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Extreme learning machine is a fast learning algorithm for single hidden layer feedforward neural network. However, an improper
number of hidden neurons and random parameters have a great effect on the performance of the extreme learning machine. In
order to select a suitable number of hidden neurons, this paper proposes a novel hybrid learning based on a two-step process. First,
the parameters of hidden layer are adjusted by a self-organized learning algorithm. Next, the weights matrix of the output layer is
determined using the Moore–Penrose inverse method. Nine classification datasets are considered to demonstrate the efficiency of
the proposed approach compared with original extreme learning machine, Tikhonov regularization optimally pruned extreme
learning machine, and backpropagation algorithms. )e results show that the proposed method is fast and produces better
accuracy and generalization performances.

1. Introduction

)e extreme learning machine (ELM) is a very important
supervised machine learning algorithm proposed for
training single hidden layer feedforward neural network
(SLFN), which have been successfully used in many engi-
neering disciplines [1–8], etc. One of the main drawbacks of
ELM is the selection of the optimal number of hidden nodes,
the random choose of the input parameters, and the type of
the activation functions. )ese disadvantages directly affect
the performances of neural network [9, 10]. )erefore, in
order to enhance the performance of SLFN, several algo-
rithms have been developed for optimizing ELM hidden
nodes [11–23]. In [11], the authors proposed a new kind of
ELM, named self-adaptive extreme learning machine
(SaELM), in which optimal hidden neurons number are
selected to construct the neural network. In [12], Huang et al.
proposed an incremental extreme learning machine, named
(I-ELM), which randomly adds hidden neurons incre-
mentally and analytically determines the output weights. In
[13], Huang and Chen proposed an improved version for (I-

ELM) called enhanced random search-based incremental
algorithm (EI-ELM), which choose the hidden neurons that
lead to the smallest residual error at each learning step. A
further improvement about (I-ELM) is made in convex
incremental extreme learning machine (CI-ELM) [14]. Its
output weights are updated after a new hidden neuron is
added. In [15], an effective learning algorithm, known as
self-adaptive evolutionary extreme learning machine, is
presented to adjust the ELM input parameters adaptively,
which improves the generalization performance of ELM. An
improved evolutionary extreme learning machine based on
particle swarm optimization was proposed to find the op-
timal input weights and hidden biases [16]. Error minimized
extreme learning machine (EM-ELM) [17] randomly adds
neurons to the hidden layer one by one or group by group
and updates output weights recursively. Pruned-ELM [18],
named as P-ELM, was presented to determine the number of
hidden neurons using statistical methods. In [19], Miche
et al. considered the optimally pruned extreme learning
machine (OP-ELM), in which the hidden neurons are
ranked using multiresponse sparse regression algorithm,
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and then the selection for the best number of neurons is
taken by a leave-one-out validation method. In [20], a
constructive hidden neuron selection ELM (CS-ELM) was
proposed, where the hidden neurons are selected according
to some criteria. )e work in [21] used ELM with adaptive
growth of hidden neurons (AG-ELM) to automate the de-
sign of networks. In [22], by combining Bayesianmodels and
ELM, the Bayesian ELM (BELM) is proposed to optimize the
weights of the output layer using probability distribution. In
[23], Miche et al. proposed a double regularized ELM using a
least-angle regression (LARS) and Tikhonov regularization
(TROP-ELM). Bidirectional extreme learning machine (B-
ELM) was presented in [24], in which some hidden neurons
are not randomly selected. In [25], Cao et al. proposed an
enhanced bidirectional extreme learning machine (EB-
ELM), in which some hidden neurons are randomly gen-
erated and only the neurons with the largest residual error
are added to the existing network. Online sequential learning
mode based on ELM (OS-ELM) was presented in [26].
Fuzziness based OS-ELM was presented in [27]. In [28], a
dynamic forgetting factor is utilised to adjust OS-ELM
parameters, and the corresponding DOS-ELM algorithm is
proposed. Up to now, many other algorithms have been
considered to extend the basic ELM to make it more efficient
[29–35].

