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Abstract. Gender Classification from handwriting is still considered to be
challenging due to homogeneous vision comparing male and female handwritten
documents. This paper presents a new method based on Cloud of Line Distri-
bution (COLD) and Hinge feature for distinguishing the gender from hand-
writing. The SVM classifier combination decides the assigned class based on the
maximum of the two decisions values resulting from COLD and Hinge feature.
The proposed approach is evaluated on the standard QUWI dataset and fol-
lowing the framework protocol described in the ICFHR 2016 competition.
Obtained results are promising regarding the classification rates announced in
the literature.
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1 Introduction

The automated off-line handwriting analysis is one of the most researched problems in
pattern recognition, due to its wide variety of applications, such as text recognition,
writer identification [1], script identification [2], gender classification [3–8] and much
more.

The automatic classification of gender-based on handwritten samples is the task that
allows distinguishing between the writer’s samples produced by males from those
produced by females. Some psychological studies [9–11] confirmed that we could
distinguish between the two genders writings thanks to some differences; where in
general female handwritings tend to be a more uniform and regular, while male
handwritings tend to be spikier and slanted. This task has attracted a lot of interest due
to its application in forensic document examination, where it allows the examiners to
focus on a particular category of writers. Thus, a handwriting based gender recognition
system can be used in combination with a writer recognition system to process only
part of the dataset, which may improve the processing rate in terms of performance and
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time. From handwriting variability point of view, the gender classification is in the
middle, between handwriting recognition; where the variability needs to be blurred to
emerge the common characteristic across all writers, and the writer identification,
where the variability needs to be highlighted to arise differences between all writers.
Therefore, in a gender recognition task, we need to emerge the handwriting variability,
but not as much as in the writer identification, and not too low as in the handwriting
recognition, since we are looking to find a common feature between a particular group
of writers (males vs females), which makes this task delicate. Despite the fact, that the
gender classification has received a lot of attention in the document analysis com-
munity [3–8] most of the research has been conducted by enhancing the feature
extraction or/and classification process. In general, the gender classification problem
makes a challenging task for a two-class problem. The study aims to focus on the
enhancement of the feature extraction step to improve the classification rates on off-line
handwritten documents.

In this paper, we present an original set of global features designed for gender
recognition task: Cloud of Line Distribution (COLD) feature and Hinge features,
coupled with two dedicated SVM classifiers for each set. We demonstrate through this
study, how a maximum value of both SVM decisions; for COLD and Hinge features,
can achieve high accuracy rates on handwriting-based gender recognition. Further-
more, the paper analyses how current state-of-the-art methods in gender classification
perform on handwritten document dataset of ICFHR 2016 competition [12]. The best
approach proposed in this competition was the “MCS-NUST”, which uses Histogram
of Local Binary Patterns (LBP), Histogram of Oriented Gradients (HoG) and Gray-
level Co-occurrence Matrices (GLCM) to extract features from binarized images. These
features trained using the SVMs classifier as well as SVM ensembles with bagging.
Thus, we settled the ICFHR 2016 competition as a framework of comparison between
our approach and those proposed in this event [12–14] where different evaluations
mode have been performed (single and muti-scripts).

The paper is organized as follows: first, we present a literature review about some
of the significant works conducted in gender recognition based on handwriting. Sec-
ond, we detail our methodology where the features and the classifiers employed in our
study are discussed. Section 4, details the experiments conducted along with a com-
parative analysis and discussion on the realized results. Finally, we conclude the paper
with a discussion on future perspectives on the subject.

2 Literature Review

In this section, we present an exhaustive list of works that dealt with automatic gender
classification based on handwriting. Since the task of gender classification is a
recognition task, we focused on the elementary modules of such systems: features and
classifier, in addition to the dataset used to evaluate the proposed system. In general,
most of the proposed works articulate their methodologies either on local features
and/or global features.

The authors in [6] proposed an approach that focuses on individual classification
based on their age, nationality or gender. The formulation of this problem has been
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considered the same, whatever is the classification criterion. In other words, the same
set of features and classification have been used in all cases. To this end, the authors
proposed a set of features made of: direction, curvature, tortuosity, chain code and
edge-based direction; combined with a Random Forest classifier (RF) and a kernel
discriminant analysis (KDA). A rate of 74.05% in gender prediction was achieved
when all the features where used with in QUWI dataset.

