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Abstract

Over 30 years have passed since activity-based travel demand models (ABMs) 
emerged to overcome the limitations of the preceding models which have domi-
nated the field for over 50 years. Activity-based models are valuable tools for 
transportation planning and analysis, detailing the tour and mode-restricted nature 
of the household and individual travel choices. Nevertheless, no single approach has 
emerged as a dominant method, and research continues to improve ABM features 
to make them more accurate, robust, and practical. This paper describes the state 
of art and practice, including the ongoing ABM research covering both demand 
and supply considerations. Despite the substantial developments, ABM’s abilities in 
reflecting behavioral realism are still limited. Possible solutions to address this issue 
include increasing the inaccuracy of the primary data, improved integrity of ABMs 
across days of the week, and tackling the uncertainty via integrating demand and 
supply. Opportunities exist to test, the feasibility of spatial transferability of ABMs 
to new geographical contexts along with expanding the applicability of ABMs in 
transportation policy-making.

Keywords: activity-based models, travel demand forecasting, transportation 
planning, big data, transferability of transport demand models

1. Introduction

In recent years, behaviorally oriented activity-based travel demand models 
(ABMs) have received much attention, and the significance of these models in the 
analysis of travel demand is well documented in the literature [1, 2]. These models 
are found to be consistent and realistic in several fundamental aspects. They possess 
some significant advantages over the simple aggregated trip-based travel demand 
models [3]. To achieve this, ABMs consider the linkage among activities and travel 
for an individual as well as different people within the same household and place 
more attention to the constraints of time and space. In other words, these models 
are capable of integrating both the activity, time, and spatial dimensions. The 
comprehensive advantages of activity-based models in comparison to the trip-based 
models have been discussed in previous papers [4–8]. Activity-based models are 
suitable for a wider variety of transportation policies involving individual deci-
sions such as congestion pricing and ridesharing. More especially, enabling the 
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relationship between activity and behavioral pattern of trip making is one of the 
main reasons for the shift from the aggregate-level in trip based models to disaggre-
gate-level provided by ABMs [9].

Activity-based travel demand models (ABMs) can be classified into two main 
groups: Utility maximization-based econometric models and rule-based compu-
tational process models (CPM). Utility maximization-based econometric models 
apply different econometric structures such as logit, probit, hazard-based, and 
ordered response models. While the logit models rely on different assumptions 
about the distribution of the error terms in the utility functions, hazard-based 
models use the duration of activity based on end-of-duration occurrence to generate 
activity schedules [10]. Rule-based computational process models apply different 
sets of condition-action rules and focus on the implementation of daily travel and 
ordering activities to mimic individuals’ behavior when constructing schedules. In 
addition to the aforementioned models, other approaches can be employed either 
in combination with these models or separately to develop activity-based models. 
Examples include agent-based and time-space prism approaches. While an agent-
based approach allows agents to learn, modify, and improve their interactions with 
other agents as well as their dynamic environment, time-space prisms are utilized 
to capture spatial and temporal constraints under which individuals construct 
the patterns of their activities and trips. Figure 1 exhibits critical elements of 
ABM such as activity generation, activity scheduling, and mobility choices. It also 
provides a comparison among the notable existing travel demand models regarding 
their different elements. The development of activity-based travel demand models 
has been reviewed comprehensively in previous studies [10, 11]. Table 1 provides a 
summary of the literature on the evolution of these models over time by introducing 
the notable existing developed models and highlighting their limitations.

Despite the existence of many models as listed in Table 1, ABM’s abilities in 
reflecting behavioral realism are still limited [40]. The capability of ABM models 
in predicting individual travel movements can be evaluated from two perspectives 

Figure 1. 
Components of activity-based travel demand models.
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of input (data) and output (applicability). Activity schedules are an essential input 
into the ABM model. From an input point of view, the necessity of deriving activity 
schedules from dynamic resources together with their challenges will be reviewed. 
From the applicability perspective, the application of ABM output in integration 
with dynamic traffic assignment (DTA) models, transferring to a new geographical 
context, and why and how it is applied in transport planning management will also 
be discussed. To this end, the first part of this paper will review the new real-time 
data resources revealing the pattern and traces of traveler’s mobility at a large 
scale and over an extended period of time. The big data enables new ABM models 
to reflect mobility behavior on an unprecedented level of detail while collecting 
data over a longer period (e.g., more than one typical day) would improve the 
behavioral realism in trip making [41]. The second part of this paper looks into the 

