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Abstract—Semantic segmentation is a fundamental task in
remote sensing image understanding. Recently, Deep Convolu-
tional Neural Networks (DCNNs) have considerably improved
the performance of the semantic segmentation of natural scenes.
However, it is still challenging for Very High Resolution (VHR)
remote sensing images. Due to the large and complex scenes as
well as the influence of illumination and imaging angle, it is par-
ticularly difficult for the existing methods to accurately obtain the
category of pixels at object boundaries—the so-called boundary
blur. We propose a framework called Boundary-Aware Semi-
Supervised Semantic Segmentation Network (BAS*Net), which
obtains more accurate segmentation results without additional
annotation workload, especially at the object boundaries. The
Channel-weighted Multi-scale Feature (CMF) module balances
semantic and spatial information and the Boundary Attention
Module (BAM) weights the features with rich semantic boundary
information to alleviate the boundary blur. Additionally, to
decrease the amount of difficult and tedious manual labeling of
remote sensing images, a discriminator network infers pseudo-
labels from unlabeled images to assist semi-supervised learning
and further improves the performance of the segmentation
network. To validate the effectiveness of the proposed framework,
extensive experiments have been performed on both the ISPRS
Vaihingen dataset and the novel remote sensing dataset AIR-
SEG with more categories and complex boundaries. The results
demonstrate a significant improvement of accuracy especially on
boundaries and for small objects.

Index Terms—boundary-aware, semi-supervised learning, fully
convolutional networks, remote sensing images, semantic segmen-
tation

I. INTRODUCTION

OWADAYS, massive amounts of satellite remote sensing
Nimages with Very High Resolution (VHR) are obtained
every day. Semantic segmentation is an essential task in remote
sensing image understanding to make use of the data. VHR
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Fig. 1. Visualization of VHR remote sensing images. Particularly in the red
boxes, one can see that the object boundary is blurred and there are many
scattered small objects.

remote sensing images are a significant source of Land Use
and Land Cover (LULC) information [ 1], which have a variety
of applications, e.g., in environmental management [2] [3],
urban planning [4], and traffic management. While there has
been considerable progress in the semantic segmentation of
natural scenes, the semantic segmentation of VHR remote
sensing images is still challenging because they usually consist
of larger and more complex scenes.

Earlier methods had made some progress employing hand-
crafted features for machine learning, yet they had a high
computational complexity and a poor robustness. With the
advent of deep learning, Deep Convolutional Neural Networks
(DCNNs) [5] [6] have led to great progress in the semantic
segmentation of natural scenes. Most current segmentation
methods [7]-[11] are based on Fully Convolutional Networks
(FCNs) [7]. Although down-sampling operations in FCNs ex-
pand the receptive fields, they also reduce the spatial resolution
and degrade the spatial location information in final feature
maps. To obtain a high-resolution output, dilated (atrous)
convolution [!2] is used to generate a high-resolution feature
map and to expand the receptive fields. Some methods use a
multi-scale context module with dilated convolution to expand
the receptive fields and to obtain contextual information, while
large receptive fields lead to the reduction of detail. While the
above methods have led to great progress on images of natural
scenes, they lose much spatial information and cause blur on
the boundaries between objects.

VHR remote sensing images consist of large and often
complex scenes with heterogeneous objects. Additionally, due
to lighting conditions and imaging angles, occlusions and
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Fig. 2. Pipelines of semantic segmentation. (a) Most previous methods are
trained only with labeled data, use dilated convolution in the backbone and
a decoder to recover spatial information. (b) The proposed framework can
be trained with both labeled and unlabeled data. We use the CMF module
to merge feature maps and add the BAM to weight more on the boundaries.
Additionally, we use a discriminator as an auxiliary network to train in a
semi-supervised manner.

shadows lead to problems at the boundaries of objects. This
is especially true, when there are multiple separated objects
of different sizes in a VHR remote sensing image, such as
individual cars and trees [13], where pixels on the boundary
take up a large proportion of the total. Fig. 1 demonstrates
boundary blur and that there are many small objects in
the VHR remote sensing images. Some approaches use an
encoder-decoder structure [9] to recover spatial information,
but the boundary accuracy is not very good. To improve
the accuracy of the boundary, we fuse multi-scale features
weighted by channels inspired by a pyramid structure and an
attention mechanism, to balance semantic and spatial infor-
mation. Another way to address the boundary problem is by
adding a new branch to detect the boundary supervised by
an additional loss particularly for boundaries [13]-[16]. The
human visual system is assumed to pay different attention to
each part of an image and to be more sensitive to the shapes
of the objects. As the pixels at the boundary are more likely
to be misclassified, and considering that the boundary pixels
occupy only a small proportion of an image, we think that the
model should pay more attention to the boundary information.
Unlike previous work, a Boundary Attention Module (BAM) is
introduced in this work, which weights the feature map where
contains rich boundary information, without supervision based
on accurate boundaries.

Another possible solution to improve VHR remote sensing
image segmentation is to learn more discriminative feature
representations from more finely labeled data through a deeper
network. Semantic segmentation requires pixel-wise labeling.
However, since VHR remote sensing images consist of com-
plex scenes with an irregular distribution of ground objects,
it is difficult and time-consuming to annotate them with
dense labels. To reduce the workload of the annotation, some
previous work [17]-[19] utilize weakly labeled and unlabeled
images to perform weakly-supervised and semi-supervised

semantic segmentation. Several approaches employ Genera-
tive Adversarial Networks (GANs) [20] for semi-supervised
semantic segmentation and have achieved a high effectiveness
using a few pixel-wise labeled images and a large amount of
unlabeled data. Inspired by this work, we use a discriminator
network to obtain a more accurate supervision signal for the
unlabeled data, which produces a dense prediction inferring
regions close to the ground truth (GT) as pseudo-labels.

