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As the biomedical literature increases exponentially, biomedical named entity recognition (BNER) has become an important task in
biomedical information extraction. In the previous studies based on deep learning, pretrained word embedding becomes an
indispensable part of the neural network models, effectively improving their performance. However, the biomedical literature
typically contains numerous polysemous and ambiguous words. Using fixed pretrained word representations is not appropriate.
Therefore, this paper adopts the pretrained embeddings from language models (ELMo) to generate dynamic word embeddings
according to context. In addition, in order to avoid the problem of insufficient training data in specific fields and introduce
richer input representations, we propose a multitask learning multichannel bidirectional gated recurrent unit (BiGRU) model.
Multiple feature representations (e.g., word-level, contextualized word-level, character-level) are, respectively, or collectively fed
into the different channels. Manual participation and feature engineering can be avoided through automatic capturing features
in BiGRU. In merge layer, multiple methods are designed to integrate the outputs of multichannel BiGRU. We combine BiGRU
with the conditional random field (CRF) to address labels’ dependence in sequence labeling. Moreover, we introduce the
auxiliary corpora with same entity types for the main corpora to be evaluated in multitask learning framework, then train our
model on these separate corpora and share parameters with each other. Our model obtains promising results on the JNLPBA
and NCBI-disease corpora, with F1-scores of 76.0% and 88.7%, respectively. The latter achieves the best performance among
reported existing feature-based models.

1. Introduction

Named entity recognition (NER) aims to identify and extract
specific entities (persons, places, organizations, and so on)
from massive unstructured text data, which becomes a pri-
mary task for information extraction, text analysis, text min-
ing, etc. Similarly, how to effectively extract and obtain
valuable information has become a serious challenge for
researchers in the biomedical field. Biomedical named entity
recognition (BNER) is an indispensable step for this above
challenge. The biomedical entities consist of genes, proteins,
diseases, drugs, chemicals, and so on.

In the past, conventional machine learning methods
were widely used for NER, such as support vector machine
(SVM), conditional random field (CRF), and maximum

entropy model (MEM). Finkel et al. [1] combined distant
resources and additional features to identify the biomedical
entities. Tsuruoka et al. [2] employed MEM to develop a
BNER system named GENIA Tagger. ABNER [3] was a
biomedical entities extraction system based on CRF. Chang
et al. [4] adopted the biomedical word embeddings as exter-
nal features to improve the performance of CRF signifi-
cantly. Liao et al. [5] adopted the Skip-Chain CRF model
to recognize entities, which effectively captured the features
of the distant context. Tang et al. [6] used a CRF model
with three different types of word representations to identify
biological entities. According to the above studies, CRF had
became the mainstream model in BNER [7]. Nevertheless,
feature engineering is an essential element of the conven-
tional machine learning methods. They must manually
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design complex templates that require not only domain
knowledge but also time-consuming.

Driven by artificial intelligence and pattern recognition,
some labor-saving and advanced technologies have been
developed in natural language processing, computer vision,
and other emerging fields [8–17]. For example, deep learning
can obviously address the expensive cost of feature engineer-
ing. The widely employed neural networks include convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), and
gated recurrent unit networks (GRUs). Yao et al. [18] first
built a multilayer neural network to obtain the biomedical
word embeddings on large-scale corpora. To extract disease
and chemical entities, Zhao et al. [19] constructed a CNN
model. In this work, BNER was seen as text classification,
and a multilabel mechanism was designed to obtain contigu-
ous labels. Zhu et al. [20] adopted a CNN structure in BNER
with n-gram local character and word embeddings. The
GRAM-CNN obtained the best performance (F1-score:
87.3) among the single-task models on the NCBI-disease cor-
pus. Li et al. [21] made connections between the twin word
embeddings and sentence vectors. Furthermore, they
adopted the bidirectional LSTM (BiLSTM) to identify bio-
medical entities and significantly improved the performance.
Limsopatham et al. [22] proposed an end-to-end model
based on BiLSTM and orthographic features. It was designed
to improve the extraction of complex biomedical terms.
SBLC was developed by Xu et al. [23] based on word embed-
dings and BiLSTM-CRF structure. Dang et al. [24] also pro-
posed the BNER model based on the BiLSTM-CRF structure
and adopted various fine-tuned linguistic embeddings. The
model showed high performance on multiple corpora. Lyu
et al. [25] adopted the BiLSTM-RNN model and combined
the biomedical word embeddings with character embeddings
to recognize entities. In addition, some studies based on mul-
titask learning and transfer learning were widely used in
BNER and had achieved competitive performance. Wang
et al. [26] jointly trained different types of entities in multiple
data sets and shared both word and character representations
among relevant entities. The multitask model achieved
promising performance on 15 biomedical corpora. Yoon
et al. [27] proposed a multitask framework termed Collab-
oNet. It connected multiple submodels trained on different
corpora. The large performance gains come from taking
turns training the target and collaborator submodels. Sachan
et al. [28] designed a pretrained BiLSTM model. They first
trained a language model of the same structure on the unla-
beled corpora and then updated the initialization parameters
of the BNER model based on transfer learning. It does not
only substantially improved the performance but also allevi-
ated the lack of high-quality labeled training data.

