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Abstract—Hyperspectral images (HSIs) have fine spectral in-
formation and rich spatial information, of which the feature
quality is one of the key factors that affect the classification
performance. Therefore, how to extract essential features and
eliminate redundant features from hyperspectral data is the main
research focus of this paper. Here, we propose a spectral-spatial
feature extraction method based on ensemble empirical mode
decomposition (SFEEMD) for HSI classification, which contains
several steps as follows: Firstly, the dimension reduction for HSI
is performed by using principal component analysis method.
Secondly, in order to decrease the sensitivity to noise and extract
rough outline features, the adaptive total variation filtering
(ATVF) is conducted on the selected principal components. Fur-
thermore, by using the ensemble empirical mode decomposition
(EEMD) to resolve each spectral band into sequence components,
the features of HSIs can be better coalesced into the transform
domain. Finally, the first K principal components of the input
image and the outputs of the ATVF and EEMD are integrated
into a stacking system to obtain the final feature image, which is
then classified by a pixel-wise classifier. The experimental results
of three authentic hyperspectral data sets show that the proposed
algorithm obtains superior classification performance compared
with other methods.

Index Terms—Hyperspectral image classification, ensemble
empirical mode decomposition, feature extraction, adaptive total
variation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) can discover the par-
ticular distinctions hidden in the confined spectrum

through the broadband spectrum coverage with hundreds of
bands. In other words, the wide spectral coverage and high
spectral resolution of HSIs tremendously enhances peoples
cognitive competence of ground objects. Due to these ad-
vantages, hyperspectral imaging technique plays a vital role
in geological exploration, urban expansion, agricultural and
forestry monitoring, military, and other industries [1]–[5].
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Although HSI provides abundant spectral information, the
colossal number of spectral bands will inevitably lead to
a high calculation cost and the “Hughes” phenomenon [6].
Specifically, when the quantity of training samples is fixed,
with the increase of data dimension, the classification ac-
curacy obtained by a statical model-based classifier appears
to increase first and decline later. Therefore, it is obviously
undesirable to directly input the high-dimensional data into a
classifier. Moreover, other problems such as spectral unmixing
and noisy label problem in HSI also increase the difficulty
for hyperspectral image classification (HIC) [7], [8]. Recently,
many different types of advanced machine learning methods
have been proposed to solve these problems, such as K-nearest
neighbor [9], decision tree method [10], Bayesian theory [11],
[12], support vector machine (SVM) [13], [14], and neural
network [15].

Feature extraction [16] is one of the highlights in the
HSI processing field. The objective of existing hyperspectral
feature extraction methods is usually to map high-dimensional
hyperspectral data to low-dimensional feature spaces, such
as independent component analysis (ICA) [17] and principal
component analysis (PCA) [18]. For example, Falco et al.
have researched the influence of different ICA methods on
the classification performances [19]. Furthermore, a large
number of non-linear HSI dimension reduction methods have
also been proposed for HIC [20]. For instance, kernel local
fisher discriminant analysis (KLFDA) [21] and the method
based on chaos theory [22]. The merit of these non-linear
methods is that they can seek the essence of things from the
observed phenomenon, and thus, finding the inherent law of
data formation.

The feature extraction and classification methods mentioned
above are mainly based on the spectral characteristics only
involving a single pixel, without considering the relevance
between spatially adjacent pixels. However, in recent years,
researchers indicate that the spatial information of HSIs also
plays a considerable part in HIC. Spectral-spatial classification
based on image segmentation is the most prevailingly em-
ployed method, which primarily includes watershed segmenta-
tion [23], partition clustering [24], hierarchical segmentation,
superpixel segmentation and so on [25], [26]. This kind of
methods first segregate an HSI into multiple non-overlapping
areas in the image according to the brightness, color or texture
information. Then, the label of each area is assigned with
the most frequent label (obtained using a spectral classifier)
of this region. Markov Random Field (MRF) as a space
majorization tool has been triumphantly applied to spectral-
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spatial classification. Other methods for spectral-spatial HIC
are based on account of probability optimization. For instance,
Tarabalka et al. [27] presented an approach based on SVM
and MRF. This approach first used the SVM to acquire the
classified probability of apiece hyperspectral pixel, and then
used the MRF to optimize the classified probability map to
express the HSI in the model, and finally, maximized the
probability of apiece pixel to acquire classification results. Li
et al. [28], [29] learned posterior probability distribution by
multivariate logistic regression, and then united the learned
posterior probability distribution with the MRF model to
further enhance the classification accuracy. In addition, Wang
and Du et al. [30] proposed a batch-processing active learning
framework mode, which preserves the source distribution as
much as possible to inquire the most informative samples,
thus confirming the most typical and indeterminate queries.
Ghamisi et al. [31] proposed an approach based on SVM and
hidden MRF for HIC. Based on the similar idea, Kang et al.
[32] used stochastic rovers for probability majorization, which
is demonstrated to be very useful when training samples are
relatively restricted. In recent years, sparse representation also
becomes a hot research topic in HIC field as a novel signal
expression algorithm [33]–[37].

Besides the researches in spectral-spatial classification, the
extraction of spectral-spatial features of HSIs has also been
carried out. Benedkitsson et al. proposed a morphological
filtering algorithm for HSI feature extraction [38]. Mura et al.
proposed two methods to analyze hyperspectral data, namely
the extended morphological character contour and extended
contour with morphological character filter [39], [40]. Ghamisi
et al. presented an automatic framework based on spectral-
spatial classification of morphological character contour and
supervised feature extraction [41]. Kang et al. presented an
edge-preserving filtering algorithm for HSI feature extraction
[42]. Prasad et al. used redundant discrete wavelet transform
(RDWT) to extract the HSI features [43]. Furthermore, by
using spatial correlation features in patch, Su et al. proposed a
joint collaborative representation classification with correlation
matrix (CRC-CM) for HSI, which can maintain the local
inherent structure in the band [44]. Su et al. also proposed
two novel multifeature learning algorithms that directly or
indirectly update the dictionary [45]. To provide multifeature
complementarity, four different types of features are adopted.
In addition, Zhang et al. proposed a method for cloud detection
of high-resolution satellite images using various features of
ground objects (such as color, texture, and shape) [46]. This
method not only improves the overall accuracy rate, but also
reduces the false alarm rate. Wang et al. proposed an end-
to-end adaptive spectral-spatial multiscale network to extract
multiscale context information for HSI classification [47].
The above methods make full use of spectral-spatial features
and multifeatures of HSI, and the classification accuracy is
effectively improved.