Motivated by developing a fast and efficient training
algorithm for SLFN, this paper presents a new hybrid ap-
proach for training SLFN, where the weights between the
input layer and the hidden layer are optimized by a self-
organizing map algorithm [36], and the output weights are
calculated using the Moore–Penrose generalized inverse like
in ELM [1]. )e efficiency in terms of classification accuracy
and computation time of the proposed method is shown by
the simulation results of different classification problems.
)e main contributions of our work can be summarized as
follows:

(1) We propose a hybrid algorithm combining the self-
organizing map algorithm with extreme learning
machine algorithm for optimizing SLFN weights. In
this algorithm, the self-organizingmap is first used to
optimize the weights connecting the input and
hidden layers.)en, the ELM is applied to determine
the weights connecting the hidden and output layers.
)e main objective of the proposed approach is to
achieve a higher solution accuracy and faster con-
vergence with a compact network size.

(2) Comparing with various methods, we evaluate the
performance of our algorithm in terms of classifi-
cation accuracy and convergence speed over dif-
ferent types of datasets.

)e remainder of this paper is as follows. In Section 2, we
recall the preliminary of ELM. Section 3 provides a detailed
description of the hybrid learning algorithm. In Section 4,
simulation results and comparisons with BP algorithm, basic
ELM, and TROP-ELM are given. Finally, the conclusion is
drawn in Section 5.

2. Basic ELM Algorithm

Recently, an efficient learning algorithm, called extreme
learning machine (ELM), for single hidden layer feedfor-
ward neural network (SLFN) has been proposed by Huang
et al. [1]. In ELM, the input weights of the hidden nodes are
randomly chosen, and the output weights of SLFN are then
computed by using the pseudoinverse operation of the
hidden layer output matrix. )e illustration of single hidden
layer feedforward neural network is given in Figure 1. )e
numbers of neurons for input, hidden, and output layers are
n, 􏽥N , and m, respectively.

Given N training samples (xj, tj), where xj �

[xj1, xj2, . . . , xjn]T ∈ Rn and tj � [tj1, tj2, . . . , tjm]T ∈ Rm.
)e output of an SLFN can be represented by:

􏽘

N􏽥

i�1
βi f wi.xj + bi􏼐 􏼑 � yj, j � 1 . . . N, (1)

where wi � [wi1, wi2, . . . , win]T is the weight vector con-
necting the ith hidden node and the input nodes.

In general, the total weight matrix W is

WN􏽥×n � w1;w2; . . . ;w􏽥N􏽨 􏽩 �

w11 w12 · · · w1n

w21 w22 · · · w2n

⋮ ⋮ ⋱ ⋮

w􏽥N1 w􏽥N2 · · · w􏽥Nn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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􏽥N×n

.

(2)

where βi � [βi1, βi2, . . . , βim]T is the weight vector con-
necting the ith hidden node and the output nodes, bi is the
threshold of the ith node, yj � [yj1, yj2, · · · , yjm]T ∈ Rm is
the output vector of neural network, and f(.) denotes an
activation function, in general, f(x) � 1/(1 + e− x)

Equation (1) can be written compactly as

Hβ � Y, (3)

whereH is the output matrix of the hidden layer and defined
as follows:

H w1, . . . ,w􏽥N, b1, . . . , b􏽥N, x1, . . . , xN􏼐 􏼑

�

f w1.x1 + b1( 􏼁 · · · f w􏽥N.x1 + b􏽥N􏼐 􏼑

⋮ · · · ⋮

⋮ · · · ⋮

f w1.xN + b1( 􏼁 · · · f w􏽥N.xN + b􏽥N􏼐 􏼑
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(5)
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)e criterion function to be minimized is the sum of the
squared errors over all the training samples, given by

E � ‖Y − T‖
2

� ‖Hβ − T‖
2
. (6)

)e output weight matrix can be determined analytically
by minimizing the least square error:

􏽢β � argmin
β

‖Hβ − T‖
2
. (7)

A solution of the linear system (7), β, can be computed as
follows:

􏽢β � H
+
T , (8)

where H+ is called the Moore–Penrose generalized in-
verse of matrix H and T is the desired output matrix,
expressed as

T �

tT1
⋮

tTN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×m

. (9)

)e ELM algorithm can be summarized as follows:

Step 1. Randomly assign the input weight wi and biases
bi, i ∈ [1, 􏽥N].

Step 2. Calculate the hidden layer output matrixH using
equation (4).

Step 3. Calculate the output weight matrix by equation
(8).

3. Proposed Learning Algorithm

In this study, the architecture of the proposed single hidden
layer feedforward neural network (SLFN) is shown in
Figure 2.