ABM type + year of 

proposal

Examples Model limitations

Constraint-based models

1967

PESASP [12] Consider only individual accessibility, 

rather than household-level accessibility

Some system features, like open hours 

and travel times, are considered fixed [11]

CARLA [13]

BSP [14]

MAGIC [15]

GISICAS [16]

Utility maximization-

based models

1978

Portland METRO [17] • Assume that all decision-makers 

are fully rational utility maximiz-

ers which are not realistic in 

practice [10]

• Unable to reflect latent behavioral 

mechanisms in the decision 

processes [11]

San Francisco SFCTA [18]

New York NYMTC [19]

Columbus MORPC [20]

Sacramento SACOG [21, 22]

CEMDAP [23, 24]

FAMOS [25]

CT-RAMP [26]

Computational process 

models

2000

ALBATROSS [27, 28] Focus more on scheduling and 

sequencing of activities than the 

underlying rules in decision-making [11]
TASHA [29, 30]

ADAPTS [31–33]

Feathers [34]

Agent-based modeling

2004

ALBATROSS [27, 28] • High computational complexity

• No transparency in the mechanical 

process of agents interacting with 

other agents and environment 

which depends on the parameters’ 

values

• Requires well-defined conditions 

and constraints

• Non-reproducibility due to the 

non-streamlined process of cali-

brating and imputing parameters 

for the models [35]

Feathers [34]

MATSim [36]

TRANSIMS [37]

SimMobilitiy [38]

POLARIS [39]

Table 1. 
ABM evolution over time.
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applicability of ABM models. This part includes (i) gap investigation in enrich-
ing ABMs by integrating time-dependent OD matrices produced by ABMs with 
dynamic traffic assignment; (ii) investigation of ABMs’ applicability in transferring 
from one region to another; and (iii) enriching the capability of ABMs by moving 
beyond the transportation domain to other such as environment and management 
strategies.

The remainder of the paper is organized as follows. Section 2 introduces new 
data sources such as mobile phone call data records, transit smart cards, and GPS 
data where the influence of new data sources on the planning of activities, forma-
tion, and analysis of the travel behavior of individuals will be investigated. This 
section also introduces activity-based travel demand models, which generates 
activity-travel schedules longer than a typical day. Section 3 describes the existing 
experiences in transferring utility-based and CPM activity-based travel demand 
models from one geographical area to another. This section also reviews the integra-
tion of ABM models with dynamic traffic assignment and other models such as air 
quality models. The possibility of using activity-based models in travel demand 
management strategies with a focus on car-sharing and telecommuting are con-
sidered as examples. The last section concludes the paper and identifies remaining 
challenges in the area of activity-based travel demand modeling.

2. ABMs and the emerging of big data

This section provides an overview of the role of big data in replacing the tradi-
tional data sources, and the changes in activity-based travel demand models given 
these newly available data.

2.1 Improvements in activity-based travel demand modeling

It is more than half a century that transportation planners try to understand how 
individuals schedule their activities and travel to improve urban mobility and acces-
sibility. The evolution of travel demand modeling from trip-based to activity-based 
highlighted the need for high-resolution databases including sociodemographic 
and economic attributes of individuals and travel characteristics. Today, with the 
rapid advancements in computation, technology, and applications, the intelligent 
transportation systems (ITS) have revolutionized the analysis of travel behavior 
by having more accurate data, removing human errors, and making use of the vast 
amount of available data [42]. Tools such as GPS devices, smartphones, smart card 
data, and social networking sites all have the potential to track the movements and 
activities of individuals by recording and retaining the relevant data continuously 
over time. Most of the traditional travel survey data are rich in detail. However, it 
can result in biased travel demand models because of incomplete self-reports and 
inaccurate scheduling patterns. Therefore, in this section, the common tools used 
in collecting big data are introduced and the progress made in the area of extracting 
big data sources is discussed.

