of a kernel density estimator. The Par‐
zen-Rosenblatt method [28] for kernel density estimation
then obtains the empirical PDF for the state through (13).
Figure 3 illustrates this concept for a single state variable
during different conditions of the network and the respective
empirical probability distribution function.

x~
1
Dt∑tÎDt

kσ (x t) (13)

Since the goal is to capture the state transitions, an obser‐
vation kernel is associated with the process noise through
the state space model in (4).

ω t~kσ (x t - x t - 1) (14)

Along with the state vector modeled as a nonparametric
random variable, this work also revises the hypothesis that
the measurement noise follows a Gaussian distribution. In

the case of PMUs, [10] has shown with experimental results
that such a hypothesis does not hold and that more robust
models are required for PMU-based state estimators.

In a different perspective, [20] has shown that the pres‐
ence of gross errors (bad data) consists of a non-Gaussian
noise situation. To encompass such general probabilistic
model for the measurement model, in the same way as for
the state vector, the measurement noise is modeled under a
kernel assumption related to each observation.

Load
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generator

SCADA measurement; PMU measurement

Operation center

State estimator

Time

State value
at node 2
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Fig. 2. Example of a power system and respective estimated state during different system transitions monitored by SCADA and PMU measurements.
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phase angle) under different conditions obtained by kernel density estima‐
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e t~kσ (z t - h(x t)) (15)

B. EKF Based on MCC

The MCC Kalman filter was first introduced in [19],
which aims at performing inference under a state space mod‐
el without the assumption of Gaussian noise. The only as‐
sumption on the noise vectors is that the second-order mo‐
ment is known and given by:

E ( )é
ë
ê

ù
û
ú

ω t

e t

T
é
ë
ê

ù
û
ú

ω t

e t

= é
ë
ê

ù
û
ú

P t - 1 0
0 R

= é
ë
ê

ù
û
ú

BT
P BP 0
0 BT

R BR

(16)

where BP and BR are the Cholesky decomposition of the pro‐
cess and measurement covariance matrices, respectively. The
state space in (4) is rescaled by the respective decomposition.

B-1
P x t =B-1

P (x t - 1 +ω t) (17)

B-1
R z t =B-1

R (h(x t)+ e t) (18)

The MCEKF is then devised in [25] for nonlinear models
in the context of power systems. This paper applies the maxi‐
mum correntropy principle for tracking power system state
evolution, which yields the following optimization problem
for the ith measurement and jth state variable:

max JMCC =∑
i = 1

m

kσ (zit - hi (x t))+∑
j = 1

n

kσ (xjt - xjt - 1) (19)

A Gaussian kernel shown in (13) is assumed to compose
the process and measurement noise. It is worth mentioning
that the assumption of the kernel function does not mean the
same assumption for the PDF of the random variable.

kσ (ri)= e
-

r 2
i

2σ2 (20)

Thereby, the estimation problem consists in the following
optimization problem:

max JMCC =∑
i = 1

m

e
-

(zit - hi (xt))
2

2σ2 +∑
j = 1

n

e
-

(xjt - xjt - 1)2

2σ2 (21)

C. Numerical Solution Method

Since it is a nonlinear optimization problem, an iterative
numerical procedure must be employed to find the solution,
i.e., the state vector values at instant t. In this work, a modi‐
fied-Newton algorithm [29] is implemented to find the solu‐
tion. It is worth mentioning that it consists in a different so‐
lution method compared with the first MCEKF proposed in
[25], which applies a fixed-point iterative method. This work
employs a nonlinear numerical optimization method. The
main advantage is that the problem can be solved under a
fully optimization framework with a globally convergent
method [29]. An initial condition for the state x k

t = x 0
t starts

the method at iteration k. The gradient function is calculated
as:

