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ABSTRACT It is noticed that offline-training and online-implementation method is dominant in the data-

driven control. However, the inconsistence existing in offline data and online data may degrade the control 

performance. To address the aforementioned issue, an online control strategy is developed so that the control 

parameters can be updated online based on the real-time data measured to ensure satisfactory control 

performance in this study. Specifically, an online control algorithm is addressed to control the pressing-down 

speed of the forging machine based on the framework of the reinforcement learning that has a capability of 

building a complete mapping from state space to action space only according to the neighbour samples. Rather 

than using the way of trials and errors which is too slow to be online implementation, a taboo search is 

addressed to speed up the learning-working process by directly searching the control on the current states, 

followed by the stability conditions, derived from Lyapunov stability theory. A coarse model that is limited 

to get the cost information of the reinforcement learning is used to make the best of mechanism information, 

which prevents the occurrence of the invalid states that do not conform to system characteristics. The 

effectiveness of the algorithm is demonstrated by an ultra-low forging machine, which outperforms the 

conventional approaches such as PID and neural network control approaches. 

INDEX TERMS Online control, Reinforcement learning, Taboo search, Forging machine 

I. INTRODUCTION 

Forging machine, as an electro-hydraulic hybrid system with 

nonlinearity and multi-field coupling, is an essential 

equipment in forging industry [1]. The control on the forging 

machine is the guarantee of the quality for the forgings 

production which is vital for the high reliability areas such 

as in aviation, space exploration and nuclear industry. To 

meet the needs of the precise forgings, some advanced 

algorithms such as the sliding mode control [2,3], back-

stepping control [4], feedback linearization [5] were used in 

the control on forging machine instead of the conventional 

PID-based control [6] and fuzzy-based control [7,8]. 

However, the aforementioned approaches [2-5] are model-

based control algorithms, which strongly depend on the 

accuracy of model. Unfortunately, it is hard to build an 

accurate model in a complex engineering practice. For 

example, the viscosity of hydraulic oil is prone to be 

influenced by the temperature, which will lead to the model 

bias. On the other hand, the forging machine is usually facing 

the different forging batches, which further increases the 

difficulty in producing an accurate model.  

Compared with the established model, the collected data 

will be better to reflect the real states which are interacted with 

the system and the surroundings. Therefore, the data-driven 

approaches [10,11] based on the fact that advanced 

measurement techniques [9] have made it easy to obtain the 

large-scale data online have been introduced to the forging 

machine field in recent years. Reference [12] developed two 

online updated backpropagation (BP) neural network 

algorithms to accurately control the die forging hydraulic press 

machine. The weights of the neural networks were initially 

trained offline and then updated online according to an error 

backpropagation algorithm. A novel least squares support 

vector machine (LS-SVM) control method was addressed in 

[13] for general unknown nonlinear systems, which was 

further proved that the control error was fully equal to the LS-

SVM modeling error. In [14] a novel online probabilistic 

extreme learning machine (ELM) method was proposed to 

model batch forging processes. By using the characteristics of 
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the online ELM, a strategy was developed to update the 

distribution model as new forging process data were collected. 

In [15] a combination of the neural network and genetic 

algorithms had been employed to optimize the forging force.  

These data-driven approaches are always working on a way 

of offline-learning and online-working. The offline-learning 

forms an implication relation according to the historical data. 

After this implication is obtained by learning with the ways of 

supervisory or un-supervisory it will be used for the online-

working as a black box model. Either supervisory learning or 

un-supervisory learning requires a large volume of data as the 

training dataset, however, it is difficult to get them as the 

forging machine is often to deal with different forging batches. 

Firstly, for a new forging process, the training data are empty 

due to the lack of historical process, while for some special 

forging processes, the training data are not available due to the 

differences of the experimental conditions or tests. Secondly, 

it is inevitable that the working situation is not consistent with 

the training condition which leads to the performance 

degradation, even mistake of the forging machine under the 

function of the previous well-trained controller. As a result, it 

is a challenge to develop a control strategy for forging machine 

without depending on the accurate model and the way of 

offline-learning and online-working in traditional data-driven 

approach.  

Using a way of online-learning and online-working is a 

feasible solution for the forging machine control because the 

forging machine is always working at a slow process due to 

the machine’s large mechanical inertia and slow hydraulic 

activity. Compared with this slowness, the computer shows an 

amazing computing ability which makes the way of online-

learning online-working become possible. All the methods 

concerning the accurate model and an amount of historic data 

are forced to be abandoned due to the aforementioned 

limitations of the forging machine.  

To our best knowledge, the reinforcement learning (RL) [16] 

is able to support the offline learning (Q algorithm) and online 

learning (e.g., Sarsa algorithm) by the means of approaching 

to the stage reward with adjusting the action based on the 

difference of the adjacent sampling time series as an error 

rectification. The RL does not need an accurate model and it 

just needs an effect from the action which reduces the 

requirement of the precision for traditional model. Now the 

RL has been extended to the deep reinforcement learning 

(DRL) with the development of deep learning technique. 

Reference [17] developed a novel artificial agent, termed a 

deep Q-network, that can learn successful policies directly 

from high-dimensional sensory inputs using end-to-end 

reinforcement learning. Reference [18] presented a brief 

survey on the advances that have occurred in the area 

of deep learning. From engineering application aspect, the 

RL/DRL showed an excellent performance after a good 

training in UAV [19], air-conditioning refrigeration [20], 

smart power control [21], fault tolerant control [22,23] and so 

forth [24,25]. 

The difficulty of RL in applying to the practical system is 

its slow training speed whether offline nor online. The RL 

aims to build a complete mapping between the state space and 

the action space by training with trial and error in order to deal 

with the unknown environment. The training is divided into 

the value-based method and the policy-based method. 

Compared with the value-based method, the policy-based 

method is dominated due to its simplicity and intuition. Most 

algorithms for policy optimization can be classified into three 

broad categories [26]: (1) policy iteration methods, which 

alternate between estimating the value function under the 

current policy and improving the policy [27]; (2) policy 

gradient methods, which use an estimator of the gradient of 

the expected return (total reward) obtained from sample 

trajectories [28]; and (3) derivative-free optimization methods, 

such as the cross-entropy method (CEM) and covariance 

matrix adaptation (CMA), which treat the return as a black box 

function to be optimized in terms of the policy parameters [29]. 

Generally, both methods spend a long time to train which is 

often unbearable for real-time system. Concurrently the trial 

actions in training process maybe bring to the system risk of 

out of control because no one knows the effect of actions on 

the system in advance.  