In this article, we propose the Boundary-Aware Semi-
Supervised Semantic Segmentation Network (BAS*Net) with
a focus on the object boundaries in complex scenes. As shown
in Fig. 2 (b), a Channel-weighted Multi-scale Feature (CMF)
module fuses feature maps, followed by a Multi-Scale Context
(MSC) module to capture multi-scale contextual information,
and the BAM integrates the semantic information related to
the object boundaries. The discriminator network assists by
generating pseudo-labels from unlabeled images for semi-
supervised learning and further improves the performance of
the segmentation. We conduct a series of experiments on the
ISPRS Vaihingen dataset to evaluate the performance of the
framework. The contributions of this article are summarized
as follows.

1. We present a semantic segmentation framework called
BAS*Net for VHR remote sensing images, which can
effectively semantically segment objects in the image of
a complex scene in a semi-supervised manner. Compared
with other related approaches, our work focuses on object
boundaries. It learns additional information about object
boundaries from unlabeled images without extra bound-
ary annotation.

2. To obtain more boundary related semantic information, a
CMF module fuses the semantic and spatial information
by quantitative calculation, and the BAM weights the fea-
ture maps in the spatial position where semantic boundary
information is rich, which alleviates the problem of
boundary blur especially for small objects.

3. Due to the large effort of annotating VHR images, we
designed a discriminator network for semi-supervised
learning, which assists the segmentation network to infer
trusted regions in the predictions of unlabeled images as
pseudo-labels. Additional feature representations can be
learned from unlabeled images without complex bound-
ary labeling.

To validate the effectiveness of our framework, we have
created a challenging remote sensing semantic segmentation
dataset called AIR-SEG with more categories and complex
boundaries and extended our experiments with it. The com-
prehensive experimental results on the public benchmark and
our dataset show that our framework has led to considerable
improvements. The dataset will be made publicly available.

This article consists of four sections. Related work is
presented in Section II. In Section III, we introduce our
novel semi-supervised semantic segmentation framework in
detail, including the CMF module, the BAM, the discriminator
network, and the loss function. Section IV presents the results
and the analysis of experiments. Finally, we conclude the
article and discuss future work in Section V.
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II. RELATED WORK

In this section, we review work related to semantic seg-
mentation based on deep learning concerning three different
aspects: FCN-based semantic segmentation, boundary im-
proved semantic segmentation, and semi-supervised semantic
segmentation.

A. FCN-based Semantic Segmentation

FCN is an end-to-end trainable neural network that com-
bines appearance information from a shallow layer and se-
mantic information from a deep layer to produce accurate
and detailed segmentations, in which the last fully connected
layer in DCNNs is replaced with a convolutional layer [7].
Many of the state-of-the-art approaches are based on FCNs.
However, downsampling operations in original FCNs lead
to the reduction of spatial resolution and spatial location
information, which results in the inaccurate prediction of small
objects and the boundaries of objects. To obtain a high-
resolution output with spatial information also in low-level
layers, Badrinarayanan et al. [8] use unpooling in the decoder
to upsample the feature map to maintain the high-frequency
details in the segmentation. Ronneberger et al. [9] proposed
an encoder-decoder structure with skip-connections between
encoder layers with high semantic information and low-level
layers with rich spatial information. But these approaches still
lose some details. To this end, Chen et al. [12] introduced
the dilated convolution to expand the receptive fields while
maintaining high resolution. However, the dilated convolution
has some drawbacks, such as grid effect, less local detail
information, and a large computational complexity. Thus Wu et
al. [21] replaced the dilated convolution in the backbone with
a novel joint upsampling module called the Joint Pyramid
Upsampling (JPU) to reduce the computation complexity,
which formulates the task of extracting high-resolution feature
maps into a joint upsampling problem. Subsequently, many
improved variants based on dilated convolution have been
derived. Atrous Spatial Pyramid Pooling (ASPP) [22] module
captures multi-scale contextual information from the final
convolutional feature map in the backbone and image-level
features encoding global context. Furthermore, Chen etal. [ 1]
extend DeeplLabv3 [22] by adding a simple and effective
decoder module to connect the final feature maps with low-
level feature maps, which refines the segmentation results by
recovering spatial information, especially along object bound-
aries. Inspired by the Feature Pyramid Network (FPN) [23] in
object detection, some approaches design a feature pyramid
structure to combine high-resolution feature maps with rich
spatial information and low-resolution feature maps with more
semantic information.

In remote sensing, Chen et al. [24] proposed a semantic
segmentation framework based on FCNs with symmetrical
dense-shortcut connections to solve the problems of block ef-
fects and “salt and pepper” noise in large-scale remote sensing
images. Liu et al. [25] designed an end-to-end self-cascaded
network which improves the labeling coherence with sequen-
tial global-to-local context aggregation. DCNNs are usually
not capable of processing a whole remote sensing image

given its huge size, to overcome such limitation, Nogueira et
al. [26] employ a multi-context paradigm without increasing
the number of parameters while defining the best patch size
at training time. Sun et al. [27] propose ensemble training and
inference strategies to suppress the adverse consequences of
the structural stereotype in encoder-decoder models. In order
to select more discriminative features for classification, Luo et
al. [28] introduce the channel attention mechanism to a deep
FCN for aerial images, which can weigh the semantic and
spatial location information in the adjacent-level concatenated
feature maps.

The above approaches recover some spatial information, but
the accuracy at the boundary is still not good enough.

