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ABSTRACT This two-part paper aims to provide a comprehensive survey on how emerging technologies,
e.g., wireless and networking, artificial intelligence (AI) can enable, encourage, and even enforce social
distancing practice. In Part I [1], an extensive background of social distancing is provided, and enabling
wireless technologies are thoroughly surveyed. In this Part II, emerging technologies such as machine
learning, computer vision, thermal, ultrasound, etc., are introduced. These technologies open many new
solutions and directions to deal with problems in social distancing, e.g., symptom prediction, detection and
monitoring quarantined people, and contact tracing. Finally, we discuss open issues and challenges (e.g.,
privacy-preserving, scheduling, and incentive mechanisms) in implementing social distancing in practice.
As an example, instead of reacting with ad-hoc responses to COVID-19-like pandemics in the future, smart
infrastructures (e.g., next-generation wireless systems like 6G, smart home/building, smart city, intelligent
transportation systems) should incorporate a pandemic mode in their standard architectures/designs.

INDEX TERMS Social distancing, pandemic, COVID-19, wireless, networking, positioning systems, AL,
machine learning, data analytics, localization, privacy-preserving, scheduling, and incentive mechanism.

I. INTRODUCTION measures such as travel restrictions, border control, pub-
lic places closures, and quarantines. Nevertheless, the im-
plementation of such aggressive and large-scale measures
is facing significant challenges such as negative economic
impacts, personal rights violation, difficulties in changing
people’s behavior, and the difficulties arisen when there are
many people staying at home. In such context, emerging
technologies such as Artificial Intelligence (Al) can play a
key role in addressing those challenges.

In the presence of contagious diseases such as the current
COVID-19 pandemic, social distancing is an effective non-
pharmaceutical approach to limit the disease transmission.
By reducing the frequency and closeness of human physical
contacts, social distancing can lower the probability of the
disease transmission from an infected person to a healthy
one, thereby significantly limiting the disease’s spread and
severity. During the ongoing COVID-19 pandemic, many
governments have implemented various social distancing In this two-part paper, we present a comprehensive survey
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of enabling and emerging technologies for social distanc-
ing. In Part I [1], we provide a comprehensive background
on social distancing and how wireless technologies can be
leveraged to enable, encourage, and enforce proper social
distancing implementation. In this Part I, we discuss various
emerging technologies, e.g., Al, thermal, computer vision,
ultrasound, and visible light, which have been introduced
recently in order to address many new issues related to
social distancing, e.g., contact tracing, quarantined people
detection and monitoring, and symptom prediction. For each
technology, we have provided an overview, examined the
state-of-the-art, and discussed how it can be utilized in dif-
ferent social distancing scenarios as illustrated in Fig. 1.
Finally, some important open issues and challenges (e.g.,
privacy-preserving, scheduling, and incentive mechanisms)
of implementing technologies for social distancing will be
discussed. Furthermore, potential solutions together with fu-
ture research directions are also highlighted and addressed.

As illustrated in Fig. 2, the rest of this paper is organized
as follows. We first discuss emerging technologies for social
distancing in Section II. After that, we discuss open issues
and future research directions of technology-enabled social
distancing in Section III, and conclusions are given in Sec-
tion I'V.

Il. EMERGING TECHNOLOGIES FOR SOCIAL
DISTANCING

In addition to the wireless technologies, emerging technolo-
gies such as Al, computer vision, ultrasound, inertial sen-
sors, visible lights, and thermal also can all contribute to
facilitating social distancing. In this section, we categorize
those technologies into sensing intelligence and machine
intelligence technologies, provide a brief overview of each
technology, and discuss how they can be applied for different
social distancing scenarios.

A. SENSING INTELLIGENCE
1) Ultrasound

The ultrasound or ultrasonic positioning system (UPS) is
usually used in the indoor environment with the accuracy
of centimeters [6]. The system includes ultrasonic beacons
(UBs) as tags or nodes attached to users and transceivers.
Beacon units broadcast periodically ultrasonic pulses and
radio frequency (RF) messages simultaneously with their
unique ID numbers. Based on these pulses and messages, the
receiver’s position can be determined by position calculation
methods such as trilateration or triangulation [7]. In com-
parison with other RF-based ranging methods, the UPS does
not require a line of sight between the transmitter and the
receiver, and it also does not interfere with electromagnetic
waves. However, since the propagation of the ultrasound
wave is limited, most UPS applications for social distancing
are only limited within the indoor environment.

a: Keeping distance

For this purpose, UPS can be used to position and notify
people. One of the first well known UPS systems is Active
Bat (AB) [8] based on the time-of-flight of the ultrasonic
pulse. Typically, an AB system consists of an ultrasonic
receiver matrix located on the ceiling or wall, a transmitter
attached to each target, and a centralized computation system
to calculate the objects’ positions. As presented in [8], by
using a receiver matrix with 16 sensors, the AB system can
achieve very high positioning accuracy, i.e., less than 14
centimeters. However, a limitation of this system is its high
complexity, especially if a large number of ultrasonic sensors
are deployed.

Another limitation of the AB system is the privacy risk
for users since the location of users under the AB system is
calculated at the central server. To address that, the Cricket
(CK) system is proposed in [9] wherein the position calcu-
lation is executed at the receivers. Specifically, a receiver
in the CK system passively receives RF and ultrasound
signals from UBs located on the wall or ceiling, and then the
receiver calculates its position by itself based on UBs’ ID and
coordinates. Since the receivers do not transmit any signals,
the privacy of users will not be compromised. Fig. 3 demon-
strates the two systems in the keeping distance application.

b: Real-time monitoring

In the context of social distancing, UPS can be an effective
solution for real-time monitoring scenarios, especially gaug-
ing the number of people in public buildings. In particular,
the main characteristic that makes UPS different from other
positioning technologies is confinement, i.e., the ultrasound
signal is confined within the same room as the UBs [7].
Among the other positioning technologies, only infrared
technology shares the same characteristic. Nevertheless, in-
frared signals are prone to interference from sunlight and
other thermal sources, and they also suffer from line-of-
sight loss [7]. As a result, ultrasound is the most efficient
technology for binary positioning [7], i.e., determine if the
object is in the same room as the UBs or not. Thus, UPS
can be particularly useful in the social distancing scenarios
where the exact positions of people are not as necessary
as the number of people inside a room (e.g., to limit the
number of people). This technology is more efficient because
it needs a few reference nodes (e.g., UBs) to determine the
binary positions of people, which can significantly reduce
implementation costs.

c: Automation

Ultrasound can also be applied in the social distancing sce-
narios that utilize medical robots or UAV. Mobile robots,
especially medical robots, can play a key role in reduc-
ing the physical contact rates between the healthcare staff
(e.g., doctors and nurses) and the patients inside a hospital,
thereby maintaining a suitable social distancing level. In
such scenarios, UPS can help to improve the navigation of
medical robots. In [11], a navigation system based on Wi-
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FIGURE 1: Application of technologies to different social distancing scenarios. Some technologies, e.g., Al and Thermal, can
be applied to many scenarios, whereas technologies such as Visible Light and Ultrasound are applicable to fewer scenarios.
Scenarios from the same group have the same color. The arrows that show the links from one technology to different scenarios
have the same color.
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FIGURE 3: Ultrasound application for keeping distance using a) Cricket system [9], and b) Active Bat system [8]. The main
difference between the two systems is that the user’s position is calculated by the user device in Cricket and by a central server

in Active Bat

Fi and ultrasound is proposed for indoor robot navigation.
To deal with the uncertainties which are very common in
crowded places like hospitals, the system employs a Partially
Observable Markov Decision Process, and a novel algorithm
is also introduced to minimize the calibration efforts.

In the social distancing context, besides outdoor applica-
tions, UAVs can also be employed to reduce the necessity of
human physical presence. For example, UAVs can be used
to deliver goods inside a building or to manage warehouse
inventory. However, most of the existing studies focus on
UAV navigation for the outdoor environment, which often
relies on GNSS for UAV positioning. Since GNSS’s accuracy
is low for the indoor environment, these methods cannot
be applied directly for UAV navigation inside a building.
To address that limitation, a navigation system is proposed
in [10], which utilizes ultrasound, inertial sensors, GNSS,
and cameras to provide precise (less than 10 cm) indoor
navigation for multiple UAVs.

Summary: Ultrasound can be applied in several social
distancing scenarios. In the keeping distance scenarios, UPS
systems such as AB and CK can be applied directly to
localize and notify people to keep a safe distance. Moreover,
due to its confinement characteristic, ultrasound is one of
the most efficient technology for binary positioning, which is
particularly useful for monitoring and gauging the number of
people inside the same room. In the automation scenarios, ul-
trasound can facilitate UAVs and medical robots navigations,
especially for the indoor environment.

Automation
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FIGURE 4: Inertial-sensors-based systems for several social
distancing scenarios. In the keeping distance scenario, the
built-in inertial sensors of smartphones can be utilized for
user positioning. Based on this, the smartphone can warn the
user when there are other users or crowds in close proximity.
Inertial sensors can also help to localize and navigate UAVs
and medical robots.

2) Inertial Sensors
In the context of social distancing, inertial-sensors-based
systems can be applied in distance keeping and automation
scenarios as illustrated in Fig. 4. For example, positioning
applications utilizing built-in inertial sensors can be devel-
oped for smartphones which can alert the users when they
get close to each other or a crowd. Moreover, inertial sensors
can be integrated into robots and vehicle positioning systems,
which can facilitate autonomous delivery services and medi-
cal robot navigation. All of these scenarios can contribute to
reducing the physical contact rate between people.