From the above studies, word embeddings can be seen to
have become indispensable representations. They can effec-
tively represent the semantic features of the original text
sequences. But biomedical entities’ naming rules are vague.
There are many polysemous and ambiguous words in the
biomedical literature. For example, in “This cohort under-
went follow-up for cancer incidence through the Finnish
cancer registry to the end of 1995.”, the first “cancer” means

disease and the second is an institution. In addition, it is dif-
ficult to address the lack of sufficient training samples in spe-
cific fields. These issues also result that the biomedical
entities are more complex to recognize than the general field.
Because the traditional fixed word embeddings cannot accu-
rately represent polysemous and ambiguous words in the
biomedical literature, the language models pretrained on a
large number of unlabeled open corpora have drawn more
and more attention. The contextualized word embeddings
generated by them can optimize the feature representations
of the polysemous and ambiguous words. In the general field,
Peters et al. [29] designed a feature-based language model
named ELMo, which consists of a bidirectional LSTM. This
pretrained language model achieves state-of-the-art perfor-
mance in multiple downstream tasks.

We aim to optimize the representations of polysemic
words and ambiguous words in biomedical sequences and
make the model fully capture richer features. This paper pro-
poses a multitask learning multichannel BiGRU-CRF model
with feature-based contextualized word representations.
The main contributions of this paper are as follows.

1)We propose a multichannel BiGRU-CRFmodel. Three
kinds of feature representations based on the biomedical pre-
trained dictionary, ELMo, and CNN are generated, including
word-level, contextualized word-level, and character-level
representations. These representations are separated or com-
bined as inputs simultaneously, and each set of inputs is fed
into a BiGRU-CRF model as a single channel. In merge layer,
multiple methods are designed to integrate the outputs of
multichannel BiGRU.

2) In order to address the lack of sufficient training data in
specific fields, we adopt multitask learning strategy, employing
auxiliary corpora to provide richer training samples and rele-
vant information for the main corpora to be evaluated.

3) The multitask learning multichannel BiGRU-CRF
model clearly strengthens the capability of recognizing enti-
ties without any artificial participation. It obtains the com-
petitive results on the JNLPBA and NCBI-disease corpora.

The rest of this paper is divided into the following four sec-
tions. Section 2 describes the methods. Section 3 shows the
experimental settings. Section 4 reports the evaluative results
in a detailed manner. Section 5 provides the conclusion.

2. Methods

Figure 1 shows the multitask learning multichannel BiGRU-
CRF framework. The framework is divided into five parts:
input layer, embedding layer, BiGRU, merge layer, and CRF
layer, where the input layer represents the original sentence
in corpora. First, the three feature representations are
obtained through biomedical pretrained dictionary, CNN,
and ELMo language model, respectively. Then, the multi-
channel BiGRU is used to capture features. h⃗0−6 denotes the
forward single-channel GRU, and h ⃖0−6 denotes the backward
single-channel GRU, respectively. Next, we integrate the out-
put of each channel in the merge layer. Finally, the labels are
parsed by CRF. This section describes the remaining four
parts in detail.
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2.1. Embedding Layer. To ensure the maximum coverage of
the input information, the pretrained word embeddings, con-
textualized word embeddings, and character embeddings are
used for the input layer for feature representations.

2.1.1. Pretrained Word Embedding. We represent the text
sequence with word embeddings. They map words to dense
vectors according to semantic relevance. The word embed-
ding method addresses the lack of curse of dimensionality
compared with the conventional one-hot method. With the
development of natural language processing, word embed-
dings have become the most important input feature repre-
sentations. The widely adopted word embedding computing
tools include Word2Vec [30] and GloVe [31].

Previous biomedical studies have provided related open
source word embeddings pretrained on large-scale unlabeled
corpora. We initialize the word embeddings by a “look up”
operation. Inspired by Quan et al. [32], this paper adopts
the word embeddings pretrained on PMC and PubMed bio-
medical corpora.

2.1.2. Contextualized Word Embedding. This paper directly
transfers the pretrained ELMo language model proposed by
Peters et al. [29] to obtain the contextualized word embed-
dings. The main motivation is that the contextualized word
representations should be able to contain rich syntactic and
semantic information. The conventional word embeddings
(e.g., word2vec) are context-independent, and ELMo can
generate dynamic word embeddings based on context. We
adopt the 2-layer ELMo to obtain the contextualized word

representations as part of the multichannel BiGRU-CRF
model’s input, which is shown in Figure 2. ELMo consists
of a bidirectional LSTM language model. The objective func-
tion is to compute the maximum likelihood of the two sub-
models. For k − th word, a set of contextualized word repre-
sentations can be computed by ELMo as follows:

ELMok = 〠
L

j=0
whLMk,j

Rk = xLMk , hLMk,j
⃗, hLMk,j

⃖n o
, j = 1,⋯,Lf g

Rk = hLMk,j
n o

, j = 0,⋯,Lf g

ð1Þ

where xLMk denotes the original embeddings layer. hLMk,j
⃗

and hLMk,j
⃖
denote the forward and backward LSTM layer,

respectively. w denotes the softmax-normalized weights,
and L denotes the number of layers. ELMo generates word
representations based on the above formula, which is sum-
ming each hidden state of the bidirectional language model.
They can be directly concatenated with other feature inputs.
The contextualized word embeddings not only reflect the
complex semantics and grammar features but also accurately
adapt to different contexts.