¶
¶xj

JMCC =∑
i = 1

m 1

σ 2
e
-

(zit - hi (x k
t ))2

2σ2 (zit - hi (x
k
t ))Hij -

1

σ 2
e
-

(xk
jt - xjt - 1)2

2σ2 (xk
jt - xjt - 1) (22)

where Hij = ¶hi (x
k
t )/¶xj is the element of the Jacobian ma‐

trix of the nonlinear measurement model calculated at a spe‐
cific point xt

k. This can be rewritten in a matrix representa‐
tion as:

ÑJMCC (x k
t )= é

ë
ê

ù
û
ú

I
H

T

D
é
ë
ê

ù
û
ú

xt - 1 - xk
t

zt - h(xk
t )

(23)

where I is an identity matrix (n × n); and D is a diagonal ma‐
trix ((m + n)×(m+ n)) with elements Dii (x t) given by:

Dii (x t)=

ì

í

î

ï
ï
ï
ï

1

σ 2
e
-

(xk
it - xit - 1)2

2σ2 i < n

1

σ 2
e
-

(zit - hi (x k
t ))2

2σ2 i ³ n

(24)

The Hessian matrix is calculated by:

Ñ2 JMCC (x k
t )=- é

ë
ê

ù
û
ú

I
H

T

D[ ]I -Rp
é
ë
ê

ù
û
ú

I
H

+

∑
i = 1

m

Dii (x t)
(zit - hi (x

k
t ))

2σ 2

¶2hi (x
k
t )

¶x2
(25)

where Rp is a diagonal matrix ((m + n)×(m+ n)) with ele‐
ments given by:

Rpii =

ì

í

î

ïï
ïï

1

σ 2
(xk

it - xit - 1)2 i < n

1

σ 2
(zi - hi (x

k
t ))2 i ³ n

(26)

In order to create ascending directions (remind that the so‐
lution is the maximum correntropy), the optimization meth‐
od requires an approximation of the Hessian matrix Mk that
keeps negative definite during the entire optimization pro‐
cess. In this way, a good approximation candidate is given
by (27), which neglects the second-order derivatives terms
in (25).

Ñ2 JMCC (x k
t )»Mk =-

é
ë
ê

ù
û
ú

I
H

T

D[ ]I -Rp
é
ë
ê

ù
û
ú

I
H

< 0 (27)

With the gradient vector and the Hessian matrix approxi‐
mation, it is possible to calculate the directions pk followed
by the maximization algorithm at each iteration k.

Mk pk =ÑJMCC (x k
t ) (28)

A backtracking algorithm is used to find the step-size αk

and satisfy the Armijo condition [29], which is the equiva‐
lent version for the maximization problems. This will result
in a sequence of iterations expressed in (29) to find the opti‐
mal value x̂ t.

x k + 1
t = x k

t + αk pk (29)

The convergence is given by the difference of the state
vector values in two successive iterations and a pre-specified
tolerance (in this work, 1.0 × 10-6 ). This iterative solution
corresponds to the Prediction Step of the MCEKF. With the
estimated state, the process covariance matrix is also updat‐
ed in the Updating Step of the MCEKF. It can be deduced
as follows:

P t = (P -1
t - 1 +H T R-1 H)-1 (30)
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D. Suppression of Suspect Samples and System Transitions
Through Parzen Window Adjustment

As shown in [19]-[24], the accuracy strongly depends on
the strategy to choose the size of the Parzen windows or ker‐
nel bandwidth. The current practice on correntropy-based es‐
timation is a reduction of the kernel bandwidth towards an
indifference of the suspect samples (for instance, outliers).
This approach of successively reducing the size of the Par‐
zen windows to achieve convergence when dealing with cor‐
rentropy is a widely-used method, which was firstly pro‐
posed for training mappers under correntropy and entropy
cost criteria [30]. This process, sometimes referred to as
“kernel annealing”, has also been adopted for power system
state estimation [26], [31]. The goal was to suppress the ef‐
fect of gross errors in the estimation, encompassed as a par‐
ticular case of non-Gaussian errors.