Inertial sensors consist of two special types of sensors,
namely gyroscopes and accelerometers, attached to an ob-
ject to measure its rotation and acceleration. Based on the

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3018124, IEEE Access

IEEE Access

Nguyen et al.: A Comprehensive Survey of Enabling and Emerging Technologies for Social Distancing — Part Il

measured rotation and acceleration data, the orientation and
position displacements of the object can be determined [95].
Because inertial sensors do not require any external refer-
ence system to function, they have been one of the most
common sensors for dead reckoning navigation systems, i.e.,
calculation of the current position is based on a previously
determined position. Such navigation systems can provide
accurate positioning within a short time frame. However,
since the current position is determined based on the previ-
ously calculated positions, the errors accumulate over time,
i.e., integration drift. Therefore, Inertial-Navigation-System
(INS) is often used in combination with other positioning sys-
tems, e.g., GPS, to periodically reset the base position [95].

a: Keeping distance

Traditionally, INS has been widely used for aviation, marine,
and land vehicle navigation. Recently, the ever-increasing
presence of smartphones has enabled many INS applications
for pedestrian positioning and navigation, which can support
social distancing scenarios. Moreover, INS is one of the few
technologies that can enable accurate pedestrian positioning
for the outdoor environment, especially when combined with
other outdoor positioning technologies such as GPS. In [96],
a smartphone-based positioning system is proposed. The
system makes use of a smartphone’s built-in sensors, includ-
ing gyroscopes, accelerometers, and magnetometers (sen-
sors that measure magnetism), to calculate the smartphone’s
position. In particular, magnetometers are combined with
gyroscopes to improve accuracy of rotation measurements.
This is done by correlating their measurements via a novel
algorithm which uses four different thresholds to determine
the weights of the gyroscope and magnetometers measure-
ments in the correlation function. In [97], a wearable body
sensors system using inertial sensors is proposed to measure
the lower limb motion. The proposed system consists of three
sensors attached to different parts of the human lower limb
to measure its orientation, velocity, and position. Using this
information and the initial position of a person, the person’s
location can be tracked.

In [98], a novel indoor positioning system is developed
using Wi-Fi and INS technologies. In this system, INS is
utilized for the area where Wi-Fi coverage is limited, while
Wi-Fi positioning is used to compensate INS’s integration
drift. Another positioning system using inertial sensors and
Wi-Fi is presented in [99], where Wi-Fi fingerprinting tech-
nique is used to improve the accuracy of the dead reckoning
navigation. Because of the integration drift, a dead reckoning
navigation system needs to frequently update its position by
referencing to an external node. In the proposed system, a
Wi-Fi fingerprinting map is set up in advance and the dead
reckoning system can use the map to update its position.
Moreover, in [46], the authors propose using Kalman filter to
combine the measurement data from Wi-Fi and INS, which
can reduce the error to 1.53 meters.

Besides Wi-Fi, INS can be used in combination with other
positioning technologies. In [100] and [101], INS has been
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combined with the UWB technology for pedestrian position-
ing and tracking. Generally, INS helps to reduce UWB’s high
implementation cost and complexity, while INS’s integration
drift can be compensated. Particularly, INS is employed to
compensate for the UWB’s low dynamic range and proneness
to external radio disturbances in [100]. To enable the combi-
nation, an information fusion technique using the extended
Kalman filter is proposed to fuse the measurement data
coming from both the INS and UWB sensors. The result
shows that the hybrid system can achieve better performance
than both the individual systems. In [101], the information
fusion problem between the INS and UWB is optimized to
minimize the uncertainties in the measurements. As a result,
the positioning accuracy can be significantly improved.

b: Automation
Besides pedestrian positioning, INS can also be applied for
social distancing scenarios involving autonomous vehicles,
e.g., medical robots and drone delivery. Generally, INS has
been commonly used for medical robot applications, in-
cluding surgeon assists, patient motion assists, and delivery
robots. In this section, we will only focus on the medical
and delivery robot applications for social distancing pur-
poses. In [102], a novel INS system is developed specifically
for mobile robot navigation. In addition, an error model is
proposed to increase the accuracy of the involved inertial
measurements. A Kalman filter is also proposed to precisely
estimate the velocity and orientation of the robot in the
presence of noises. A novel data fusion algorithm, leveraging
an adaptive Kalman filter is presented in [103] for indoor
robot positioning based on an INS/UWB hybrid system.

Unlike INS for mobile robots that are mostly developed
for the indoor environment, INS for UAV focuses on outdoor
applications. Note that UAV navigation must also consider its
altitude, which adds more complexity. The authors of [104]
leverage inertial sensors and cameras to determine the UAV’s
position, velocity, and altitude. Particularly, the cameras at-
tached to the UAV capture the images of the surrounding
environment and send them to a control station. This station
will then process the images to determine the UAV’s pose in
regards to the surroundings. The pose’s data is then combined
with the inertial sensors data via a Kalman filter to deter-
mine the UAV’s position and velocity. Similarly, a system
combining inertial and vision sensors is developed in [105]
for UAV positioning and navigation. The system utilizes
two observers which have inertial and vision sensors. The
first observer calculates the orientation based on gyroscope
and vision sensors, and the second observer determines the
position and velocity based on data from the accelerometers
and vision sensors. The experimental results show that the
vision sensors measurements can be used to compensate for
the inertial sensors errors, thereby achieving a high accuracy
even with low-cost inertial sensors.

Summary: The omnipresence of smartphones with built-
in inertial sensors has opened many opportunities for devel-
oping positioning systems based on INS. For the distance
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keeping scenarios, INS positioning systems, especially for
pedestrians, can play a vital role as they are readily available.
In the other scenarios such as medical robot navigation and
UAV delivery, INS-based techniques can help to increase the
efficiency (more accurate path, and lower traveling time) of
the existing navigation systems.

3) Visible Light

The recent development in the light-emitting diodes (LEDs)
technology has enabled the use of existing light infrastruc-
tures for communication and localization purposes due to
attractive features of visible lights such as reliability, robust-
ness, and security [12]-[14]. Visible light communication
(VLC) systems usually comprise two major components,
i.e., LED lights corresponding to transmitters to send nec-
essary information (e.g., user data and positioning informa-
tion) via visible lights and photodetectors (e.g., photodiodes)
and imaging sensors (e.g., camera) playing the role of re-
ceivers [2]. Due to the ubiquitous presence of LED lights,
VLC can be leveraged in many social distancing scenarios as
discussed below.

a: Real-time monitoring

Communication systems using visible light (e.g., LED-based
communications) can provide precise navigation and local-
ization solutions in indoor environments. Utilizing this tech-
nology, some applications can be implemented to support
social distancing such as tracking individuals who are be-
ing quarantined, detecting and monitoring crowds in public
places as shown in Fig. 5(a).

Due to many advantages such as low cost and ease of
implementation, the VLC receiver using photodiodes can be
employed as a “tag” that is integrated into mobile targets such
as trolleys/shopping carts, autonomous robots, etc. People
attached with these tags can perform self-positioning based
on the triangulation method so that they can avoid crowded
areas. Furthermore, the tags’ locations can be collected by
the authorities to monitor people in public areas. Based on
this location data, further actions can be carried out such
as warning people by varying the color temperature of the
lights in the crowded areas. It is worth noting that this
solution will not reveal any personal information of users
(e.g., customers) because it only requires communications
between VLC-based tags and light fixtures. However, most
VLC systems only provide half-duplex communications due
to the fact that LED lights operate in the role of transmitters.
Therefore, they should be combined with other wireless
technologies like Bluetooth [15], [16], and Infrared [17] to
enable an uplink communication with the server for location
information exchange. Moreover, to improve the accuracy
of positioning people in indoor environments using pho-
todiodes, some advanced techniques can be used such as
data fusion of AOA and RSS methods proposed in [18]
and the AOA method using a multi-LED element lighting
fixture introduced in [19]. One main disadvantage of the
photodiode-based VLC systems is the need for hardware (i.e.,
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the photodiode receiver) mounted on smart trolleys/shopping
carts to receive light signals. Consequently, the system might
fail to detect the locations of people who do not carry them.
Nevertheless, pureLiFi company has recently invented a tiny
optical front end which can be integrated into smartphones
to take benefits of the photodiode receiver in high accuracy
VLC-based localization services [20].

The rapid development of smartphones has enabled VLC-
based applications on handheld devices such as indoor
localization and navigation applications (e.g., smart retail
systems [15], [16], [21]). These systems use front-facing
cameras of mobile phones to receive visible light signals
contained positioning information (e.g., the LED light’s ID
or location) from visible light beacons [22]. The captured
photos collected regularly by the front-facing camera are
sent to a cloud/fog server for image processing to alleviate
the computation on the phone. Then, the beacon’s ID and
coordinates can be extracted and sent back to the phone.
After that, the AoA algorithm is implemented to estimate
the location and orientation of the phone. An attractive use
case of the camera-based VLC systems [15], [16], [21] is
to assist users to quickly find specific products in shopping
malls or supermarkets. Thus, we can adopt this function
to implement tracking and monitoring crowds in public
places as well as assisting people in avoiding crowds in
a proactive manner. It is worth noting that this solution is
more convenient than using photodiodes since it uses front-
facing cameras of smartphones as the VLC receivers, thus
everyone using smartphones can be tracked. However, due
to continuous photo shooting, these positioning applications
are very energy-consuming, which is a major drawback of
camera-based VLC systems when they are used for tracking
people.

b: Automation

In public places, there is always a need for assistance in
specific circumstances (e.g., information or physical supports
for customers, older and disabled people). For instance, sup-
porting staff in supermarkets can assist customers in finding
products or help elder/disabled people to carry their goods.
Similar assistance scenarios can be seen in hospitals, banks,
and libraries. This results in an increase in close physical
contacts between customers and assistants. Therefore, au-
tonomous assistance systems using VLC technology can be
employed to minimize the physical contacts as shown in
Fig. 5(a) and (b).

Besides the navigation purpose, the smart retail sys-
tems [15], [16] can also provide information assistance ser-
vices for shoppers. For example, the product description, sale
information, or other necessary information can be displayed
on the screen when the phone is under a certain LED light.
Another example is information assistance services in muse-
ums [23], [24]. This can help to reduce the number of close
physical contacts in these places.

Similar to the information assistance systems for reducing
close physical contacts, autonomous robots using the VLC
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a) Real-time monitoring and assistance systems.

¢) Outdoor VLC traffic controlling system.