A decision fusion system is used to blend the decisions
of diverse classifiers so as to acquire the optimal classifica-
tion consequence. In comparison with the wavelet transform,
the non-linear signal processing algorithm called empirical
mode decomposition (EMD) [48] has higher efficiency, which

decomposes the signal according to the time-scale features.
However, assuming that the value does not satisfy the physical
standard deviation between the two signals, the original signal
characteristics will disappear in the modulated signal [49].
To conquer this difficulty, Wu et al. proposed the ensemble
empirical mode decomposition (EEMD) [50], [51], which can
get more comprehensive performance. Moreover, Motin et al.
proposed an algorithm based on combining empirical mode de-
composition and principal component analysis (EEMD-PCA)
as a new method to estimate heart rate and respiratory rate
simultaneously from photoplethysmographic signal [52]. Su
et al. proposed a novel bagging-based tangent space collabo-
rative representation classification (TCRC) and boosting-based
TCRC methods [53]. The main idea of bagging-based TCRC
is to use bootup sample method to generate various TCRC
classification results, thus improving the accuracy and diversity
of a single classifier. Liu et al. proposed two integrated
methods based on EEMD to retrieve wind direction from rain-
contaminated X-band nautical radar sea surface images [54].

In the algorithm research, the total variation (TV) model
algorithm has attracted the attention of many scholars [55]–
[58]. Several TV algorithms began to be applied in digital
image processing, which showed outstanding performance on
image denoising [59]–[61]. Based on TV model, Liu et al.
[62] proposed a model that used an edge detection filter
to adaptively select parameters, and a shock filter combined
with anisotropic diffusion to process noisy images, which
can quickly solve the algorithm for image denoising adaptive
total variation (ATV) model. Furthermore, it proposed a fast-
iterative algorithm to solve the proposed adaptive model
based on Bergman iteration regularization method. Because
the proposed model can maintain a balance between noise
smoothing and edge retention, it has been extensively used in
sparse reconstruction [64], low-dose X-ray cone-beam com-
puted tomography (CBCT) [65], and compressed perception
(CP) [66].

Considering that adaptive total variational filtering (ATVF)
can smoothly reduce noise, that is, effectively and quickly
reduce noise sensitivity. Therefore, this method is selected to
acquire rough outline features. However, in the selection of
ATVF filtered HSI features, only the high-frequency part of
the details is visually reflected, while the grayscale change in-
formation of the low-frequency part is ignored. To address this
problem, a hyperspectral feature extraction named spectral-
spatial feature-based ensemble empirical mode decomposition
(SFEEMD) is proposed in this paper. The major steps of
this paper are as follows: Firstly, the output feature image
of ATVF is integrated into the transform domain by using
the EEMD method, which could decompose each spectral
band into sequence components, and use them to enhance
the identification function of spectrum. Secondly, the first K
principal components of the input image and the outputs of
the ATVF and EEMD are integrated into a stacking system to
obtain the final feature image, which provides a better pixel-
level representation feature for HIC. Furthermore, this method
performs experiments on some authentic hyperspectral data
sets and compares the products with various HIC methods.
Our proposed method exhibits excellent classification perfor-
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mances on multiple quality indicators, including Kappa coef-
cient, average classication accuracy, and overall classication
accuracy.

The major contributions of this paper are summarized as
follows:

1) A simple SFEEMD method is proposed to extract
discriminative spectral-spatial features for HSI classification,
which is designed by integrating the first K principal com-
ponents of the input image and the outputs of the ATVF and
EEMD into a stacking system.

2) SFEEMD method uses ATVF and EEMD model to
perform noise reduction and feature reconstruction on HSI,
which can quickly remove noise while preserving details
such as the edge contour and texture of the image. The
proposed SFEEMD method is more robust and generalized
by comparing with other methods.

The rest of this paper is listed as follows: Section II intro-
duces the EEMD method, ATVF model, and fast ATV algo-
rithm. Section III describes our proposed SFEEMD method for
spectral-spatial HIC. The information of data sets used in this
paper and the analysis and discussion of experimental results
are provided in Section III-A. Finally, Section V concludes
this paper briefly.

II. RELATED WORK

A. Ensemble Empirical Mode Decomposition

EMD is an adaptive signal processing technique with wild-
ly applications and largely contributions. Later, the EEMD
method emerged, which reduces the influence of modal mix-
ing in the EMD process, and making this method show a
better level. For EEMD, the percentage p of the additional
homogeneous white noise and the quantity of semaphores in
the integration are always determined in advance. The EEMD
consists of diverse intrinsic mode functions (IMFs) that must
meet under requirements:
• The quantity of zero points and partial extremum points

in the formula should be equivalent during the entire time
scope, otherwise the largest deviation is 1.

• The mean values of the lower and upper envelopes are
decided by the partial minimum and maximum respec-
tively. At any time, the value has to be 0.

Assume Xb
c,a(m,n) indicates the result of the bth iteration

of the ath IMF in cth band. Therefore, the screening process
is summed up, and the iterative process starts from one-
dimensional to realize IMFs.

1) Find all partial minimum and maximum points from
every input band.

2) Insert the minimum and maximum value respective-
ly, to acquire the lower Emin(m,n) and upper envelope
Emax(m,n).

3) Compute the average of the lower and upper envelopes
Z

(B)
A (m,n), the formula is as below:

Z
(B)
A (m,n) =

(Emax(m,n) + Emin(m,n))

2
(1)

4) From the input semaphore, to reduce the average value
of the envelope D(B)

A (m,n) = X
(b)
c,a(m,n)− Z(b)

a (m,n)

5) Duplicate operations 1)-4) until the envelope semaphore
meets the present IMF, that is, SCD < τ and converges with
the IMF.

SCD =
max(abs(Z

(b)
a (m,n)))

max(abs(Ra(m,n)))
< τ (2)

6) Duplicate operations 1)-5) to produce a remainder
Ra(m,n) = Ra(m,n) − IMFc,a(m,n), if the remainder
does not involve an extremum value, the EMD procedure will
terminate.