The effect of reduced bandwidth kernel is well-known and
conceptually proved in [28]. In this situation, correntropy is
reduced to the conditional expected value of the residue
equal to zero for that sample. However, from the perspective
of algorithmic optimization, this approach has some difficul‐
ties. The success of the approach depends on the starting
point of iteration, and the flat starting voltage is no longer a
universal good point. Also, in order to create ascending direc‐
tions (remind that the solution is the maximum correntropy),
the optimization method requires the Hessian (or its approxi‐
mation) matrix to be negative definite during the entire optimi‐
zation process and at the optimal value of xt in (27). Hence,
the matrix I -Rp must be a positive definite matrix, which im‐
plies the following lower bound for the Parzen window size:

{(xk
it - xit - 1)2 < σ 2

(zi - hi (x
k
t ))2 < σ 2 (31)

In practice, the reduction in the bandwidth cannot be se‐
vere, and is limited to a minimum size σmin . Thereby, such
annealing strategy can create a bias on the suspect samples,
even if it is small in the final estimate.

This work introduces a new strategy to update the Parzen
window sizes of suspect measurements, by enlarging the
bandwidth of the suspect samples while maintaining the size
of the non-suspect samples. Shrinking the kernel means plac‐
ing an outlier in a region with metric similar to L0 (indiffer‐
ence). But a Gaussian kernel with σ large enough can reach
the same effect of indifference, because it has a smooth
slope close to zero with an almost constant value across the
domain, and does not introduce any spikes in the optimiza‐
tion landscape. We take advantage of this property.

Note that under the MCEKF, the suspect samples can be
either caused by gross errors and uncalibrated measurements
or by large transitions of the system (encompassed in the
state evolution concept). The effect is shown directly on the
objective function of the MCEKF, given a suspect set k Î S:

lim
σk ®¥

JMCC =∑
i = 1

m

e
-

(zit - hi (xt))
2

2σ 2
i +∑

j = 1

n

e
-

(xjt - xjt - 1)2

2σ 2
j (32)

Expanding the summation for the suspect samples, we ob‐
tain:

lim
σk ®¥

JMCC =∑
kÏ S

e
-
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2σ 2
k +∑

kÎ S
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2σ 2
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n

e
-
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2σ 2
j =

∑
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e
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2σ 2
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kÎ S

e0+∑
j= 1

n

e
-

(xjt - xjt - 1)2

2σ 2
j (33)

And also,

lim
σk ®¥

¶
¶xj

JMCC =∑
k Ï S

1

σ 2
e
-

(zkt - hi (xt))
2

2σ2 (zkt - hi (x t))Hkj +

∑
k Î S

lim
σk ®¥
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σ 2
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2

2σ2 (zkt - hi (x t))Hkj +

1

σ 2
e
-

(xk
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2σ2 (xk
jt - xjt - 1)=

∑
k Ï S

1

σ 2
e
-

(zkt - hi (xt))
2

2σ2 (zkt - hi (x t))Hkj+∑
k Î S

0+

1

σ 2
e
-

(xk
jt - xjt - 1)2

2σ2 (xk
jt - xjt - 1) (34)

The portion of the derivatives related to samples in the
suspect set equal to zero. Hence, this does not affect at all
the rest of the optimization process and the estimated values.
In this situation, only the other measurements and the pro‐
cess equations are used to find the state estimates. Figure 4
shows an illustrative example of kernel density estimation
and the effect of reducing and enlarging the Parzen window
size for suspect samples. An outlier is associated with a
large bandwidth and the other observations keep their initial
window sizes. The effect of suspect samples with large win‐
dow sizes spreads along the real line (from –∞ to +∞), and
does not influence the estimated PDF.