FIGURE 5: Visible light communications supporting social distancing in several scenarios. In indoor environments, visible
light sensors can be utilized for real-time monitoring, information assistance system, and navigation application. For outdoor

environments, visible light sensors can support traffic control.

technology for communication and localization can also
be deployed to assist people in certain circumstances, for
example, elderly-assistant robots, walking-assistant robots,
shopping-assistant robots, etc., [25], [26]. Moreover, visible
light signals do not cause any interference to RF signals,
and thus they can be effectively deployed in diverse indoor
environments such as hospitals, schools, and workplaces.

c: Traffic control

In the context of social distancing, high demand traffic can
cause a large concentration of people in a certain area (e.g.,
city center). By adopting smart traffic light systems in [27],
[28], we can deploy an intelligent traffic controlling system
using the VLC technology to control large traffic flows as il-
lustrated in Fig. 5(c). That can help to reduce vehicle density
in public areas. The VLC technology provides a communi-
cation method between vehicles and the light infrastructure
(e.g., traffic lights, street lights). First, vehicles can send
their information (e.g., their IDs) to the light infrastructure
by using its headlights as transmitters, thus the system can
detect and monitor the traffic flow. However, in this case,
it is required that the light infrastructure must be equipped
with VLC receivers (e.g., traffic cameras or photodiodes).
Second, based on the awareness of the traffic, the system can
control the vehicles by sending instructions to guide them.
In this case, the system uses traffic lights, or street lights as
transmitters to send information and the vehicles use dash
cameras to receive the information. For example, the system

VOLUME 4, 2016

will notify them about hot zones that have a high density of
vehicles and do not allow them to enter, so that they can avoid
these zones.

Summary: The availability of smart retail systems is proof
of the superior performance and convenience of VLC tech-
nology compared to other RF technologies in high precision
indoor localization and navigation. By leveraging such com-
mercial approaches, we can deploy the cost-effective crowd
monitoring system on a large scale, not only in shopping
malls or hypermarkets but also in other public places, such
as airports, train stations, and hospitals, based on the existing
illuminating infrastructures. Building/facilities managers can
immediately alert or notify the users if they are in the middle
of a crowd (e.g., varying the color temperature of the lights
in the high-density zones). People can also take the initia-
tive in planning their move to the desired locations without
encountering the crowds. On the other hand, assistance sys-
tems help to reduce the number of staff/volunteers, nurses
inside public buildings; or limit the close contacts between
them and customers, patients. Moreover, the combination
with other RF technologies such as Bluetooth and Infrared
also ensures the location-based services are not interrupted
when the smartphone is not being actively used by the user
(e.g., the phone is in the pocket). Last but not least, the
VLC technology can be a potential communication method
between the intelligent traffic controlling system and vehicles
in the outdoor environment. However, the main disadvantage
of the VLC technology is that interference from ambient
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and sun lights have significant impacts on the visible light
communication channels [12], [14]. It results in poor perfor-
mance of the RSS-based positioning approaches and outdoor
communications.

4) Thermal

Thermal based positioning systems can be classified into
two main categories which are infrared positioning (IRP)
systems and thermal imaging camera (THC). Typical IRP
systems such as [29], [31], [32] are low-cost, short-range
(up to 10 meters) systems that use infrared (IR) signals to
determine the position of targets via AOA or TOA measure-
ment method. On the other hand, the THC, which constructs
images from the object’s heat emission, can operate at a
larger range (up to a few kilometers) [35]. Because of this
difference, IRP and THC can be applied in different social
distancing scenarios as discussed below.

a: Keeping distance

In keeping distance scenarios, IRP systems such as Active
Badge [31], Firefly [33], and OPTOTRAK [32] can be uti-
lized. In the Active Badge, badges that periodically emit
unique IR signals are attached to the targets. Based on the
distances from the fixed infrared sensors to the badges, the
target’s position can be calculated. As a result, this appli-
cation can be useful to determine the distance between two
people as well as to identify crowds in indoor environments.
The main advantages of this solution are low cost and easy
implementation. However, it requires users to wear tag de-
vices to track their locations.

To achieve a higher positioning accuracy, the Firefly [33]
and OPTOTRAK [32] systems can be implemented. These
systems contain infrared camera arrays and infrared trans-
mitter called markers. Due to the difference in setups (one
target is attached with one tag in Firefly and multiple tags in
OPTOTRAK), the Firefly system can accurately determine
the target’s 3D position, whereas the OPTOTRAK system
can capture the target’s movement. The main disadvantage of
these systems is that they are prone to interference from other
radiation sources such as sunlight and light bulbs. Combined
with their short-range, IRP is mostly applicable in small
rooms with poor-light conditions.

b: Physical contact monitoring

Since the Firefly and OPTOTRAK systems can accurately
capture movements, they can be useful for contact tracing
scenarios in social distancing. For example, markers can be
attached to the target’s body parts which are usually used in
physical contacts, e.g., hands for handshakes and body for
hugs. The movement of these body parts can then be captured
by the IR camera as illustrated in Fig. 6, and the recorded
data can be analyzed later to determine if there are close
contacts between the target and other people. Based on this
information, the contacts that the target made can be traced
later if necessary.
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FIGURE 6: Physical contact monitoring by infrared sys-
tem [33]. IR cameras can be utilized to detect and monitor
physical contact among people. If there is close contact
between any two people, the event can be recorded for future
usage, €.g., contact tracing

c: Real-time monitoring

For traffic monitoring in social distancing contexts, both IRP
and THC can be utilized, especially in poor-light conditions.
The authors in [34] propose a robust vehicle detector based
on the IRP under the condition to quantify traffic level and
flow. The collected data can be sent to assist the authorities
in social distancing monitoring. However, since IRP has a
short range, THC systems such as [37] can be a better choice
in a larger area with high vehicle density.

Due to its very high observation range (a few kilome-
ters) [36]-[38], THC is particularly effective for real-time
monitoring scenarios, such as public building monitoring,
detecting closure violation, and non-essential travel detec-
tion, which does not require high positioning accuracy. THC
systems such as those proposed in [29], [30] are efficient in
these scenarios since they are light-weight and can cover a
wide area with medium accuracy.

Another application of thermal technology is to detect
susceptible groups. Since the THCs measure heat emitted
from people or other objects, they can be used for checking
people’s temperature quickly from a far distance [39], [40].
Further, the THC system has the ability to detect slight tem-
perature differences with a resolution of 0.01 degrees [41].
Thus, it can be a good means to check health conditions
and sickness trends of patients. Moreover, the system can be
deployed in shopping centers to measure customers’ temper-
ature remotely. This can help to detect infection symptoms
early and also prevent the disease spread.

Summary: Thermal based positioning systems are helpful
in some social distancing scenarios, especially in poor-light
conditions. For short-range communication applications, the
IRP is cost-effective and can be used for positioning and
tracing purposes. Whereas, some light-weight THC systems
can be leveraged for real-time monitoring over long distances
due to their high range. However, the high cost of THC
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FIGURE 7: Thermal cameras used in susceptible group detection and traffic monitoring. Thermal cameras can be used to
check body temperature, thereby detecting susceptible groups and people with symptoms. For traffic monitoring, both infrared
positioning systems and thermal cameras can be utilized, especially in poor-light conditions, e.g., at night.

should be considered when implementing THCs in practice.

Table 1 provides a summary of the surveyed sensing
intelligence technologies. Generally, each technology has a
special characteristic that makes it a very effective solution
for a specific scenario. For example, ultrasound signals are
confined by walls, which enables low-cost ultrasonic posi-
tioning system to efficiently monitor people in a small room.
Furthermore, since inertial sensors are built-in in most smart-
phones, they can be quickly utilized for keeping distance in
smartphone applications. In addition, visible light technology
can be leveraged for building information assistance systems
which help to reduce human presence. Finally, thermal cam-
era is the only technology that can detect people over a large
distance (a few kilometers) without the need for attached
devices, which makes it an ideal solution to detect violation
of quarantines or closures.

B. MACHINE INTELLIGENCE

1) Computer Vision

Computer vision technology trains computers to interpret
and understand visual data such as digital images or videos.
Thanks to recent breakthroughs in Al (e.g., in pattern recog-
nition and deep learning), computer vision has enabled
computers to accurately identify and classify objects [48].
Such capabilities can play an important role in enabling,
encouraging, and enforcing social distancing. For example,
computer vision can turn surveillance cameras into “smart”
cameras which can not only monitor people but also can
detect, recognize, and identify whether people comply with
social distancing requirements or not. In this section, we
discuss several social distancing scenarios where computer
vision technology can be leveraged, including public place
monitoring, and high-risk people (quarantined people and
people with symptoms) monitoring and detection.

a: Public place monitoring
Despite government restrictions and recommendations about
social gathering, some people still do not comply with them,
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which can cause the virus infection to the community. In such
context, human detection features in object detection [49], a
major sub-field of computer vision, can help to detect crowds
in public areas through real-time images from surveillance
cameras. An example scenario is described in Fig. 8(a). If
the number of people in an area does not meet the social
distancing requirement (e.g., gathering above 10 people), the
authorities can be notified to take appropriate actions.

There are two main approaches to detect humans from
images in object detection namely region-based and unified-
based techniques. The former detects humans from images
in two stages including the region proposal and the process-
ing according to the regions [50]. Based on this approach,
several frameworks including Fast-RCNN [56] and Faster-
RCNN [57] are developed in combination with Convolution
Neural Network (CNN) [54]. In [58], the authors improve the
Faster-RCNN by proposing the Mask Regions with the CNN
features (Mask RCNN) method which masks the bounding
box to detect the object with high accuracy while adding a
minor overhead to the Faster-RCNN. Mask RCNN outper-
forms previous methods by simplifying the training process
and improving the accuracy in detecting humans in the im-
ages for calculating the density of people in a particular area.