In summary, the original spectral band image Xc(m,n)
is acquired. The reconstruction of IMF performance and
remainder is as below:

Xc(m,n) =
A∑
a=1

IMFc,a(m,n) +Ra(m,n) (3)

B. Adaptive Total Variational Filtering Model

Rudin et al. [57] proposed a total variational (TV) mini-
mization model for image noise reduction, which is expressed
as follows:

TV Fµ(u) = arg min
u
TV (u) +

µ

2

∫
Ω

|f(x) − u(x)|2dx (4)

where TV (u) is the TV of the noise data; µ is a regularization
parameter, which is in connection with the filtering extent of
acquired solution and the noise statistics; Ω is the image space
and x ∈ Ω; f(x) is the noise image, u(x) is the original image.
Let TV (u) = |∇xu|+ |∇yu|, the image method noise of the
TV mini-mization is shown as follows [64]:

u(x)− TV Fµ(u)(x) = − 1

µ
curv(TV Fµ(u)(x)) (5)

where curv(TV Fµ(u)) indicates the curvature of all level
sets to TV Fµ(u). This paper sets the value of µ with a small
regularization parameter, which effectively remove the noise
from the image f . Since the details of the local structure of
diverse regions and smooth regions, a small µ will cause the
loss of noisy image texture information and details, and even
blur the edges.

Therefore, an adaptive parameter χf is introduced to elimi-
nate image noise and retain image textures and details. Name-
ly, the TV model of image denoising that controls propagation.
But, the parameter χf is quite sensitive to noise. To lessen the
sensitivity of χf , this paper applies shock filtering and non-
linear anisotropic diffusion filtering to pre-process the image,
thus, the effect of smoothing noise and enhancing image edges
is simultaneously obtained. Then, the adaptive parameter χf
is computed by the image edge detection operator. Alvarez et
al. [67] united the diffusion and shock terms, and proposed
the anisotropic diffusion with shock filter (ADSF) method:

∂f

∂t
= −sign(Gσ⊗ fNN )sign(Gσ⊗ fNN ) |∇f |+ cfTT (6)

where Gσ represents a gaussian function with standard devia-
tion, ⊗ denotes the convolution operator, c reveals a positive
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constant, fTT and fNN are the two order directional deriva-

tives of the tangent direction (
−
T ) and the gradient direction

(
−
N) of the corresponding evolution curve respectively.

Fig. 1. The edge detection operator dβ : (a) β = 0◦; (b) β = 45◦; (c)
β = 90◦; (d) β = 135◦.

Let
∧
f be the pre-processed image. It can be seen in Fig.

1, four 6 × 6 sized edge detection operators are presented
in this paper [68]. When β = 0o, we have d0 = 1

12 •

[
O1

O2 M O2

O1

], M = [
−1 −2 −2 −1

1 2 2 1
], O1 =

[
0 0 0 0 0
0 0 0 0 0

], O2 = [
0
0

]. The relevant edge

detection operator dβ can be acquired from d0 and rotation
angle β ∈ Φ(Φ = {0o, 45o, 90o, 135o}).

Based on the definition of the relevant edge detection
operator dβ , an adaptive parameter χf is computed via the
formula below:

χf =
1

1 +

√ ∑
β∈Φ

(dβ ⊗
∧
f)

2
∈ (0, 1] (7)

Adding the χf into TV model of image denoising, a new
approach which is named as ATV model is proposed. It is
shown as follows:

ATV Fχ,µ(u) = arg min
u
χfTV (u)+

µ

2

∫
Ω

|f(x) − u(x)|2dx
(8)

The ATV image denoising model is as indicated below:

u(x)−ATV Fχ,µ(u)(x) = −χf
µ
curv(ATV Fχ−µ(u)(x))

(9)
C. Fast ATV Algorithm

Solving the ATV model using the proposed fast settling
algorithm [62]. Set u1 = f , b0x = b0y = 0 (z = 1,2,3,...), a fast
iterative algorithm (FIA) is as below:

cut(h,
1

z
) := h− h

|h|
•max(|h| − 1

z
, 0) (10)

bzx := cut(H∇xuz + bz−1
x ,

1

λ
) (11)

bzy := cut(H∇yuz + bz−1
y ,

1

λ
) (12)

uz+1 := f − λ

u
(∇Tx bzx +∇Ty bzy) (13)

As Jia attested in [63]: For z = 0,1,..., let bzx, bzy , uz+1 be
produced by the iterative algorithm (11) - (13). On account
of µ̂ = µ/H , H ∈ (0, 1], if 0 < λ/µ̂ < 8, then lim

z→∞
uz =

u∗. Therefore, we can acquire 0 < H • λ/µ < 1/8 from
0 < λ/µ̂ < 8. To make random H ∈ (0, 1] satisfy with 0 <
H • λ/µ < 1/8, we have to ensure that 0 < λ/µ < 1/8, so
FIA can converge to the optimum solution of ATV.

III. THE PROPOSED METHOD

A. Motivation

In the actual image acquisition, transmission and storage
processes, HSI contains noise in most cases due to external
factors such as equipment and environment. The presence of
noise will affect the extraction of effective information in HSI.
The traditional TV denoising algorithm needs to know the
noise variance and step effect, while the ATVF algorithm
realizes image denoising by calculating the angle matrix
of the local direction of the image and iteratively solving
the optimization minimization algorithm. In this paper, we
propose to use the ATVF to denoise HSI after dimensionality
reduction. In the ATVF, the image is adaptively divided into
flat regions and edge regions based on the local gray average
gradient value of the HSI, which can quickly remove noise
while retaining the detailed information such as the edge
contour and texture of the image. At the same time, the
EEMD algorithm is an intuitive and a priori new adaptive
signal time-frequency research method, especially suitable for
the analysis and processing of nonlinear and non-stationary
signals. It can further decompose and reconstruct the HSI
features after denoising by ATVF. Specifically, EEMD can
adaptively decompose the original features into a finite number
of eigenmode functions according to the local feature scale,
representing spectral information from the highest frequency
to the lowest frequency. In this way, it can effectively solve the
situation that the features of the same category contain pixels
from other categories, thereby improving the accuracy of HSI
classification.