If the detected event is a systemic transition, such as sud‐
den load change, the suspect set becomes the process noise
equations. In this scenario, only the Parzen windows related
to the state space model are enlarged. The following equa‐
tion in this situation is obtained by a similar demonstration:

lim
σj ®¥

JMCC =∑
i = 1

m

e
-

(zit - hi (xt))
2

2σ 2
i +∑

j = 1

n

e0 (35)

The portion of derivatives related to process equation in
the state space then equals to zero. Hence, this does not af‐
fect the rest of the optimization process and the estimated
values. It has an effect of momentarily neglecting the state
transition equations, thus the estimates rely only on the cur‐
rent observed values, similar to the snapshot WLS state esti‐

Probability

Bandwidth σ→ 0

Bandwidth σ→ ∞
Random variable value

True PDF; Estimated PDF; Individual kernel
Observation; Outlier

Fig. 4. Effect of different sizes of bandwidth (Parzen window sizes) for
suspect samples on kernel density estimator.
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mator. In practice, this is equivalent to breaking the time de‐
pendency on the Markov chain, which has the same effect
observed in [17] for treating non-stationary events.

Another situation is the simultaneous process and measure‐
ment noise due to structural transitions, caused by topologi‐
cal and parameter errors. In such a situation, both the pro‐
cess noise equations and the adjacent measurements of the
affected part of the network become the suspect set, and
their Parzen window sizes are enlarged.

A proper method for detecting and identifying suspect
measurements is required. This paper will not treat these
methods in detail, which can be obtained by a residual analy‐
sis, such as in [31] and [32] for bad data detection, or with
other techniques based on artificial intelligence such as in
[33] for system transitions. In this work, the standard normal‐
ized residual analysis [31], [32] triggers the identification of
suspect samples for gross errors, while the system transitions
are assumed as known. It is noteworthy that there are other
and perhaps even more suitable ways to detect and identify
suspect samples in the context of information theory, such as
using the generalized correntropy along with the interior
point method [22], [23].

The algorithm consists basically on the MCC Kalman fil‐
ter recursive equations and the Parzen window update strate‐
gy. The window size updating consists in multiplying the
bandwidth by a large value (1.0 × 104).

IV. SIMULATION RESULTS

Monte Carlo simulations have been performed to evaluate
and validate the proposed MCEKF. A sequence of load flow
conditions creates the reference values for the state variables
xref

ti and measurements z ref
it . The random noise in the reference

load flow values is considered in the simulation to obtain
the measured values, and then state estimation is performed
[34]. The noise characteristic is given based on the precision
of the measurement pri (2% for SCADA and 0.1% for
PMUs), and the ith measured values are obtained using the
following equation:

zit = z ref
it + ui

pri || z ref
it

3
(36)

where ui is the underlying PDF of the noise. This equation
provides the diagonal elements of the measurement noise co‐
variance matrix Rii = pri | zit | 3. The process noise covari‐

ance matrix Q is a diagonal matrix with large values
1.0 × 103 to reduce the effect of the initial conditions on the
estimation.

Different instants and the respective conditions are moni‐
tored by PMUs at a rate of 60 samples per second, while the
SCADA measurements are updated at a rate of one sample
per second. Each sample represents a different instant t and
the respective measured values. Thus, the simulation consists
of a sequence of quasi-stationary conditions with the estima‐
tion process triggered by the latest information available,
sometimes monitored by SCADA and others by PMUs, with
different time scales and random noise. The mean absolute
error (MAE) evaluates the accuracy of the estimated state
variables:

MAE =
1
n∑i = 1

n

|| x̂ti - xref
ti (37)

where x̂ti is the ith state variable estimated. The MCEKF is
then compared with two approaches based on the maximum
likelihood principle: the WLS snapshot and the traditional
WLS EKF.

A. Effect of Non-Gaussian Measurement Noise

The first test has been performed with the IEEE 14-bus
test system to show aspects of non-Gaussian measurement
noise under a stationary condition. The measurement set pre‐
sented in Fig. 5 is used without process noise.