Although the above region-based approach has high recog-
nition accuracy [58], it has high complexity, which is un-
suitable for devices with limited computational capacity. To
address this, the unified approach is more appropriate to
implement, which can reduce the computational complexity
by detecting humans from images with only one step. This
approach maps the pixels from the image to the bounding
box grid and class probabilities to detect humans or objects
in real-time. Following this direction, the You Only Look
Once (YOLO) method proposed in [59] can detect/predict
objects (even small ones) in real-time with high accuracy. In
addition, in [60], the authors propose the Single Shot Multi-
box Detector (SSD) framework which uses a convolution
network on the image to calculate a feature map and then
predict the bounding box. Through experimental results, they
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TABLE 1: Summary of Sensing Intelligence Technologies Applications to Social Distancing

[ Technology | Range | Accuracy [ Cost [ Privacy [ Scalability | Indoor/Outdoor] Readily available devices
Ultrasound Short
> Less than Low to Low [8] to . . .
[71, [8], [10], confined by 14 cm [8] Medium High [9] Medium Indoor Active Bat, Cricket systems
[11] walls
Inertial
sensors [95], Not Less than Smartphone, body sensors
(96198 | spplicable | 1 m [95] Low High High Both networks
[99], [102],
[106]
Visible light <lem[25], <
[15], [16], 10 cm [16], [18] Low to
[18], [20], Short ’ ’ . High High Both Smartphone, Smart Retail
[26], Medium
(211, <20cm[19]
[24]-[26] -
Thermal IRP <
IRP 10 m - .
[33], i 0.125 mm [32], Medium Low to Low to
[35]-[37]. EIEC a few THC < to High High Medium Both Thermal Cameras
[39] 0.9 m [38]

- (b1)
(a) Human Detection

(b) Face Recognition

@ o
. A
1

Face mask

(b2)
(c) Pose Estimation

FIGURE 8: Computer vision technologies for social distancing: (a) human detection to identify the number of people in the
public place [51], (b) face recognition to identify (b1) the full face of isolated person, (b2) person with mask or person behind
the mask [52], and (c) pose estimation to detect one with coughing symptom [53].

demonstrate that this method can detect objects faster and
more accurately than those of both YOLO and Faster-RCNN.
For public place monitoring, both YOLO [59] and SSD [60]
can be used to detect fast and accurately humans from real-
time images or videos of surveillance cameras. After iden-
tifying people, we can use a real-time automatic counter to
count and identify whether the number of gathering people is
complying with social distancing requirements or not.

b: Detecting and monitoring quarantined people

To prevent the spread of the virus from an infected person
to others, the infected person or people who had physical
contact with them must be isolated at the restricted areas or
at home. For example, people who come back from highly
infected countries/regions of COVID-19 are often requested
to be quarantined or self-isolate for 14 days. Due to the
lack of facilities, most countries require these people to self-
isolate at home. In this case, the face recognition capability
of computer vision can help to enforce this requirement by
analyzing the images or videos from cameras to identify these
people (i.e., to check whether they breach the self-isolation
requirements or not). If these people are detected in public,
the authorities can be notified to take appropriate actions.
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Unlike object detection, the dataset including the full
face images of the isolated people needs to be built. The
face recognition system firstly learns from this dataset and
then analyzes the images from public surveillance cameras
to identify their appearances as in Fig. 8(bl). The authors
in [61] propose a framework named DeepFace using Deep
Neutral Network (DNN) which can detect with an accuracy
of 97.35% and 91.4% in Labeled Faces in the Wild (LFW)
and YouTube Faces (YTF) dataset, respectively. To improve
the accuracy in detecting humans from surveillance cam-
eras, some advanced techniques can be implemented such
as [62], [63] and [64].

To prevent the spread of infectious diseases such as
COVID-19, people are often required to wear masks in public
places, which necessitates approaches to recognize or iden-
tify people with or without masks as illustrated in Fig. 8(b2).
For example, the cameras in front of a public building can
recognize and send warning messages (e.g., a beep sound)
to remind the person who does not wear a mask when he/she
intends to get into the building. This idea is introduced in [70]
by using CNN to detect people who do not wear the masks.
However, this work is just at the first step, which still requires
much more efforts to demonstrate the effectiveness as well as
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improve the accuracy.

c: Symptoms detection and monitoring

After a few days of being infected with the virus, the infected
person may have some symptoms such as coughing or sneez-
ing. To minimize spreading the virus to others, it would be
very helpful if we can detect these symptoms from people in
public and inform them or the authorities. The idea here is
similar to that of using thermal imaging cameras at airports
or train stations. Specifically, detecting human behaviors,
motion, and pose in computer vision can play a pivotal
role [65]. Pose estimation captures a person with different
parts (as illustrated in Fig. 8(c)) then detects human behaviors
by studying the parts’ movements and their correlation. For
example, a coughing person in Fig. 8(c) usually moves his
hand near his head, and his head would have a vibration.

Recognition of human behaviors from surveillance cam-
eras is a challenging problem because the same behaviors
may have different implications, depending on the relation-
ship with the context and other movements [66]. The recent
advances in AI/ML are instrumental in correlating different
movements/parts to interpret the associated behavior. In [67]
the authors propose to use CNN [54] to enhance the accuracy
of the model of the interaction between different body parts.
In addition, the authors in [68] introduce several methods
to detect body parts of multiple people in 2D images, and
the authors in [69] propose methods to estimate 3D poses
from matching of 2D pose estimation with a 3D pose library.
These works can be further developed for future studies to
detect people with symptoms of the disease such as coughing
or sneezing in real-time. To improve the accuracy of the
symptom detection in social distancing, computer vision-
based behavior detection methods can be combined with
other technologies, e.g., thermal imaging.

d: Infected movement data

To prevent the spread of the virus, tracing the path of an
infected person plays an important role in finding out the
people who were in the same place as the infected person.
For this purpose, computer vision technology can not only
detect infected people by facial recognition but also con-
tribute to the positioning process. In [43], the movement of
people is determined by analyzing the key point of transition
frames captured from smartphone cameras. This method can
draw the trajectory of movements and the location with an
accuracy around two meters. In [44], the authors propose to
combine the human detection techniques of computer vision
with digital map information to improve the accuracy. In
this study, the user path from cameras is mapped to the
digital map which has the GPS coordinates. This method
can achieve a very high accuracy within two meters. In
another approach, the authors in [45] propose to use both
smartphones’ cameras and inertial-sensor-based systems to
accurately localize targets (with only 6.9 cm error). This
approach uses the fusion of keypoints and squared planar
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markers to enhance the accuracy of cameras to compensate
for the errors of inertial sensors.

e: Keeping distance

Computer vision can also be very helpful to support people
in keeping distance to/from the crowds. In [42], the authors
develop an on-device machine-learning-based system lever-
aging radar sensors and cameras of a smartphone. When
the radar sensor detects the surrounding moving objects,
the smartphone camera can be utilized to capture its sur-
rounding environment. Taking into account the recorded data,
the smartphone can train the data using machine learning
algorithms to determine the existence of nearby people and
its distance from those people with respect to the social
distancing requirements. We can also use a smartphone to
estimate the distance between the mobile user and other
people using radar sensors and cameras along with machine
learning algorithms.

Summary: Computer vision can be utilized in several
social distancing scenarios, especially the ones that require
people monitoring and detection. Particularly, computer vi-
sion is the only method that can differentiate between people
and identify complex features such as masks and symptoms.
To further improve the effectiveness of computer vision in
the social distancing context, future research should focus
on increasing the accuracy and reducing the complexity of
computer vision methods, so that they can be integrated into
existing systems such as surveillance cameras.

2) Artificial Intelligence

Over the last 10 years, we have witnessed numerous appli-
cations of Al in many aspects of our lives such as health-
care, automotive, economics, and computer networks [107].
The outstanding feature of Al technologies is the ability to
automatically “learn” useful information from the obtained
data. This leads to more intelligent automation, operating
cost reduction as well as the great compatibility to adapt
to changing environments. For that, Al (and its underlying
machine learning algorithms) can also play a key role in
social distancing, especially in modern lives, with many
practical applications, as discussed below.

a: Distance to/from crowds and contact tracing

Applications of machine learning to users’ location data
allow us to effectively monitor the distance between people
and trace the close contacts of infected people. In [151], the
authors analyze the accuracy of a user’s location prediction
based on his/her friends’ location datasets. In this case, a
temporal-spatial Bayesian model is developed to select in-
fluential friends considering their influence levels to the user.
Thus, the service provider can predict the exact location of
a mobile user by using the temporal-spatial Bayesian model.
Then, when the user is too close to other mobile users/people
at crowded public places or his/her friends when they go in a
group as illustrated in Fig. 9(a), his/her smartphone can alert
to keep a safe distance. In addition, using the list of influential
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FIGURE 9: Application of artificial intelligence to several social distancing scenarios. By predicting people location, Al can be
utilized to warn people to avoid potential crowded places in (a) distance/to from crowds scenario, alert people about infected
locations in (b) infected movement prediction scenario, detect quarantine violation in (c) quarantined/At-Risk people location
prediction. Al can also be leveraged to warn people or propose alternate routes in (d) people/traffic density prediction. Using
data from audio and image sensors, Al can predict potential infected places before the real disease occurs in (e) sickness trend

prediction.

friends based on their ranks, the service provider can utilize it
for the contact tracing purpose when the mobile user or one of
his/her influential friends in the list gets infected. Moreover,
the local-experts-finding scheme proposed in [152] can be
utilized to find the local social media users of a certain area.
Based on this, information such as current crowds locations
can be extracted more efficiently.

b: Infected movement prediction

Another application of machine learning is to predict infected
people movement from one location to another one and
hence can potentially predict the geographic movement of
the disease. The prediction is particularly crucial as infected
people may travel to various places and can accidentally
infect others before know that they carry the disease. In [153],
the authors introduce a smartphone-based location recog-
nition and prediction model to detect the current location
and predict the destination of mobile users. In particular, the
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location recognition is implemented using the combination of
k-nearest neighbor and decision tree learning algorithms, and
the destination prediction is realized using hidden Markov
models. Given the history of infected people movement, we
can adopt the above model to recognize and predict the
potential geographic movement of the disease. Using the
information, people can be advised to stay away from the
possible infected locations through alerts from their smart-
phones as illustrated in Fig. 9(b).

c¢: Quarantined/At-Risk people location prediction

The current location prediction of quarantined people, e.g.,
infected people, and at-risk people, e.g., sick and elder
people, is very important to monitor whether they currently
stay at the self-quarantined and self-protection areas, e.g.,
their homes, or not. To this end, a machine-learning-based
location prediction approach can help to detect the current
position of those people in a certain area. In [154], the
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authors apply the auto-encoder neural networks and one-class
support vector machines to verify whether a user is within a
specific area or not. Considering various channel models, i.e.,
path-loss, shadowing, and fading, the proposed solutions can
achieve Neyman-Pearson optimal performance by observing
the probability of miss-detections and false-alarms. The au-
thors in [155] propose a novel localization system leveraging
the federated learning to allow mobile users to collabora-
tively provide accurate location services without revealing
mobile users’ private location. As such, the authors utilize
deep neural networks with the Gaussian process to accurately
predict the desired location of the mobile users. As a result,
we can apply the proposed solutions to detect if infected
people or at-risk people currently move away from their
homes as illustrated in Fig. 9(c). Moreover, we can utilize the
proposed solutions to determine the movement frequency of
the self-isolated people outside the protection facility. Using
the movement frequency history, the authorities can enforce
them to stay at the protection facility for further infection
prevention.