Another approach, in gender recognition, where local features were preferred to
global ones, is presented in [5]. The Histogram Oriented Gradient (HOG) and the Local
Binary Pattern (LBP) and grid features were used. A similar approach proposed in [15],
where the same set of features was used, in addition to a feature resulting from a
segmentation-based fractal texture analysis (SFTA) and features extracted from gray-
level co-occurrence matrices (GLCM). The approach was evaluated on the QUWI
dataset with a different combination of classifiers (SVM, ANN, KNN) and features.
The best rate obtained by the authors is 85% when using all features with the three
classifiers.

In [7] the gender classification has been tackled with the usage of global features;
wavelet transform and symbol dynamic filtering (SDF). Firstly, the handwritten doc-
ument is decomposed into sub-bands using the discrete wavelet transforms (DWT).
These sub-bands are then extended into data-sequences; where a maximum entropy
partitioning is applied. Finally, a features vector is built by concatenating all the SDF
features obtained by the algorithm described in [16]. Two different datasets were used
alternatively, for training and test, the QUWI and the MSHD dataset [17], combined
with two different classifiers: ANN and SVM. The best gender recognition rate
announced by the authors is 80%. Liwicki et al. [4] also stated that gender classification
could be successful with global features: Gaussian Mixture Models (GMM). In their
methodology, offline and online features were used, since they processed the two types
of handwritten documents. Even though the online gender classification is out of the
scope of our paper, we consider that it is interesting to mention the impact of additional
features in the performances rates. The system was evaluated with the IAM dataset,
where 100 samples were used for training and validation and 50 samples for testing
(equally distributed between males and females). Among the different combination of
features used, the authors reached 67.75% as the best classification rate where both
online and offline features were used and only 55.39% with the offline features.

Recently, gender classification from offline multi-script handwriting images using
Oriented Basic Image Features (oBIFs) has been applied on handwritten document
dataset of ICFHR 2016 competition [18]. The authors focused on the textural infor-
mation in handwriting using combinations of different configurations of oBIFs his-
tograms and oBIFs columns histograms. These features were used to train an SVM
classifier and have been evaluated on the QUWI dataset, where 76% of good recog-
nition rate was reached.

Previous works have shown that the texture features can improve the performance
of gender classification system. We assume that the shape information and the
curvature-based information provided by Hinge and COLDs features can characterize
the writing style.
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3 Proposed Methodology

Most of the works conducted on gender classification are continuity of works under-
taken in the writer’s identification, where almost the same features were used. We
consider that this assumption can be valid if we use global features rather than local
features. Indeed, global features, even if they have discriminant power, they tend to
emerge similarities between writings, which make them suitable for the gender
recognition task. Therefore, in this section, we aim to design a new method based on
Cloud of Line Distribution (COLD) and Hinge feature to capture female or male
writing styles of handwritten documents (See Fig. 1).

3.1 Features Extraction

In our proposed methodology of gender classification, we have selected to use two sets
of features: COLD feature and Hinge feature. This set of features has been successfully
applied to the writer identification problem [19, 20]. In our study, we will take
advantage of their strong discriminatory representation captured through the curvature
information and contour information embedded in the handwritten document. The sub-
sections below provide a detailed description of these features.

COLD Feature
The COLD feature [19] is inspired by the shape context descriptor, with respect to the
extracted information into a log-polar histogram, which is more sensitive to regions of
nearby the center than to those farther away [21]. The feature extracts unique shapes of

Fig. 1. Overview of the proposed system
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handwritten text components by analyzing the relationship between dominant points;
such as straight, angle-oriented features and curvature over contours of handwritten text
components. Although, the COLD captures the writing style and the variations between
different handwriting samples from the same gender by comparing the COLDs using
the dominant points.