A Monte Carlo simulation with the addition of non-Gauss‐
ian noise, in all SCADA and PMU measurements, evaluates
the performance of the MCEKF during a sequence of 600

Algorithm 1: MCEKF with Parzen window update

Input: network data, network topology, measured data, x0, P0

Begin:
Initialize Parzen windows σk = 10.0
Set xt - 1 as x0 and Pt - 1 as P0

For each t in Δt:
1) Rescale the state space according to (17) and (18)
2) Calculate xt solving the MCC optimization in (21)
3) Update posterior state covariance according to (30)
4) Identify the suspect set S
5) Update the Parzen window sizes according to the type of event:

Bad data (gross error):
For each zk with k ∈ S, σk = 10000σk

Return to 2)
Systemic transition:

For each xj in xt, σ
t + 1
j = 10000σj

Structural transition:
For each xj in xt, σ

t + 1
j = 10000σj

For each zk with k ∈ S, σ t + 1
k = 10000σk

6) Update to next instant t and return to 1)
End

Active and reactive power (SCADA)
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Fig. 5. IEEE 14-bus test system and respective SCADA and PMU mea‐
surement set for simulation.

samples (equivalent to 10 s). The noise characteristic added
in the simulation follows the Gaussian mixture in (38).

ui~0.7N (01)+ 0.2N (33)+ 0.1N(020) (38)

Figure 6 shows the performance index over time in order
to illustrate the effect of including the temporal aspect in the
estimation. Note that the snapshot approach does not im‐
prove the estimation over time since it performs an indepen‐
dent estimation each instant only with the respective sample
values, either from SCADA or PMUs. The traditional WLS
EKF does present an improvement by including the temporal
relation of the state; however, the MCEKF approach increas‐
es even further the accuracy, since it is more suitable to treat
non-Gaussian noise characteristics.

Table I presents the comparison in terms of the overall
MAE performance index. A different set of fixed values for
the Parzen window sizes is also compared.

For the smaller window size, the lower bound is reached,
and the estimation loses its performance. Another aspect is
that by choosing larger size of the Parzen window, the
MCEKF gets closer to the traditional WLS EKF. It is a
known property in correntropy estimation that the CIM be‐
comes the L2 norm for high Parzen window size, which is
similar to the WLS criterion. In this case, it is only with the
Parzen window update strategy that more accurate estima‐
tion is achieved by suppressing the suspect set based on the
largest residual.

B. Effect of Non-Gaussian Process Noise

The second test intends to evaluate the effect of process
noise on the estimation. Process noise is added in the form

of random load variation. In order to obtain a sensitivity of
the effect of process noise, the percentage of load variation
is increased gradually on this test, from 0% to 10.0%. Fig‐
ure 7 presents the accuracy in terms of the estimation error
empirical cumulative distribution function for the MCEKF.
Table II summarizes the results for the three estimators.

The effect of the process noise is a progressive increase in
the estimator variance, up to the point that the most reliable
estimator becomes the WLS snapshot instead of the WLS
EKF or MCEKF approaches. It is noteworthy that large vari‐
ations up to 5% of the load, in the short interval of time be‐
tween two consecutive PMU samples (1 cycle), can be con‐
sidered as a very abrupt and abnormal condition. Further‐
more, such a scenario implies on a sensitive reduction of the
premise that the last observation is a good estimation for the
current one, the underlying hypothesis of the Markov chain
in the tracking state space model in (4). In a typical trans‐
mission system, such scenario can be related to very large
load variations or contingencies. In modern power systems,
with the increase of intermittent distributed energy resources,
such scenario can occur more frequently. However, despite
the random variation that may occur, it is more likely that
such large and abrupt changes happen less often in the time
span of the tracking state estimation computing horizon.

This has motivated the pursuit for a window size tuning
strategy that is able to suppress the effect of such large and
abrupt variations. The proposition of this paper suppresses
the negative effect of the systemic transition on the estima‐
tion accuracy by enlarging the Parzen window size of the
process noise equation, as shown in Section III-C. The rea‐
soning behind such strategy is that an abrupt change on the
system state can be interpreted as a particular case of pro‐
cess noise with a heavy tailed PDF. Hence, the process equa‐
tions become the suspect set and their Parzen window sizes
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PARTS OF STATE VARIABLES
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samples (equivalent to 10 s). The noise characteristic added
in the simulation follows the Gaussian mixture in (38).

ui~0.7N (01)+ 0.2N (33)+ 0.1N(020) (38)

Figure 6 shows the performance index over time in order
to illustrate the effect of including the temporal aspect in the
estimation. Note that the snapshot approach does not im‐
prove the estimation over time since it performs an indepen‐
dent estimation each instant only with the respective sample
values, either from SCADA or PMUs. The traditional WLS
EKF does present an improvement by including the temporal
relation of the state; however, the MCEKF approach increas‐
es even further the accuracy, since it is more suitable to treat
non-Gaussian noise characteristics.

