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Abstract. In solving large scale optimization problems, CMA-ES has
the disadvantages of high complexity and premature stagnation. To solve
this problem, this paper proposes an improved CMA-ES, called GI-
ES, for large-scale optimization problems. GI-ES uses all the histori-
cal information of the previous generation of individuals to evaluate the
parameters of the distribution of the next generation. These estimates
can be considered as approximate gradient information, which complete
covariance information is not required. Thus GI-ES is friendly to large
scale optimization problems. Comparative experiments have been done
on state-of-the-art algorithms. The results proved the effectiveness and
efficiency of GI-ES for large scale optimization problems.
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1 Introduction

In the era of big data, large scale optimization has been applied more and more
widely in many engineering and research fields. These optimization problems
are difficult to obtain mathematical optimization models, such as simulation
software, can be regarded as black box optimization problems. However, the
stochastic global optimization method does not have high requirements on the
characteristics of the optimization problem itself and does not depend on the
specific problem. Therefore, it becomes a common method to solve optimization
problems.

Among the stochastic global optimization methods, the most representa-
tive algorithm is evolutionary computation, which is a modern optimization
algorithm [2]. Its main characteristics are parallelism and self-adaptability,
self-learning habits and self-organization. Since 1960s when evolutionary com-
puting was designed, it developed rapidly and formed many branches. These
branches include genetic algorithm (GA)[8], evolutionary strategy (ES)[13], par-
ticle swarm optimization (PSO)[20], differential evolution algorithm (DE) [16],
Covariance matrix adaptation evolutionary computation (CMA-ES) [6] and so
on. These algorithms do not need the domain knowledge of the problem, only
need to be able to calculate the fitness of the optimization target to be applied.
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But as the size of the problem increases, traditional evolutionary computation
algorithms take hours or even days to find the optimal solution.

Covariance adaptive optimization algorithm is an optimization algorithm
proposed in recent years [5]. The adaptive evolutionary strategy of covariance
matrix can automatically adjust the standard deviation according to the distri-
bution of the population. In addition, because CMA-ES can use the information
of the optimal solution to adjust its parameters at the same time. CMA-ES as
one of the most popular gradient-free optimization algorithms, has become the
choice of many researchers and practitioners.

Although it has many advantages, CMA-ES has high space and time com-
plexity when dealing with large scale optimization problems. Another obvious
disadvantage is CMA-ES assessed some of the best individuals. Although it can
speed up convergence to some extent, this strategy discards most of the informa-
tion. We all know that great people in life have certain qualities that we can learn
from, but some people who fail also keep a record of “not doing” something. It
is important for better calculation and evaluation of the next generation. These
two limitations may prevent large scale optimization using CMA-ES.

This paper proposes an evolutionary strategy based on gradient information
utilization (GI-ES), which extends the application of CMA-ES in the field of
large scale optimization.

To summarise, this work make the following contributions.

– The calculation of covariance matrix is replaced by the expected fitting degree
scoring strategy.

– The gradient information is simulated through all individual information, and
the approximate gradient information is used to guide the search direction.

– The extensive experiments are conducted on basic test problems. Experiments
results prove the effectiveness and efficiency of the proposed algorithm.

Organization. Following the introduction section. We first discuss the related
work of the utilization of the information of evolutionary computation in Sect. 2.
Section 3 describes the detailed implementations of GI-ES. Thereafter, the sim-
ulation results on the benchmark test suites are conducted to evaluate the effec-
tiveness of the proposed approach in Sect. 4. Finally, Sect. 5 summarizes this
paper.

2 Related Work

Almost all evolutionary strategy (ES) frameworks are similar, with the main
step being 1) to generate a number of candidates as needed, which can be either
fixed or dynamic; 2) update the candidate scheme according to certain rules, and
use the history information of the objective function in the update process. In
the first step, information can be obtained according to the candidate scheme.
In the second step, according to the information obtained, the algorithm can
discard and retain the candidate schemes.
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Many algorithms [4,12] that use objective function guidance information
show that the use of this information plays an important role in the improve-
ment of the algorithm. [11] proposed the information utilization ratio (IUR) to
evaluate the performance of the heuristic algorithm. The IUR can be used as a
metric to reflect how finely and advanced an algorithm is designed.