d: People/Traffic density prediction

Predicting the density of people or the number of people in
public places allows us to efficiently schedule or guide people
to stay away or refrain from coming to soon-to-be over-
crowded places. For example, when the predicted number of
people in a certain place almost reaches a predefined thresh-
old (e.g., according to the social distancing requirement), the
service provider can broadcast a local notification to incom-
ing people via cellular networks, aiming at encouraging them
to move to another area. In [156], the authors adopt advanced
machine-learning-based approaches for edge networks to
predict the number of mobile users within base stations’
coverages. Particularly, the framework first groups the base
stations into clusters according to their network data and
deployment locations. Then, using various machine learning
algorithms, e.g., the Bayesian ridge regressor, the Gaussian
process regressor, and the random forest regressor, we can
predict the number of mobile users within their network
coverages. From the preceding architecture, one can utilize
Wi-Fi hotspots and cluster them based on their locations.
By doing so, we can predict the number of people within
each cluster’s coverage. Using the same architecture, we can
extend the application to predict the traffic level on the roads.
Specifically, upon predicting the number of vehicular users
on the roads, we guide the drivers to choose particular routes
to satisfy the social distancing requirements, e.g., suggest al-
ternative routes to avoid crowded areas. In [157], the authors
introduce a UAV-enabled intelligent transportation system to
predict road traffic conditions using the combination of con-
volutional and recurrent neural networks. In particular, sensor
cameras on the UAVs are utilized to capture the current road
traffic. By using this information, the UAVs can then predict
the road traffic conditions using the aforementioned deep
learning methods. Thus, from the traffic prediction, the UAV's
can work as mobile road-side units to orchestrate road traffic
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for over-crowding avoidance by informing the upcoming
road traffic conditions to vehicular users via cellular networks
accordingly (Fig. 9(d)).

e: Sickness trend prediction

Machine-learning-based location prediction method is also
of importance to predict the sickness trend in specific areas.
This sickness trend prediction can be used to inform people
to stay safe from possible infected places. For example, the
work in [158] designs a contactless surveillance framework,
i.e., FluSense, to predict the influenza-like disease 7-14 days
before the real disease occurs in the hospital waiting areas. In
particular, a set of real-time sensors including a microphone
array to detect normal speech/cough sounds and a thermal
camera to detect crowd density are embedded into an edge
computing platform. Considering millions of non-speech au-
dio samples and hundred thousands of thermal images for
audio and image recognition models, the proposed frame-
work can accurately predict the number of daily influenza-
like patients with Pearson correlation coefficient of 0.95. The
prediction model from this work can be correlated/combined
with the localized medical/health information (e.g., from
local hospitals/clinics) to further improve the prediction ac-
curacy as shown in Fig. 9(e). We can then inform the local
mobile users about the sickness trend prediction to avoid the
potential areas where many influenza-like patients exist.

f: Symptom detection and monitoring

Coughing is one of the most common and detectable symp-
toms of influenza pandemics. In the presence of a pandemic,
the early detection of such symptoms can play a key role in
limiting the disease spread from the infected to the suscep-
tible population. For example, if a coughing person can be
detected and identified in public places, that person and the
people in close proximity can be tested for the disease.

In several studies, such as [159]-[162], Al technologies are
leveraged to identify the cough patterns in audio recordings
collected from microphones or acoustic sensors. In [159],
audio signals are analyzed using recurrent and convolutional
neural networks to detect coughs with high accuracy (up
to 92%). Similarly, a hidden Markov model is proposed
in [160] to detect cough from continuous audio recordings.
In addition to audio signals, signals from motion sensors are
also analyzed in [161] by a novel classification algorithm.
However, a common limitation of these approaches is that
they require the sensors to be attached to the person, which is
not always possible in social distancing scenarios. To address
this problem, a cough detection system is proposed in [162].
This system utilizes a wireless acoustic sensors network
connected to a central server for both cough detection and
localization. In particular, when a sound is detected, the
sensors first localize the sound source by the AOA tech-
nique. Then, the sensors send the measured sound signals
to the central server for cough identification using a novel
classification algorithm. In the social distancing context,
this system can be applied directly to monitor and detect
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coughing people in public places. Nevertheless, a limitation
of this system is that the localization and measurement errors
increase significantly when the sound source is too far from
the sensors. Besides coughs, other physiological metrics such
as cardiovascular activity, body temperature, and respiration
can also be meaningful indicators. Especially, based on those
metrics, an infected case can be potentially detected before
clinical symptoms, e.g., fever, occur [163]. However, early
detection algorithms need to be developed specifically for
COVID-19.

Summary: Various Al technologies can be leveraged to
facilitate social distancing implementations, especially in the
scenarios that require modeling and prediction. In particular,
Al technology can help to predict people’s locations, traffic
density, and sickness trends. Moreover, Al-based classifica-
tions algorithms can be utilized to detect symptoms such as
coughs in public areas.

lll. OPEN ISSUES AND FUTURE RESEARCH
DIRECTIONS

In this section, we discuss the open issues of social distanc-
ing implementation such as security and privacy concerns,
social distancing encouragement, work-from-home, and the
increased demands in healthcare appointments, home health-
care services, and online services. To addressed these issues,
potential solutions are also presented.

A. SECURITY AND PRIVACY-PRESERVING IN SOCIAL
DISTANCING

Most aforementioned social distancing scenarios (see Table 1
for more details) call for people’s private information, to
a different extent, ranging from their face/appearance to
location, travel records, or health condition/data. These data,
if not protected properly, attract cyber attackers and can turn
users into victims of financial, criminal frauds, and privacy
violation [126]. Users’ data like health conditions can also
adversely impact people’s employment opportunities or in-
surance policy. Given that, to enable technology-based social
distancing, it is critical to develop privacy-preserving and
cybersecurity solutions to ensure that users’ private data are
properly used and protected.

The general principle of users’ privacy-preserving is to
keep each individual user’s sensitive information private
when the available data are being publicly accessed. To
do so, data privacy-preserving mechanisms including data
anonymization, randomization, and aggregation can be uti-
lized [117]. For example, Apple, Google, and Facebook have
developed people mobility trend reports while preserving
users’ privacy during the COVID-19 outbreak. In particular,
Apple utilizes random and rotating identifiers to preserve
mobile users’ movements privacy [120]. Meanwhile, Google
aggregates and uses anonymized datasets from mobile users
who turn on their location history settings in their An-
droid smartphones. In this case, a differential privacy ap-
proach is applied by adding random noise to the location
dataset with the aim to mask individual identification of a
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mobile user [118]. Similarly, Facebook utilizes aggregated
and anonymized user mobility datasets and maps to deter-
mine the mobility trend in certain areas including the social
connectedness intensity among nearby locations [119]. In
addition to the Apple’s, Google’s, and Facebook’s latest
privacy-preserving implementation, in the following, we will
thoroughly discuss how the latest advances in security and
privacy-preserving techniques can help to facilitate social
distancing without compromising users’ interest/privacy.

1) Location Information Protection
To protect the exact location/trajectory information of par-
ticipating mobile users in social distancing, some advanced
location-based privacy protection methods can be adopted.
Specifically, we can anonymize/randomize/obfuscate/perturb
the exact location of each mobile user to avoid mali-
cious attacks from the attackers using the following mech-
anisms. For example, the authors in [127] develop a privacy-
preserving location-based framework to anonymize spatio-
temporal trajectory datasets utilizing machine-learning-based
anonymization (MLA). In this case, the framework ap-
plies the K-means machine learning algorithm to cluster
the trajectories from real-world GPS datasets and ensure
the K -anonymity for high-sensitive datasets. Using the K-
anonymity [128], [129], the framework can collect location
information from K mobile users within a cloaking region,
i.e., the region where the mobile users’ exact locations are
hidden [130], [131]. In [132], the use of K-anonymity is ex-
tended into a continuous network location privacy anonymity,
i.e., K DT-anonymity, which not only considers the aver-
age anonymity size K, but also takes the average distance
deviation D and the anonymity duration 7' into account.
Leveraging those three metrics, the mobile users under re-
alistic vehicle mobility conditions can control the changes of
anonymity and distance deviation magnitudes over time.

The authors of [133] propose a mutually obfuscating paths
method which allows the vehicles to securely update accurate
real-time location to a location-based service server in the
vehicular network. In this case, the vehicles first hide their
IP addresses due to the default network address translation
operated by mobile Internet service providers. Then, they
generate fake path segments that separate from the vehicles’
actual paths to prevent the location-based service server
from tracking the vehicles. Exploiting dedicated short-range
communications (DSRC) among vehicles and road naviga-
tion information from the GPS, the vehicles can mutually
generate made-up location updates with each other when they
communicate with the location-based service server (to ob-
tain spatio-temporal-related information). In [134], vehicles
which use location-based services can dynamically update
virtual locations in real-time with respect to the relative
locations of current nearby vehicles. This aims to provide
deceptive information about the driving routes to attackers,
thereby enhancing location privacy protection.