2.1.1 Cell phone data

A call detail record (CDR) is a data record produced by a telephone exchange 
and consists of spatiotemporal information on the recent system usage [40], which 
can track people’s movements. This CDR data can be processed and applied in 
activity-based travel demand modelings to better understand human mobility and 
obtain more accurate origin-destination (OD) tables [43]. The first attempt using 
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CDR data was a study of Caceres et al. [44], who applied mobile phone data to 
generate OD matrices. Their concept was then formalized by Wang et al. [45] to 
obtain transient OD matrices by counting trips for each pair of the following calls 
from two different telephone (cell) towers at the same hour. Afterward, using the 
shortest path algorithm, OD trips are assigned to the road network. In the area of 
urban activity recognition, Farrahi et al. [46] applied two probabilistic methods 
(i.e., Latent Dirichlet Allocation (LDA) and Author Topic Models, ATM) to cluster 
CDR trajectories according to their temporal aspects to discover the home and work 
activities. Considering the spatial aspect of CDR data, Phithakkitnukoon et al. 
[47] applied auxiliary land use data and geographical information database to find 
possible activities around a certain cell tower. And considering both the temporal-
spatial aspect of CDR, Widhalm et al. [48] used an undirected relational Markov 
network to infer urban activities. They extracted activity patterns for Boston and 
Vienna by analyzing cell phone data (activity time, duration, and land use). Their 
results show that trip sequence patterns and activity scheduling observed from 
datasets were compatible with city surveys as well as the stability of generated 
activity clusters across time. In a more recent study, [49] an unsupervised genera-
tive state-space model is applied to extract user activity patterns from CDR data. 
Furthermore, it has been shown that the method of CDR sampling is as signifi-
cant as survey sampling. For example, in one study [50], CDR and survey data is 
used during a period of six months to investigate the daily mobility for Paris and 
Chicago. The result shows that 90% of travel patterns observed in both surveys are 
compatible with phone data. In another similar study [51], a probabilistic induction 
was proposed using motifs (daily mobility network), time of day activity sequence, 
and land use classification to produce activity types. CDR data of Singapore was 
used by Jiang et al. [52] to produce activity-based human mobility patterns.

In the context of activity-based transport modeling, Zilske et al. [53] replaced 
travel diaries with CDRs as input data for agent-based traffic simulation. They 
first generated the synthetic CDR data, then the MATSim simulation software was 
used to identify every observed person as an agent to convert call information into 
activity. They fused the CDR data set with traffic counts in their next paper [54], to 
reduce the Spatio-temporal uncertainty.

In summary, the findings reported from different studies indicated the major 
implications of mobile phone records on the estimation of travel demand variables 
including travel time, mode and route choice as well as OD demand and traffic flow 
estimation; however; in practice, the information generated from CDR data are 
yet to be used widely in simulation models. This is mainly because of the conflict 
between either level of resolution or format and completeness of model and 
data [55].

2.1.2 Smart card data

Smart card systems with on- and off-boarding information gained much 
popularity in large public transport systems all over the world, and have become 
a new source of data to understand and identify the Spatio-temporal travel pat-
terns of the individual passengers. The smart card data are investigated in various 
studies such as activity identification, scheduling, agent-based transport models, 
and simulation [56]. Besides, in other studies [57–59] smart card data was used as 
an analysis tool in investigating the passenger movements, city structure, and city 
area functions. Similarly, in the recent study [60], a visual analysis system called 
PeopleVis was introduced to examine the smart card data (SCD) and predict the 
travel behavior of each passenger. They used one-week SCD in the city of Beijing 
and found a group of “familiar strangers” who did not know each other but had 
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lots of similarities in their trip choices. Zhao et al. [61] also investigated the group 
behavior of metro passengers in Zhechen by applying the data mining procedure. 
After extracting patterns from smart card transaction data, statistical-based and 
clustering-based methods were applied to detect the passengers’ travel patterns. The 
results show that a temporally regular passenger is very probable to be a spatially 
regular passenger. The disaggregated nature of smart card data represents suitable 
input to multi-agent simulation frameworks. For example, the smart card data is 
used to generate activity plans and implement an agent-based microsimulation of 
public transport in two cities of Amsterdam and Rotterdam [62]. An agent-based 
transport simulation is developed for Singapore’s public transport using MATSim 
environment [63]. Unlike Bouman’s study, they considered the interaction of public 
transport with private vehicles. The study of Fourie et al. [64] was another research 
work to present the possibility of integrating big data algorithms with agent-based 
transport models. Zhu [65] compared one-week transaction data of smart cards in 
Shanghai and Singapore. They found feasibility in generating continuous transit use 
profiles for different types of cardholders. However, to have a better understanding 
of the patterns and activity behaviors, in addition to collecting the data from smart 
cards, one should integrate them with other data set.