B. Boundary improved Semantic Segmentation

Several works have made great progress to improve the
accuracy of the boundaries between objects. Some previous
works improve the architecture of DCNNs by adding a new
branch to detect the boundary supervised by accurate boundary
information. For example, in natural scenes, Takikawa et
al. [15] design a Gated Convolution Layer (GCL) to focus
on boundary information and add a shaped stream using
GCL to capture the feature maps particularly relevant to the
boundaries. To tackle the problem of intra-class inconsistency
and inter-class indistinction, Yu et al. [16] propose a Border
Network to make the bilateral features of boundary distin-
guishable with deep semantic boundary supervision, which
uses a bottom-up structure to fuse the features in multi-level
layers containing different information. In remote sensing,
Li et al. [14] employ a superpixel-enhanced region module in
the framework to focus on the accuracy and coherence of the
boundaries, which utilizes superpixel segmentation to measure
the similarities between regions and proposes a region loss
to emphasize superpixel segmentation results throughout the
task. Marmanis et al. [13] integrate a boundary detector into
the model by utilizing DSM information to capture semantic
boundaries. The above approaches all add an additional loss
on the boundary supervised by accurate boundary information.
Marin et al. [29] design a content-adaptive downsampling op-
eration to extract more pixels from the boundary of the object.
Unlike per-pixel loss, the Semantic Encoding Loss (SE-loss)
proposed in EncNet [30] uses global context information to
treat small objects equally with large objects, which enforces
the learning of semantic context and improves the performance
of small objects. However, it greatly increases the complexity
of the semantic segmentation of remote sensing images due to
the large and complex scenes and the heavy manual labeling
cost.

C. Semi-supervised Semantic Segmentation

While labeled data is scarce, lots of unlabeled data is
available. Consequently, some semi-supervised and weakly-
supervised learning methods have emerged using a small
amount of pixel-wise labeled data and a large amount of unla-
beled data or some weakly-labeled data to reduce the annota-
tion effort. In recent years, some methods have made progress
in weakly-supervised object detection for remote sensing
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Fig. 3. The overall architecture of the proposed framework consists of the segmentation network and the discriminator network. The segmentation network
is mainly composed of the CMF module, the MSC module and the BAM. The CMF module fuses the semantic and spatial information by quantitative
calculation, followed by the MSC module to capture multi-scale contextual information, the BAM is designed to focus the feature map, to where it contains

rich semantic boundary information.

images. Cheng et al. [31] proposed a unified framework to
generate and select high-quality proposals, which combines
selective search [32] and a Gradient-weighted Class Activation
Mapping [33] to generate more proposals with higher quality,
and then chooses many confident positive proposals and only
class-specific hard negatives to train more effective by up-
weighting the losses of discriminative negative proposals. To
provide high-quality initial samples and obtain optimal object
detectors with only image-level annotations, Yao et al. [34]
proposed a dynamic curriculum learning strategy with an
entropy-based criterion and designed an effective instance-
aware focal loss function, which can progressively learn the
object detectors by feeding training images with increasing dif-
ficulty that matches current detection ability. To avoid selecting
only one top-scoring proposal that usually results in learning
a suboptimal object detector, Feng et al. [35]proposed a novel
end-to-end progressive contextual instance refinement method
by leveraging both local and global context information for
weakly supervised object detection.

With the rapid development of GANs, Luc et al. [360]
applied adversarial learning by means of a GAN in semantic
segmentation, using the segmentation network as a generator.
Subsequently, Hung et al. [18] designed a discriminator based
on FCNs to make a dense prediction, where unlabeled data
are trained with a self-taught scheme to further improve
the accuracy of semi-supervised segmentation. However, the
discriminator network has shallow layers and downsamples
five times. Souly et al. [19] use GANSs in a different manner,
employing the discriminator as the segmentation network and
using the generator to generate fake images to increase the
number of training samples. This ensures that the segmentation
network can learn more features. However, the above ap-
proaches are designed for natural scenes. They do not perform
very well on VHR remote sensing images with complex scenes
and ground object distribution.

III. METHODS

A. Problem Setup

The task of semi-supervised semantic segmentation can be
described as follows: Given an image from a set of images as
input,

X={XLI,...,XLM;XUI,...,XUn} (1)

where X;  and Xy, represent m labeled and n unlabeled
images respectively, the aim is to learn a segmentation Seg(-)
model with both labeled and unlabeled images to produce
a dense prediction O by assigning a predefined category
¢ = (cy,...,cr) to each pixel in the image. The discriminator
network Dis(-) generates a confidence map C trained by
labeled data to infer the area close to the ground truth (GT) G,
which aims to generate pseudo-labels for unlabeled images.

0 = Seg(X) 2

C = Dis(0,G) 3)

The backbone extracts the feature maps from the input
image, followed by the CMF module to merge feature maps
from different layers weighted by the channel attention matrix
a. The output feature map of the CMF module is:

k
PM]' =Za'j,-P,-+Pj, (4)
i=1

where P is the feature map concatenated from last three layers,
P; and P; represent the feature maps of i’ h and j'* channel,
respectively, «j; denotes the influence of i" channel on ;"
channel, and k represents the total number of channels. Next,
a MSC module (like ASPP [22]) MSC(-) captures multi-
scale contextual information on the feature map Pjy; and
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Fig. 4. Channel-weighted multi-scale feature module.

generates the feature map F € RE*#*W with rich contextual
information.
F=MSC(Py) 4)

The novel BAM generates a spatial boundary attention map
B focusing on the semantic and spatial information on the
object boundaries. We perform an element-wise multiplication
© and sum operation with the feature map F at each pixel (i, j)
to obtain the final feature map F, € RE>*W ag follows:

FD = pd) o g 4 plid), (6)

where 8U-/) represents the weight value at pixel (i, j).

Next, a softmax layer generates a class probability map O
as the output of segmentation network, which contains the
probability for each pixel (i,j) if it belongs to a certain
semantic category c.

O = arg max (softmax (F(Ei’j >)) @)
c,i,j
The confidence map C generated by the discriminator
network aims to infer the area close to the GT G. From it
we can get the pseudo-labels Ly, for unlabeled images for
semi-supervised learning by

Liy =01 w1 (cD) > 7), 8)

where I(-) is a indicator function with a threshold 7.