The research on gradient information originates from the Policy gradient pro-
posed by Williams [18], which uses the reinforcement learning as a means of ES.
Literature [15] adopts Policy Exploring Policy Gradients extends the using of
gradient information. More extensions of ES that modify the search distribution
use natural gradient or non-Gaussian (such as longtail distribution) search dis-
tributions [17]. [10] uses gradients information of a network with respect to the
weights to increases the ability of traditional ES. Guided evolutionary strate-
gies [12] uses the surrogate gradient information which combine the first-order
methods and the random search.

In this study, information about the approximate gradient is used to optimize
original CMA-ES. Our algorithm is different from these because our method esti-
mates the gradient information but does not use first-order information. Because
it is relatively difficult to solve the first order information of large scale optimiza-
tion problems. The algorithm does not require absolute accuracy of the gradient,
which is friendly for large scale problems.

3 Proposed Approach

The proposed algorithm GI-ES adopts the basic framework of CMA-ES, but
makes some improvements to CMA-ES. In the proposed scheme, keep all the
information about each scheme in each generation, good or bad. In this way,
with these gradient signal assessments, we can move the whole scheme in a
better direction for the next generation. Since we need to evaluate the gradient,
we can use the standard stochastic gradient descent algorithm (SGD) applied to
deep learning [3].

3.1 GI-ES

The fitness score was optimized for each sampling scheme in GI-ES. If the
expected results are good enough, the best-performing scheme in the sampling
generation may perform better. Maximization of the expected fitness score of
a sampling scheme is actually equivalent to maximization of the whole fitness
score.

3.2 Search Gradient Adaptation

GI-ES adopts approximate gradient as the direction of search, so that the algo-
rithm can adapt to the fitness terrain dependent on variables. This process gen-
erates a fitting degree evaluation by the expected fitting degree score and obtains
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the gradient signal by the maximum likelihood estimation. It differs from tra-
ditional evolutionary computation in that it represents this “population” as a
parameterized distribution, when it actually updates the parameters of this dis-
tribution using a search gradient, which is calculated using fitness values.

In the above derivation, the distribution is expressed as π(z, θ). In the actual
scheme, the most typical distribution has multivariate normal distribution, but
the algorithm can still extend to other distributions.

Multinormal Distribution. Multivariate normal distribution is the most
widely used distribution in evolutionary computation. The fisher information
matrix of multiple normal distribution can be easily solved. For normal distri-
bution, the parameter θ is (μ,Σ), where μ ∈ R

d is the center of the alternative
solution, and Σ ∈ R

d×d is the covariance matrix. To sample more efficiently, you
need a matrix A ∈ R

d×d, meet A�A = Σ, then z = μ+A� can transfer the stan-
dard normal distribution s ∼ N (0, I) to z ∼ N (μ,Σ). I = diag(1, . . . , 1) ∈ R

d×d

denotes the identity matrix. π(z|θ) represents the probability density function
of the multinormal distribution.

π(z|θ) =
1

(
√

2π)d|det(A)| · exp
(

−1
2

∥∥A−1 · (z − μ)
∥∥2

)

=
1√

(2π)d det(Σ)
· exp

(
−1

2
(z − μ)�Σ−1(z − μ)

) (1)

In order to calculate the gradient information of the multivariate gaussian vari-
able, the logarithm of the probability density is obtained, so that the gradient
can be estimated by summation:

log π(z|θ) = −d

2
log(2π) − 1

2
log det Σ − 1

2
(z − μ)�Σ−1(z − μ) (2)

So ∇μ log π(z|θ) and ∇Σ log π(z|θ) can be obtained. Then update the param-
eters with the calculated gradient information.

θ ← θ + η∇θJ (3)

The algorithm can dynamically change the shape as needed to continue exploring
or adjusting the solution space.

The Technique of GI-ES. Further, A can be decomposed into a scale param-
eter σ, and a normalized covariance factor B satisfying det(B) = 1. This decou-
pling form of two orthogonal components can be independently learned.