It is composed of an input layer, one-dimensional
Kohonen layer, and an output layer. To ensure the

superiority of the proposed network structure, an ap-
propriate hybrid learning algorithm for training a SLFN is
presented. )is algorithm is the fusion of a self-organizing
map [36] and extreme learning machine [1]. During
training with this algorithm, the network operates in a
two-stage sequence. )e weights of hidden layer are
clustered by SOM in the first stage. In the second stage,
ELM is initialized with the weights obtained in the pre-
vious stage. )e sketch map of the proposed method is
shown in Figure 3.

)e learning algorithm can be described as follows.

3.1. Stage 1: SOM-Based Initialization. Self-organizing map
(SOM) is an unsupervised learning method to represent
high-dimensional data vectors into a regular low-dimen-
sional map by grouping similar input vectors and form a
number of clusters. In our work, the basic SOM network
consists of two layers, an input layer and a one-dimensional
Kohonen layer in which neurons are arranged into a one-
dimensional map. Each neuron i on the map is presented by
n-dimensional weight vector wi � [wi1, wi2, · · · , win]T, where
n is the dimension of the input vector x. )e steps of SOM
learning algorithm are as follows:

Step 1. Initialize weights to small random values, and
initialize the neighborhood size.

Step 2. Select a vector xj and determine the index of the
winner neuron g, that is,

g xj􏼐 􏼑 � argmin
i

xj − wi

�����

�����, i � 1, . . . , 􏽥N, (10)

where 􏽥N is the total number of neurons in the
Kohonen layer.

Step 3. Update the weight of the winning neuron and its
neighbor using the following Kohonen rule.

xj1

xj2

xjn

yj1

yj2

yjm

Wi

1

N~

Input layer Hidden layer Output layer

βi

i

Figure 1: Single hidden layer feedforward neural network (SLFN).
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wNg(d)

i (t + 1) � wNg(d)

i (t) + α xj(t) − wNg(d)

i (t)􏼒 􏼓,

i ∈ Ng(d),

(11)

where the neighborhood Ng(d) contains the
indices for all of the neurons that lie within a
radius d of the winning neuron g and α is the
learning rate.

Step 4. If all input data xj are presented to the network,
go to Step 5; otherwise, go to Step 2.

3.2. Stage 2: ELM with Subset of Neurons. In the first stage,
SOM is used to reduce the dimension of input weights
matrix W of ELM from 􏽥N × n to 􏽥n × n.

Step 5. Create a weight matrix from input layer to the
Kohonen layer and insert the values of each
weight in the matrix as follows:

W
Ng(d)

n􏽥×n
� wNg(d)

1 ;wNg(d)

2 ; . . . ;wNg(d)

􏽥n􏼔 􏼕

�

w
Ng(d)

11 w
Ng(d)

12 · · · w
Ng(d)

1n

w
Ng(d)

21 w
Ng(d)

22 · · · w
Ng(d)

2n

⋮ ⋮ ⋱ ⋮

w
Ng(d)

􏽥n1
w

Ng(d)

􏽥n2
· · · w

Ng(d)

􏽥nn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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􏽥n×n

,

(12)

where wNg(d)
r are the weights of the winner

neuron and its neighbors in Kohonen layer,
r ∈ 1, 2, . . . , 􏽥n{ } represents the order of the

Ng(d)

Ng(d)βi

wi

Input layer Output layerKohonen layer

Winner neuron
Neighborhood neuron

xj1

xj2

xjn

yj1

yj2

yjm

Figure 2: SLFN structure with one-dimensional Kohonen layer.

Data
Dimensionality

reduction
by SOM

SLFN
construction

Classification
using ELM Results

Figure 3: )e sketch map of the proposed method.
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corresponding weight vector, and 􏽥n is the
number of all neurons in the set Ng.

Step 6. Set the final W
Ng(d)

􏽥n×n
as initial weight matrix of the

ELM.
Step 7. Calculate the hidden layer output matrix HNg for

input x:

H
Ng w

Ng(d)

1 , . . . ,w
Ng(d)

􏽥n
, b

Ng(d)

1 , . . . b
Ng(d)

􏽥n
, x1, . . . , xN􏼒 􏼓

�

f wNg(d)

1 .x1 + b
Ng(d)

1􏼒 􏼓 · · · f wNg(d)

􏽥n
.x1 + b

Ng(d)

􏽥n􏼒 􏼓

⋮ · · · ⋮

⋮ · · · ⋮

f wNg(d)

1 .xN + b
Ng(d)

1􏼒 􏼓 · · · f wNg(d)

􏽥n
.xN + b

Ng(d)

􏽥n􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×􏽥n

.