We present a semi-supervised semantic segmentation frame-
work for VHR remote sensing images, which can learn more
information from labeled and unlabeled images than previous
work, especially related to object boundaries. As shown in
Fig. 3, our proposed framework consists of two networks: The
main network is the segmentation network composed of two
modules. The channel-weighted multi-scale feature module is
the first module. It aims to balance the semantic and spatial
information by merging feature maps from different layers
of the backbone weighted by channel attention. The second
module is the boundary attention module. It captures additional
information for the object boundaries. Finally, the auxiliary
network is the discriminator network designed for semi-
supervised learning, which further improves the performance
of the segmentation network by inferring pseudo-labels for
unlabeled images.
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Fig. 5. Boundary attention module.

B. CMF Module

The shallow layers of DCNNs extract rich spatial informa-
tion but not so much semantic information, while the higher
layers contain much semantic information due to larger recep-
tive fields but have a lower resolution. To balance semantic
and spatial information and to enlarge the resolution, we use
the CMF module to fuse feature maps, as shown in Fig. 4. The
backbone of the segmentation network generates five feature
maps {C1,C2,C3,C4,C5} from layers named Convl, Resl,
Res2, Res3 and Res4. They range from low- to high-level with
strides of {2, 4, 8, 16, 32} pixels with respect to the input
image. In CMF, we merge three feature maps: {C3, C4, C5}.
We use a convolution layer with a stride of 1 to reshape their
channels, where the Convix; conducts dimension reduction on
the channels. C5 and C4 are upsampled to adapt the resolution
to C3 using bilinear interpolation. We concatenate the three
feature maps and thus, obtain a feature map P with rich spatial
location information.

In existing work, different features are merged through
direct concatenation or summation. It is, however, difficult
for dense prediction to balance the high-level semantic in-
formation and low-level spatial information. Therefore, we
attach the channel attentional module (CAM) proposed in [37].
It generates a channel attention matrix @ to determine the
importance of different channels of the feature map P, which
is different from DeepLab V3+ [11] that only employs the last
feature map.

C. Boundary Attention Module

As VHR remote sensing images show a complex scene
and distribution of ground objects, information related to
boundaries is important for an accurate segmentation. For an
improved handling of the object boundaries, we propose a
boundary attention module. As shown in Fig. 5, the structure
of the BAM mainly contains residual blocks (RBs) [38],
boundary attention layers, Convix;, concatenation and upsam-
pling operations. It takes the feature maps {C1, C2, C4,C5} as
input. C1 contains rich spatial location information, which is
reshaped by Convix; and then concatenated with C2 reshaped
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Fig. 6. Residual blocks (RBs): (a) The RB in the segmentation network.
(b) The RB in the discriminator network. Conv 1x1 and Conv 3x3 denote
the convolution layer with a kernel size of 1x1 and 3x3, respectively. Batch
Norm means the batch normalization layer and Avg. Pooling is the average
pooling operation.

by Convix; to obtain a feature map Ci,. Next, we perform the
sigmoid operation resulting in the spatial boundary attention
map A; € REFXW:

1

- 1 +exp(Cr2) ©)

Ay

The attention map computed from low-level features pays
more attention to texture information. To obtain a map with
more attention on the boundary rather than on the texture, we
use the GCL [15]. This feature map is reshaped by the RB
to join the calculation of the second boundary attention map.
The structure of the RB used in the segmentation network is
shown in Fig. 6 (a). The image gradient feature map obtained
by the Canny edge detection operator [39] is input to the
third boundary attention layer. The BAM uses three boundary
attention layers to produce the final spatial boundary attention
map S, which weights the regions with significant boundary
information in the feature map with rich contextual informa-
tion. The BAM makes the network pay more attention to the
information related to the object boundaries and improves the
segmentation accuracy at the boundaries.

D. Discriminator Network

The discriminator network takes the class probability map
O ={0;;0,} of labeled and unlabeled data predicted by the
segmentation network and one-hot encoded GT G as input.
The final output is a confidence map C € R¥*W  in which
the value of each pixel represents the probability that the
pixel in the input image comes from GT or the segmentation
prediction, that is, the similarity between the segmentation
prediction and GT. The greater the value of the pixel point,
the closer the segmentation prediction of the point is to the
GT. This is used to infer the regions close to the GT as

supervision for the unlabeled image to assist the learning of
the segmentation network.

C = sigmoid Fg’j),
i

(10)

where F; € RF*W represents the final feature map of the
input.

The discriminator network is designed based on an FCN,
which consists of three residual blocks [40], followed by two
convolution layers. The structure of the residual block in the
discriminator is shown in Fig. 6 (b). It contains a spectral
normalization convolution layer with kernel size of 3x3 and
1x1, a rectified linear unit (ReLU) [41] activation function
and average pooling. The first convolution layer is in the 4th
layer with 3x3 kernel size and followed by an average pooling
operation for downsampling, as well as a ReLU activation
function. The last convolution layer reshapes channels from
512 to 1 with Convx;. It is followed by an upsampling layer
to make the resolution of the output feature map equal to the
input image. Finally, we use the sigmoid layer to generate the
confidence map. With it we can infer regions in the prediction
sufficiently close to the GT.

E. Loss Function

We train the segmentation network and discriminator net-
work together with labeled data, while unlabeled data is used
together with the trained discriminator to assist the training
of the segmentation network. To this end, we use the binary
cross-entropy (BCE) loss Lp on the discriminator network and
a multi-task loss Lg on the segmentation network:

Lp=-Y ((1 ~ y)log (1 - cﬁw) +y10gcfjw), (11)
hw

where C;?W and Cﬁw represent the confidence maps at
location (%, w) obtained by the discriminator network of the
prediction O and the ground truth G of the labeled image,
respectively, and y denotes the label of each pixel in the input
image.

Ls = Liaper + duniabet Luniabel (12)

where Lj,p; denotes the standard cross-entropy (CE) loss on
the predicted semantic segmentation of the labeled images and
Lyniaber 1s the loss of the unlabeled images. Here, A, niqper 18
the weight of Ly ,jqpe; and is set to 1.