2.1.3. Character Embedding. Character representations refer
to morphological information by capturing it from all char-
acters that make up a word. Combining them with other
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Figure 1: Multichannel BiGRU-CRF architecture. It consists of 5 parts: input layer, embedding layer, BiGRU, merge layer, and CRF layer.
The red, green, and blue lines, respectively, represent the channels after the concatenate operation of two representations, and the yellow
line represents the channel after the concatenate operation of all three representations. H0-6, respectively, denotes the bidirectional single-
channel GRU. Each channel is independent, which avoids information redundancy.
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feature representations can better describe the morphological
features of a word [33, 34]. Previous studies have shown the
effectiveness of character representations in NER. This paper
adopts CNN to compute the character vectors of words in
biomedical sequences. The structure of CNN is shown in
Figure 3, including the original character embeddings by ran-
dom initialization, convolutional layer, and pooling layer.
First, the words’ embeddings matrix consists of each charac-
ter embeddings. A padding operation for words of different
lengths is performed. Then, the local features of the initial-
ized character embeddings matrix are captured by a convolu-
tion operation. Finally, the character representations are
obtained by performing a max-pooling operation.

2.2. Multichannel BiGRU. Recently, to solve the gradient
explosion or gradient disappearance, a variety of improved
models based on RNN have been proposed, such as LSTM
[35] and GRU [36–38]. They capture distant information
and address the gradient disappearance or gradient explosion
by designing the memory units and gate mechanisms. There-

fore, the above improved models have become the major
option for sequence labeling such as BNER. The difference
between LSTM and GRU is the structure of gate mechanisms.
GRU maintains the performance of LSTM while making the
gate structures simpler [39, 40]. Because we need to train
multiple identical networks at the same time, this paper
adopts GRU with lower computational complexity. Figure 4
shows the GRU units. The relevant formulas are as follows.

zt = σ Wz ht−1, xt½ �ð Þ
rt = σ Wr ht−1, xt½ �ð Þ

ht
~ = tanh W rt ∗ ht−1, xt½ �ð Þ

ht = 1 − ztð Þ ∗ ht−1 + zt ∗ ht
~

ð2Þ

where σ denotes the sigmod function. zt and rt denote
the update and reset gate. xt denotes the feature vectors. W
denotes the weights of the gate mechanism. ht

~ denotes the
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Figure 2: The framework of ELMo.

Padding P R O T E I N Padding

Character
embeddings

Convolution

Max-pooling

Character
representation

Figure 3: The CNN model framework.
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current state. tanh denotes the hyperbolic tangent function.
ht denotes the final output.

However, GRU only considers the forward information
of texts and ignores the backward information, which also
contains important features. The bidirectional GRU is
employed in our model because of this issue. The BiGRU
model captures different bidirectional feature representations
in each sequence. Then, it obtains the complete representa-
tions by connecting them. BiGRU can capture the bidirec-
tional representations and hidden features. In our model,
we propose a multichannel BiGRU to obtain the richer repre-
sentations. The multichannel mechanism aims to feed differ-
ent kinds of input representations into corresponding
multiple independent and same network structures. Each
channel uses a separate BiGRU to capture features, which
does not cause interference between the channels and can
extract information more adequately. A total of 7 channels
are designed to capture features of different representations,
as follows.

(1) 1st channel: pretrained word embeddings ⊕ contex-
tualized word embeddings ⊕ character embeddings

(2) 2nd channel: pretrained word embeddings

(3) 3rd channel: pretrained word embeddings ⊕ charac-
ter embeddings

(4) 4th channel: character embeddings

(5) 5th channel: contextualized word embeddings ⊕
character embeddings

(6) 6th channel: contextualized word embeddings

(7) 7th channel: pretrained word embeddings ⊕ charac-
ter embeddings

where ⊕ denotes the concatenate operation.

2.3. Merge Layer. The purpose of using the merge layer is to
integrate the outputs of multiple channels from BiGRU. A
good merge scheme can effectively integrate the potential

valuable information in multichannel BiGRU. As shown in
Figure 1, the multichannel BiGRU is adopted to capture fea-
tures from different representations. Let H ′ denotes the mul-
tichannel BiGRU’s output. For a given text sequence
S = fs1, s2,⋯,smg, m denotes the length of the sequence, and
u denotes the number of BiGRU units. We design four merge
methods: addition, connection, unit-level attention, and
channel-level attention.

1) Addition. This method additively integrates the output
of each channel, and each single BiGRU does not interfere
with others when capturing features. It can be obtained as
follows:

Hi = hi
⃗ ⊕ hi

⃖
h i

H ′ =Hw +He +Hc +Hwe +Hwc +Hec +Hwec

ð3Þ

where + denotes element-wise addition, H ′ ∈m × u. Hi
denotes the single-channel BiGRU’s output, w, e, and c,
respectively, denote the pretrained word embeddings, the
contextualized word embeddings from ELMo, and the char-
acter embeddings from CNN.