2.1.3 GPS data

In travel demand modeling, it is important to have accurate and complete travel 
survey data including trip purpose, length, and companions, travel demand, origin 
and destination, and time of the day. Since the 1990s, the global positioning system 
(GPS) became popular for civil engineering applications, especially in the field of 
transportation as it provides a means of tracking some of the above variables. In 
the literature, methods of processing the GPS data and identifying activities can be 
classified according to different approaches such as rule-based and Bayesian model 
[66]; fuzzy logic [67]; multilayer perceptron [68]; and support vector machine 
learning [69]. Nevertheless, the disadvantages of using GPS data include the cost, 
sample size limitation, and the need to retrieve and distribute GPS devices to 
participate. Since smartphones are becoming one of the human accessories while 
equipped with a GPS module, they can be considered as a replacement of the GPS 
device to gather travel data. In this regard, CDR from smartphones is used [70] to 
estimate origin-destination matrices, or a smartphone-based application is used 
[71] to map the semiformal minibus services in Kampala (Uganda) and to count 
passenger boarding and alighting [72]. In the Netherlands, the Mobidot application 
is developed for analyzing the mobility patterns of individuals. To deduce travel 
directions and modes, this application uses the real-time data gathered by sensors 
of smartphones including GPS, accelerometer, and gyroscope sensors to compare 
them with existing databases [73].

Applying smartphones as a replacement of GPS however, holds several restric-
tions including the draining of smartphone battery and it is not possible to record 
travel mode and purpose.

2.1.4 Social media data

Today transport modelers, planners, and managers have started to benefit from 
the popularity of social networking data. There are different kinds of social media 
data such as Twitter, Instagram, and LinkedIn data, which consist of normal text, 
hash-tag (#), and check-in data. As hash-tag and check-in data are related to an 
activity, location or event, they can be used as meaningful resources in analysis of 
destination/origin of the activity [74]. According to the literature, social media has 
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a great influence on different aspects of travel demand modeling [75]. Using social 
media instead of traditional data collection methods was investigated in differ-
ent studies [76]. The way of processing these data to extract useful information 
is challenging as investigated in different studies [77, 78]. Various studies [79–82] 
also examined social media data to understand the mobility behavior of a large 
group of people. Testing the possibility of evaluating the origin-destination matrix 
based on location-based social data was researched [83] or in another similar stud-
ies [84, 85] where Twitter data was used to estimate OD matrices. The comparison 
between this new OD with the traditional values produced by the 4-step model 
proved the great potential of using social media data in modeling aggregate travel 
behavior. Social media data can be used in other areas such as destination choice 
modeling [86], recognizing activity [87], understanding the patterns of choosing 
activity [80, 88, 89], and interpreting life-style behaviors via studying activity-
location choice patterns [90].

2.2 Dynamic ABM using a multi-day travel data set

Most existing travel demand modelers have applied the household survey data 
during the period of one day to construct activity schedules. However, longer 
periods such as one week or one month gained substantial importance during recent 
years. For simulating everyday travel behavior and generating schedules, a one-
week period provides more comprehensive coverage because it includes weekdays 
and weekends and represents the weekly routines of individuals in making trips. 
Periods longer than one week can further provide detail on personal behavior as 
well as various usage of modes in different ways. So far only a few travel demand 
models covered a typical week as a studied period. For example rhythm in activity-
travel behavior based on the capacity of one week was presented by applying a 
Kuhn-Tucker method [41]. Few works have been concentrating on the generation of 
multiple-day travel dataset. For example, by using large data and surveys, Medina 
developed two discrete choice models for generating multi-day travel activity types 
based on the likeliness of the activity [91]. a sampling method based on activity-
travel pattern type clustering [92] was proposed to extract multi-day activity-travel 
data according to single-day household travel data. The results show similarities 
in distributions of intrapersonal variability in multi-day and single-day. MATSim 
is a popular agent-based simulation for ABM research [93, 94], however, it is not 
appropriate for modeling the multi-day scenarios because MATSim uses the co-
evolutionary algorithm to reach the user equilibrium which is a time consuming 
particularly for multi-day plans. To solve these problems, Ordonez [95] proposed a 
differentiation between fixed and flexible activities. Based on different time scales, 
Lee examined three levels of travel behavior dynamics, namely micro-dynamics 
(24 hours), macro-dynamics (lifelong travel behavior), meso-dynamics (weekly/
monthly/yearly basis) by applying different statistical models [96]. A learning day-
by-day module in another agent-based simulation software SimMobility is proposed 
[97]. Furthermore, ADAPTS is one of the few activity-based travel demand models 
which depends on activity planning horizon data for a longer period than one day, 
for example, one week or one month [33].