Ligper = — Z lc(h,w)log pi.c(h,w),

h,w,c

13)

where /. is the label for class ¢ in the one-hot encoded GT;
Pi1.c 1s the probability of the segmentation outputs for class /..

Lyuniaper consists of a masked CE loss Lg_cg and an
adversarial loss L,g4, as in [18].

Luntaver = Ls-cE + Aadv Laav (14)
- Z uC logpu,c(h7 W)» lf C(h7 W) Z T
LS—CE = h,w,c
0, otherwise
(15)
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Fig. 7. ISPRS Vaihingen (top) dataset and AIR-SEG (bottom) dataset.

|:| Impervious surfaces
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Lady = — Z log . . (16)
h,w

where A44, is the weight of L,4, and is set to 0.01. u, is the
predicted label from the segmentation output p, . for class
I, and C;l’f‘w represents the confidence map at the location
(h,w) generated by the discriminator of the prediction of the
unlabeled image. Ls_cg is only calculated on the regions
where the probability value in the confidence map C(h,w)
is larger than the threshold 7, which is set to 0.5.
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IV. EXPERIMENTS

A. Datasets

Many public datasets have been published to advance se-
mantic segmentation in remote sensing. While the INRIA
Aerial Image Labeling [42] and Massachusetts Buildings [43]
datasets are used to extract Buildings, the Massachusetts Roads
dataset [43] only consists of the class of road. We, thus,
chose the ISPRS Vaihingen dataset [44] since it contains
more categories and is more difficult. We additionally built a
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Class Ratio (%) Samples Class Ratio (%) Samples
Impervious 1637 Re51.de.nt1al 6.46
surfaces building
Factory 6.57 Grass 16.05
Farmland 14.49 Tree 15.60
Road 7.58 Bare land 1.28
Water 15.34 Clutter 0.26

Fig. 8. AIR-SEG dataset, including the ratio of each class of the total pixels and image examples corresponding to each category.

challenging dataset called AIR-SEG with even more categories
and consisting of complex scenes. To evaluate the effectiveness
of our framework, experiments are conducted on the latter two
VHR remote sensing image datasets.

ISPRS Vaihingen Dataset: The public 2D semantic labeling
benchmark Vaihingen dataset is provided by the International
Society for Photogrammetry and Remote Sensing [44]. It
consists of high resolution true orthophoto (TOP) tiles and cor-
responding digital surface models (DSMs) as well as ground
truth labels. As shown in Fig. 7, it contains 33 TOP tiles of size
2494%2064 with ground sample distance (GSD) of 9 cm. 16 of
them are used for training and the rest for testing. Each TOP
tile includes 3 spectral bands: Near Infrared (NIR), Red (R)
and Green (G). The pixels are classified into 6 categories: 1.
Impervious surfaces (Imf-surf), 2. Building, 3. Low vegetation
(Low-veg), 4. Tree, 5. Car, and 6. Clutter. The competition
for the benchmark has ended in the summer of 2018 and all
training and test data are publicly available. In this work, we
only use NIR-R-G images and the DSMs are neglected.

AIR-SEG Dataset: We introduce a more challenging large
dataset for semantic segmentation of remote sensing images
named AIR-SEG. It contains 8 bit satellite images collected
from Google Earth over different geographic locations in
South China. The images have different visual appearances
and are composed of Red, Green, and Blue spectral bands.
The AIR-SEG dataset contains 57 labeled images of size
2000x2000, and 72 unlabeled images of size 2000x2000
with a spatial resolution of 0.27 m. Since the resolution is
lower than that of the ISPRS Vaihingen dataset, there are
more ground objects in the image at the same image size,
especially more individual small objects with less clear object
boundaries. To better capture LULC information and facilitate
the analysis of urban expansion and urban planning in practical
application in the future, according to [45]-[47] ten categories
are chosen and annotated, including 1. Impervious surfaces,

2. Factory, 3. Residential building, 4. Road, 5. Water, 6.
Farmland, 7. Bare land, 8. Grass, 9. Tree, and 10. Clutter.
Details and samples of the AIR-SEG dataset are shown in Fig.
8. The rules and standards of category labeling are as follows,
1. Impervious surfaces: concrete ground such as parking lot
and square; 2. Factory: simple buildings with large scales,
and regular shapes; 3. Residential building: roofed buildings
except for factories, relatively small in size, and diverse in
shape; 4. Road: asphalt cement land and other roads, such
as artificial pavement, unpaved road, main road, branch road,
and airport runway; 5. Water: lakes, oceans, rivers, ponds,
swimming pools, etc.; 6. Farmland: the land with regular shape
and texture features with or without crop coverage; 7. Bare
land: bare mountain, river beach, wasteland, etc.; 8. Grass:
artificial grass and natural grass, generally green; 9. Tree:
shrubs, trees, forests, and other tall vegetation; 10. Clutter:
objects not belonging to the above categories. Considering
the resolution of the image and the type and distribution of
ground objects in the area covered by the image, objects in
the image with pixel size less than 10x10 are not labeled. All
images are annotated at pixel-level by experts. We annotated
using the Adobe Photoshop tool, first outlining the boundary
of each object, and then filling in the corresponding color
to the object according to the predefined category and color
mapping relationship. To make sure that the training data
and test data distributions approximately match, we select 29
labeled images of 57 as the training set and the rest as the
test set. Finally, there are 29 labeled images and 72 unlabeled
images for training and 28 labeled images for testing.