B. The Proposed SFEEMD Method for Spectral-Spatial HIC

Fig. 2 displays the HIC framework using the SFEEMD
classification method. HSI normally has hundreds of spectrum
bands, which is different from three-band or single-band im-
ages. Due to the PCA can lower the spectrum dimensionality
of HSI on the premise of retaining the mean square sense
information, it is applied to dimensionality reduction to obtain
the first K principal components. The processing is as follows:

OK = PCA(I) (14)

where OK refer to the image with the first K principal
components, after bands reduction over the input image I.

Then, the ATVF is conducted on OK . The expression is
defined as follows:

NK = ATV Fµ,λ,In(OK) (15)

where NK represents the feature image obtained from the OK .
µ, λ, In are the filtering parameters respectively.
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Fig. 2. Schematic diagram of the SFEEMD HIC.

Since the ATVF features image ignores the details of low-
frequency grayscale change information in HSI characteristic
selection, we adopt the EEMD method to extract the unique
spatial structure of the intrinsic modal component image NK

to enhance the image details. Each spectral band of HSI can be
decomposed into a sequence of IMFs by the EEMD. On this
basis, the PCA can acquire the first principal component of
IMFs, and the spatial-spectral features can be integrated into
one component. After that, in accordance with the correlation
between IMFs and residuals R, the processed HSI can be
reestablished as follows:

XK =

g∑
m=1

IMFK,m +Rm (16)

where XK is the outline feature extracted by the EEMD
method. g is the quantity of the IMFs in each band.

At last, a common pixel-by-pixel SVM classifier, which
has robust performance to high-dimensional data, is applied
to classify all pixel points of the novel characteristic data in
HSI. The EEMD feature images XK , the ATVF feature image
NK , and K principal components OK are merged into a stack
system as X̂3K . Algorithm 1 summarizes the primary steps of
our proposed SFEEMD algorithm.

Algorithm 1. HIC method via SFEEMD
Inputs: HSI, feature dimension K, ATVF parameters: µ , λ,

EEMD parameters p;
Step 1: According to (14), the PCA is applied to lower the

dimensionality of the HSI;
Step 2: Based on (15), The K-dimensional feature data goes through

the ATVF process to extract the resulting features NK ;
Step 3: Based on (16), EEMD is performed on NK image to

extract the resulting features XK ;
Step 4: Based on a stacked system, the SVM is applied

to process pixel-by-pixel classification for X̂3K ;
Output: Classification result.

IV. EXPERIMENTS

A. Data Sets

1) Indian Pines Data Set: The image has 220 bands with
the spatial resolution of 20m, and the image size is 145×145.
This data set is acquired in June by Airborne Visible / Infrared
Imaging Spectrometer (AVIRIS) facility and displayed the
“Indian Pines Test Field” in northwest Indiana. The 200 bands

are left and applied in the test, after deleting 20 water absorp-
tion bands. Due to season, climate, and other factors, some
crops are in the early growth stage. Through the classification
analysis, the image is divided into 16 different objectives.
Fig. 3 is a pseudo-color composite picture with corresponding
reference date and classification code.
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Fig. 3. (a) Pseudo-color composite image of the Indian Pines. (b) and (c)
The Indian Pines image with corresponding reference date.

2) Salinas Data Set: The image has 224 bands with the
spatial resolution of 3.7m, and the image size is 512×217.
Images are gathered by AVIRIS facility over Salinas Valley,
California. The absorption bands of water are removed before
classification, including bands 108-112, 154-167 and 224. Fig.
4 is a pseudo-color composite picture with corresponding
reference date.
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Fig. 4. (a) Pseudo-color composite image of the Salinas. (b) and (c) The
Salinas image with corresponding reference date.

3) University of Pavia Data Set: The image has 115 bands
with the spatial resolution of 1.3m, and the image size is
610×340. Images acquisition the University of Pavia, Italy, are
gathered by Reflective Optics System Imaging Spectrometer
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(ROSIS) facility. The 103 bands are left and applied in the test,
after deleting 12 water noise bands. Fig. 5 is a pseudo-color
composite picture with corresponding reference date.
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(a) (b) (c)
Fig. 5. (a) Pseudo-color composite image of the University of Pavia. (b)
and (c) The University of Pavia image with corresponding reference date.

B. Parameter Settings

This part dissects the effect of parameters on the classi-
fication performance of the proposed approach. K refers to
the feature dimension. µ and λ are the filtering parameters in
the ATVF algorithm. p is the parameter in the EEMD. Three
commonly criteria are used for evaluating the HIC accuracy:
overall classification accuracy (OA), average classification
accuracy (AA), and Kappa coefficient (Kappa). Parameters µ
and λ are fixed when quantitatively analyzing the relationships
between the feature dimension K and the used criteria (OA,
AA, Kappa). It can be seen from Fig. 6 that under lower
feature dimension K, the SVM and SFEEMD approaches have
significantly lower accuracies. As the feature dimension K
increases, the three criteria also increase. When K reaches
21, the classification accuracies turn to steady state. This is
because low feature dimension may cause a large amount
of meaningful information missing. Therefore, we select the
feature dimension K of 21 to capture superior property.
Compared with two methods, it is obvious that when the
feature dimension K > 9, the classification accuracy of the
proposed SFEEMD method is significantly superior to that of
the SVM algorithm.

Then, the influence of distinct parameters λ, µ, p, and K on
classification accuracy is analyzed. In Figs. 7 - 9, we randomly
choose 10% and 2% samples for training. When analyzing one
parameter, the others are set as constants, so as to observe the
variation trend of OA. Fig. 7(a) shows, when µ = 0.032, p =
0.31, K = 21, the relationships between OA and λ. It can be
observed that when λ = 0.004, OA could reach 99.2846%. Fig.
7(b) reveals, when λ = 0.004, p = 0.31, K = 21, the influence
of µ on the classification accuracy. Fig. 7(c) demonstrates,
when λ = 0.004, µ = 0.032, K = 21, the effect of p on the
classification accuracy. Therefore, the parameters are set to λ
= 0.004, µ = 0.032, p = 0.31, K = 21. With the same parameter
settings, the classification accuracies of the remaining data sets
are shown in Figs. 8 and 9.