Table I presents the comparison in terms of the overall
MAE performance index. A different set of fixed values for
the Parzen window sizes is also compared.

For the smaller window size, the lower bound is reached,
and the estimation loses its performance. Another aspect is
that by choosing larger size of the Parzen window, the
MCEKF gets closer to the traditional WLS EKF. It is a
known property in correntropy estimation that the CIM be‐
comes the L2 norm for high Parzen window size, which is
similar to the WLS criterion. In this case, it is only with the
Parzen window update strategy that more accurate estima‐
tion is achieved by suppressing the suspect set based on the
largest residual.

B. Effect of Non-Gaussian Process Noise

The second test intends to evaluate the effect of process
noise on the estimation. Process noise is added in the form

of random load variation. In order to obtain a sensitivity of
the effect of process noise, the percentage of load variation
is increased gradually on this test, from 0% to 10.0%. Fig‐
ure 7 presents the accuracy in terms of the estimation error
empirical cumulative distribution function for the MCEKF.
Table II summarizes the results for the three estimators.

The effect of the process noise is a progressive increase in
the estimator variance, up to the point that the most reliable
estimator becomes the WLS snapshot instead of the WLS
EKF or MCEKF approaches. It is noteworthy that large vari‐
ations up to 5% of the load, in the short interval of time be‐
tween two consecutive PMU samples (1 cycle), can be con‐
sidered as a very abrupt and abnormal condition. Further‐
more, such a scenario implies on a sensitive reduction of the
premise that the last observation is a good estimation for the
current one, the underlying hypothesis of the Markov chain
in the tracking state space model in (4). In a typical trans‐
mission system, such scenario can be related to very large
load variations or contingencies. In modern power systems,
with the increase of intermittent distributed energy resources,
such scenario can occur more frequently. However, despite
the random variation that may occur, it is more likely that
such large and abrupt changes happen less often in the time
span of the tracking state estimation computing horizon.

This has motivated the pursuit for a window size tuning
strategy that is able to suppress the effect of such large and
abrupt variations. The proposition of this paper suppresses
the negative effect of the systemic transition on the estima‐
tion accuracy by enlarging the Parzen window size of the
process noise equation, as shown in Section III-C. The rea‐
soning behind such strategy is that an abrupt change on the
system state can be interpreted as a particular case of pro‐
cess noise with a heavy tailed PDF. Hence, the process equa‐
tions become the suspect set and their Parzen window sizes
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TABLE I
COMPARISON OF MAE PERFORMANCE INDEX FOR REAL AND IMAGINARY

PARTS OF STATE VARIABLES

Method

WLS snapshot

WLS EKF

MCEKF

Parzen window

-

-

σi = 0.1 p.u.

σi = 1.0 p.u.

σi = 10.0 p.u.

σi = 100.0 p.u.

With Parzen
update strategy

MAE performance index (p.u.)
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nodal voltage
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nodal voltage
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Fig. 7. Cumulative probability distribution of estimation error for MCEKF
under different load variation (process noise) levels.

TABLE II
MAE PERFORMANCE INDEX FOR STATE VARIABLES WITH DIFFERENT

LEVELS OF LOAD VARIATION

Load variation (%)

0.5

1.0

2.5

5.0

10.0

MAE performance index (p.u.)