B. Evaluation Metrics and Implementation Details

We use three overall accuracy assessment metrics to quan-
titatively evaluate the performance of our framework, Pixel
overall accuracy (OA), mean intersection over union (mloU),
and F1 score.
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TABLE I

F1 score

Method OA mloU
Impervious surfaces Building Low vegetation  Tree Car
Baseline 91.37 94.86 83.61 88.65 6823 89.60 75.51
+CMF 92.67 95.49 84.07 89.28 8599 90.57 81.26
+MSC 92.69 95.56 84.32 89.28 86.56 90.68  81.54
+BAM 92.95 95.54 84.29 89.30 88.49 90.74 82.23
91 TABLE II
84 COMPARISONS OF SEMI-SUPERVISED LEARNING WITH 1/8,
905 1/4, 1/2 AND FULL LABELED DATA ON THE ISPRS VAIHINGEN
82 DATASET
% 90
< 20,5 g Metric  Method Labeled data
2 78 ° s 1/8 1/4 12 Full
=)
76 89 OA Fully supervised 8640 88.78 89.62 90.74
Semi-supervised ~ 87.22  89.30 89.9 -
74 885 oy | Fully supervised  69.45 7622 7947 8223
- o Semi-supervised ~ 74.19  77.53  79.62 -
FCN-32s +CMF +MSC +BAM
s mloU OA

Fig. 9. Segmentation results on the ISPRS Vaihingen dataset. The accuracy
is improved by the proposed modules.

Our proposed framework is implemented using the PyTorch
deep learning framework. All experiments are performed on a
single NVIDIA GeForce GTX 1080 Ti GPU with a memory
of 12GB. Like most existing segmentation methods we use
ResNet-101 pre-trained on the ImageNet [48] dataset as the
backbone of the segmentation network. To update the param-
eters of the segmentation network, we use stochastic gradient
descent (SGD), where the momentum is set to 0.9 and the
weight decay to 1x107*. We initially set the learning rate
of the backbone to 7x1073, which gradually decreases to 0
following the cosine decay strategy. The rest of the layers are
weighted of 10 times the backbone. To update the parameters
of the discriminator network, we use the Adam optimizer [49],
where the learning rate is 1x107#, using a polynomial decay
strategy with a power of 0.9.

C. Experiments on the ISPRS Vaihingen Dataset

1) Quantitative Analysis: We conducted a series of ex-
periments on the ISPRS Vaihingen dataset to evaluate the
performance of our framework. We first demonstrate the ef-
fectiveness of each module of our framework through ablation
experiments and then show comparisons with state-of-the-art
approaches.

a) Ablation Experiments: Since all training and test data
are publicly available, we use the whole training images for
training and the test images for validation. Because the size
of the original tiles is larger than 2000x2000 pixels, they
are too large for the current GPU memory. Therefore, we
split all training and test images into 513x513 patches to
cover a reasonable area making sure that there is enough
contextual information to properly infer the category of each

pixel. Training and validation tiles have 320x320 and 50x50
pixels of overlap between neighboring patches. In total, there
are 1622 patches in the training dataset and 456 patches in
the validation dataset. We augment the training dataset by
randomly scaling (from 0.5 to 2.0) and horizontally flipping
the input images. We train the models 60 epochs with a batch
size of 4. After 30 epochs training with labeled data, we start
semi-supervised learning, which randomly interleaves labeled
data and unlabeled data. The discriminator network is updated
only with labeled data. Inferences are done on a single-scale
for all models. Since only less than 1% pixels in the Vaihingen
dataset are labeled as clutter, we ignore this class in the
experiments on this benchmark. For fairness, all models are
trained with the same set of hyperparameters.

Baseline setup. We choose FCN-32s as the baseline for the
ablation study to evaluate the effectiveness of each component
of our framework. FCN-32s is widely used in semantic seg-
mentation. However, the performance for small objects is not
satisfying, the F1 score of car is only 68.23% (cf. Table I).
The segmentation results can be seen in the third column of
Fig. 14.

Contribution of CMF module. We add the CMF module
after the backbone to fuse the multi-scale features with channel
weights. As shown in Table I, the segmentation results for
all classes have been improved by around 5.7% in terms
of mloU. Small objects have even larger improvements, for
example, the car improves around 18% concerning the F1
score. It is obvious from Fig. 9 that the CMF module improves
the performance of segmentation by a large margin. This
shows that the CMF module balances semantic and spatial
information better and recovers lost details.

Contribution of BAM. We weight the feature maps passing
through the MSC module with the BAM. We can observe in
Table I, that the BAM further improves the performance of the
segmentation network by 0.7% concerning mloU. Especially
for small objects such as the cars, it results in an additional
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TABLE III
COMPARISION WITH OTHER POPULAR METHODS ON THE ISPRS VAIHINGEN DATASET

Method F1 score OA  mloU
Impervious surfaces Building Low vegetation  Tree Car
FCN-32s [7] 91.37 94.86 83.61 88.65 68.23 89.60 75.51
FCN-8s [7] 92.70 95.36 83.46 88.79 87.41 9032 81.32
DeepLab V3+ [11] 92.73 95.53 84.03 8944 8545 90.63 81.21
BAS*Net (Ours) 92.95 95.54 84.29 89.30 8849 90.74  82.23
TABLE IV

COMPARISION AT DIFFERENT THRESHOLDS OF THE BOUNDARY QUALITY ON THE ISPRS VAIHINGEN DATASET

F1 score

Threshold Method OA mloU
Impervious surfaces Building Low vegetation  Tree Car
3px DeepLab V3+ [11] 66.66 70.11 55.31 60.70 66.08 62.67 47.02
P BAS*Net (Ours) 67.23 71.28 54.83 61.01 68.87 63.15 48.04
60x DeepLab V3+ [11] 71.72 75.57 59.72 6545 73.07 67.59 53.08
P BAS*Net (Ours) 72.36 76.45 59.48 65.72 76.03 68.11 54.24
9px DeepLab V3+ [11] 75.17 79.12 63.03 69.14 77.06 71.10 57.44
P BAS*Net (Ours) 75.88 79.85 62.93 69.38 7996 71.64 58.64
120x DeepLab V3+ [11] 77.67 81.62 65.53 7193  79.15 73.68  60.56
P BAS*Net (Ours) 78.37 82.21 65.53 72.14 8197 7420 61.77
95 95
90
90 \/\\ 85
§ 80
Q ~_~
5 X7
g \ 3
< 80 - 270
2 65
g
37 | ——oa 60
= e mloU 55
70 OA(semi) 50
mloU(semi) Imp-surf Building Low- veg Tree Car
65
Full 50 25 12.5 BFCN-32s BFCN-8s DeepLab V3+ Ours
Labeled data (%)

Fig. 10. Semi-supervised learning on the ISPRS Vaihingen dataset with
different ratios of labeled and unlabeled data.

improvement of around 2% for the F1 score.