C. Experiments With Different Data Sets

To prove the effectiveness of the proposed SFEEMD
method, the proposed method is compared with ATVF method,
EEMD method and some combination methods. The experi-
ment is conducted on the Indian Pines data set, and the experi-
mental results are shown in Table I. In the experiment, 10% or
1% samples were randomly selected as training samples, and
the remaining samples were used for testing. It can be found
that the classification accuracy of the ATVF method, EEMD
method, and their combined methods are lower than those of
the proposed SFEEMD method. Moreover, the classification
accuracy of the method combining the PCA method with the
ATVF method or the EEMD method is also not higher than the
proposed SFEEMD method. The reason is that the proposed
SFEEMD method combines the features extracted by the PCA
method, ATVF method and EEMD method, thereby further
effectively improving the classification accuracy. The original
features, edge features and deep spatial features of HSIs are
extracted by PCA method, ATVF method and EEMD method,
respectively.

The presented SFEEMD approach is compared with the
commonly used spectral-spatial classification approaches.
Common methods include SVM [69], sparse representation
classification (SRC) method [70], joint sparse representa-
tion classification (JSRC) method [33], variable splitting and
segmented lagrangian (LOR) [71], extended morphological
profiles (EMP) [38], edge preserving filtering (EPF) [42],
logistic regression and multi-level logistic (LMLL) [72]. The
SVM method used the Gaussian kernel and five-layer cross
validation. The feature extraction based on PCA and ICA were
achieved by using the ENVI remote sensing software which
widely used internationally. SVM was used to classify after
20 principal components and independent components were
extracted. Based on the EMP method, this paper uses the first
three principal components of HSI and morphology operators
to perform four opening closing and reconstruction operations
and establishes multi-scale morphological traits. Based on the
JSRC algorithm, the experiment uses the software and the
default parameters to establish features. The experiments used
MATLAB codes and default parameters, and compared with
the rest of other methods.

The first experiment is executed on the Indian Pines data set.
Table II displays the quantity of the test samples and training
samples in the examination. It is worth mentioning that to
compare the classification accuracy of diverse algorithms
more impersonally, all the examinations must be repeated
50 times. Then, the standard deviation of distinct approaches
classification accuracy can be calculated. Next, the classifi-
cation accuracy and map acquired by distinct approaches are
demonstrated in Table II and Fig. 10, respectively. It can well
perceived that the classification accuracies of SVM and SRC
algorithms that merely consider spectral information is only
83.28% and 68.46%, while the classification algorithms (EMP,
EPF, LMLL, SFEEMD) based on spectralspatial is often much
higher than 93%. When the spatial information has similar
spectral characteristics, and applied it in the spectral-spatial
classification. Besides, in the aspects of OA, AA, and Kappa,
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(a) (b) (c)
Fig. 6. Effect analysis of the parameter K to SFEEMD and SVM approaches on Indian Pines image: (a) λ = 0.004, µ = 0.032, p = 0.3; (b) λ =
0.004, µ = 0.032, p = 0.3; (c) λ = 0.004, µ = 0.032, p = 0.3.

0 0.004 0.008 0.012 0.016 0.02
0

10

20

30

40

50

60

70

80

90

100

OA(0.004,99.2846)

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

(i
n 

%
)

λ

 

 
OA

AA

Kappa

(a)

0 0.016 0.032 0.048 0.064 0.08
0

10

20

30

40

50

60

70

80

90

100

OA(0.032,99.2846)

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

(i
n 

%
)

µ

 

 

OA

AA

Kappa

(b) (c)
Fig. 7. Effect analysis of the parameters λ, µ, p on Indian Pines image: (a) µ = 0.032, p = 0.31, K = 21; (b) λ = 0.004, p = 0.31, K = 21; (c) λ = 0.004,
µ = 0.032, K = 21.
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Fig. 8. Effect analysis of the parameters λ, µ, p on Salinas image: (a) µ = 0.032, p = 0.24, K = 21; (b) λ = 0.004, p = 0.24, K = 21; (c) λ = 0.004, µ =
0.032, K = 21.
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Fig. 9. Effect analysis of the parameters λ, µ, p on University of Pavia image: (a) µ = 0.032, p = 33, K = 21; (b) λ = 0.004, p = 33, K = 21; (c) λ =
0.004, µ = 0.032, K = 21.
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TABLE I
CLASSIFICATION ACCURACIES OF THE ATVF, EEMD, PCA+ATVF, PCA+EEMD, ATVF+EEMD, AND SFEEMD ALGORITHMS FOR THE INDIAN

PINES DATA SET WITH 10% AND 1% TRAINING SAMPLES.

The number of training samples account for 10% of the reference data
Index ATVF EEMD PCA+ATVF PCA+EEMD ATVF+EEMD SFEEMD

OA 98.33 98.28 97.70 98.10 98.40 98.84
AA 98.27 98.05 98.44 98.15 98.68 99.01
Kappa 98.14 98.08 97.38 98.09 98.38 98.68

The number of training samples account for 1% of the reference data
Index ATVF EEMD PCA+ATVF PCA+EEMD ATVF+EEMD SFEEMD

OA 85.73 84.50 82.96 83.45 85.95 86.69
AA 85.88 82.71 88.40 87.53 87.95 91.66
Kappa 84.68 82.26 80.36 80.96 85.92 86.16

TABLE II
CLASSIFICATION ACCURACIES OF THE SVM [69], SRC [70], JSRC [33], LOR [71], EMP [38], EPF [42], LMLL [72], AND SFEEMD ALGORITHMS

FOR THE INDIAN PINES DATA SET WITH 10% AND 1% TRAINING SAMPLES.