WLS snapshot

1.5510×10-4

1.5510×10-4

1.5509×10-4

1.5507×10-4

1.5503×10-4

WLS EKF

1.0368×10-4

1.2205×10-4

1.8705×10-4

3.0779×10-4

5.6942×10-4

MCEKF

0.6748×10-4

0.8533×10-4

1.4698×10-4

2.6412×10-4

5.2730×10-4
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are enlarged. In order to evaluate this strategy, we consider
0.5% of random load variation and two sudden load changes
in the simulation: ① an increase of all loads by 10% from t =
2.5 s to t = 8.5 s; ② a decrease of generation by 30% at node 2
from t = 5.8 s to t = 7.2 s. Figure 8 presents a performance com‐
parison of the estimators regarding this scenario with a sudden
load change. The effect is also compared for one of the esti‐
mated voltage magnitudes at nodes 2 and 14 in Fig. 9.

The effect of updating the Parzen windows related to the
previous state consists in pushing the MCEKF momentarily
towards the WLS snapshot. It counters the effect of the sys‐
tem transition by breaking the temporal relation of the Mar‐
kov chain within the method. Otherwise, it would propagate
a false assumption that the previous instant is a good approx‐
imation for the next one. Besides, it keeps a recursively im‐
provement for estimating the steady state when the transition
ends.

C. Suppression of Gross Errors

This third test on the IEEE 118-bus test system addresses
the effect of gross errors and different measurement noise
PDFs. In addition, the simulation considers the process noise
with uniform load variation of 0.5%. The test assumes the
non-Gaussian noise for the SCADA measurements in (38)
and different characteristics for the PMUs according to the
proportion and PDFs below: 80% of voltage phasor follows
(39) and the remaining follows (40); and 50% of the current
phasor follows (41) and the remaining follows (42).

ui~0.9N (01)+ 0.1N(020) (39)

ui~0.6N (01)+ 0.3N (0.50.5)+ 0.1N(020) (40)

ui~Gamma(0.24) (41)

ui~Unif (-11) (42)

The simulation consists also in a SCADA and PMU ob‐
servable metering system with a 5 s horizon. It includes the

following gross errors to illustrate the effect of bad data:
1) Addition of 30 standard deviations in PMU measure‐

ment V31 (voltage phasor measurement at node 31) at
t = 0.6 s.

2) Reduction of 30 standard deviations in PMU measure‐
ment I63-59 (current phasor measurement at branch between
nodes 63 and 59) from t = 1.2 s to t = 1.5 s.

3) Addition of 30 standard deviations in SCADA measure‐
ment P76-118 and Q76-118 (active and reactive power flow mea‐
surements at branch between nodes 76 and 118) at t = 2 s.

4) Addition of 30 standard deviations in PMU measure‐
ment I63-59 and I49-66 from t = 2.5 s to t = 2.8 s.

5) Addition of 30 standard deviations in SCADA measure‐
ment V100 (voltage magnitude measurement at node 100) at
t = 3 s.

6) All the above errors simultaneously from t = 3.5 s to t =
4.5 s.

The MAE performance index keeps the same accuracy pat‐
tern as the previous tests, with an overall value of 3.5317×
10-5. In order to show the effect of the Parzen window up‐
date, Fig. 10 shows the largest normalized residue, initially
before any size update, and after all updates are done. Note
that in the final estimates, all normalized residues are less
than the chosen threshold, which, therefore, has a reduced in‐
fluence in the final estimates. It is noteworthy that there are
instants when the measurement noise is enough to trigger
the Parzen window update, since the noise PDFs have heavy
tailed distributions.

To illustrate the effect of the Parzen window update in the
normalized residue, Fig. 11 shows the noise characteristics
and respective normalized residue for measurement V31 with
the MCEKF.
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The gross errors as well as the heavy tailed noise from
the underlying measurement PDF are both properly sup‐
pressed by the Parzen window update strategy. This shows
that the method can sustain accurate estimates in relatively
large networks, even in the presence of a series of bad data
contaminating the measurement vector.