In addition to the anonymization and obfuscating methods,
randomization and perturbation are the methods that can
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FIGURE 10: Location-based privacy preserving for social distancing scenarios. In (a) location information protection, the exact
location of a vehicle can be obfuscated to protect people’s privacy. To protect (b) personal identity, a user can exchange its
identity with nearby trusted users in each location, and thus that user cannot be identified by the attackers. For (c) health-related
information protection, the health information can be anonymized.

be employed to protect user’s location privacy in social
distancing scenarios. In [135], a location privacy-preserving
method leveraging spatio-temporal events of mobile users
in continuous location-based services, e.g., office visitation,
is investigated. Specifically, an e-differential privacy is de-
signed to protect spatio-temporal events against attackers by
adding random noise to the event data [138]-[140]. In [141],
the authors present a location privacy protection mechanism
using data perturbation for smart health systems in hos-
pitals. In particular, instead of reporting the patient’s real
locations directly, a processing unit attached to a patient’s
body can adaptively produce perturbed locations, i.e., the
relative change between different locations of the patient.
In this case, the system considers the patient’s travel di-
rections and computes the distance between the patient’s
current locations and the patient’s sensitive locations (i.e.,
patient’s predefined locations which he/she does not want
to reveal to anyone, e.g., patient’s treating room). Using
this dynamic location perturbation, the need for a trusted
third party to store real locations can be removed. Lever-
aging the aforementioned methods, we can also prevent the
service provider from accessing mobile users’ and vehi-
cles’ exact locations/trajectories/paths when they implement
social distancing for crowd/traffic density and movement
detection. Specifically, a platoon of mobile users/vehicles
in a certain area can collaborate together to mix their real
locations/trajectories/paths anonymously (Fig. 10(a)). In this
way, the service provider will only obtain the aggregated
location/trajectory/path information of the platoon instead of
each individual’s exact location/trajectory/path for its loca-
tion privacy.

2) Personal Identity Protection

In addition to protecting mobile users’ location-related infor-
mation, preserving their personal identities is of importance

VOLUME 4, 2016

to improve users’ acceptance of the latest technologies to so-
cial distancing. Specifically, we can exchange or anonymize
personal identities among trusted mobile users to avoid the
attackers identifying the actual identity of each individual
user. In [142], the authors develop a pseudo-identity exchang-
ing protocol to swap/exchange identity information among
mobile users when they are at the same sensitive locations,
e.g., hospital and residential areas. In particular, when a mo-
bile user receives another trusted user’s identity and private
key, the mobile user will verify if the encryption of another
user’s identity hash function and public key is equal to the
encryption of the received private key. If that condition holds,
the mobile user will change his/her identity with that user’s
identity and vice versa.

Another method to protect personal identity in social dis-
tancing scenarios is individual information privacy protection
through indirect- or proxy-request as proposed in [143]. In
particular, instead of directly submitting a request to the
server, a mobile user can have his/her social friends through
the available social network resources, i.e., trusted social me-
dia, to distribute his/her request anonymously to the server.
The request result can be returned to his/her social friends
and then forwarded to the requested mobile user, thereby
preserving the requested mobile user’s identity. In fact, there
may exist some malicious friends who expose the identity of
the mobile user. Therefore, the authors in [144] investigate a
user-defined privacy-sharing framework on social networks
to choose his/her particular friends who are trusted to ob-
tain the mobile user’s identity information. In this case, the
mobile user only shares his/her identity information with
the particular friends whose pseudonyms match the mobile
user’s identity through the authorized access control. Using
the same approaches from the above works, we can use
local wireless connections, e.g., Bluetooth and Wi-Fi Direct,
to anonymously exchange actual location information in a
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mobile user group, i.e., between a mobile user and his/her
trusted nearby mobile users, in an ad hoc way. As shown
in Fig. 10(b), when the service provider requires to collect
location-related information for the current crowd density
detection, a representative mobile user from the group can
send the group’s anonymous location information to the
service provider, aiming at preserving the personal identity
of each mobile user in the group.

Moreover, Apple and Google have recently introduced
a key schedule for contact tracing to ensure the privacy
of users [3]. Specifically, there are three types of key: (i)
tracing key, (ii) daily tracing key, and (iii) rolling proximity
identifier. The tracing key is a 32-byte string that is generated
by using a cryptographic random number generator when the
app is enabled on the device. The tracing key is securely
stored on the device. The daily tracing key is generated for
every 24-hour window by using the SHA-256 hash function
with the tracing key. The rolling proximity identifier is a
privacy-preserving identifier which is sent in Bluetooth ad-
vertisements. This identifier is generated by using the SHA-
256 hash function with the daily tracing key. Each time the
Bluetooth MAC address is changed, the app can derive a new
identifier. When a positive case is diagnosed, its daily tracing
keys are uploaded to a server. This server then distributes
them to the clients who use the app. Based on this informa-
tion, each of the clients will be able to derive the sequence of
the rolling proximity identifiers that were broadcasted from
the user who tested positive. In this way, the privacy of the
users can be protected because, without the daily tracing
key, one cannot obtain the user’s rolling proximity identifier.
In addition, the server operator also cannot track the user’s
location or which users have been in proximity.

Similarly, several solutions have been proposed in [4], [5].
The key idea of these solutions is generating a unique iden-
tifier and broadcasting it to nearby devices. In particular,
PACT [4] regularly (every few seconds) emits a data string,
called chirps, generated by cryptographic techniques based
on the current time and the current seed of the user to ensure
the privacy. Similarly, in [5], the identifier EphID (called
ephemeral ID) is created as follows:

EphID = PRG (PRF(SKt, broadcast key)), (1)

where PRF is a pseudo-random function (e.g., SHA-256),
broadcast key is a fixed and public string, and PRG is a
stream cipher (e.g., AES in counter mode). SK; is the secret
key of each user during day ¢ which is computed as follows:

SK; = H(SK;-1), 2

where H is a cryptographic hash function. Upon receiving
the identifier, other nearby devices will keep it as a log. If a
user is diagnosed with the disease, other users who may have
encountered the infected person will receive a warning of a
potential contact.

With outstanding performance in data integrity, decen-
tralization, and privacy-preserving, blockchain technology
can be an effective solution to preserve privacy to enable
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technology-based social distancing scenarios. A blockchain
is a distributed database shared among users in a decen-
tralized network. This decentralized nature of blockchain
ensures its immutability property, i.e., the data stored within
cannot be altered without the consensus of the majority
of network users [148]. Another advantage of blockchain
technology is that the users’ anonymity is ensured due to
the public-private keys pair mechanism [149]. As a result,
blockchain technology can effectively address the personal
identity issue in social distancing scenarios where people
have to share their movement and location information but
not their exact identities. For example, in the infected move-
ment data scenario, we only need to know the movement path
of a person, and whether or not that person is infected. In this
case, the person anonymity can be ensured with the public-
private keys pair mechanism, since there is no way to link the
public key to that person’s true identity.

3) Health-Related Information Protection

To monitor the sickness trend in a certain place, e.g., the hos-
pital, for the social distancing purpose (i.e., to inform the up-
coming mobile users not to enter a high-risk area/building),
the health-related condition information of visiting mobile
users has to be shared to provide reliable learning dataset. To
protect this highly sensitive information, the authors in [145]
propose a differential privacy-based protection approach to
preserve the electrocardiogram big data by utilizing body
sensor networks. In particular, non-static noises are applied
to produce sufficient interference along with the electrocar-
diogram data, thereby preventing the malicious attackers to
point out the real electrocardiogram data.

To provide secure health-related information access for
authenticated users, a dynamic privacy-preserving approach
leveraging the biometric authentication process is introduced
in [146]. Specifically, when a user wants to access the
medical server containing his/her health condition, a secure
biometric identification at the server for the user’s validity is
employed where the exact value of his/her biometric template
remains unknown to the server. In this way, the personal
identity of the authenticated user can be preserved. To further
enhance the anonymity of his/her medical information, the
random number that is used to protect the biometric template
is updated after every successful login. Then, the authors
in [147] propose a secure anonymous authentication model
for wireless body area networks (WBANS). Specifically, this
framework enables both patients and authorized medical
professionals to securely and anonymously examine their
legitimacies prior to exchanging biomedical information in
the WBAN systems. Motivated by the above works, we can
utilize mobile devices, secure service provider, and the afore-
mentioned privacy-preserving approaches to anonymously
collect people’s health condition information for illness mon-
itoring in the hospital/medical center (Fig. 10(c)). In this way,
the social distancing through monitoring the sickness trend
can be implemented efficiently while preserving the sensitive
information of the people in the illness areas.
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FIGURE 11: Scheduling and optimization for several so-
cial distancing scenarios including reducing the simultane-
ous presence of employees (workforce scheduling), patients
(healthcare appointment and home healthcare scheduling),
and traffic (traffic control). Moreover, network resources can
be optimized to meet surging demands on online services
while more people are working remotely from home.

B. REAL-TIME SCHEDULING AND OPTIMIZATION

In the context of social distancing, real-time scheduling and
optimization techniques can play a key role in preventing
an excessive number of people at a given place (e.g., super-
markets, hospitals) while maintaining a reasonable Quality-
of-Service level. Fig. 11 illustrates several social distancing
scenarios where scheduling and optimization techniques can
be applied. In particular, proper scheduling can help reduce
the number of necessary employees at the workplace and the
number of patients coming to the hospital, thereby minimiz-
ing the physical contacts among people. Moreover, traffic
scheduling can help to reduce the peak number of vehicles
and pedestrians, and network resource optimization [71]
(e.g., network/resource slicing) can meet surging demands on
online services while more people are working remotely from
home.

1) Workforce Scheduling

Workforce scheduling can help to limit the number of people
at the workplaces while ensuring the necessary work is done.
While working from home is encouraged in social distancing,
some essential work requires people to be present at the
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workplace for important tasks (e.g., health, transportation
and manufacturing). Moreover, different types of tasks im-
pose various constraints such as due date (time constraints),
dependence among tasks (precedence constraints), skill re-
quirements (skill constraints), and limited resources usage
(resource constraints) which further complicate the schedul-
ing problem. For such scenarios, workforce scheduling tech-
niques can be utilized to optimally align and reduce the
number of required employees to practice social distancing.
In [72], a novel three-phase algorithm is proposed for work-
force scheduling to optimize the operational cost and ser-
vice level simultaneously. Another Genetic-Algorithm-based
hybrid approach is presented in [73], which optimizes the
schedules of the workforce according to multiple objectives
including urgency, skill considerations, and workload bal-
ance. Similarly, in [74], a Mixed-Integer-Programming-based
approach is developed to minimize the operational cost with
consideration of skill constraints. It is worth noting that the
main objective of these approaches is to minimize cost, which
is not the highest priority in the context of social distancing.
In [75], [76], and [77], several methods are proposed to opti-
mize the workforce schedules with consideration of rotating
shifts, which indirectly reduce the number of employees to a
certain extent. Nevertheless, the main objective of these ap-
proaches is reducing costs. Therefore, developing techniques
to reduce the physical contacts or distance among employees
at the workplace is critical for workforce scheduling in social
distancing scenarios.