Contribution of semi-supervised learning method. To
assess the influence of the semi-supervised learning method
in the proposed framework, we produce three datasets by
randomly sampling 1/8, 1/4, 1/2 of the images in the training
dataset as labeled data and the rest as unlabeled data. We
conducted two experiments for each dataset: With labeled data
only in a fully supervised manner and both with labeled and
unlabeled data in a semi-supervised manner. Table II and Fig.
10 show that the semi-supervised learning method improves
the performance significantly particularly for few labeled data
and much unlabeled data without extra labeling effort.

b) Comparison with Popular Methods: We also trained
the popular FCN-8s and DeepLab V3+ [1 1] models to evaluate

Fig. 11. Results of different methods for the different classes on the ISPRS
Vaihingen dataset.

S @
Q
20> 0
@
1/
3 pixels 6 pixels 9 pixels 12 pixels

Fig. 12. Boundaries with different thresholds of widths.

the effectiveness of our framework. For fairness, the backbone
of both is ResNet-101 [38]. It can be seen in Table III that
our framework outperforms others. Especially the result for
cars is improved by 3% F1 score compared to DeepLab V3+
[11]. Tt is obvious from Fig. 11 that our framework has a
better performance concerning IoU especially for small objects
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TABLE V
PART OF THE LIST OF ONLINE RESULTS OF THE ISPRS VAIHINGEN TEST DATASET

Method F1 score oA
Impervious surfaces Building Low vegetation Tree Car
UPB [50] 87.5 89.3 71.3 858 77.1 85.1
RIT_L8 [51] 89.6 922 81.6 88.6 760 878
CVEO [24] 90.5 92.4 81.7 885 794 883
ITC_B2 [52] 90.1 93.5 82.1 883 771 884
UFMG_4 [26] 91.1 94.5 82.9 88.8 813 894
RIT_7 [53] 91.7 95.2 83.5 89.2 828 899
V-FuseNet [54] 92.0 94.4 84.5 899 863 900
DLR_9 [13] 924 95.2 83.9 899 812 903
TreeUNet [55] 92.5 94.9 83.6 89.6 859 904
BKHNI11 [44] 92.9 96.0 84.6 899 88.6 910
CASIA2 [25] 93.2 96.0 84.7 899 867 91.1
NLPR3 [44] 93.0 95.6 85.6 903 845 912
BAS*Net (Ours) 93.3 95.8 85.0 90.1 90.1 913
HUSTWS [27] 93.3 96.1 86.4 90.8 746 91.6
SDNF [14] 934 97.6 87.4 91.1 853 922

Original Image

Ground Truth Impervious Surfaces Building Low Vegetation Clutter

Fig. 13. Visualization results of feature maps for different methods on the ISPRS Vaihingen dataset. (a) Results of FCN-32s. (b) Results when adding the
CMF module. (c) Results with additional MSC module. (d) Results when adding the BAM.

TABLE VI
DIFFERENT INFERENCE STRATEGIES ON THE ISPRS
VAIHINGEN DATASET

improvement at the object boundaries, we compare it with
DeepLab V3+ [11] concerning the performance at the bound-
ary on a narrow band called trimap [ 1] with different widths.
As presented in Fig. 12, we used the thresholds 3, 6, 9,

Method | MS Flip Whole | OA  mloU

ixels. v i .
BASNet 0074 8223 gnd 12 plXClS. Table shov.vs that we achieve around 1.2%
BAS*Net | v 9111 83.10 improvement in performance in terms of mloU and around 3%
BAS*Net | v v 91.18  83.19 of IoU for the class car. Yet the experiments do not confirm the
BAS*Net | v v v 91.25 8341 theoretical expectation that the narrower the trimap width is,

the more the metric improves. This is probably due to labeling
errors in the dataset, especially at the boundary. Overall, the

like cars, because the pixels on the boundary of the car experiments show that the proposed framework improves the

occupy a large proportion of its total pixels compared to other
categories.

To better quantify the effect of our framework on the

performance at the boundaries.

c) Comparison with the State of the Art: For a deeper
understanding of the performance of the proposed framework,
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Original images Ground truth DeepLab V3+

Fig. 14. Example predictions from various methods for the ISPRS Vaihingen dataset. The red dashed boxes are used to mark the regions which have been
improved obviously by our method.

PN |

©

Fig. 15. Example predictions of our framework on the ISPRS Vaihingen dataset: (a) original image of tile 2, (b) prediction, (¢ and e) enlarged patches of
(b), and (d and f) the original imagery corresponding to (c and e).
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TABLE VII
COMPARISION OF OTHER METHODS ON THE AIR-SEG TEST DATASET