In fact it is not necessary to spend too much time to build a 

complete mapping from states space to action space because 

the succeeding states will follow up the occurred states under 

the control which is a subset of the complete mapping. 

Searching a control in this subset will speed up the train 

owning to removing the large redundant states. The taboo 

search (TS) proposed by Glover [30] is an effective stochastic 

optimization method [31] which gets rid of the historical data 

in training of the data-driven methods. The TS has an efficient 

search capability by avoiding circuitous search with 

introducing a flexible storage structure and corresponding 

Taboo criteria. It also escapes the local extremum by 

extending the local optimization to the global optimization. As 

a result, the TS algorithm is selected as a substitution for trials 

and errors.  

The above discussions show an evolution of control on the 

forging machine from the model-based control to the data-

driven strategy in which most studies focused on the way of 

offline-learning and online-working. Motivated by 

overcoming the difficulties of the inconsistence between the 

training and the working for forging machine, a novel 

approach is proposed to implement an online control of the 

forging machine in this study. By integrating reinforcement 

learning with taboo search, the RL is taken as the evaluation 

of the actions, and the taboo search is used to improve the 

learning efficiency. On the other hand the computer simulation 

technology provides the way of forecasting the system state 

without a real action on the system which avoids the danger of 

system out of order from the training actions. The advantages 

of proposed approach are summarized as follows: 

(1) This is an online approach with the combination of the 

data and model which breaks through the conventional mode 

http://www.baidu.com/link?url=lbMEYaHH_WQbjuS5SQXRIqiPkvIYGes6GHEAsLOonSbtkh66KhprKVGhr5TmwQOkR63oNkzDsqyKpZSPO0nIp_5KWuW9-L9EVjJAFBVT8b5-MS_pLPGxbjKr62ykWs-g
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of offline learning and online working. The optimal control 

will be achieved in the common process of the learning and 

working. 

(2) All the control vectors are limited within the range of 

requirements based on the current states which guarantees the 

system stability in the learning process.  

(3) The learning process is speeding up to meet the real-time 

requirement by bringing to the taboo search which abandons 

the redundant states independent of the current states. 

The remainder of this article is organized as follows: In 

section 2 the forging machine model is addressed and the 

relation between the states and controls is derived under the 

stability condition. Section 3 descripts the proposed approach 

including the reinforcement learning, the taboo search, the 

structure and algorithm. The case studies are illustrated in 

Section 4, followed by conclusions in section 5. 

 
II. FORGING MACHINE AND STABILITY CONDITION 

A.  THE MODEL OF FORGING MACHINE 

The ultra-low forging machine with the heavy force and the 

slow speed is equipment for a semi-solid metallic 

confectioning constant-speed isothermal forging which is an 

important forging technique, particularly for light-weight 

alloy confectioning in the aerospace industry. The typical 

structure of the ultra-low forging machine is depicted in figure 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.  The typical structure of ultra-low forging machine 

 

The forging machine is divided into a power sub-system, a 

sliding block sub-system, a control sub-system and an 

auxiliary sub-system. A power sub-system consists of an oil 

resource that forms the high pressure working oil through a 

constant rate pump with a driven motor and the pipe that 

delivers the high pressure working oil to the operating 

mechanisms. The sliding block sub-system is made up with a 

hydraulic cylinder that produces the high pressing force at a 

sliding velocity and a huge slide block that directly acts on the 

forgings. The control sub-system includes all kinds of valves, 

sensors and control algorithms, in which the switch valves 

complete the logic function of the process, and the 

proportional servo valves control the speed of the slide block 

by adjusting the valve openings. The auxiliary sub-system is 

used to implement the additional functions except for the 

pressing process such as push-out, moving and so on.  

The pressing-down phase is the key process in the semi-

solid metallic confectioning constant-speed isothermal 

forging process which usually includes six phases: fast-down 

phase, slow-down phase, pressing-down phase, keep-pressure 

phase, fast-up phase and slow-up phase. This pressing-down 

phase is made up with a long pipe-line with working oil, a 

proportional servo valve, and a hydraulic cylinder.  

For a long pipe-line with working oil, the dynamic process 

can be described by [5]: 
𝑑𝑞1

𝑑𝑡
=

𝑆1(𝑝1−𝑝𝑠)

𝜌𝑙
+
32𝜌2𝜇

𝐷2
𝑞1                             (1) 

𝑞2 − 𝑞1 =
𝑆1𝑙

𝐾

𝑑𝑝1

𝑑𝑡
                                            (2) 

where  𝑞1 is the oil flow of pipe; 𝑝1 is the inlet pressure of 
proportional servo valve; 𝑞2 is the flow of proportional servo 
valve, and the other parameters are defined in Table 1.  

For a proportional servo valve, the dynamics can be 

described by [5]: 

1

𝜔𝑛
2

𝑑2𝑞2

𝑑𝑡2
+

2𝜉

𝜔𝑛

𝑑𝑞2

𝑑𝑡
+ 𝑞2 = 𝐾𝑛√

𝑝2−𝑝1

∆𝑝𝑛
∙ 𝑂𝑝             (3) 

where the symbols in (3) is shown in Table 1.  

For a hydraulic cylinder, the dynamic processes can be 

illustrated by [5]: 
𝐾

𝑉𝑐
𝑞2 −

𝐾𝑆2

𝑉𝑐
𝑣 −

𝐾𝜆𝑐

𝑉𝑐
𝑝2 =

𝑑𝑝2

𝑑𝑡
                    (4) 

𝑆2

𝑚
𝑝2 −

𝐵

𝑚
𝑣 −

𝐹𝑙

𝑚
=

𝑑𝑣

𝑑𝑡
                              (5) 

where �̇�2 is the flow velocity, 𝑣 is the speed of slide block 
and the other parameters are explained in Table 1.  

In terms of equations (1)-(5), the compact state-space model 

can be given as follows: 
�̇� = 𝐴𝑥 + 𝑔(𝑥)𝑢   (6) 

where  

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] = [𝑞1, 𝑝1, �̇�2, 𝑞2, 𝑝2, 𝑣]
𝑇, 

𝑢 = [𝑂𝑝], A =

[
 
 
 
 
 
 
 
 
32𝜌2𝜇

𝐷2
𝑆1

𝜌𝑙
0 0 0 0

−
𝐾

𝑆1𝑙
0 0

𝐾

𝑆1𝑙
0 0

0 0 0 1 0 0
0 0 −2𝜉𝜔𝑛 −𝜔𝑛

2 0 0

0 0 0
𝐾

𝑉𝑐
−
𝐾𝜆𝑐

𝑉𝑐
−
𝐾𝑆2

𝑉𝑐

0 0 0 0
𝑆2

𝑚
−
𝐵

𝑚 ]
 
 
 
 
 
 
 
 

, 

g = [0,0,0,𝜔𝑛
2𝐾𝑛√

𝑥2−𝑥5

∆𝑝𝑛
, 0, −

𝐹𝑙

𝐵
]𝑇 .  
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The states 𝑞1 is the oil flow of pipe; 𝑝1 is the inlet pressure of 
proportional servo valve; The meanings of model parameters 
are table I. 