D. Accuracy During Structural Transitions

This section evaluates the effect of structural transitions,
i.e., abrupt changes of the topology of the system that has a
large impact on both state and measurement models. The ob‐
jective is to illustrate the state evolution concept and the
state tracking through normal and abnormal network condi‐
tions in the Brazilian interconnected system (BR107). The
network consists of 107 nodes along with a hypothetical set
of SCADA and PMU observable sets. The simulation emu‐
lates a voltage instability situation. It starts with 1 s of
steady state with random load variation of 0.5%, followed
by an increase of load at a rate of 0.5% per second. Then, a
sudden load increase of 5% in all loads occurs at t = 2.5 s.
After another 0.5 s, a contingency occurs in one of the 500
kV transmission lines that connect the south to the southeast
region. Following the contingency, the load ramp increases
to 1.0% per second, and voltage instability occurs in less
than 1 s.

Figure 12 illustrates the empirical PDF for the estimated
voltage magnitude at two substations of the system. The
MCEKF provides an accurate estimation of the state PDF
that can be used in further analysis, for instance, to calculate
probabilistic voltage stability margins in real time. Besides,
the MCEKF presents a lot of flexibility by properly choos‐
ing the Parzen window sizes, which can suppress the nega‐
tive effects of both systemic and structural transitions on the
estimation accuracy. Such flexibility motivates the further ex‐
ploration of improved tuning methods for the Parzen win‐
dows.

E. Computation Aspects

Finally, the computation aspects of the previous simula‐

tions are presented in Table III. The tests are performed us‐
ing a microcomputer with a Core i7 3.60 GHz, 16 GB RAM
with C programming language. The MCEKF shows good
convergence characteristics in the power system state estima‐
tion problem. However, the computation burden must be tak‐
en into account for real-time applications, especially when
PMUs has sampling rate up to 1 per cycle. The processing
time shown in Table III is obtained without any concern on
efficient programming and without using sparse matrix tech‐
niques or other computing efficiency resources. Therefore,
they should be regarded only as an indication of the feasibili‐
ty of the technique.

V. CONCLUSION

This paper has proposed a tracking state estimator based
on an EKF under MCEKF that deals with both SCADA and
PMU measurements. A new update strategy for Parzen win‐
dow suppresses the effect of suspect samples related to gross
errors, process noise as well as system transitions. The im‐
portance of expanding the static state estimation problem to
include the temporal aspects is emphasized in this work.

Even though many efforts have been made towards dy‐
namic models, it is clear that currently implemented static
state estimators can benefit a lot from simple modifications
that leads to the tracking model. However, special attention
must be taken for possible system transitions, such as sys‐
temic and structural transitions. This has been accomplished
in this work by treating the measurement and process noises
within a non-Gaussian kernel density estimation.

In this sense, the MCEKF outperforms the WLS snapshot,
since it is based on a state space model. It also outperforms
the conventional WLS EKF for treating non-Gaussian pro‐
cess and measurement noise. With the proposed concept of
state evolution, the state variables also gain a non-parametric
interpretation that can be further used in post-processing
evaluation of the condition of the network under a probabilis‐
tic framework.

The method still depends on a proper suspect sample de‐
tection and identification process. In this sense, future work
includes the development of feature extraction methods to
automatically trigger the Parzen window update strategy
based on a broader notion of the residual analysis with
Bayesian inference concepts. An important direction is to in‐
crease the robustness of the method by adopting the interior
point method as solver, instead of the Newton-Raphson itera‐
tion method. Finally, the model should be extended for dy‐
namic estimation, to treat generators, loads and controllers,
and evaluate detailed transient events.
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Fig. 12. Tracking state evolution PDFs for nodes 231 (minimum voltage)
and 895 (terminal from transmission line that is switched off). (a) Node
231. (b) Node 895.

TABLE III
COMPUTATION ASPECTS FOR MCEKF

Test system

IEEE 14-bus

IEEE 118-bus

BR107

Average
processing
time (ms)

31.0

360.0

313.0

Iterations with SCADA
measurement

4-5

5-7

5-7

Iterations with
PMU measurement

2-3

2-3

2-3
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