2) Medical/Health Appointment Scheduling

Besides workforce planning, scheduling techniques can also
help to optimize healthcare services, especially healthcare
appointments and home healthcare services, thereby decreas-
ing unnecessary traffic and the number of patients com-
ing to hospitals. Several approaches have been proposed
to effectively schedule appointments. In particular, a local
search algorithm is proposed in [78] to minimize patient
waiting times, doctor idle times, and tardiness (lateness).
Moreover, a two-stage bounding approach and a heuristic are
presented in [79] and [81], respectively. However, a common
limitation of these techniques is that they do not take into
account the uncertainties in the duration of the appointments
and the possibility that the patient will not come to the
scheduled appointment. To address that, the uncertainty in
the processing times (e.g., of surgeries) is considered by a
conic optimization approach in [80]. Similarly, a multistage
stochastic linear program is developed in [82] to minimize
patient waiting times and overtime, which takes into ac-
count the unpredictable appointment duration and unplanned
cancellations. Although there are many effective approaches
to optimize appointment scheduling, the open issue is to
develop techniques that specifically minimize or control the
number of patients simultaneously coming to the hospitals to
maintain a suitable level of social distancing, similar to that
of the workforce scheduling scenario.
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3) Home Healthcare Scheduling

Similar to appointment scheduling, home healthcare services
(HHS) can help to reduce the pressure on hospitals and traffic
in the social distancing context. In [83], a multi-heuristics
approach is proposed for HHS scheduling to minimize the
total traveling times of HHS staff. An extended problem is
presented in [84], where the objective also includes minimiz-
ing the tardiness and additional skills and time constraints are
considered. For this problem, local search-based heuristics
are proposed in the paper. Another local search-based heuris-
tic is proposed in [85] for HHS scheduling with the objective
to minimize traveling times and optimize Quality-of-Service
while considering workload and time constraints. In [86], a
Genetic-Algorithm-based hybrid approach is proposed for
HHS scheduling with uncertainty in patient’s demands to
minimize transportation costs. Also addressing uncertainties,
a branch-and-price algorithm is proposed in [87] to minimize
the traveling costs and delay of services while considering
stochastic service times. Unlike in workforce planning and
appointment scheduling, HHS scheduling techniques can
be more effectively applied to social distancing scenarios
because they can minimize the traveling distances while
ensuring Quality-of-Service.

4) Traffic Control

Scheduling techniques have also been applied for traffic
control. In social distancing scenarios, scheduling techniques
can help to regulate the traffic level, especially the num-
ber of pedestrians. In [88], a novel scheduling algorithm
is developed for traffic control, considering both vehicles
and pedestrians, to minimize the delays. Similarly, a macro-
scopic model and a scheduling algorithm are proposed for
traffic control, which jointly minimize both the pedestrians
and vehicle delays in [89]. Another scheduling approach is
proposed in [90] that considers both pedestrians and vehi-
cles. Different from the previously mentioned approaches,
this approach only focuses on minimizing pedestrian delay.
Although there is a vast literature on traffic scheduling tech-
niques, the social distancing implications have not been taken
into account. For example, to maintain social distancing, a
more meaningful objective would be to reduce/constrain the
peak number of pedestrians on the street at the same time.

5) Online Services Optimization
When social distancing measures are implemented, more
people will be staying at home e.g., working from home.
Physical meetings/gatherings will move to virtual platforms,
e.g., webinars. That results in much higher Internet traf-
fic and corresponding virtual service demands (e.g., video
streaming, broadcasting, and contents delivery). Therefore,
optimizing online services delivery is a challenging issue
in the social distancing context. Fortunately, online services
optimization is a well-studied topic with a substantial body
of supporting literature.

For example, in [91], a novel algorithm is proposed to
optimize the contents delivery process in a CDN semi-
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federation system. In particular, the algorithm optimally al-
locates the content provider’s demand to multiple Content
Delivery Networks (CDNs) in the federation. The results
show that the latency can be reduced by 20% during peak
hours. Another technique to reduce the delay and network
congestion is edge-caching, which brings the contents closer
to the network users (e.g., [92]). In [93], the performance of
two edge-caching strategies, i.e., coded and uncoded caching,
are analyzed. Moreover, two optimization algorithms are
developed to minimize the content delivery times for the two
caching strategies.

Besides the contents delivery, the demands on video
streaming traffic are also much higher during social distanc-
ing implementation because there are many people who work
from home. In that context, emerging networking technolo-
gies can be an effective solution. For example, an architecture
utilizing HTTP adaptive streaming [94] and software-defined
networking technology is proposed to enable video streaming
over HTTP. Moreover, a novel algorithm is developed to
optimally allocate users into groups, thereby reducing com-
munication overhead and leveraging network resources. The
results show that the proposed framework can increase video
stability, Quality-of-Service, and resource utilization.

Scheduling and optimization are well-studied topics with
a vast literature available, which can be utilized for different
social distancing scenarios such as workforce, healthcare
appointment, home healthcare, and traffic scheduling, and
optimization of online services delivery. Nevertheless, except
for the home healthcare service scenario, the existing tech-
niques’ objectives do not align with the objectives of social
distancing. Moreover, scheduling algorithms are often devel-
oped such that they are only efficient for specific problems.
Therefore, developing novel optimization/scheduling algo-
rithms in operations research and adopting social distancing
as a new performance metric or design parameter is very
much desirable. Furthermore, the optimization of Internet-
based services such as content delivery can help to encourage
people to stay at home during social distancing periods by
ensuring the service levels.

C. INCENTIVE MECHANISM TO ENCOURAGE SOCIAL
DISTANCING

Due to the people’s self-interested/selfish nature characteris-
tics in their daily life [164] (especially during the pandemic
outbreak), incentive mechanisms can be very helpful in en-
couraging people to accept or share relevant information to
enable new social distancing methods. These mechanisms
have been thoroughly discussed in crowdsourcing as imple-
mented in [136], [169]-[172]. Therein, the service providers
can provide incentives to a large number of people to at-
tract their contributions in data collection for crowdsourcing
processes. For example, the contract theory-based incentive
mechanism for crowdsourcing is discussed in [169], [170]. In
particular, this approach is considered an efficient mechanism
to leverage common agreements between the participating
entities, e.g., a service provider and its mobile users, in a
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certain area under complete and incomplete information from
the participants [165]. The use of a game theory-based incen-
tive mechanism to encourage a set of mobile users to form a
crowdsourcing community network is investigated in [136],
[171]. Then, in [172], the authors utilize an auction theory-
based approach incentive mechanism to stimulate mobile
users’ participation in crowdsourcing tasks such as traffic
monitoring. In the following, we also highlight the existing
incentive mechanisms and how they can be further adopted
to encourage social distancing applications.

1) Distance Between any Two People and Distance to/from
Crowds

To motivate people to keep safe distances from themselves
to others, contract theory-based incentive models via D2D
communications, e.g., Bluetooth, Wi-Fi Direct, can be em-
ployed. In [166], the authors propose a contract theory-based
mechanism to provide a higher reward for D2D-capable mo-
bile users if they send the information to a requesting mobile
user with a higher transmission data rate. Taking into account
the number of potential nearby mobile users in proximity,
the authors in [167] introduce the same mechanism such
that a mobile user will receive a higher payment if they can
share the information with more nearby users. Likewise, the
same approach considering a higher reward for a mobile
user who has shorter distances in sharing its information
to nearby D2D pairs is presented in [168]. Inspired by the
aforementioned works, we can consider the contract theory-
based method along with D2D communications to encourage
people to keep distances from other people/crowds. Specifi-
cally, mobile service providers can be subsidized/funded or
requested by the government to provide incentives to their
users to keep a distance from others when they are in public.
Specifically, a service provider can offer contracts to mobile
users, as illustrated in Fig. 12(a). Considering the current
distances from the nearby mobile users and capability to
inform them through D2D communications, those mobile
users can obtain more rewards when they successfully keep
a sufficient distance (e.g., at least 1.5 meters) from other
people/users. A violation (e.g., getting closer than 1.5 meters
to someone) can lead to a “penalty” (e.g., losing part of the
previous rewards).

2) Contact Tracing

In a pandemic outbreak, contact tracing is considered one
of the most important actions to contain the spread of the
disease. To trigger each mobile user for information shar-
ing, e.g., mobile user’s public identity, the network operator
requires to offer incentives to those who contribute such
information (besides privacy-preserving solutions). In [169],
the authors introduce a contract theory-based incentive mech-
anism in a crowdsourced wireless community network. In
particular, the network operator offers contracts to network-
sharing mobile users containing a Wi-Fi access price (for
their nearby mobile users accessing the network sharing) and
a subscription fee (for the network-sharing mobile users).
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Motivated by this work, we can also develop a contact-tracing
framework which allows a mobile user to broadcast his/her
public identity to the nearby mobile users as long as their
distances are within 1.5 meters. Then, the nearby mobile
users can store this public identity in their close-contact log
files including the time and location when they receive that
public identity as shown in Fig. 12(b). Mobile users who store
such log files will pay the sharing mobile user to compensate
for the information sharing. In this way, when at least one of
the mobile users in the log files is infected by the contagious
disease, the mobile service provider can alert the mobile
users with the log files to implement social distancing.

3) Crowd Detection

A high density of people in specific areas can make conta-
gious diseases to spread the infection more quickly due to
people’s close proximity. To support social distancing, an
incentive mechanism approach can also be applied to detect
the people density in public areas or the number of people
in a building. In [170], the authors present a tournament
model-based incentive mechanism to encourage mobile users
(with various performance ranks) connected to the local
wireless networks, e.g., Wi-Fi hotspots, to send the location
and unique identifier of the networks to the service provider
(Fig. 12(c)). From the hotspots’ location information, the
service provider can then determine the people density in
each hotspot area or the number of people in a building
(which may have several hotspot areas). Using the above
method, we can also encourage mobile users to avoid non-
essential public places, e.g., restaurants and shopping malls.
In this case, the reward can be adapted according to the
locations and essential level of the services (e.g., cinemas,
restaurants, grocery stores, schools, and hospitals).