 

TABLE I 
THE MEANINGS OF MODEL PARAMETERS 

Symbol Meanings Symbol Meanings 

𝜌 The density of oil 𝜆𝑐 The leak coefficient of 
hydraulic cylinder 

𝜇 The friction 
coefficient of pipeline 

𝑆2 The plunger’s 
sectional area of 
exporting cavity of 
hydraulic cylinder 

𝐷 The diameter of oil 
pipe 

m The mass of slide 
block 

𝑆1 The sectional area of 
pipe 

𝐵 The viscous damping 
coefficient 

𝑙 The length of oil pipe 𝐾𝑛 The rated flow gain 

𝐾 The young’s modulus 
of oil equal volume 

∆𝑝𝑛 The valve port 
pressure drop 

𝜉 The damping rate of 
propositional servo 
valve 

𝐹𝑙 The load resistance 

𝜔𝑛 The inherent 
frequency of 
propositional servo 
valve 

𝑃𝑠 The pressure from a 
constant rate pump 

𝑉𝑐 The oil volume of the 
upper cavity of 
hydraulic cylinder 

𝑂𝑝 The opening of 
proportional servo 
valve 

B. THE CONDITION OF STABILITY 

The relation between the states and control variables are gotten 

according to the Lyapunov stability condition. Let 

𝑉 = 𝑥𝑇𝑃𝑥                                    (7) 

where 𝑃 is a semi definite matrix with the form of 

𝑃 =

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑝22 0 0 0 0
0 0 𝑝33 0 0 0
0 0 0 𝑝44 0 0
0 0 0 0 𝑝55 0
0 0 0 0 0 𝑝66]

 
 
 
 
 

                           (8) 

with 𝑝22 > 0, 𝑝33 > 0, 𝑝44 > 0, 𝑝55 > 0 and 𝑝66 > 0. 

According to the physical meaning of states 𝑥𝑖 ≠ 0 (𝑖 =
2,3,4,5,6), one has 

𝑉 = 𝑥𝑇𝑃𝑥 > 0     (9) 

�̇� = �̇�𝑇𝑃𝑥 + 𝑥𝑇𝑃�̇� 

= (𝐴𝑥 + 𝑔(𝑥)𝑢)𝑇𝑃𝑥 + 𝑥𝑇𝑃(𝐴𝑥 + 𝑔(𝑥)𝑢) 

= 𝑥𝑇 (𝐴𝑇𝑃 + 𝑃𝐴)⏟        
𝐼

𝑥 + 𝑢𝑇𝑔𝑇(𝑥)𝑃𝑥 + 𝑥𝑇𝑃𝑔(𝑥)𝑢𝑇⏟                
II

 

(10) 

If 𝐼 ≤ 0  and 𝐼𝐼 < 0  there exits �̇� < 0  which means the 

system is Lyapunov stability.   

For 𝐼 and 𝐼𝐼  
 𝐼 = 𝐴𝑇𝑃 + 𝑃𝐴 ≤ 0   (11) 

𝐼𝐼 = 𝑢𝑇𝑔𝑇(𝑥)𝑃𝑥 + 𝑥𝑇𝑃𝑔𝑇(𝑥) < 0   (12) 

Using (6) and (11), one can obtain 

[
 
 
 
 
 
 
 
 
 
 
32𝜌2𝜇

𝐷2
𝑆1
𝜌𝑙

0 0 0 0

−
𝐾

𝑆1𝑙
0 0

𝐾

𝑆1𝑙
0 0

0 0 0 1 0 0
0 0 −2𝜉𝜔𝑛 −𝜔𝑛

2 0 0

0 0 0
𝐾

𝑉𝑐
−
𝐾𝜆𝑐
𝑉𝑐

−
𝐾𝑆2
𝑉𝑐

0 0 0 0
𝑆2
𝑚

−
𝐵

𝑚 ]
 
 
 
 
 
 
 
 
 
 
𝑇

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑝22 0 0 0 0
0 0 𝑝33 0 0 0
0 0 0 𝑝44 0 0
0 0 0 0 𝑝55 0
0 0 0 0 0 𝑝66]

 
 
 
 
 

 

+

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑝22 0 0 0 0
0 0 𝑝33 0 0 0
0 0 0 𝑝44 0 0
0 0 0 0 𝑝55 0
0 0 0 0 0 𝑝66]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
32𝜌2𝜇

𝐷2
𝑆1
𝜌𝑙

0 0 0 0

−
𝐾

𝑆1𝑙
0 0

𝐾

𝑆1𝑙
0 0

0 0 0 1 0 0
0 0 −2𝜉𝜔𝑛 −𝜔𝑛

2 0 0

0 0 0
𝐾

𝑉𝑐
−
𝐾𝜆𝑐
𝑉𝑐

−
𝐾𝑆2
𝑉𝑐

0 0 0 0
𝑆2
𝑚

−
𝐵

𝑚 ]
 
 
 
 
 
 
 
 
 
 

 

≤ 0  
(13) 

Formula (13) shows a part expansion of the Lyapunov 

stability based on the forging machine model. Solving 

formula (13), one can obtain: 

{
 
 
 

 
 
 

0 ≤ 0
0 ∙ 𝑝22 ≤ 0
0 ∙ 𝑝33 ≤ 0

−𝜔𝑛
2𝑝44 ≤ 0

−
𝐾𝜆𝑐

𝑉𝑐
𝑝55 ≤ 0

−
𝐵

𝑚
𝑝66 ≤ 0

     (14) 

As a result, 𝑃 can be selected as follows: 

𝑃 =

[
 
 
 
 
 
0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

   (15) 

Substituting (15) into (12), one can have 

𝑢𝑇 [0,0,0, 𝜔𝑛
2𝐾𝑛√

𝑥2 − 𝑥5

∆𝑝𝑛
, 0, −

𝐹𝑙

𝐵
]

[
 
 
 
 
 
0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]
 
 
 
 
 

 

+[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]

[
 
 
 
 
 
0 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

[0,0,0, 𝜔𝑛
2𝐾𝑛√

𝑥2 − 𝑥5

∆𝑝𝑛
, 0, −

𝐹𝑙

𝐵
]

𝑇

𝑢 < 0 

(16) 

Solving (16), one can have 

𝑢 ∙ (𝜔𝑛
2𝐾𝑛√

𝑥2−𝑥5

∆𝑝𝑛
∙ 𝑥4 −

𝐹𝑙

𝐵
∙ 𝑥4) < 0  (17) 

As a result, the Lyapunov stability condition is satisfied 

which means the system is stable subject to formula (17). 