The log-polar space is based on three parameters: the distance between two con-
secutive rings in the log space Dc, number of angular intervals Np, and the number of
distance intervals Nq. In our experimentations, we have empirically set these param-
eters as: Dc = 5, Np = 12, and Nq = 7 [19]. Besides, the combination of COLDs with
different k (level of connection between dominant points) achieves the best perfor-
mance. Therefore, the ultimate COLD feature is generated by concatenating the
COLDs with different k together.

Hinge Feature
The contour-based feature was designed to capture the curvature of the ink trace of the
document images, which is considered to be very discriminatory between handwritings.
The best contour-based features reported in the literature are the Hinge [22], Quill-
Hinge [23], and Delta-n Hinge features [20].

The Hinge feature [22] is the probability distribution of orientations of two legs of
the obtained “hinge” based on edges or contours together attached at a current pixel.
There are two parameters in the Hinge feature: the number of angle bins p and the leg
length r. In our case, we set p = 40, as suggested in [23]. Therefore, it has been
extended to the Delta-n Hinge [23] to achieve the rotation-invariant property. There are
four parameters in the proposed method, the number of angle bins p, leg length r,
Manhattan distance Dl, and the number of derivative n. In our experimentations we set
p = 40, the Manhattan distance Dl = 7, and n = 2.

The two sets of features COLD and Hinge are combined only at the decision level.
In other words, we proceed with the gender classification by submitting each set of
features to a separate classifier, as discussed in the following section.

3.2 Decision Strategy

In an attempt to enhance the reliability of the accuracy rates of the proposed system, a
decision module is designed to produce the final decision. This module is proposed
with two different SVM classifiers [24], where each classifier is trained by one set of
features: COLD or Hinge. The training of each SVM requires the selection of two
parameters, which are the regularization parameter C and the Radial Basis Function
(RBF) kernel parameter (r) is selected in the range r = [1:50], with the soft margin
parameter C fixed to 10, which allows improvement in the accuracy rate. The choice of
hyperparameters values selected by experimentation to achieve better performance
while overcoming over fitting to avoid identity or isometric identity kernel matrix.
However, there is no robust rule available to guide how to choose the hyper parameters
values appropriately. The final decision of our module is taken by selecting the
maximum value of the decision function produced by the two SVM classifiers.
Experimentally, the maximum (Max) decision resulting from COLD and Hinge fea-
tures achieved the best performance compared to other standard statistical reasoning
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measures such as average (Avr) and minimum (Min). In the next section, we present
the experimental settings and the corresponding results.

4 Experimentations and Results

We carried out a series of experiments to evaluate the effectiveness of the proposed
system for gender classification from handwriting on competition datasets.

A subset of QUWI dataset, used in ICFHR 2016 competition [12, 25], comprised
1000 handwritten documents samples were selected: 500 samples were provided as a
training set, 250 as the validation set and 250 as a test set. The most interesting aspect
of this competition is the usage of a dataset with handwritten documents of the same
writer in multiple scripts, and also the opportunity to study the performance of script-
dependency (Sub-task 2A and Sub-task 2B) and script-independency (Sub-task 2C and
Sub-task 2D) in a multi-script experimental setup. Our experiments aim to study the
effect of different k combination of COLDs, and various leg length r from Hinge and
Delta-n Hinge features, while the number of angle bins p = 40. The realized classifi-
cation rates are illustrated in Fig. 2 and Fig. 3.

It can be seen that the combination of COLDs features while k = {3,4,5,6,7}
outperforms the other COLDs features. Therefore, the Hinge feature with r = 25 while
p = 40 does better than others Hinge and Delta-n Hinge features configurations. The
combination of COLDs features is extracted from the complete handwriting image as
well as they are obtained by applying the Uniform Grid Sampling (UGS) [26] to the
handwriting; this allows extracting features from different regions of the image
separately.

According to the previous results, we evaluated the proposed method using the
decision strategy with optimal features on both scripts (all samples in Arabic and
English). Table 1 reports the different features and the proposed method.