As highlighted by the above literature review, applying one-day observation 
data in travel demand modeling provides an inadequate basis of understanding 
of complex travel behavior to predict the impact of travel demand management 
strategies. So multi-day data are needed to refine this process. Previously, it was not 
easy to collect multi-day data, however, today thanks to advantages to technology it 
is possible to extract data from GPS, smartphones, smart cards, etc. with no burden 
for the respondent. Models built based on GPS data have been found to be more 
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accurate and precise due to having fewer measurement errors. Collecting call detail 
records from mobile phones provide modelers with large trip samples and origin-
destination matrices, while smart card data are more useful in terms of validation.

3. ABM transferability

We now turn to the recent advances and ongoing research in ABM focused on 
testing and enhancing geographical transferability and capacity to predict a broader 
range of impacts than flows and performance of the transport network.

3.1 ABM transferability from one geographical context to another

The spatial transferability of a travel demand model happens when the informa-
tion or theory of a developed model of one region is applied to a new context [98]. 
Transferability can be used not only as a beneficial validation test for the models 
but also to save the cost and time required to develop a new model. Validation of 
a model by testing spatial transferability beside other various methods such as 
base-year and future-year data set is a test of validity which represents the capabil-
ity of activity-based models in predicting travel behavior in a different context 
[99]. The exact theoretical basis and behavioral realism of activity-based travel 
demand model make them more appropriate for geographic transferability in 
comparison to traditional trip-based models [100]. Testing the transferability of 
ABM was first investigated by Arentze et al. [101]. They examined the possibility of 
transferring the ALBATROSS model at both individual and aggregate levels for two 
municipalities (Voorhout and Apeldoorn) in the Netherlands by simulating activity 
patterns. The results were satisfactory except for the transportation mode choice. 
In the United States, the CT-RAMP activity-based model which was developed for 
the MORPC region then transferred to Lake Tahoe [102]. In another study, one 
component of the ADAPTS model showed the potential for having good transfer-
ability properties [31]. The transferability of the DaySim model system developed 
for Sacramento to four regions in California and two other regions in Florida was 
investigated in [103]. The results show that the activity generation and schedul-
ing models can be transferred better than mode and location choice models. The 
CEMDAP model developed for Dallas Fort Worth (DFW) region was transferred 
to the southern California region [104]. Outside the U.S., the TASHA model system 
developed for Toronto was transferred to London [105], and also in another study 
[106] the transferability of TASHA to the context of the Island of Montreal was 
assessed. Activity generation, activity location choice, and activity scheduling 
were three components of TASHA that transferred from Toronto to Montreal. In 
general, TASHA provided acceptable results at (macro and meso-level) for work 
and school activities even in some cases better results for Montreal in comparison 
to Toronto area. The possibility of developing a local area activity-based transport 
demand model for Berlin by transferring an activity generation model from another 
geographical area (Los Angeles) and applying the traffic counts of Berlin was 
investigated [107]. In their research, the CEMDAP model was applied to achieve 
a set of possible activity-travel plans, and the MATSim simulation was then used 
to generate a representative travel demand for the new region. The results were 
quite encouraging, however, the study indicated a need for further evaluation. In 
one recent study [108], an empirical method was used to check the transferability 
of ABMs between regions. According to their investigations, the most difficult 
problems with transferability caused by parameters of travel time, travel cost, land 
use, and logsum accessibilities. They suggested that in the transferability of the 
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ABM from another region, agencies should be aware of finding a region within the 
same state or with similar urban density, or preferably both in order to improve 
the results. The possibility of transferring the FEATHERS model to Ho Chi Minh 
in Vietnam is investigated [109]. FEATHERS initially is developed for Flanders in 
Belgium. After calibration of FEATHERs sub-models, testing results using different 
indicators confirmed the success of transferring the FEATHER’s structure to the 
new context.

At the theoretical level, a perfect transferable model contributes to the transfer-
ability of its underlying behavioral theory, model structure, variable specification 
and coefficient to the new context. However, perfect transferability is not easy to 
achieve due to different policy and planning needs as well as the size of the regions, 
and the availability of data and other resources. Although the results of several 
transferred ABM model systems seem to have worked reasonably, it is equally 
important to assess how much accuracy is important in transferring models and 
how best and where to transfer models from.