Remark 1: Formula (17) shows the relationship between the 

control variable, the states and the load under the stability of 

system, which is regarded as a restraint condition in taboo 

search. The states 𝑥2 , 𝑥5  and 𝑥4  in formula (17) are 

measurable by the flow sensors and pressure sensors, and the 

parameters are obtained from the design of forging machine.  

 
III. THE PROPOSED APPROACH 

A.   REINFORCEMENT LEARNING 
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The basic idea of the reinforcement learning is simply to 

capture the most important aspects of the agent which 

includes sensation, action, and goal. The basic frame of 

reinforcement learning is shown in Figure 2 [16]. 

 

Agent

Environment

Action u(k)
State x(k)

Reward RK(x(k),u(k-1))

x(k+1)

Rk+1(x(k+1),u(k))

 
FIGURE 2.  A basic frame of reinforcement learning 

An agent will get the evaluation of good or bad behavior on 

environment and learn through experience without a teacher 

who teaches how to do. In each training session, named 

episode, the agent explores/exploits the environment by 

changing action 𝑢(𝑘) and receives the states 𝑥(𝑘 + 1) and 

the immediate cost 𝑅𝑘+1(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘))  based on 

𝑥(𝑘). The purpose of the training is to enhance the 'brain' of 

agent. The goal of an agent is to minimize/maximize the 

immediate cost ∑ 𝑅𝑖(𝑥(𝑖 + 1), 𝑥(𝑖), 𝑢(𝑖))
𝑘+𝑇
𝑖=𝑘  which is 

received in the long run. This process is considered as a 

decision process MDP (𝒳,𝒰,𝒫, ℛ) with a control u and cost 

R in which 𝒳 is a set of states, 𝒰 is a set of controls, 𝒫 is the 

transition probabilities 𝒫:𝒳 × 𝒰 ×𝒳 → [0,1] and ℛ is the 

cost function ℛ:𝒳 × 𝒰 ×𝒳 → ℛ.  

In order to evaluate the good or bad behavior (often 

named action or control) the value of a control Vk
u(x(k)) is 

defined as 

𝑉𝑘
𝑢(𝑥(𝑘)) = 𝐸𝑢 {∑ 𝛾𝑖−𝑘𝑅𝑖

𝑘+𝑇

𝑖=𝑘
} 

=∑ 𝑢(𝑥, 𝑢)
𝑢

∑ 𝑃(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘))
𝑥(𝑘+1)

 

× [𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)) + 𝛾𝐸𝜋 {∑ 𝛾𝑖−(𝑘+1)𝑅𝑖
𝑘+𝑇

𝑖=𝑘+1
}] 

=∑ 𝑢(𝑥, 𝑢)
𝑢

∑ 𝑃(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘))
𝑥(𝑘+1)

 

× [𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)) + 𝛾𝑉𝑘+1
𝑢 (𝑥(𝑘 + 1))]      (18) 

Where 𝑅𝑖(𝑥(𝑖 + 1), 𝑥(𝑖), 𝑢(𝑖)) is abbreviated by 𝑅𝑖 because 
we do not stress the relation of 𝑥(𝑘 + 1), 𝑥(𝑘), and 𝑢(𝑘). 

The optimal controls will be achieved by carrying an 
alternation of the policy evaluation and policy improvement 
using the formulas as follows: 

𝑉𝑘(𝑥(𝑘)) = 

∑ 𝑢𝑘(𝑥, 𝑢)𝑢 ∑ 𝑃(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)))𝑥(𝑘+1)     

× [𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘) + 𝛾𝑉𝑘(𝑥(𝑘 + 1))]          (19)                            

𝑢𝑘(𝑥, 𝑢) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢

∑ 𝑃(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘))𝑥(𝑘+1)         

× [𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)) + 𝛾𝑉𝑘(𝑥(𝑘 + 1))]      (20)                      

where 𝛾  is a discount factor with 0 ≤ 𝛾 < 1  in order to 
converge.   

For a deterministic system, it is evident that: 

 ∑ 𝑢𝑘(𝑥, 𝑢)𝑢 ∑ 𝑃(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)) = 1𝑥(𝑘+1) .  (21) 

Therefore, the formulas (19) and (20) can be simplified as:  

𝑉𝑘(𝑥(𝑘)) = 𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘)) + 𝛾𝑉𝑘(𝑥(𝑘 + 1)) 
   (22) 

𝑢𝑘(𝑥, 𝑢) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢

𝑅𝑘(𝑥(𝑘 + 1), 𝑥(𝑘), 𝑢(𝑘))      

+𝛾𝑉𝑘(𝑥(𝑘 + 1))                                           (23) 

Remark 2: The optimal control 𝑢(𝑘) can be obtained only 

using the state information and the immediate cost because 

there are only 𝑥(𝑘), 𝑥(𝑘 + 1) and 𝑅𝑘 in formulas (22) and 

(23).  

A general approach is to adopt iterative method until it is 

convergent. It is a time-consumption process due to a large 

number of iterations which form the disadvantage of RL. In 

fact once 𝑥(𝑘) is determined,  𝑢(𝑘) will be within a feasible 

space due to the system limitation. One can directly seek an 

appropriate control 𝑢(𝑘)  to maximize the cost function, 

which can be solved by the technology of the random 

optimization search. Here we chose the taboo search owing 

to its high search efficiency.  

B.  TABOO SEARCH 

There are more complex versions of the taboo search which 

improve its searching capability. Here the basic taboo search 

algorithm is applied to demonstrate its application in finding 

the optimal solution. For an element 𝑥 in the discrete space 

𝑋, the goal is  

min 𝐶(𝑥) 
s.t. 𝑥 ∈ 𝑋   (24) 

and the optimal states are solved by neighbor moving 

continuously 

𝑠(𝑥) = {𝑠|𝑠 = 𝑥 + 𝑤𝑑, 𝑠 ∈ 𝑋}  (25) 

where 𝑤 is the step length, 𝑑 is the direction. A taboo list 

whose goal value is updated according to the first input first 

output (FIFO) rule is designed to prevent the loop search. But 

the aspiration 𝐴(𝑠, 𝑥) that records the best solution of history 

is not limited by the taboo list.  