Fig. 2. Classification rates on both scripts QUWI dataset used in ICFHR 2016 competition
using COLD feature and its combination.
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It can be seen that the maximum value on the decision functions produced by
COLDs features extracted from the 1�2 regions of the image while k = {3,4,5,6,7}
and the Hinge feature with r = 25 while p = 40 outperforms all other features reporting
classification rates of 73.60% on both scripts. Furthermore, we use our proposed
methodology according to the competition protocol in script-dependent and script-
independent evaluations. According to sub-task 2A and sub-task 2B for Script-
dependent evaluation described in the ICFHR2016 competition, the protocol is per-
formed using 500 script samples in the training set and 250 same script samples
(English (En) or Arabic (Ar)) in the test set. The results of our proposed approach with
different ones in Script-dependent evaluation are summarized in Table 2.

It can be seen from Table 2 that our approach realizes an average rate of 74.20%,
which is comparable to performances of the top 2 systems, according to the compe-
tition protocol. However, it should be noted that the curvature and contour information
used in our method can compete for the textural information [18]. These results validate
the effectiveness of the proposed method in Script-dependent evaluation mode.

According to sub-task 2C and sub-task 2D in Script-independent evaluation, the
experiments is performed using 500 script samples in the training set and 250 other
script samples in the test set. Table 3 shows that the classification rates of our proposed
approach in script-independent evaluation compared with different approaches.

Fig. 3. Classification rates on both scripts QUWI dataset used in ICFHR 2016 competition
using hinge feature and Delta-n Hinge feature.

Table 1. Gender classification rates with different features the proposed method

Features description Feature parameters UGS Dim Classification rates (%)

F1 Hinge r = 25, p = 40 No 780 71.00
F2 Deltahinge r = 5, p = 40 No 780 65.40
F3 COLD feature k = 5 No 84 68.00
F4 COLDs features Combination k = 3,4,5,6,7 No 420 70.60
F5 k = 3,4,5,6,7 1x2 840 71.00
Proposed method 73.60
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We notice that the proposed methodology achieves higher average rate in script-
independent evaluations than other methods in the literature, except Gattal et al. [18]
method. The average classification rate is 64.40%. We clearly note that the proposed
method is in the top 2 methods, according to the competition protocol in script-
dependent and script-independent evaluations. Besides, in some cases, our proposed
method can provide unsuccessful classification results. As example, male handwritten
documents found to have a homogeneous vision comparing to female handwritten
documents and vice versa.

Table 2. Classification rates of script-dependent evaluations.

Method Script Classifier Classification rates (%)
Train Test Script dependent Average

Proposed method Ar Ar SVM 74.80 74.20
En En 73.60

Gattal et al. [18] Ar Ar SVM 74.80 75.00
En En 75.20

MCS-NUST1 method [12] Ar Ar SVM 61.60 58.80
En En 56.00

MCS-NUST2 method [12] Ar Ar SVM with bagging 60.80 59.20
En En 57.60

Nuremberg1 method [12] Ar Ar SVM 58.00 56.00
En En 54.00

Nuremberg2 method [12] Ar Ar SVM 46.40 60.20
En En 74.00

Table 3. Classification rates of script-independent evaluations.

Method Script Classifier Classification rates (%)
Train Test Script independent Average

Proposed method Ar En SVM 64.00 64.40
En Ar 64.80

Gattal et al. [18] Ar En SVM 66.00 68.00
En Ar 70.00

MCS-NUST1 method [12] Ar En SVM 57.60 58.60
En Ar 59.60

MCS-NUST2 method [12] Ar En SVM with bagging 58.40 58.80
En Ar 59.20

Nuremberg1 method [12] Ar En SVM 56.00 58.60
En Ar 61.20

Nuremberg2 method [12] Ar En SVM 72.40 58.80
En Ar 45.20
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5 Conclusions and Future Works

An effective approach for characterizing gender based on their handwriting is pre-
sented, which that exploits COLD and Hinge as features. Different combinations of the
selected features are investigated using an SVM classifier. The system is evaluated
using the same experimental protocol described in the ICFHR2016 Competition on
Multi-script Writer Demographics Classification. The results showed that our approach
outperforms the existing methods reported in the mentioned competition, except the
new method proposed by Gattal et al. [18].

In our further study on this problem, we intend to investigate other kinds of features
to characterize the gender from handwriting by exploring feature selection techniques
to identify the most appropriate descriptors for this problem. Finally, we also plan to
determine different demographic traits, such as age and handedness from handwriting.
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