In addition to the people density detection, we can adopt
incentive mechanisms to monitor the density of vehicles on
the city roads for traffic crowd avoidance purposes. In fact,
the contagious diseases, e.g., coronavirus, can remain on the
surfaces for four hours up to several days [173]. Thus, avoid-
ing traffic jams on the roads can reduce the possibility of dis-
ease infection. In [174], the authors propose a reward-based
smartphone collaboration method to support data acquisition
for location-based services. Specifically, a client will attract
surrounding smartphone users, e.g., vehicular users on a
highway, to collaborate together with the aim to build a big
database containing location information as implemented in
Google’s Android smartphones and Apple’s iPhone [3]. The
joining smartphone users then receive shared rewards from
the client considering their collaboration costs. Based on this
database, the client can determine the traffic levels according
to the vehicles’ density on the roads dynamically and sell this
information to the authorities or service provider. Such infor-
mation can be useful for several social distancing scenarios
such as crowd detection, traffic/movement monitoring, and
traffic control.
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4) Location/Movement Sharing and Stay-at-home
Encouragement

To further drive people away from high-density public places,
one can also consider incentive mechanisms for better social
distancing efficiency (especially for the people with their
mobile devices). In particular, the authors in [175] study the
uneven distribution of the crowdsourcing participants when
maximizing the social welfare of the network. To address
this problem, a movement-based incentive mechanism to
stimulate the participants to move from popular areas to
unpopular ones was introduced. This approach guarantees
that the participants will announce their actual costs for
further reward processes. Likewise, an incentive mechanism
in spatial crowdsourcing considering budget constraints to
reduce imbalanced data collection is discussed in [176].
Particularly, the service provider will provide a higher reward
when the mobile users are willing to participate in remote
locations instead of nearby locations where they belong to
(based on their daily routines). A similar work utilizing a
redistribution algorithm to incentivize crowdsourced service
providers from oversupplied areas to undersupplied ones is
also investigated in [137]. The above works are then extended
in [177]. Instead of encouraging mobile users to completely
move to faraway locations, the service provider will offer
a task-bundling containing the nearby and remote tasks for
each participating mobile user. All of these works show that
the proposed incentive mechanisms can efficiently balance
the various location popularity such that we can encourage
people to move to low-density places.

In a narrow-down scenario, we can also utilize an incentive
mechanism to encourage family-isolation/group-isolation for
the possible vulnerable/at-risk people, e.g., sick people and
older people. For example, the authors in [178] propose
a spatio-temporal-based incentive mechanism using both
smartphone and human intelligence in an ad hoc social
network. This framework allows a very large crowd to work
together in providing information sharing, i.e., geo-tagged
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multimedia resources, while receiving incentives from the
system. Based on this method, we can also engage the
vulnerable/at-risk groups to isolate themselves and deliver
incentives for them at a certain location during a particular
period (Fig. 12(d)). The larger number of vulnerable/at-risk
members in a group, the higher incentives will be given.
Furthermore, we can design a real-time incentive mechanism
to encourage people to implement self-isolation by providing
more rewards for those who spend more time at a given
location, e.g., at home. In this case, the reward can be
negative, i.e., penalty, to discourage people from going to
crowded places.

D. PANDEMIC MODE FOR SOCIAL DISTANCING
IMPLEMENTATION

An occasional pandemic outbreak in a particular period can
drive the mobile service providers, e.g., Google and Apple,
to build up a pandemic mode application for current users’
mobile devices, e.g. smartphones. This application represents
a comprehensive framework utilizing the current pandemic
situation, i.e., infected movement data, to help the mobile
users stay aware of the contagious diseases and perform cau-
tious actions to slow down the spread of the diseases through
implementing social distancing. To this end, the use of users’
smartphones is very crucial to realize this pandemic mode
application as similarly implemented for smartphone-based
disaster mode application in [108]—[114]. When a contagious
disease outbreak is imminent, the government can first broad-
cast an urgent notification for mobile users to install/deploy
the official pandemic mode application in their smartphones.
Then, based on the current infected movement data, e.g.,
the current reported number of infected people and currently
infected areas, from the government officials, the service
providers can determine the risk levels of the pandemic and
activate a certain level in the smartphones. Considering the
risk level, the smartphones can leverage the existing sensors
and wireless connections to perform effective contact tracing
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activity for contagious disease containment.

1) Infected Movement Data

To determine the risk levels of the pandemic mode, the au-
thorities first need to monitor the current infected movement
information, i.e., infected areas and the number of infected
people. Based on this observation, the authorities then can
orchestrate the pandemic mode risk levels and notify mobile
users so that they can avoid the areas where the highly-
likely infection exists according to the current risk level.
In [115], the authors introduce an identification framework
to observe the spatial infection spread based on the arrival
records of infectious cases in subpopulation areas. Consider-
ing susceptible and infectious people movement in metapop-
ulation networks, the framework first splits the whole in-
fection spread into disjoint subpopulation areas. Then, a
maximum likelihood estimation is applied to predict the most
likely invasion pathways at each subpopulation area. Using a
dynamic programming-based algorithm, the framework can
finally reconstruct the whole spread by iteratively assembling
the invasion pathways for each subpopulation to produce the
final invasion pathways. Then, the authors in [116] present
a spatial-temporal technique to locate real-time influenza
epidemics utilizing heterogeneous data from the Internet.
In particular, the technique constructs a multivariate hidden
Markov model through aggregating influenza morbidity data,
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influenza-related data from Google, and international air
transportation data. This aims to identify the spatial-temporal
relationship of influenza transmission which will be used
for surveillance application. Through experimental results,
the technique can predict an influenza epidemic ahead of
the actual event with high accuracy. Recently, Google and
Apple also create a framework to demonstrate the community
mobility trend with respect to the COVID-19 outbreak [118],
[120]. In particular, this framework is generated based on
the regions of mobile users and changes in visits monitoring
at various public places, e.g., groceries, pharmacies, parks,
transit stations, workplaces, and residential areas.

Motivated by the above works, the authorities can first
collect the spatio-temporal infectious disease-related infor-
mation from the Internet and official reports. Using the afore-
mentioned methods, the authorities can then extract mean-
ingful information about the spread locations/pathways and
time of the infectious diseases, which leads to various spatio-
temporal disease spread levels. Based on these disease spread
levels, the authorities can customize the pandemic mode risk
level for different regions, e.g., states, cities, and provinces, at
different times. For example, if the disease spread level, e.g.,
the density of infected people, at a particular city is high, the
authorities can set the pandemic mode into a high-risk level
for a week (as shown in Fig. 13). Otherwise, the pandemic
mode level can be set at a low-risk level.
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2) Contact Tracing

After determining the risk levels of the pandemic mode based
on the infected movement data, the authorities can broadcast
the risk level notification through smartphones’ pandemic
mode application. Afterward, the smartphones can perform
contact tracing to help quickly discovering infected people
for efficient outbreak containment [121], [122]. Based on
the risk level of the pandemic mode, the smartphones can
automatically trace contacts using certain sensors and wire-
less connections. For example, Google and Apple currently
collaborate together to develop a contact tracing application
utilizing Bluetooth technology, aiming to quickly detect past
contacts among mobile users in close proximity [3]. In
this case, the Bluetooth is used to exchange beacon signals
containing unique keys between two smartphones prior to
storing these keys to the cloud server for infected people
notification. Similarly, the work in [123] develops a wireless
sensor system to exchange beacon signals between a mobile
device with other nearby mobile devices as its contact infor-
mation. In another work, an epidemiological data collection
scheme utilizing users’ smartphones is described in [124].
Specifically, a user’s smartphone can be used as a sensor
platform to collect high accurate information including the
user’s location, activity level, and contact history between the
user and certain locations. Then, a smartphone-based contact
detection system leveraging the smartphone’s magnetometer
history is investigated in [125]. To determine the close con-
tact, the system measures the linear correlation between two
smartphones’ magnetometer records.

Inspired by the aforementioned works, smartphones can be
utilized as crucial tools to implement contact tracing consid-
ering the current risk level of the pandemic mode activated
by the authorities (as illustrated in Fig. 13). In particular,
if the authorities activate low-risk levels, i.e., the current
number of infected people and areas are small, smartphones
can trace close contacts using cellular networks only. In this
case, the pandemic mode application will disable certain
sensors, Bluetooth, and Wi-Fi by default. However, if the
high-risk level pandemic mode, i.e., the current number of
infected people and areas are large, is activated, the pandemic
mode application will enable all of the wireless connections
including Bluetooth, Wi-Fi, and cellular network, as well as
relevant sensors automatically to trace contacts faster.

Besides smartphone’s built-in sensors, wearable sensors
such as physiological (e.g., respiration rate, body temper-
ature, etc.), audio, video, and inertial sensors, as well as
wearable devices (GoPro, smartwatch), can all provide mean-
ingful information [179] for contact tracing. For example,
when two persons wearing body sensors networks (BSNs),
i.e., sets of wearable sensors attached to the body, making
contact with each other, a collaborative BSNs system can
be utilized to extract information from the contact. In [180],
a framework for computing and data fusion from multi-
ple sensors of different BSNs is proposed. To allow the
collaboration between the two BSNs, the authors develop
novel mechanisms including inter-BSN data communication,
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BSN Proximity Detection, BSN mutual service discovery
and activation, inter-BSN high-level protocols, and cooper-
ative multi-sensor data fusion. As a result, the framework
can detect physical interactions such as handshakes between
two persons. Although these wearable systems can provide
meaningful and accurate data for contact tracing, they pose
a threat to people’s privacy. Therefore, the data from these
wearable devices should only be used when a pandemic mode
is in effect.

IV. CONCLUSION

Social distancing has been considered to be a crucial measure
to prevent the spread of contagious diseases such as COVID-
19. In this Part II, we have presented a comprehensive
survey on how emerging technologies can enable, encour-
age, and enforce social distancing. For each technology,
we have provided an overview, examined the state-of-the-
art, and discussed how it can be utilized in different social
distancing scenarios. Finally, we have discussed open issues
in social distancing implementations and potential solutions
to address these issues. We suggested that smart infrastruc-
tures (e.g., next-generation wireless systems like 6G, smart
home/building, smart city, intelligent transportation systems)
should incorporate a pandemic mode in its standard archi-
tecture/design. Such an operating mode allows us to better
(systematically) respond to COVID-19-like pandemics in the
future.
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