The basic taboo search is summarized as procedure 1. 
Procedure 1 

Step1: Generate an initial 𝑥, 𝑥 ∈ 𝑋, then let the optimal 

𝑥∗ = 𝑥 and set a null of the taboo list T = ∅ 

Step2: Choose a neighbor solution 𝑠(𝑥)  according to 

formula (25). 

Step3: If 𝑠(𝑥) = 𝑜𝑝𝑡{𝑠(𝑥), 𝑠(𝑥) ∈ 𝑆(𝑥) − T} , let 𝑥 =
𝑠(𝑥) and update 𝐶(𝑥).  

Step4: If 𝐶(𝑠(𝑥)) < 𝐴(𝑠, 𝑥) , 𝑠(𝑥) ∈ T  and 𝐶(𝑠(𝑥)) <
𝐶(𝑥), let 𝑥 = 𝑠(𝑥) and 𝐴(𝑠, 𝑥) = 𝐶(𝑠(𝑥)).  

Step5: If 𝐶(𝑥) < 𝐶(𝑥∗), let 𝑥∗ = 𝑥, 𝐶(𝑥∗) = 𝐶(𝑥). 
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Step6: Update taboo list by storing 𝑥 to the last place of 

taboo list T. 

Step7: Repeat step2 to step6 until one of termination 

conditions is met, that is, (a) the predetermined times of the 

moves; or (b) no improvement in the goal with adding the 

times of the moves 

C. THE PROPOSED APPROACH 

The structure of the proposed approach is shown in figure 3. 

Beginning with the states 𝑥(𝑘) and 𝑥(𝑘 + 1) at sample time 

𝑘 and 𝑘 + 1, the optimal control 𝑢∗ is found by adjusting the 

𝑢 in order to target on the minimization of 𝐶(𝑥) according to 

the RL. Instead of the policy iteration of the gradient method, 

the taboo search is used to find the optimal action in the 

action space which is a table in the discrete system. 

 

FIGURE 3.  The structure of proposed approach 

I) ACTION SAPCE, VALUE FUNCTION AND REWARD 

The values of the control variable are limited to the analog-

to-digital (DA) conversion accuracy. For a 𝑛 -bit DA 

converter, the action space is within the range of [2−𝑛, 2𝑛]. 
The forging machine’s velocity is determined according 

to the properties of the forging materials which requires a 

constant pressing speed during a certain temperature range 

or a given curve of speed. Therefore, the immediate cost is 

selected as the absolution value of the error between the 

actual speed and the reference speed 

𝑅(𝑘) = ||𝑣(𝑘) − 𝑣set(𝑘)| − |𝑣(𝑘 + 1) − 𝑣set(𝑘 + 1)||

    (26) 

Based on the coarse model (6) and formula (18), the cost 

functions 𝑉𝑘(𝑥, 𝑢) and 𝑉𝑘+1(𝑥 + 1, 𝑢) are prone to obtain,. 

𝑉𝑘(𝑥, 𝑢) = 𝐸𝑢{∑ 𝛾𝑖−𝑘𝑘+𝑇
𝑖=𝑘 𝑅(𝑖)}   (27) 

𝑉𝑘+1(𝑥 + 1, 𝑢) = 𝐸𝑢{∑ 𝛾𝑖−𝑘𝑘+𝑇
𝑖=𝑘+1 𝑅(𝑖)}   (28) 

Noticed that the coarse model is better to express the 

tendency than a state expression, the time series error with 

TD(0) is selected as the immediate cost which is the goal of 

taboo search 

min𝐶(𝑥) = min
𝑢
(𝑉𝑘(𝑥, 𝑢) − 𝑉𝑘+1(𝑥 + 1, 𝑢) + 𝑅(𝑘)) (29) 

 

II) NEIGHBORHOOD FUNCTION, TABOO OBJECT, 
TABOO LIST AND ASPIRATION CTITERION 

Formula (25) provides a neighbour search but it will cause the 

curse with the increase of dimension. The mode of the coding 

and crossing changing position is usually used to avoid the 

curse of dimensionality in the taboo search. Let 𝑠𝑖 = 𝑢𝑖 
where 𝑢𝑖𝜖[2

−𝑛 , 2𝑛], this mode of the neighbour rule is given 

in the following: 

 [𝑠𝑖，𝑠𝑗] = [𝑠𝑗，𝑠𝑖], 𝑖 ≠ 𝑗.     (30) 

The taboo object is selected as the current control 

variable 𝑢𝑖 that is put into the taboo list. If the length 𝑙 of the 

taboo list is too long it is prone to trap in the local 

optimization. If the length 𝑙 of taboo list is too short it is 

prone to trap in the loop. Here the length of taboo list is 

selected as a constant of 200. The aspiration 𝐴(𝑠, 𝑥)  is 

selected as the best states of history in order to unlock the 

process when all the candidates are locked. 

III) LONG TERM LIST AND STRICT LIST 

The basic TS has an excellent local search ability but a worse 

global search. A long term list that stores the initial values of 

each stage is proposed to improve the TS global search 

ability by generating the initial values as far as the past stages, 

this is 

𝐾∗ = 𝐴𝑟𝑔𝑚𝑎𝑥{𝐷(𝑘)|𝐷(𝑘) = ∑ ∑ (𝑥𝑖
𝑘 − 𝑥𝑖

𝑙)2𝑛
𝑖−1𝐿∈𝐵 }   (31) 

where 𝐵 is a set of selected initial solutions, and 𝐾 is a set of 

initial values randomly generated, 𝐾 ∈ ℛ. 

In order to reduce the search range and speed the search 

velocity, a strict list is built based on the result of the system 

stability in section 2.2  

{𝑢|𝑢 ∙ (𝜔𝑛
2𝐾𝑛√

𝑥2−𝑥5

∆𝑝𝑛
∙ 𝑥4 −

𝐹𝑙

𝐵
∙ 𝑥4) > 0}  (32) 

If this condition cannot be met in the process of neighbor 

searching, the 𝑢  will be abandoned immediately without 

further work. 
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 IV) THE PROCESS OF METHOD 

The proposed algorithm is summarized as procedure 2. 