The advantage of overall information utilization is to prevent information
loss, but outliers still need to be considered. In this method, according to the
fitness value, the population individuals are ranked according to the fitness from
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small to large. Calculate the utility value according to the fitness value u1 ≥
· · · ≥ uλ−2. Here, to reduce the impact of outliers on the performance of the
algorithm. Get rid of the best and the worst.

ui =
ui

u1 − uλ−2
(4)

The complexity of each covariance matrix update is O(d3). The complexity
can be reduced to O(d2) by calculating the update of local non-exponential
coordinates. In this case, the update of gradient information can be decomposed
into the following components,

∇MJ ←
λ−2∑
k=1

uk · (
sks�

k − I
)

(5)

∇σJ ← tr (∇MJ) /d (6)

∇BJ ← ∇MJ − ∇σJ · I (7)
The Implementation of GI-ES. In this section, we summarize the pseudo-
code of the proposed algorithm in Algorithm1.

Algorithm 1: The pseudo-code of GI-ES
Require: f(x): objective funtion; μinit: initial μ; Σinit = A�A;
Ensure: optimal x∗

Initial σ ← d
√| det(A)| and B ← A/σ;

while Iter ≤ MaxFE do
while k = 1 . . . λ do

draw sample sk ∼ N (0, I);
zk ← μ + σB�sk;
evaluate the fitness value

end
sort the sampling particles according to the fitness value and compute
utilities function uk according to (4)
compute gradients according to (5)-(7)

end

4 Experiments and Analysis

In this section, GI-ES is used to compare with the state-of-the-art algorithms to
verify the effectiveness of the proposed algorithm.
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4.1 Experiment and Settings

Parameter Setting. All parameters used in GI-ES are as follows,
λ = 4 + �3 log(d)	,
ημ = �λ

2 	,
ησ = ηB = (9+3 log(d))

5d
√

d
,

ηδ = (3+log(d))

5
√

d
.

Most of the parameters are recommended in [6].
In the algorithm, the number of population and the learning rate of gradient

information are the parameters that need to be specified artificially.

Benchmark Function. Basic test problems. The test suite contains 11 classical
problems that are widely used in evolutionary algorithms. As shown in Table 1
Sphere function is the simplest test function, which is used to test the basic per-
formance of the algorithm. Ellipsoid Rosenbrock, and Cigar is a test of complex
functions, used to test the function in the ill-conditioning, nonlinear scaling and
flat region on the issue of test performance. Rotated function is through the
rotating test function, matrix as references [14]. Persuasive in order to make the
experiment. Each function is executed 21 times independently to record statis-
tics. The end condition is the maximum number of iterations, MAXFE=10E08.

Table 1. Test problems

Set 1: Basic Test Problems

Name Functions

Sphere fSphere (x) =
∑n

i=1 x2
i

Ellipsoid fElli (x) =
∑n

i=1 106 i−1
n−1

x2
i

Rastrigin fRas (x) = 10n +
∑n

i=1(x
2
i − 10cos(2πxi))

Cigar fCigar (x) = x2
1 + 106 ∑n

i=2 x2
i

Rotated Ellipsoid fRotElli (x) = fElli (Rx)

Rotated Cigar fRotCigar (x) = fCigar (Rx)

* R is a rotation matrix by Gram-Schnidt orthogonalization

Algorithms for Comparison. CMA-ES and 2 algorithm variants for solv-
ing large scale optimization, including search direction adaptation evolution
strategy(SDA-ES)[7]. Some other algorithms are not derived from CMA-ES,
but are the state-of-the-art ones. For example, CC-based differential evolution
(DECC-G) [19], the multiple offspring sampling(MOS)[9].
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Effectiveness of the Gradient Information. The adaptation of the mutation
strength is crucial for evolutionary calculation. It determines the direction of the
next generation population and the convergence characteristics of the algorithm
[1]. Before testing the overall performance of the GI-ES, we first investigate the
effectiveness of gradient information. In the basic test section, the test algorithms
we used were SDA-ES, MOS, DECC-G. The parameters of these algorithms are
given in the original literature.

The 1000-dimensional sphere function fsphere and Rastrigin function
frastrigin are used to test the effectiveness of gradient information. Sphere func-
tion is a spherical function, and many algorithms can be solved quickly, but
the convergence performance of the algorithm is different. Rastrigin function
is a relatively complex function with only one optimal solution, but there are
many local optimizations in the fitness landscape of the function. In this part,
we analyze the validity of gradient information by running GI-ES and ES-based
algorithms.