IoU

Method OA mloU
Imp-surf Res-building Factory Road Water Farm land Grass Tree Bare land
FCN [7] 60.06 68.85 73.63 69.62  83.64 82.98 52.86  76.88 16.09 82.71  64.96
PSPNet [10] 61.75 69.73 73.92 70.93 84.61 83.38 5331 7941 17.63 83.37  66.07
DeepLab V3+ [11] 62.13 69.01 74.35 71.02  84.63 83.69 54.66  79.65 20.10 83.56  66.58
BAS*Net (full) 61.92 70.62 7291 7176  84.44 83.25 5476 80.38 25.57 83.83  67.29
BAS*Net (semi) 62.34 70.35 72.62 72.76  84.85 84.13 55.69 80.42 24.68 84.02 67.54
85 68 . .
s mloU mloU(semi) ==@=0A OA(semi)
A A 67.5 35 70
84.5 67
83 68
. 66.5 31 66
< S 79 64
=835 65.5 .
3 % S 77 2 g
65 <75 60 5
8 64.5 © e
. 73 58 &
82.5 o4 71 56
635 69 54
82 63 I
PSPNet  DeepLab V3+ Ours(full)  Ours(semi) 67 52
65 50
HOA AmloU 125 311
Labeled data (%)

Fig. 16. Comparison of different methods on the AIR-SEG dataset.

we also compare it with those methods submitted to the online
leaderboard. We use different inference strategies on the test
data. As Table VI shows, multi-scale (MS) and horizontal
flip (Flip) strategies can led to around 0.4% improvement in
terms of OA. After all test patches are classified, they are
combined back with an overlay fusion (Whole) strategy to
get the original size classification maps. Evaluation indicators
are calculated on the full test tiles without cropping. Parts of
the results for the ISPRS Vaihingen 2-D Semantic Labeling
Challenge are listed in Table V, including OA and F1-score
metrics. Our approach achieves state-of-the-art performance
and outperforms all the other approaches on cars.

2) Qualitative Analysis: Fig. 13 gives a qualitative com-
parison of the different methods on the ISPRS Vaihingen
dataset. Fig. 13 (a) shows that FCN-32s captures few spatial
information and cannot accurately segment the objects. It is
obvious from Fig. 13 (b) that the CMF module learns much
more spatial information and balances semantic and spatial
information better. From the buildings and cars, it can be seen
that the intra-class gap becomes smaller and the inter-class gap
larger, with clear boundaries and regular shapes. Fig. 13 (c)
shows that the MSC module captures multi-scale contextual
information. Fig. 13 (d) demonstrates that the BAM produces
a stronger feature expression, captures more boundary-related
information, and enhances intra-class consistency and inter-
class difference. From the final segmentation results of Fig.
13 (d), we can see that the boundary is clearer and the
segmentation performance of small objects is improved. With
the contribution of our framework, we can capture additional

Fig. 17. Results of semi-supervised learning on the AIR-SEG datasets with
different ratios of labeled and unlabeled data.

information relevant to object boundaries. Fig. 14 shows a
comparison of different methods on 513x513 patches. Com-
pared with the baseline and DeepLab V3+ [11], our method
performs better, especially on the regions in the red dashed
boxes. For example, close aligned cars are segmented well
and the boundaries of buildings look clearer. Fig. 15 presents
the result of BAS*Net on tile 2 of the test data. Fig. 15 (c
and e) show the good result for small objects and boundaries,
respectively in the form of the compact arrangement of cars
and the weak boundary between buildings and other objects.
Therefore, we can state that BAS*Net improves the accuracy
and coherence of boundaries, especially for small objects.

D. Experiments on the AIR-SEG Dataset

In this section, we extend the experiments to the AIR-SEG
dataset to further evaluate the effectiveness of BAS*Net. As
for the experiments on ISPRS Vaihingen dataset, we ignore
the category clutter in the experiments, because it makes up
less than 1% of the total pixels. We preprocess the dataset and
obtain 2438 labeled and 5202 unlabeled patches in the training
dataset as well as 700 patches in the test dataset. Again, we
select three popular methods namely FCN-32s [7], PSPNet
[10] and DeepLab V3+ [11] for comparison. An output stride
of 16 is used in the latter two methods and the results are
shown in Table VII. Our framework performs better than all
other, especially for the category bare land, where the F1
score is 5% higher than for other methods. Our framework
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also performs well for both the categories tree and residential
building. As shown in Table VII and Fig. 16, when trained in
a semi-supervised way together with the unlabeled data, the
performance is further improved. This demonstrates that the
semi-supervised method predicts more accurate pseudo-labels
for unlabeled images and learns more significant features.
To further validate the semi-supervised learning method, we
randomly add different amounts of labeled images to the
training dataset and evaluate the results. Fig. 17 shows that
semi-supervised learning method improves the performance
significantly, particularly for less labeled data and much unla-
beled data, which can help to reduce the labeling effort.

Fig. 18 presents the results on patches of size 513x513.
The third column is the result for the baseline. There exist
block effects and the boundary is blurred. Additionally, scat-
tered small objects, such as trees and residential buildings
are not segmented. Our framework segments small objects
accurately and produces clearer boundaries. This demonstrates
that it can balance semantic and spatial information very well,
and capture additional boundary related information. Fig. 19
presents the results of our framework on two images of the
test data. Fig. 19 (d) shows that we obtain accurate boundaries
and small objects like trees are well segmented. Therefore,
our framework has a good generalization capability for the
semantic segmentation of VHR remote sensing images.

V. CONCLUSION

In this work, we have proposed BAS*Net for the semantic
segmentation of VHR remote sensing images. It can learn
additional information related to object boundaries in a semi-
supervised manner. Our framework uses the CMF module
to balance semantic and spatial information of multi-scale
feature maps. The BAM weights the feature maps with rich
semantic boundary information to alleviate the boundary blur.
A discriminator network infers pseudo-labels for unlabeled
images to assist semi-supervised learning. To validate the ef-
fectiveness of our framework, we have conducted experiments
on the ISPRS Vaihingen dataset and propose the even more
challenging AIR-SEG dataset for extended experiments. The
experimental results demonstrate that our framework achieves
a state-of-the-art performance on the ISPRS Vaihingen dataset.
Furthermore, BAM shows a special advantage for the class car,
which contains relatively small objects and is supposed to be
more sensitive to boundary errors. Concerning future work,
we want to improve the semi-supervised learning method and
further increase the accuracy of the model.
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