Procedure 2: 

Step 1: Give a state 𝑥(𝑘). 
Step 2: Select an action 𝑢(𝑘) randomly. 

Step 3: Observe the next state 𝑥(𝑘 + 1). 

Step 4: Receive immediate reward 𝑅(𝑥(𝑘), 𝑢(𝑘)) 

according to formula (26). 

Step 5: Compute the cost 𝑉𝑘(𝑥, 𝑢)  and 𝑉𝑘+1(𝑥 + 1, 𝑢) 
according to (27) and (28) based on the coarse model (6). 

Step 6: Compute the time series error 𝐶(𝑥) according to 

𝐶(𝑥) = 𝑉𝑘(𝑥, 𝑢) − 𝑉𝑘+1(𝑥 + 1, 𝑢) + 𝑅(𝑘) 
Step 7: Search the neighbor based on 𝑢(𝑘) and find a new 

action 𝑢(𝑗) according to formula (30) 

Step 8: If 𝑢(𝑗) satisfies a strict list of formula (32), then 

go to step 7, else repeat step 5 to 6 

Step 9: Carry out the taboo search according to procedure 

1 

Step 10: If it achieves the stage of long term list, then reset 

𝑢(𝑘) according to formula (31), else go to step 7 

Step 11: Repeat steps 7 to 10 until it satisfies the terminate 

condition and finally gets the optimal 𝑢∗(𝑘)  
Step 12: Set the next state 𝑥(𝑘 + 1) as the current state 

𝑥(𝑘) and the optimal 𝑢∗(𝑘) as 𝑢(𝑘) 
Step 13: Repeat steps 3 to 12 until it ends 

IV. CASES STUDIES 

An ultra-low forging machine is used as the test bed which 

is controlled by the combination of S7-300 PLC that 

completes the electric logic control for the process and a trio-

MC224 as a special controller that implements the pressing-

down phase by the proposed approach. We proposed this 

special controller as an addition embedded in S7-300 PLC 

because the PLC cannot complete this complex algorithm 

due to its limited computation capability. The MC224 and 

the PLC shared the collected data by a Modbus connection 

and commutated with the supervisory computer through the 

Profibus. The structure of test bed is indicted in figure 4. 
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FIGURE 4.  The structure of test bed 

The pressure transmitter is selected as YN-type fog-proof 

pressure gauge with the accuracy of class 0.1. The flow 

transmitter is LWGYC-type with the accuracy of class 0.5. 

The displacement sensor is selected as the MTS production 

with a minimum resolution of 0.002mm. The proportional 

servo valve is Rexroth with the responding time less than 

10ms. An ultra-low forging machine is working at the slow 

or ultra-low speed which will spend hours to complete a 

forging production. In the long pressing process, the forging 

is keeping the suitable temperature by the mold heating 

technology as dictated in figure 5.  

 

FIGURE 5.  Mold heating 

According to the assembly drawing of the ultra-low 

forging machine, the main oil pipe is almost keeping the 

same diameter of 0.042m and there are protective measures 

on the turns in order to reduce the pressure loss of the 

pipeline, therefore, the actual main pipe is supposed as an 

ideal long pipeline. The pipe between the proportional servo 

valve and the hydraulic cylinder is omitted because the 

proportional servo valve is close to the hydraulic cylinder 

which leads to little pressure loss. The mass of the slide block, 

the plunger’s size of hydraulic cylinder and the geometric 

parameters of the oil pipe such as the diameter and the length 

are obtained from the drawing annotation. The properties of 

the matter come from the design handbook such as the 

young’s modulus of the oil equal volume and the density of 

the oil. The parameters of the proportional servo valve are 

obtained from the chart of the product manual. The other 

physical parameters are responding to the designed 

working point. For example, the Ps is guaranteed to the 

designed 32MPa with adjusting the set value of the relief 

valve. The friction coefficient is determined according to the 

criterion of the machine design. The parameters of the coarse 

model are indicted in table II.  

 
TABLE II 

THE VALUES OF PARAMETERS 

Parameters Values Unit Parameters Values Unit 

𝜇 0.174 𝑃𝑎 ∙ 𝑠 𝑆2 0.02463 𝑚2 
𝜌 870 𝑘𝑔

/𝑚3 
𝐵 2*10e4  

𝑙 7 𝑚 𝐾𝑛 2*10e-4  
𝑆1 0.0138 𝑚2 𝑃𝑠 32 𝑀𝑃𝑎 
𝐾 10e9  ∆𝑝𝑛 3.5 𝑀𝑃𝑎 
𝜉 0.7  𝑚 10e3 𝑘𝑔 
𝜔𝑛 70  𝜆𝑐 0  
𝑉𝑐 4.9e-3 𝑚3 D 0.042 𝑚 
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It is noticed that there is an implicit condition of the 

sampling time being small enough in formula (17) which 

means the states during two adjacent samplings should 

change a little enough. In practice, the interval of the 

adjustment on the ultra-low forging machine should not 

exceed 5 minutes for ensuring the forging quality. As a result, 

the ultra-low forging is always suffering a slow change. It is 

indicated that the practical machine is working in 

consistence with the assumptions of formula (17) though 

there is no theoretical proof. The interval of 2 minutes is 

chosen as the sampling time because this is the minimum 

time to get a valid control in our computer although the 

transmitters and actuators have the abilities to speed them up.  

A. SCENARIO OF A CONSTANT SPEED  

A pressing-down process of the slide block working at an 

ultra-speed of 0.03mm/s is used to test the proposed 

approach. In this scenario, only a few oil flow through the 

servo valve will pump to the upper chamber of the hydraulic 

cylinder to achieve the ultra-speed of the slide block. It will 

bring the pressure loss due to the small opening of the servo 

valve which causes an insufficient pressure acting on the 

forgings. As a result, the control of the servo valve is a 

compromise of the pressure loss and the working pressure. 

The proposed approach is following the procedure 2. 

However, TS is a random search in essence though it is an 

efficient searching algorithm. In order to verify the results 

obtained are reliable, the experiments of the pressing-down 

process are repeated 7 times. Figures 6 and 7 show the results 

of the speed and output under control at each experiment 

with different color curves. In figure 6 the speed is around 

0.03mm/s with a little fluctuation and the maximum spikes 

are 0.0302mm/s (at the first experiment) and 0.0298 mm/s 

(at the fourth experiment) with the relative errors are 0.7%. 

It is seen from figure 7 that the different curves are not 

overlapped with each, showing some differences at each 

control. However, they all converge around 20.5 with 

fluctuations, and these differences between them do not 

affect to meet the need of set speed. 