The number of training samples account for 10% of the reference data.
Class Training Test SVM SRC JSRC LOR EMP EPF LMLL SFEEMD

Alfalfa 8 38 76.94 53.26 90.88 87.56 95.53 73.08 94.26 100.0
Corn N 137 1291 79.49 53.83 81.33 79.60 87.38 93.34 97.16 98.01
Corn M 83 747 80.55 51.42 61.04 71.94 92.68 96.24 90.41 97.86

Corn 24 213 67.20 38.71 68.54 64.96 83.99 88.29 98.42 97.55
Grass M 48 435 89.27 81.92 92.87 93.04 92.74 99.01 98.39 99.53
Grass T 73 657 89.86 91.36 59.51 97.54 98.31 92.12 99.22 100.0
Grass P 8 20 88.62 85.20 43.00 92.27 91.00 95.00 93.18 100.0
Hay W 48 430 97.24 92.15 83.26 99.85 99.86 97.00 98.87 100.0

Oats 8 12 48.59 65.83 41.67 97.73 97.50 96.40 97.51 100.0
Soybean N 97 875 77.37 65.61 67.54 79.65 86.51 98.98 84.55 99.18

Soybean M 239 2216 81.12 70.56 83.26 87.05 96.25 94.13 97.86 98.79
Soybean C 59 534 77.99 43.39 55.81 81.15 87.40 96.73 98.55 96.47

Wheat 21 184 92.68 90.41 91.85 99.46 98.21 100.0 99.85 100.0
Woods 122 1143 92.56 89.43 95.98 95.01 99.50 99.29 98.37 100.0

Buildings 39 347 72.96 35.63 78.39 68.19 96.08 92.40 88.66 99.14
Stone 47 46 98.59 89.42 90.36 73.17 93.01 92.50 98.25 97.62
OA 83.28 68.46 82.65 85.28 93.54 95.52 95.97 98.84
AA 81.94 68.45 71.96 85.51 93.5 94.76 96.12 99.01

Kappa 80.86 98.32 80.22 83.14 92.63 94.88 95.38 98.68
The number of training samples account for 1% of the reference data.

Class Training Test SVM SRC JSRC LOR EMP EPF LMLL SFEEMD
Alfalfa 2 44 38.30 56.05 87.12 54.96 85.68 65.15 61.78 100.0
Corn N 14 1414 52.42 41.32 60.09 75.16 52.18 95.79 86.90 80.34
Corn M 8 822 66.99 30.16 59.53 64.64 55.34 64.75 81.21 67.64

Corn 2 235 21.00 17.17 66.52 36.67 21.40 41.43 43.02 96.59
Grass M 5 478 61.26 58.21 74.97 77.69 64.79 85.80 80.49 100.0
Grass T 7 723 81.35 78.96 73.08 94.90 93.54 67.94 99.30 100.0
Grass P 2 26 48.57 83.92 100.0 68.53 87.69 42.42 93.01 70.27
Hay W 5 473 95.65 80.86 90.35 98.40 90.51 97.40 98.78 100.0

Oats 3 17 17.86 70.94 64.71 93.58 90.59 89.47 96.58 100.0
Soybean N 10 962 48.62 49.33 68.75 66.06 67.61 75.88 84.77 85.77
Soybean M 25 2430 47.09 62.79 86.78 76.37 78.67 62.42 90.88 83.37
Soybean C 6 534 49.04 22.97 62.75 72.23 41.64 30.72 90.97 91.96

Wheat 2 203 82.79 75.07 80.95 99.55 97.00 100.0 99.78 100.0
Woods 13 1252 87.25 80.99 95.23 93.12 83.65 90.25 95.61 90.65

Buildings 4 382 36.65 18.81 69.11 54.66 72.85 97.10 65.18 100.0
Stone 2 91 100.0 85.21 94.14 51.05 80.99 81.00 61.84 100.0
OA 58.11 55.37 76.23 76.93 70.38 72.75 85.82 86.69
AA 58.43 57.05 77.13 73.6 72.76 75.41 82.42 91.66

Kappa 50.78 48.93 71.96 72.7 66.19 68.32 83.06 84.68



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3018710, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. X, 2020 9

Grass_M
Grass_T Grass_P Hay_W Oats

Soybeans_C
Woods Buildings

AlfalfaCorn_N Corn_M Corn Soybeans_N Soybeans_M
Wheat Stone

(a) (b) (c) (d) (e)

Grass_M
Grass_T Grass_P Hay_W Oats

Soybeans_C
Woods Buildings

AlfalfaCorn_N Corn_M Corn Soybeans_N Soybeans_M
Wheat Stone

(f) (g) (h) (i) (j)
Fig. 10. Classification results (Indian Pines image) obtained by (a) the false-color composite of the Indian Pines image; (b) the original image; (c) the SVM
method (83.28%); (d) the SRC method (68.46%); (e) the JSRC method (82.65%); (f) the LOR method (85.28%); (g) the EMP method (93.54%); (h) the EPF
method (95.52%); (i) the LMLL method (95.97%); (j) the SFEEMD method (98.84%).
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Fig. 11. Classification results (Indian Pines image) obtained by (a) the false-color composite of the Indian Pines image; (b) the original image; (c) the SVM
method(58.11%); (d) the SRC method(55.37%); (e) the JSRC method(76.23%); (f) the LOR method(76.93%); (g) the EMP method(70.38%); (h) the EPF
method(72.75%); (i) the LMLL method(85.82%); (j) the SFEEMD method(86.69%).

SFEEMD also outperforms than EMP, etc. approaches. Table
II also illustrates the influences of diverse approaches on the
OA, AA, Kappa of diverse sorts. Our presented SFEEMD
method is preceded than SVM method in the classification
accuracy of certain spectrum ground features. For instance,
the accuracy of Building classification increased from 72.96%
to 99.14%, and the accuracy of Corn classification increased
from 67.20% to 97.55%. The optimal products in the Table
are highlighted in bold.

To make the result credible in Indian Pines data set, the
training samples by stochastically chosen have reduced to 1%,
and the remaining 99% data is used for testing. Classifica-
tion maps are obtained by diverse classification in Fig. 11.
Obviously, compared with other spatial-spectral approaches,
the classification results with SFEEMD obtains the highest
accuracy. Moreover, the bottom table of Table II reveals the

effects of diverse approaches on OA, AA, and Kappa of
diverse sorts in this scenario. It can be observed that although
the scale of training samples is tiny, it can still obtain a
high classification accuracy. For some classes are compared
with SVM, the accuracy of Alfalfa classification increased
from 38.30% to 100.0%, the accuracy of Corn classification
increased from 21.00% to 96.59%. In addition, the SFEEMD
could still reach to 86.69% classification accuracy even a
small sample training. Meanwhile, the proposed approach also
exhibited desirable classification results when compared to
other spectralspatial approaches.