To avoid the sensitivity of the algorithm to the origin, the test function is
operated in the experimental design and shifted by 10. Units away from the
origin. As can be seen from Fig. 1, DECC-G converge faster in the initial stage,
because the DECC-G adopts the group-based problem decomposition strategy
for searching. However the time required to reach the optimal solution is longer
than GI-ES. As can be seen from Fig. 1(a), in the subsequent convergence curve,
GI-ES showed better convergence characteristics. For large scale optimization
problems, the solution complexity is high and the computation is large. The
Sphere function test shows that the use of historical information by GI-ES is
useful for solving large scale optimization problems.

The rastrigin function is a very complex function. There are many local
optimal solutions with disturbing properties in the adaptive terrain. As can be
seen from Fig. 1(b), DECC-G converges faster in the early convergence process,
and other algorithms gradually fall into local optimal solution as the convergence
process proceeds. And GI-ES has a very good ability to jump out of the local
optimal solution.

In sphere and rastrigin function tests, GI-ES was superior to other algo-
rithms. This shows that for the application of single locally optimal objective
function and multiple locally optimal objective functions, it is effective for GI-ES
to use gradient information to determine the direction of the next generation of
individuals in the iterative process.

Effectiveness of the GI-ES. In this part, to further verify the effectiveness of
the proposed algorithm, the performance of the algorithm is tested on the 1000d
basic test problems. In order to verify the invariance of the algorithm, some basic
test functions are rotated. In general, the test of the rotation function can well
illustrate the invariance of the algorithm. And the use of rotation functions is
common in many mainstream test functions.

A visual representation of the convergence comparison of several algorithms is
given in Fig. 2. In general, GI-ES is good for rotating and non-rotating functions.
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(a) Sphere (b) Rastrigin

Fig. 1. Convergence plot on the 1000-d Sphere and Rastrigin function

Follows by DECC-G and MOS. On the Ellipsoid problem, GI-ES showed excel-
lent performance in solving the rotation function. DECC-G shows sensitivity to
the problem. DECC-G converges prematurely to the local optimal solution on
the rotation function. However, GI-ES algorithm can jump out of local optimal
solution in a short time after encountering local optimal solution, which bene-
fits from the excellent ability of GI-ES algorithm to jump out of local optimal
solution.

(a) Ellipsoid (b) R Ellipsoid

(c) Cigar (d) R Cigar

Fig. 2. Convergence plot on the 1000-d Ellipsoid and Cigar function
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Fig. 3. Mean time consumed

Although the smooth of the cigar problem, it has a narrow ridge to be fol-
lowed. And the overall shape deviates remarkably from being quadratic. DECC-
G performs best for non-rotated cigar problem, but fails to GI-ES for rotated
ones as shown in Fig. 2(c and d). In this case, the use of historical information can
be a good guide for the algorithm to exploitation, so as to produce high-quality
solutions.

The average running time of the algorithm is also a criterion that measures
the performance of the algorithm. Figure 3 shows the average running time of
the algorithm for each function. It can be seen from the figure that the average
time of GI-ES on the Ellipsoid function is slightly higher than that of SDA-ES.
For other functions, the average time of the GI-ES is less than that of other
algorithms.

5 Conclusion

This research introduced the use of guiding gradient information to improve the
performance of CMA-ES. The problem of low utilization of historical information
by ES was solved by guiding the information to generate the distribution of
the next generation solution. The guidance information was obtained by the
approximation of the gradient. This strategy not only increased the diversity of
knowledge, but also made full use of the optimal information in the heuristic
algorithm. The theoretical analysis and experimental results showed that this
method incorporating guidance information is accurate and stable.

The experimental results showed that the use of guiding information is effec-
tive. The algorithm was also compared with other typical meta-heuristic algo-
rithms and demonstrated good average performance and pair-wise comparison
performance across a wide range of test functions.
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The experiments showed that this algorithm is an effective global optimiza-
tion method for large scale problems, which makes it applicable to a large number
of practical applications. The principle of using guidance information is simple,
but effective, and has certain guiding significance for heuristic optimization algo-
rithms.
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