 
FIGURE 6. The speed of pressing-down at a constant speed 

 
FIGURE 7. The output of control at a constant speed 

 

As aforementioned the control of the servo valve is a 

compromise of the pressure loss and the working pressure. 

However it is difficult for the different forging processes to 

find this compromise due to the influences of resistance and 

the machine character. A practical approach is to look for the 

appropriate parameter values by trials and errors during the 

equipment debugging. All these parameters are recorded as 

a table and call it when required. For example, the resistance 

of titanium alloy is always changing with pressing speed, 

whose relation is following a curve according to the 

information of related field. Therefore, some typical speeds 

from the curve will be controlled as the key indicators in the 

debugging process and the others are determined by 

interpolation method and improved by fine-tune based on the 

working conditions. This debugging process will spend a 

long time (often achieves several months even years) by the 

conventional PID because there are many scenarios to be 

tested one by one. The fuzzy based approaches were applied 

to improve this parameter values, but failed to the 

requirement of accuracy. With the data increasing it is 

feasible to introduce the NN as a tool due to its excellent 

nonlinear fitting function. So for comparison, conventional 

PID and neural network (NN) are applied in this study. 

  Here an ultra-speed of 0.03mm/s are taken as an 

example. The parameters of the PID are adjusted by trials in 

order to achieve better performance as possible. A three-

layer feed-forward backpropagation network with an input 

layer, a hidden layer and a output layer is chosen as a NN 

controller, whose input layer include the states 

(𝑞1, 𝑝1 , ∆𝑞2, 𝑞2, 𝑝2, 𝑣 ), and the output layer is the control 

variable (𝑂𝑝 ). The hidden layer consists of 20 nodes full 

connect to the input layer and output layer by trials because 

there is no mature theory to follow.  The NN is trained by a 

classical Levenberg-Marquardt method with random weights 

initialization.  The training database is built based on the 

selected 4000 data from the fine control by PID in order to 

make sure of the excellent training database, in which 3500 

as training and 500 as testing. After many times of trying to 

select different weights initialization, the well-trained NN is 

fine as a controller. 
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FIGURE 8. The results of pressing-down speed under different controls 

 

The mean �̅�  and the variance σ  according to formulas 

(32-33)  

�̅� =
1

𝑛
∑ 𝑣(𝑘)𝑛
𝑘=1    (32) 

σ =
1

𝑛
∑ (𝑣(𝑘) − �̅�)2𝑛
𝑘=1   (33) 

are used to evaluate the performance. The relative error δ 

between the mean �̅�  and the reference 𝑣𝑟  is according to 

formula (34)  

δ = (�̅� − 𝑣𝑟)/𝑣𝑟    (34) 

The results are shown in table III 

 

Table III 
THE MEAN, THE RELATIVE ERROR AND THE VARIANCE AT CONSTANT 

SPEEDS 

 mean variance relative error 

The PID 0.0307 2.7934e-004 0.0233(2.33%) 
The NN 0.0305 2.7393e-004 0.0167(1.67%) 

The proposed 
approach 

0.0301 7.5976e-008  0.0033(0.3%) 

 

It is seen from figure 8 and table III that all three methods 

including the traditional PID, the NN and the proposed 

approach have abilities to achieve the requirement of the 

speed accuracy (the relative errors<3%). In fact, even after 

the debugging stage, more parameter values to respond to the 

practical different cases are being collected in order to deal 

with the difference between offline-training and online-

implementation. In the whole process, it is difficult for the 

PID to adjust the parameters, and the NN highly depends on 

an excellent training database and weights initialization. In 

contrast, the proposed approach can well realize the 

automatic control according to the current states. As a result, 

the proposed algorithm is in a superior position.   

B. SCENARIO OF VARIANT SPEEDS 

A variant speed with the range from 0.08mm/s to 0.06mm/s 

via 0.04mm/s is to test the proposed approach with sampling 

times of 2 minutes. The reference 𝑣𝑟  follows the following 

formula according to the craft requirement. 

𝑣𝑟 =

{
 
 

 
 

0.08 𝑘 ≤ 30

−0.002(x − 30) + 0.08 30 < 𝑘 < 50

0.04 50 ≤ 𝑘 ≤ 80

0.002(x − 80) + 0.04 80 < 𝑘 < 90

0.06 90 ≤ 𝑘 ≤ 100

 (33) 

This kind of pressing-down process is seldom in ultra-low 

forging and there is no effective approach to implement until 

now. In practice an experimental engineer is required to 

monitor this process and adjust the PID parameters online to 

meet the craft curve based on the experiments. 

First the result of proposed approach is presented. The 

pressing-down process is repeated 5 times in order to verify 

the reliability of proposed approach due to the random 

essence of the TS. The results of the speed and output 

undercontrol are shown in figure 9 and figure 10. The cyan 

color, pink color, green color, red color and blue color 

represent the results from tests 1 to 5 respectively.  
  

 
FIGURE 9. The speed of pressing-down at variant speed 

 

  
FIGURE 10. The output of control at variant speed 

It is seen from figure 9 that the curves with different 

colors have the same tendency which achieves the reference 

speed under the different constant level and the changing 

speed period. During the interval from 1min to 30 mins, the 

maximum speed spikes are 0.0812 mm/s (at the 5th test) and 

0.0788 mm/s (at the 1st, 3th, 4th and 5th tests) with relative 
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errors of 1.5%. The maximum peak speeds are 0.0406 mm/s 

(at the 3rd test) and 0.0394 mm/s (at the 1st, 2nd, 3th and 4th 

tests) during the interval between 50 mins and 80 mins, while 

the speeds vary between 0.0609 mm/s (max) and 0.0394 

mm/s (min) during the interval from 80 mins to 100 mins. 

All the relative errors are less than 1.5%. Figure 10 shows 

the output under control with different colors at each test. 

The blue curve is taken for a further analysis based on the 

points representing the samples. The variance at the different 

intervals of 1-30 mins, 50-80 mins, and 90-100 are 

respectively 231.87, 20.5296, and 38.7686. The variance 

reduces as the reference speeds are down. The similar case 

happens on the other curves. One can find the reason from 

the working principle of the pressing-down process. The 

pressing-down speed is determined by the load resistance 

and the upper chamber pressure of the hydraulic cylinder. 