2) Connection. This method directly performs the con-
catenate operation on the single-channel BiGRU’s output. It
can be obtained as follows:

Hi = hi
⃗ ⊕ hi

⃖
h i

H ′ =Hw ⊕He ⊕Hc ⊕Hwe ⊕Hwc ⊕Hec ⊕Hwec

ð4Þ

where ⊕ denotes the concatenate operation, H ′ ∈m × 7u. w,
e, and c, respectively, denote the 3 different embeddings.

3) Unit-level attention. This method adopts the multi-
head self-attention mechanism to redistribute the weights
of units in BiGRU. It can be obtained as follows:

Hi = hi
⃗ ⊕ hi

⃖
h i

α = Sof tmax
QKTffiffiffi

u
p

� �

headi =〠
m

αV

MH Q, K , Vð Þi = head1 ⊕⋯ ⊕ headHð Þ

H ′ = 〠
n

i=1
MHi

ð5Þ

where ⊕ denotes the concatenate operation. Hi denotes the
single-channel BiGRU’s output, Q, K , V ∈m × ðu/HÞ, MHi

∈m × u, H ′ ∈m × u.
4) Channel-level attention. This method first connects

the feature representations of all channels, then computes
the weights of each channel and finally integrates them. It
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Figure 4: The unit of GRU.
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can be obtained as follows:

Hi = hi
⃗ ⊕ hi

⃖
h i

H =Hw ⊕He ⊕Hc ⊕Hwe ⊕Hwc ⊕Hec ⊕Hwec

αi =
exp eið Þ

∑n
k=1exp ekð Þ

ei = tanh WTH + b
� �

H ′ =H ⊗ αi

ð6Þ

where ⊗ denotes matrix multiplication, H ∈m × u × 7, H ′
∈m × u.

2.4. CRF Layer. After the representations information is out-
put by BiGRU, the conventional decision function computes
the prediction labels Y . However, the output sequence labels
have strong dependence in BNER. For example, in the BIO
labeling scheme, the previous label of “B-disease” cannot be
“I-disease”. The conventional decision function is insufficient
to address the above issue effectively.

In our model, CRF [41] is employed after the merge layer;
hence, the dependence between the output labels can be
effectively considered. For sentence X = fx1, x2,⋯,xmg, it is
input into BiGRU. P denotes the probability which is output
from merge lager, P ∈m × n. m denotes the sequences, and n
denotes the labels. pij denotes the j − th label probability of
the i − th token. Y denotes the prediction labels, where Y =
fy1, y2,⋯,ymg. Its probability can be obtained as:

P X, Yð Þ = 〠
m

i=0
Fyi ,yi+1 + 〠

m

i=1
Pi,yi ð7Þ

where F denotes the transfer matrix. Fyi ,yi+1 denotes the tran-
sition probability from yi to yi+1. The probability of all pre-
diction labels Y by decision function can be computed as
follows:

P Y ∣ Xð Þ = expP X,Yð Þ

∑Y~∈YX
expP X,Y~ð Þ ð8Þ

Y~ denotes the truth labels.
The likelihood function is:

log P Y ∣ Xð Þð Þ = P X, Yð Þ − log 〠
Y~∈YX

expP X,Y~ð Þ
0
@

1
A ð9Þ

YX denotes all legal label sequences. The final prediction label
sequence with the maximum probability can be gained as fol-
lows:

Y∗ = argmaxY~∈YX
P X, Y~ð Þ ð10Þ

2.5. Multitask Learning. In order to provide more training
data and value information for our model, we adopt the mul-

titask learning strategy. The basic idea of multitask learning is
to learn multiple tasks at the same time and use related infor-
mation between tasks to improve model performance. The
neural network-based multitask learning method mainly
adopts a parameter sharing learning mode to learn a shared
representation for multiple tasks. In this paper, we introduce
two auxiliary corpora with the same entity types for the main
corpora to be evaluated, then train the multichannel BiGRU-
CRF model on these separate corpora and share parameters
with each other.

Given a set of training corpus n, n ∈ f1,⋯, ng. Xi and Yi
represent the samples and corresponding prediction labels in
each corpus, respectively. The loss function L of the model
based on multitask learning is as follows:

L= 〠
n

i=1
αiLi

= 〠
n

i=1
αi log P Yi ∣ Xið Þð Þ

= 〠
n

i=1
αi P Xi, Yið Þ − log 〠

Yi
~∈YX

expP Xi ,Yi
~ð Þ

0
@

1
A

0
@

1
A

ð11Þ

where αi is a hyperparameter that reflects the weight of each
corpus. It represents the contribution and importance of all
participating corpora in the whole. When we can obtain that
α is 1 through a large number of experiments, that is, when
weights are not distinguished, the model reaches the highest
performance, which is also consistent with the conclusion of
Wang et al. [26].