(13)

Step 8. Calculate the weights between the hidden layer
and the output layer:

􏽢β
Ng(d)

� H
Ng+

T, (14)

where βNg(d)

i � [βNg(d)

i1 , βNg(d)

i2 , . . . , βNg(d)

im ]T is
the new weight vector connecting the ith hidden
node and the output layer.

4. Simulation Results

In this section, simulation results are presented and dis-
cussed in order to evaluate the performance of the proposed
algorithm and to compare it with the conventional BP al-
gorithm, basic ELM, and TROP-ELM through a classifica-
tion problem. Our method has been tried on nine datasets;
the first eight datasets are from the UCI Machine Learning
Repository. )e ninth dataset “Jaffe” is composed of images
and provided by the Psychology Department in Kyushu
University. )e algorithms were tested on a computer with
the Core-i5 processor, 8 GB RAM, 2.4GHz CPU, MATLAB
R2018a.

4.1. Datasets Description. )ere are many benchmarks for
classifications, and we have selected nine classification
datasets that are summarized in Table 1. )e description of
the datasets is as follows:

Dataset 1: ionosphere is a type of dataset used for binary
classification. )e main objective is to determine the
type of a given signal (good or bad) by referring to free
electrons in the ionosphere. It has 351 instances divided
into two classes with 34 integer and real attributes.
Dataset 2: Iris is the most popular and the best-known
dataset for classification and recognition of models
based on the examination of the size of petals and sepals
of the plant. It contains in totality 150 instances, which
are equally separated between three classes. Each in-
stance is characterized by four real attributes.
Dataset 3: the wine dataset is the result of a chemical
analysis of wines grown in the same region in Italy but

derived from three different cultivars. It shows the
existence of 178 instances and 13 continuous attributes.
Dataset 4: the balance dataset is generated to model
psychological experimental results. Four categorical
attributes can indicate the balance scale of the 625
instances that are divided into three classes.
Dataset 5: it is a simple dataset that consists of 101
animals from a Zoo. )is dataset is able to predict the
seven class of animals based on the 16 Boolean
attributes.
Dataset 6: this dataset includes 2310 instances divided
into 7 classes that are handsegmented to create a
classification for every pixel. Image data are described
by 19 attributes.
Dataset 7: the objective of the Ecoli dataset is to predict
the localization of proteins by using measurements on
the cell. It has 336 instances which are identified by
seven attributes and divided into eight classes in un-
balanced way.
Dataset 8: the multiple features dataset aims to classify
the handwritten numerals. It has in totality 2000 in-
stances that are equally separated between 10 classes
with 649 attributes.
Dataset 9: the Jaffe dataset is composed of 213 gray-
scale images sized of 256∗256 and posed by 10 Jap-
anese female models. Each female has two to four
examples for each expression. )e objective is to
predict for each image one of the seven facial ex-
pressions such as angry, disgust, fear, happy, neutral,
sad, and surprised. One emotion of the seven different
facial expressions from the Jaffe dataset is shown in
Figure 4.

For all datasets, 70% of the data are chosen for training
phase while the remaining are reserved for testing. )ree
performance metrics have been listed in Table 2 in which
accuracy value is calculated as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
, (15)

where TP is the number of elements correctly classified as
positive, FP is the number of positive elements incorrectly

Table 1: Characteristics of the nine datasets.

Datasets Training
data

Testing
data Attributes Classes

Ionosphere 246 105 34 2
Iris 105 45 4 3
Wine 126 52 13 3
Balance 499 126 4 3
Zoo 70 31 16 7
Image
segmentation 1617 693 19 7

Ecoli 235 101 7 8
Multiple features 1400 600 649 10
Jaffe 149 64 4096 7

Computational Intelligence and Neuroscience 5



classified, FN is the number of negative elements incorrectly
classified, and TN is the number of true elements correctly
classified as negative.