The second experiment is performed on the Salinas data
set, randomly chosen training data is occupied 2%, and the
remaining 98% data is used for testing. Fig. 12 and Table
III exhibit the classification accuracies of diverse algorithms,
and compare with AA, OA, and Kappa. As the calculation
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Fig. 12. Classification results (Salinas image) obtained by (a) the false-color composite of the Salinas image; (b) the original image; (c) the SVM
method(90.68%); (d) the SRC method(87.16%); (e) the JSRC method(96.13%); (f) the LOR method(91.29%); (g) the EMP method(97.65%); (h) the EPF
method(95.35%); (i) the LMLL method(93.20%); (j) the SFEEMD method(99.51%).

results in Table III, we can observe that the proposed approach
exhibited desirable OA when compared to other approaches
under the default parameter settings. For instance, Our present-
ed SFEEMD algorithm has certain advantages over SVM, the
accuracy of Vinyard U classification increased from 77.89%
to 98.53%, and the accuracy of Fallow classification increased
from 94.73% to 100.0%. The SFEEMD retains edge data to
make sufficient use of detailed information, and the accuracy
test value is superior to other methods. Reducing the training
samples to 0.2%, the products are showed in bottom of Table
III. Classification products (the Salines data set) are acquired
by diverse classification in Fig. 13. In the Table III, the Kappa
of the SFEEMD is also improved significantly and optimal
OA, AA, and Kappa could be obtained. Compared with the
SVM method, it is not difficult to found that, when training
with small samples, the recognition accuracy of using SVM
method decreased dramatically, especially in class 15 (from
56.65% to 90.45%). As a comparison, we can still maintain
relatively high recognition accuracy in all of the classes.
Furthermore, after repeating with 100 times, standard deviation

of the classification accuracy of SFEEMD is pretty low and
stable.

To further verify the results of diverse training samples
of the SFEEMD, we conducted another experiment on the
Pavia University data set. In the experiment, 40, 80, 120,
160, 200, and 240 pixels for each classes are stochastically
selected to establish a balance training set. Fig. 14 indicates
that the OA for the presented SFEEMD with diverse quantity
of training samples. And the accuracies of the SFEEMD are
summarized in the Table IV. The SFEEMD can improve the
misclassification phenomenon from Fig. 14 and increase the
robustness from Table IV.

The calculation interval of the proposed method on two
actual data sets is given. A 4 cores computer with a 2.9
GHz CPU and a 8-GB memory is used to logging data, and
the quantity of training samples is set as the number listed
in the Table II - III. We can observe from Table V, the
computing cost of the feature extraction course (ATVF and
EEMD) is irrelevant to the quantity of training samples and is
just related to the size of image. The running time comparison
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Fig. 13. Classification results (Salinas image) obtained by (a) the false-color composite of the Salinas image; (b) the original image; (c) the SVM
method(83.01%); (d) the SRC method(80.32%); (e) the JSRC method(88.22%); (f) the LOR method(88.45%); (g) the EMP method(92.18%); (h) the EPF
method(85.98%); (i) the LMLL method(91.97%); (j) the SFEEMD method(94.51%).

�(a) (b) (c) (d) (e) (f)
Fig. 14. Classification products (University of Pavia image) under diverse quantity of training samples: (a) the training samples is 40, OA=91.21%; (b) the
training samples is 80, OA=94.27%; (c) the training samples is 120, OA=96.15%; (d) the training samples is 160, OA=96.83%; (e) the training samples is
200, OA=97.48%; (f) the training samples is 240, OA=97.83%.
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TABLE III
CLASSIFICATION ACCURACIES OF THE SVM [69], SRC [70], JSRC [33], LOR [71], EMP [38], EPF [42], LMLL [72], AND SFEEMD METHODS FOR

THE SALINAS DATA SET WITH 2% AND 0.2% TRAINING SAMPLES.

The number of training samples account for 2% of the reference data.
Class Training Test SVM SRC JSRC LOR EMP EPF LMLL SFEEMD

Weeds 1 40 1969 99.80 98.61 97.21 97.86 99.72 98.57 90.10 100.0
Weeds 2 75 3651 99.45 98.74 99.76 100.0 99.69 99.89 100.0 100.0

Fallow 40 1936 94.73 95.56 99.31 98.55 98.89 94.76 99.79 100.0
Fallow P 28 1366 96.87 99.19 86.58 98.81 99.08 97.50 98.90 99.71
Fallow S 54 2624 98.87 94.28 85.67 97.71 96.89 100.0 99.03 99.62
Stubble 79 3880 100.0 99.41 97.81 99.29 99.41 99.95 99.78 100.0
Celery 72 3507 99.83 99.14 95.72 99.46 99.45 100.0 99.67 99.94
Graps 225 11046 79.31 72.40 99.04 81.88 96.12 86.34 88.58 99.35
Soil 124 6079 99.44 97.95 100.0 99.94 99.59 99.59 99.97 99.44
Corn 21 1047 89.52 90.28 96.87 94.86 96.27 95.45 96.99 99.35

Lettuce 4wk 21 1047 92.42 94.57 91.91 91.33 97.28 98.44 94.26 100.0
Lettuce 5wk 39 1888 97.40 99.81 89.18 99.81 99.80 99.32 100.0 99.89
Lettuce 6wk 18 898 95.55 97.16 67.97 97.52 98.83 95.60 97.58 100.0
Lettuce 7wk 21 1049 94.81 92.76 70.86 94.80 93.87 99.29 98.36 99.04
Vinyard U 145 7123 77.89 62.08 98.03 71.41 94.61 93.01 71.29 98.53
Vinyard T 36 1771 99.01 94.83 99.55 97.19 99.44 100.0 98.76 100.0

OA 90.68 87.16 96.13 91.29 97.65 95.35 93.20 99.51
AA 94.66 92.92 92.39 95.03 98.06 97.47 96.38 99.68

Kappa 89.60 85.71 95.69 90.30 97.38 94.81 92.42 99.45
The number of training samples account for 0.2% of the reference data.