This paper adopts the fully-shared mode, which means
that all parameters of the model are completely shared except
that a corresponding output layer is set for each corpus. We
provide an auxiliary corpus for the main corpus. The fully
shared multichannel BiGRU can capture shared feature rep-
resentations for multiple corpora, which are fed into their
respective output layers to generate prediction sequences.

3. Experimental Settings

In this section, the experimental settings are reported clearly,
including optimizer and regularization, hyperparameters,
corpora, and evaluation measures.

3.1. Optimizer and Regularization. Adam [42] (Adaptive
Moment Estimation) is adopted as the optimizer of our
model during training. It is an adaptive optimization method
that dynamically updates the learning rate by computing the
gradient’s 1st moment estimate and 2nd moment estimate.
Each adjusted learning rate is limited to a clear range, which
ensures that the parameters are steadily updated.

We use dropout during model training to prevent overfit-
ting. Dropout [43] is designed to randomly filter some hid-
den layer nodes according to the preset dropout rate so that
they do not participate in the back propagation to update
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parameters. The above operations can effectively prevent
overfitting. They make the model more generalized.

3.2. Hyperparameters. Table 1 reports the experimental
hyperparameter settings. The dimension based on the pre-
trained word embeddings, character embeddings, and con-
textualized word embeddings is set to 200, 30, and 1024,
respectively. We adopt the Adam to optimize our model dur-
ing training. The dimension of GRU units is 100, and the
dropout rate is 0.5. We set learning rate as 0.001, and the
batch size is 32. In this paper, BIO labeling schema is
employed to preprocess the original samples. B denotes the
first token of entities in samples. I denotes the token located
in entities. O denotes a token not belonging to entities.

3.3. Corpora. JNLPBA [44] and NCBI-disease [45] are our
experimental main corpora. They are representative biomed-
ical corpora of both multi and single classification. JNLPBA
contains 5 types of entity: DNA, RNA, cell type, cell line,
and protein. Training sets contain 2000 Medline abstracts,
and test sets contain 404 Medline abstracts. The NCBI-
disease corpus consists of 793 Medline abstracts, of which
593, 100, and 100, are used as training set, development set,
and test set, respectively. It labels the disease name and the
corresponding disease concept ID (the concept ID can be
mapped to the ID in the MeSH or OMIM database). In addi-
tion, in the multitask learning framework, we use two other
corpora as auxiliary data sets, namely BC2GM [46] and
BC5CDR-disease [47]; the entity types contained in these
two corpora are consistent with the main corpora. Table 2
provides the details of the above corpora.

3.4. EvaluationMeasures. To evaluate the performance of our
method, we adopt three conventional evaluation measures:
precision (P), recall (R), and F1-score (F1). The calculation
formulas are as follows:

P = TP
TP + FP

R = TP
TP + FN

F1 = 2 ∗ P ∗ R
P + R

ð12Þ

where TP denotes the number of true positive samples. TN
denotes the number of true negative samples. FP denotes
the number of false-positive samples. FN denotes the num-
ber of false-negative samples.

4. Results and Discussions

The described multitask learning multichannel BiGRU-CRF
model is evaluated on NCBI-disease and JNLPBA. They are
representative biomedical corpora of both single and multi-
classification. We first compare the performance of each
merge method and feature representations, as shown in
Tables 3 and 4. Then, we evaluate the setting of hyperpara-
meter values including the GRU dimension, optimizers,
and dropout, as shown in Tables 5, 6, and 7. From Table 8,

the effect of the CRF layer in our architecture is shown by
an experiment. From Table 9, the effect of the multitask
learning strategy is shown by an experiment. Lastly, the
experiment compares the performance of multichannel
BiGRU with some existing feature-based methods in BNER.

4.1. Performance Comparison of Merge Methods. The merge
methods affect the performance of capturing features. In
the merge layer, inappropriate feature representations inte-
gration methods can result in information repetition and
redundancy. It will have a negative impact on integrating
information. Therefore, we evaluate the performance of dif-
ferent designing merge methods: addition, connection,
unit-level attention, and channel-level attention. From
Table 3, when the unit-level attention method is adopted,
the model obtains the highest F1-Score. The probable reason
is that the unit-level attention method can fully integrate the
important features captured by each channel and do not
interfere with each other; thus, we use the unit-level attention
method in the merge layer.

4.2. Performance Comparison of each Representations. This
paper proposes a multichannel BiGRU-CRF model to cap-
ture richer feature information by sending multiple represen-
tations individually or collectively into BiGRU. We evaluate
the performance of each channel based on different represen-
tations while verifying the effectiveness of our multichannel
method. The experimental results are shown in Table 4. It
can be seen that the multichannel representations can pro-
vide richer potential information, and the concatenate repre-
sentations are superior to the single representations. In
summary, we compare the performance between each repre-
sentation on the same corpus. Our merge-based multiple
representations method achieves optimal performance, with
the F1-scores of 76.0 and 88.7 on the JNLPBA and NCBI-
disease corpora, respectively.

4.3. Performance Comparison of GRU Units Dimensions.
GRU units’ dimensions affect the ability of learning features
and the performance of the classifier. Too few hidden units
can result in insufficient capture features. Conversely, it
may lead to information redundancy and increase the

Table 1: Experimental parameter settings.