The upper chamber pressure is the rest of the pressure of the 

power sub-system taking away the pressure loss of servo 

valve (the pressure loss of the pipe is omitted because it is 

far less than that of the servo valve). On the other hand, the 

slide block is pressing down as a result of the space 

expansion of the upper chamber with the accumulation of 

hydraulic oil which can be controlled through the opening of 

the servo valve.  Bigger is the opening of servo valve, less is 

the pressure loss of the servo valve, and more hydraulic oil 

will pump into the upper chamber of the hydraulic cylinder. 

This will widen the tuneable range and lead to a relatively 

easy control. The means and variance of the speed, and 

control output are shown in table IV. 

 
TABLE IV 

THE MEANS AND VARIANCE OF SPEED AND CONTROL OUTPUT AT 

VARIANT SPEEDS 

  Speed Output of control 

  Mean Variance Mean Variance 

      
1-
30 

Time1 0.0797 3.2192e-
07 

5.5143e+02 2.3664e+02 

Time2 0.0799 4.4986e-
07 

5.5083e+02 2.5443e+02 

Time3 0.0800 4.8825e-
07 

5.5070e+02 2.1223e+02 

Time4 0.0800 6.1320e-
07 

5.5076e+02 1.7084e+02 

Time5 0.0801 5.1593e-
07 

5.4841e+02 2.3087e+02 

50-
80 

Time1 0.0399 1.2163e-
07 

2.7259e+02 24.9263 

Time2 0.0400 8.4246e-
08 

2.7215e+02 25.5312 

Time3 0.0400 1.2380e-
07 

2.7324e+02 30.3035 

Time4 0.0400 1.0079e-
07 

2.7278e+02 26.2325 

Time5 0.0400 8.4627e-
08 

2.7274e+02 20.5276 

90-
100 

Time1 0.0598 3.5491e-
07 

4.0973e+02 35.0187 

Time2 0.0601 2.5978e-
07 

4.1319e+02 56.0678 

Time3 0.0598 4.1441e-
07 

4.1149e+02 35.8819 

Time4 0.0598 2.1885e-
07 

4.1205e+02 69.1209 

Time5 0.0601 2.7346e-
07 

4.1173e+02 38.7686 

Then the conventional PID is used under test to control 

the speed of the pressing-down process. The neural network 

is abandoned here due to 1) lack of good training database; 

2) it is an offline control strategy. The results are shown in 

figure 8. The red curve, the blue curve, and the green curve 

are results of the reference speed, the PID control, and the 

online control approach respectively.  

 
FIGURE 11. The results of pressing-down speed under different 

controls 
 

It is seen from figure 11 that PID can achieve good control 

accuracy during the period from15 mins to 60 mins, from 

100 mins to 160 mins, and from 180 mins to 200 mins when 

the speed is stable. The mean, the relative error and the 

variance at stable speeds are shown in table V. (The data of 

proposed approach is based on time3. ) 

 

Table V 
THE MEAN, THE RELATIVE ERROR AND THE VARIANCE AT STABLE 

SPEEDS 

  Mean Variance Relative 
error 

The PID 1-30 0.0799 2.2054e-007 0.0013 

The proposed approach 1-30 0.0800 4.8825e-07 0 

The PID 50-80 0.0401 1.9598e-007 0.0025 

The proposed approach 50-80 0.0400 1.2380e-07 0 

The PID 90-100 0.0607 6.8762e-006 0.0117 

The proposed approach 90-100 0.0598 4.1441e-07 0.0033 

Table V shows both PID and proposed approach can 

provide a fine control with the relative error <3%. However 

figure 11 shows the PID has a worse performance during the 

transient process because it is difficult to get appropriate PID 

parameters. In contrast to the flawed PID control, the 

proposed online control shows a perfect effect throughout 

the whole process. 

C. INFLUENCES OF SAMPLING PERIOD 

In this subsection, sampling times are tested to show their 

effects on the speed under control. The sampling periods are 

chosen from 2 minutes (the minimun interval time for 

obtaining the right control) to 5 minutes (the maximum 
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interval time for the forging quality). The reference speed is 

set as 0.04mm/s. The RL selected a random action at the 

beginning and then go into the autonomous control 

according to procedure 2. Figure 12 shows the speed of the 

pressing-down during different sampling periods. Figure 13 

shows the outputs of the controller during different sampling 

periods. 

 

FIGURE 12. The speed of pressing-down during different sampling 
periods 

 

FIGURE 13. The output of control during different sampling periods 

In figure 12, the pink curve, the green curve, the red curve 

and the blue curve represent the speed of the slide block at 

the sampling period of 2 minutes, 3 minutes, 4 minutes, and 

5 minutes respectively. The stars, the crossings, the triangles, 

and the squares are the sample points. All four curves can 

approach to the reference speed (0.04mm/s) after a transient 

process. The mean and the variance in the stable process are 

shown in table VI. There are some differences in the transient 

process. The transient of speed1 (lasts about 18 minutes) is 

shorter than the others (about 25 minutes for the green curve, 

about 50 minutes for the red curve, and about 70 minutes for 

the blue curve). It is the reason that it can adjust the output 

of control in a shorter time which weakens the accumulative 

effects of forging machine for a longer period based on the 

previous moment.   

 
TABLE VI 

THE MEANS AND VARIANCE IN DIFFERENT SAMPLING PERIODS 

 Sampling 
periods 

Stable process Mean Variance 

Speed1 2 min 18min-90min 0.0400 2.9115e-07 
Speed2 3 min 25min-90min 0.0401 5.6880e-07 
Speed3 4 min 50min-90min 0.0399 4.6431e-07 
Speed4 5 min 70min-90min 0.0399 3.9806e-07 

 
V. CONCLUSIONS 

A data-driven online control strategy has been proposed for 

the control of the forging machine in order to deal with the 

difficulties in parameters adjustment of large batch change. 

This online-learning and online working algorithm has been 

carried out by reinforcement learning that can get the control 

only with two consecutive samples and the learning process 

is based on the computer simulation instead of trials and 

errors. The mapping space between the state and control has 

been reduced to a local space by developing the relationship 

between the states and controls according to the Lyapunov 

stability theory based on the coarse model, ensuring the 

system to be stable and preventing the system risk of out of 

control. The taboo search has been used to overcome the 

difficulty of the requirement of the historical data, which can 

find the control directly. Compared with the fine-parameters 

PID and well-trained NN controller the proposed approach 

can well realize the automatic control according to the 

current states, without the trouble of parameters adjustment 

that keeps tracing the working condition to get a good 

performance. The disadvantage is that taboo search would 

still spend the time to obtain an optimization, therefore the 

proposed approach can only be applied to the slow physical 

processes. The next step is to speed up the search to meet the 

need of the general real time control system.   
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