4.2. Results and Discussion. )e performance of the current
ELM method is dependent on the initial input weights and

biases which are randomly initialized. In an attempt to
overcome this problem, the heuristic approach explained
above is used to automatically determine the optimal
number of hidden neurons 􏽥n based on the clustering
method. Different from basic ELM with 􏽥N hidden neurons,
our method generally needs less hidden neurons and 􏽥n< 􏽥N.
)e comparison results given in Table 2 clearly indicate that

(a) (b) (c) (d) (e) (f ) (g)

Figure 4: Samples of the Jaffe dataset. (a) Angry. (b) Disgust. (c) Fear. (d) Happy. (e) Neutral. (f ) Sad. (g) Surprised.

Table 2: Results of Experiments on classification problem.

Datasets Algorithms Training time (s) Testing accuracy Hidden nodes

Ionosphere

BP 33.944864 82.8571 20
ELM 0.667364 87.6190 40

TROP-ELM 0.6517 89.2900 51
Proposed 0.396109 92.3810 31

Iris

BP 29.232330 93.3333 15
ELM 0.235005 95.5556 40

TROP-ELM 0.0738 96.6700 59
Proposed 0.052971 100 15

Wine

BP 31.336370 94.2308 18
ELM 0.218872 96.1538 35

TROP-ELM 0.1242 96.5800 84
Proposed 0.092291 100 22

Balance

BP 136.802525 76.1905 10
ELM 1.121717 83.0688 28

TROP-ELM 0.3224 87.2100 56
Proposed 0.474296 87.5661 13

Zoo

BP 34.132912 80.6452 10
ELM 0.082092 93.5484 15

TROP-ELM 0.0316 94.5000 18
Proposed 0.030456 97.2350 7

Image segmentation

BP 428.141558 87.8582 15
ELM 24.629949 91.3008 90

TROP-ELM 207.8026 90.4300 187
Proposed 11.964243 96.4131 70

Ecoli

BP 55.678908 71.4286 15
ELM 0.646599 85.9890 40

TROP-ELM 0.5869 92.0700 90
Proposed 0.252657 93.6813 26

Multiple features

BP 226.625993 90.9000 12
ELM 67.085971 97.6833 180

TROP-ELM 190.431 98.4300 338
Proposed 40.753813 99.0333 121

Jaffe

BP 427.894980 75.4464 20
ELM 1.778349 81.9196 130

TROP-ELM 1.668231 83.4550 240
Proposed 1.530555 84.3750 99
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our approach reduces the number of hidden neurons
compared with the standard ELM and TROP-ELM for all
cases. In addition, it should also be noted that the proposed
approach outperforms the standard ELM, TROP-ELM, and
backpropagation algorithms in terms of training time. A Box
and Whiskers plot illustrations of the compared methods is
shown in Figure 5. It can be clearly seen from Table 2 and
Figure 5 that the accuracy of the results of the proposed
algorithm is indeed higher than that of backpropagation,
ELM, and TROP-ELM algorithms. All these results indicate
that the hybrid algorithm can optimize the network

structure to a suitable size with fewer hidden nodes and yet
be able to classify the datasets with a better accuracy.

5. Conclusion

)is paper proposed a novel hybrid algorithm for single
hidden layer feedforward neural network. )is algorithm
consists of the use of a self-organizing map algorithm
coupled with extreme learning machine. )e learning
process of this method includes two steps. )e first step is to
train the weights connecting the input and the hidden layers
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Figure 5: Box plots depicting the performance of training algorithms. Accuracy value variation of the (a) Ionosphere dataset, (b) Iris dataset,
(c) Wine dataset, (d) Balance dataset, (e) Zoo dataset, (f ) Image segmentation dataset, (g) Ecoli dataset, (h) Multiple features dataset, and (i)
Jaffe dataset.
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by a self-organizing map algorithm, and the second step is to
use the Moore–Penrose inverse method to calculate the
weights connecting the hidden and output layers. In order to
prove the performance of the hybrid approach, it is used to
solve several popular classification problems. A comparison
with other basic methods such as BP, ELM, and TROP-ELM
confirms the superiority of this method in terms of gen-
eralization performance and faster learning speed. )e main
disadvantage of the proposed method is that it uses a fixed
structure of self-organizing map, where the number of
neurons and the size of neighbourhood function must be
determined before clustering. )is often leads to significant
limitation for most application. In future work, we will
consider extending the study of the proposed method in the
image classification domain. Another direction of future
research includes the study of the proposed approach with
different types of self-organizing maps and a wide range of
activation functions.
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