Hyperparameter Value

Word dim 200

Char dim 30

ELMo dim 1024

GRU dim 100

Head 8

αi 1

Dropout rate 0.5

Initial learning rate 0.001

Optimizer Adam

Batch size 32

Labeling schema BIO
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computational burden. Both of them will have a negative
impact on model performance. Therefore, we evaluate the
performance of different neuron dimensions to obtain the
best hyperparameters. We set the size of GRU units to be
50, 100, 150, 200 and evaluate them. As the results show in
Table 5, when the dimensions are 100, it achieves the best
performance. Therefore, the GRU units’ dimensions are set
to 100.

4.4. Performance Comparison of Combining CRF Layer. The
CRF layer can capture the dependence between adjacent
labels by transition probability. This paper evaluates the
effectiveness of the CRF layer. The experimental results are
shown in Table 8. After combining BiGRU with the CRF
layer, the model performance has been significantly

Table 2: Introduction to experimental corpora.

Main Entity types and counts Size

NCBI-disease Disease (6881) 793

JNLPBA Gene/proteins (35336); cell line (4330); cell type (8649); DNA(10589); RNA(1069) 2404

Auxiliary Entity types and counts Size

BC5CDR-disease Disease (12852) 1500

BC2GM Gene/proteins (24583) 20000

Table 3: Performance comparison of the different merge methods.

Merge methods
JNLPBA NCBI-disease

Precision Recall F1-score Precision Recall F1-score

Addition 72.9 78.8 75.7 87.4 88.6 88.0

Connection 71.1 78.3 74.5 85.3 89.2 87.2

Unit-level attention 72.6 79.6 76.0 88.2 89.2 88.7

Channel-level attention 72.1 78.6 75.2 86.6 88.7 87.6

Table 4: Performance comparison of each representations.

JNLPBA Precision Recall F1-score Δ NCBI-disease Precision Recall F1-score Δ
Ours 72.6 79.6 76.0 — Ours 88.2 89.2 88.7 —

ELMo 69.8 76.8 73.1 2.9 ELMo 83.8 85.4 84.6 4.1

Char 66.9 71.9 69.3 6.7 Char 83.7 80.6 82.1 6.6

Word 69.9 75.5 72.6 3.4 Word 84.2 80.9 82.5 6.2

ELMo+Char 71.5 76.4 73.8 2.2 ELMo+Char 86.0 85.5 85.7 3.0

Word+Char 68.9 77.6 73.0 3.0 Word+Char 84.2 85.1 84.7 4.0

Word+ELMo 70.1 77.5 73.6 2.4 Word+ELMo 84.5 86.0 85.3 3.4

Word+ELMo+Char 71.4 77.8 74.4 1.6 Word+ELMo+Char 87.2 85.9 86.6 2.1

Table 5: Performance comparison of GRU units’ dimensions.

GRU JNLPBA Precision Recall F1-score NCBI-disease Precision Recall F1-score

Dimensions

50 70.7 77.5 73.9 50 87.0 87.5 87.2

100 72.6 79.6 76.0 100 88.2 89.2 88.7

150 70.3 77.3 73.6 150 88.1 85.7 86.9

200 71.1 76.3 73.6 200 85.1 86.9 86.0

Table 6: Performance comparison of different optimization
methods.

Precision Recall F1-score

JNLPBA

SGD 64.9 73.7 68.9

AdaGrad 72.0 75.0 73.4

Adam 72.6 79.6 76.0

NCBI-disease

SGD 77.5 79.8 78.6

AdaGrad 85.4 86.5 85.9

Adam 88.2 89.2 88.7
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improved on the JNLPBA and NCBI-disease corpora. It
proves the validity of the CRF layer.

4.5. Performance Comparison of Adopting Multitask
Learning. From the Table 9, the multitask learning strategy
we adopted is effective. The auxiliary corpora provide more
training samples and valuable information for the main cor-
pora. According to the analysis of main corpora evaluation
results, the multitask learning framework makes the per-
formance improvement of JNLPBA less obvious than
NCBI-disease. The possible reason is that the entity type of
NCBI-disease is completely consistent with the auxiliary cor-
pus BC5CDR-disease. The auxiliary corpus BC2GM contains
only “protein”, the training samples and relevant informa-

tion of the other four entity types in the main corpus
JNLPBA have not been supplemented.

4.6. Performance Comparison of Optimization Methods. The
optimization method determines the convergence speed
and performance of the model training process. This paper
evaluates three different optimization methods: Adam,
SGD, and AdaGrad. SGD is one of the commonly used opti-
mizers during training. It randomly extracts fixed-size train-
ing samples to calculate gradients and update parameters.
But it may lead to convergence to a local minimum. Com-
pared to SGD, AdaGrad does not rely on a preset learning
rate, but adaptively adjusts it during training. It is well suited
to handle sparse data but may cause a vanishing gradient.
The experimental results are shown in Table 6. Compared
with the other two optimization methods, Adam achieves
the fastest convergence speed and highest performance
under the same conditions. Therefore, this paper uses Adam
as the optimizer.