Class Training Test SVM SRC JSRC LOR EMP EPF LMLL SFEEMD
Weeds 1 4 2005 99.25 96.68 98.45 98.48 94.53 95.11 99.30 99.85
Weeds 2 8 3718 99.22 97.69 99.93 99.29 98.69 99.92 99.83 99.76

Fallow 4 1972 75.69 71.11 85.87 92.86 89.73 99.33 94.25 100.0
Fallow P 3 1391 97.15 98.72 68.27 97.65 98.36 97.34 98.01 99.24
Fallow S 5 2673 98.49 93.01 83.39 97.19 93.46 99.43 98.82 64.43
Stubble 8 3951 98.78 99.60 99.43 99.36 97.79 99.35 99.90 100.0
Celery 7 3572 92.83 96.46 95.12 99.38 99.47 98.70 99.65 100.0
Graps 22 11249 68.42 89.71 89.85 82.34 87.33 81.63 91.83 97.44
Soil 12 6191 99.00 96.35 100.0 98.89 98.50 98.41 99.46 99.41
Corn 7 3271 74.90 73.82 88.83 88.20 88.88 93.06 92.09 95.82

Lettuce 4wk 2 1066 92.63 90.48 75.2 73.18 93.91 93.48 70.87 99.53
Lettuce 5wk 4 1923 80.48 99.43 86.18 97.72 98.62 64.64 99.13 96.47
Lettuce 6wk 2 914 79.88 95.80 67.03 99.02 98.68 95.97 98.02 82.35
Lettuce 7wk 2 1068 99.28 89.59 81.55 86.30 90.91 99.01 89.79 94.81
Vinyard U 14 7254 56.65 13.63 67.02 61.32 82.15 56.56 66.67 90.45
Vinyard T 4 1803 97.18 56.31 95.95 91.32 89.82 84.56 97.01 100.0

OA 83.01 80.32 88.22 88.45 92.18 85.98 91.97 94.51
AA 88.19 84.9 86.48 87.11 93.80 92.31 93.48 94.97

Kappa 81.07 77.9 86.85 91.41 91.29 84.47 91.03 93.89

TABLE IV
CLASSIFICATION ACCURACIES OF DIVERSE QUANTITY OF TRAINING SAMPLES FOR THE UNIVERSITY OF PAVIA DATA SET. NUMBERS IN THE

PARENTHESES DENOTE THE STANDARD DEVIATION OF THE ACCURACIES ACQUIRED IN REPETITIVE TRIALS.

Class 40 80 120 160 200 240

Asphalt 90.88(2.87) 94.44(1.57) 96.13(0.91) 96.93(0.69) 97.40(0.42) 97.79(0.47)
Meadows 98.16(0.62) 99.06(0.21) 99.46(0.18) 99.63(0.12) 99.68(0.10) 99.80(0.04)

Gravel 78.33(3.62) 86.57(5.43) 92.48(1.13) 94.88(1.31) 95.38(1.47) 96.74(0.98)
Trees 87.24(4.83) 92.14(2.12) 91.41(2.21) 91.51(3.19) 93.03(1.54) 93.98(1.33)

Metal sheets 98.34(0.90) 98.83(0.81) 99.27(0.64) 99.36(0.53) 99.30(0.59) 99.54(0.37)
Bare soil 87.26(5.70) 89.55(4.67) 94.58(3.37) 96.02(1.76) 96.71(1.43) 97.19(1.02)
Bitumen 76.06(4.84) 82.50(3.65) 88.66(3.57) 93.66(2.78) 93.30(2.43) 95.31(1.38)

Self-Blocking Bricks 79.97(3.26) 83.20(3.83) 88.49(0.86) 90.61(1.07) 91.57(1.43) 93.53(1.31)
Shadows 75.62(9.68) 86.73(5.60) 91.09(3.38) 93.48(1.78) 93.95(1.37) 94.14(1.66)

OA 91.21(0.96) 94.27(0.48) 96.15(0.27) 96.83(0.22) 97.48(0.23) 97.83(0.27)
AA 86.53(1.20) 91.25(0.79) 93.86(0.61) 95.12(0.42) 95.98(0.46) 96.45(0.47)

Kappa 88.45(1.22) 92.41(0.61) 94.87(0.37) 95.77(0.28) 96.61(0.31) 97.08(0.37)
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TABLE V
THE CALCULATION INTERVAL OF THE SFEEMD ON TWO ACTUAL DATA
SETS, WHEN THE QUANTITY OF TRAINING SAMPLES IS SET ACCORDING

TO AS THOSE EXHIBITED IN TABLE II - III.

Data sets Indian Pines Salinas
10% 1% 2% 0.20%

ATVF 0.24 0.25 0.36 0.36
EEMD 39.06 39.48 227.18 231.8
SVM 38.32 2.15 27.4 2.05

TABLE VI
EXECUTION TIMES (IN SECONDS) FOR ALL METHODS ON INDIAN PINES

DATA SETS.

Methods Indian Pines Methods Indian Pines
10% 1% 10% 1%

SVM 119.14 3.68 EMP 28.75 2.09
SRC 7.30 3.16 EPF 116.29 4.16
JSRC 22.94 13.13 LMLL 30.97 7.17
LOR 30.97 7.17 SFEEMD 264.11 20.61

for different methods is shown in Table VI. It can be found
that the SFEEMD takes the longest time than others. This
is because that EEMD method requires many iterations to
extract the intrinsic mode component. To solve the above-
mentioned issue, a faster EEMD implementation using GPU
programming will be studied.

V. CONCLUSION

This paper proposes the SFEEMD algorithm, an HSI
spectral-spatial classification approach on account of feature
extraction, which can enhance the classification accuracy of
ground features with a low amount of calculation. Compared
with the spectral-spatial classification approaches mentioned
in this paper, the SFEEMD algorithm has obvious superiority,
due to the capability of reducing the sensitivity to noise
smoothing and denoising. By further extracting the feature
filtered image into the transform domain, the edge details are
retained for feature extraction. The results illustrate that an
advanced approach availably enhances the classification accu-
racy for HSI and has superior noise suppression performance.
Compared with the traditional ATVF with PCA algorithm, the
SFEEMD algorithm can exploit deep in the spatial informa-
tion of HSI. The experimental products on several authentic
HSIs datasets indicate that our presented SFEEMD approach
produces high-precision classification outcomes, particularly,
with wide uniform areas in the images.
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