4.7. Performance Comparison of Using Dropout. This paper
evaluates the effectiveness of dropout. The experimental
results are shown in Table 7. After setting the dropout rate,
the model performance has been significantly improved on
the JNLPBA and NCBI-disease corpora. It demonstrates the
validity of dropout.

4.8. Performance Comparison with Existing Feature-Based
Methods. Lastly, we draw a comparison between our model
and existing models. In order to ensure the fairness and ratio-
nality of the experiment, we have divided the existing models
into two kinds according to the different training patterns.
One kind is feature-based, which applies specific input repre-
sentations to task-specific different architectures, such as the
approaches listed in Table 10; while another kind is fine-tun-
ing, which trains various downstream tasks with fine-tuning
parameters in fixed model architectures, such as BERT [55].
This paper reports the performance comparison with exist-
ing models of feature-based representations.

The performance comparison results on the JNLPBA
corpus are shown on the left side of Table 10. In these studies,
the early methods (dictionary based and rule based) and the
conventional machine learning models also obtained reason-
able results in BNER, including Finkel et al. [1], Settles [3],
Tsuruoka et al. [2], Tang et al. [6], Chang et al. [4], and Liao
et al. [5]. NERBio [53] was the best rule-based system on a
JNLPBA corpus, and the F1-score is 73.0. The Skip-Chain
CRF adopted by Liao et al. [5] was the state-of-the-art con-
ventional machine learning model. It obtained a reasonable
F1-score of 73.2. Compared with the above best early method
and conventional machine learning method, our model has
increased F1-score values by 3.0 and 2.8, respectively. We
can produce these results without any feature engineering
but simple architecture. Compared with existing deep learn-
ing studies, the performance of our model is better than Li
et al. [33]. They proposed a CNN-BLSTM-CRF model with
word embeddings and character embeddings. Our model
has increased the recall and F1-score by 9.7 and 1.6, respec-
tively. Gridach et al. [54] proposed a BiLSTM-CRF model

Table 7: Performance comparison of using dropout.

Precision Recall F1-score

JNLPBA

No 73.5 72.9 73.2

Yes 72.6 79.6 76.0

Δ -0.9 +6.7 +2.8

NCBI-disease

No 86.9 84.8 85.9

Yes 88.2 89.2 88.7

Δ +1.3 +4.4 +2.8

Table 8: Performance comparison of model with and without CRF
layer.

Precision Recall F1-score

JNLPBA

BiGRU 70.8 73.7 72.3

BiGRU-CRF 72.6 79.6 76.0

Δ +1.8 +5.9 +3.7

NCBI-disease

BiGRU 82.4 86.7 84.5

BiGRU-CRF 88.2 89.2 88.7

Δ +5.8 +2.5 +4.2

Table 9: Performance comparison of adopting multitask learning.

Precision Recall F1-score

JNLPBA

Single-task 71.8 79.7 75.6

Multi-task 72.6 79.6 76.0

Δ +0.8 -0.1 +0.4

NCBI-disease

Single-task 87.2 88.6 87.9

Multi-task 88.2 89.2 88.7

Δ +1.0 +0.6 +0.8
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with pretrained word embeddings and character embed-
dings. They computed the character vectors by a bidirec-
tional LSTM. This model significantly enhanced the best
performance of single-task BNER models. The performance
of our model is close to theirs. In summary, our method
obtains promising results compared with existing feature-
based models under the premise of using merge-based multi-
ple features and simple architecture.

The performance comparison on the NCBI-disease cor-
pus is shown in Table 10 (right side). In these studies, Lea-
man et al. [45, 49, 50] first adopted conventional machine
learning methods to obtain competitive performance on the
NCBI-disease dataset. They developed multiple BNER sys-
tems (e.g., DNorm and TaggerOne) in subsequent studies.
The recent deep learning methods achieved satisfactory
results in BNER. In addition to some of the related works
described in the first section, including Limsopatham et al.
[22], Dang et al. [24], Zhao et al. [19], Wang et al. [26], Xu
et al. [23], Yoon et al. [27], Zhu et al. [20], and Sachan et al.
[28], Xu et al. [48] proposed a three-layer neural network
to identify disease entities. The BiLSTM with the same struc-
ture was used to generate character-level embeddings and
capturing features. The entity labels were predicted through
the CRF layer. Wei et al. [51] designed a hybrid model com-
bining the conventional machine learning methods with neu-
ral networks, and bidirectional RNN and CRF were employed
as submodels to extract features. Then, the output was merged
and fed into SVM for classification. Habibi et al. [52]
achieved reasonable performance on multiple biomedical
datasets based on word embedding and a LSTM-CRF model.
GRAM-CNN [20] was the best single-task system which was
developed by CNN on the NCBI-disease corpus. It obtained
an F1-score of 87.3. BiLM-NER [28] was the best feature-
based model and was developed by the transfer learning
method; the F1-score was 87.3. However, our model’s perfor-
mance is better than the above state-of-the-art work. Our

model obtains the best performance among reported existing
feature-based models.

4.9. Error Analysis. We analyze the error cases of the model
on our corpora and summarized the main causes of these
errors into the following two points.

The boundary is blurred. There are 3 main reasons for this
error. First, biomedical entities are generally long and com-
plex. For example, “Kappa B-specific DNA binding proteins”
contains five words as the entity, and the length of entities in
the general field is usually within three words. In addition, it
contains the word “DNA”, and the entity itself is “protein”.
Second, the virtual words and conjunctions within biomedical
entities influence the judgment of the boundary. For example,
there may be fixed-use conjunctions in biomedical entities, but
they are often misjudged as “O”. Finally, an entity in biomed-
ical corpora is part of another entity, but they belong to two
types. For example, “MZF-1” is part of “Recombinant MZF-
1”, but they belong to “DNA” and “protein”. To a certain
extent, these above issues are plaguing our model.

Corpora annotation inconsistency. For example, “wild-
type” is labeled as “O” in “gave nearly wild-type levels of gene
expression in phorbol ester-treated Jurkat cells but not in
phorbol ester-treated HeLa or U937 cells.”, but in “as a wild-
type but not a mutant TSAP-binding site of the sea urchin
functions only in transfected B cells as an upstream promoter
element.”, it is labeled as “DNA”. In addition, there are abbre-
viations of entities in some biomedical sequences, and our
model is difficult to identify. For example, “IL-2” in “Under
the same conditions, Lck did not stimulate IL-2 promoter
unless it was activated by mutation” and “Interleukin-2” in
“The proteasome regulates receptor-mediated endocytosis of
interleukin-2” refer to the same entity, but our model has dif-
ficulty to distinguish them.

These analyses demonstrate that the complexity and
annotation inconsistency of biomedical corpora are major

Table 10: Performance comparison with existing feature-based methods.

Methods
JNLPBA

Methods
NCBI-disease

Type P R F1 Type P R F1
Finkel et al. [1] S 71.6 68.6 70.1 Xu et al. [48] S 84.8 76.1 80.2

Settles [3] S 69.1 72.0 70.5 Leaman et al. [49] S 82.8 81.9 80.9

Yao et al. [18] S 64.9 76.1 71.0 Dogan et al. [45] S 83.8 80.0 81.8

Tsuruoka et al. [2] S 67.5 75.8 71.4 Leaman et al. [50] S 85.1 80.8 82.9

Tang et al. [6] S 70.8 72.0 71.4 Limsopatham et al. [22] S 86.7 81.9 84.3

Chang et al. [4] S — — 71.9 Wei et al. [51] S 85.3 83.3 84.3

Zhu et al. [20] S — — 72.6 Dang et al. [24] S 85.0 83.8 84.4

Li et al. [21] S 74.8 70.9 72.8 Habibi et al. [52] S 86.4 82.9 84.6

Tsai et al. [53] S 72.0 74.0 73.0 Zhao et al. [19] S 85.1 85.3 85.2

Liao et al. [5] S 72.8 73.6 73.2 Wang et al. [26] M 85.9 86.4 86.1

Wang et al. [26] M 70.9 76.3 73.5 Xu et al. [23] S 86.6 85.8 86.2

Lyu et al. [25] S 71.2 76.5 73.8 Yoon et al. [27] M 85.5 87.3 86.4

Li et al. [33] S 79.6 69.9 74.4 Zhu et al. [20] S 86.5 88.1 87.3

Gridach et al. [54] S 74.1 77.7 75.8 Sachan et al. [28] T 86.4 88.3 87.3

Ours M 72.6 79.6 76.0 Ours M 88.2 89.2 88.7

∗“S” denotes the single-task model. “M” denotes the multitask model. “T” denotes the model based on transfer learning.
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factors that result in errors. To address these issues, we can
disambiguate through entity linking during corpora prepro-
cessing or adopt more external representations.

5. Conclusion

In this paper, we propose a multitask learning multichannel
BiGRU-CRF model based on contextualized word represen-
tations. First, we obtain word, character, and contextualized
word representations through a biomedical pretrained dictio-
nary, convolutional neural networks, and ELMo pretrained
language model, respectively. The character representations
can describe themorphological features of words, and the con-
textualized word representations can better represent both
polysemous and ambiguous words according to the context
information. Then, we train multiple BiGRU submodels at
the same time, each of which is viewed as a channel. The three
representations are used as input for different channels,
respectively, or in combination. Next, we design multiple
methods to integrate the output of each channel in the merge
layer. Finally, considering the dependence between labels, the
CRF layer is adopted to parse sequence labels. It avoids out-
putting non-compliant label sequences. In addition, multitask
learning strategy is adopted to solve the problem of insufficient
training samples in specific fields. The auxiliary corpora with
the same entity types are applied to supplement more training
samples and relevant information for the main corpora to be
evaluated. Our model has a simple architecture and avoids fea-
ture engineering. The multitask learning multichannel
BiGRU-CRF achieves promising results on JNLPBA and
NCBI-disease corpora, with F1-scores of 76.0 and 88.7, respec-
tively. In the future, we plan to introducemore abundant addi-
tional features (e.g., domain knowledge base, structured
ontology) to enhance the performance.
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