3.2 ABM transferability to other non-transport domain

One of the advantages of the activity-based travel demand models over trip-
based models is its capability to generate various performance indicators such as 
emission, health-related indicators, social exclusion, well-being, and quality of 
life indicators. Application of disaggregate models for the area of emission and air 
quality analysis was introduced by Shiftan [110] who investigated the Portland 
activity-based model in comparison to trip-based models. In another study [111], 
the same author integrated the Portland activity-based model with MOBILE5 
emission model to study the effects of travel demand techniques on air quality. 
Regarding the integration of ABM with the emission model, the Albatross ABM 
model was coupled with MIMOSA (macroscopic emission model) [112] considering 
the usage of fuel and the amount of produced emission as a function of travel speed. 
A study in [113] added one dispersion model (AUROTA) to the previous integration 
of Albatross and MIMOSA to predict the hourly ambient pollutant. Albatross linked 
with a probabilistic air quality system was employed [114] in air quality assess-
ment study. TASHA was another activity-based model, which has been extensively 
employed in air quality studies. For example, this model was integrated [29, 115] 
with MOBILE6.2 to quantify vehicle emissions in Toronto. In their study, EMME/2 
was used in the traffic assignment part. The previous research was improved [116] 
by replacing EMME/2 with MATSim as an agent-based DTA model. This TASHA-
MATSim chain was used in the research [117] with the integration of MOBILE6.2C 
(emission model) and CALPUFF (dispersion model). OpenAMOS linked with 
MOVES emission model [118], and ADAPTS linked with MOVES [119] together 
with Sacramento ABM model [120] are among recent studies which represented 
the application of activity-based models in analyzing the impacts of vehicular 
emissions.

Human well-being and personal satisfaction play an important role in social 
progression [121]. To understand the theory behind human happiness, transport 
policies concentrated on the concept of utility as a tool to increase activity, goods, 
and services [122, 123]. The issue of well-being as a policy objective is addressed 
in the literature and measured through various indicators, which show personal 
satisfaction and growth. For example, in the study by Hensher and Metz [124, 125], 
saving time which leads to engagement in more activities was introduced as one of 
the benefits of measuring transport performance. Spatial accessibility was another 
benefit of travel that provides a range of activities that can be reasonably reached by 
individuals [126]. A dynamic ordinal logit model was developed [127] based on the 
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collected data on happiness for a single activity in Melbourne. The authors found 
different activity types, which have different influences on the happiness that each 
individual experienced. Well-being can be integrated into activity-based models 
based on random utility theory. In terms of modeling, a framework was introduced 
[122] considering well-being data to improve activity-based travel demand models. 
According to their hypothesis, well-being is the final aim of activity patterns. 
They applied a random utility framework and considered well-being measures as 
indicators of the utility of activity patterns, and planned to test their framework 
empirically by adding well-being measurement equations to the DRCOG’s activity-
based model.

The above literature review showed the importance of applying traffic models 
to generate input data to other models such as the air quality model. The accuracy 
of emission models is highly dependent on the level of detail in transport demand 
model inputs. Activity-based and agent-based models are supposed to describe real-
ity more accurately by providing more detailed traffic data. Beyond measurement 
of air quality, well-being and health have drawn increasing attention. The health 
impact of changes in travel behavior, health inequalities, and social justice can be 
assessed within the activity-based platform [128]. With the help of geospatial data 
acquisition technologies like GPS, behavioral information with health data can be 
integrated into the development of an activity-based model to provide policies that 
affect the balance of transport and well-being.

3.3 ABM integration with dynamic traffic assignment

In parallel with the travel demand modeling, on the supply side, the 
conventional supply models used to be static, which import constant origin-
destination flows as an input and produce static congestion patterns as an output. 
Consequently, these models were unable to represent the flow dynamics in a clear 
and detailed manner. Dynamic traffic assignment (DTA) models have emerged to 
address this issue and are capable of capturing the variability of traffic conditions 
throughout the day. It is evident that the shift of analysis from trips to activities in 
the demand modeling, as well as, the substitution of the static traffic assignment 
with dynamic traffic assignment in the supply side, can provide more realistic 
results in the planning process. Furthermore, the combination of ABM and DTA 
can better represent the interactions between human activity, their scheduling 
decision, and the underlying congested networks. Nevertheless, according to the 
study of [11], the integration of ABM with DTA received little attention and still 
requires further theoretical development. There are different approaches to the 
integration of ABM and DTA, which started with a sequential integration. In this 
type of integration, exchanging data between two major model components (ABM 
and DTA) happens at the end of the full iteration, to generate daily activity patterns 
for all synthetic population in an area of study, the activity-based model is run for 
the whole period of a complete day. The outputs of the ABM model which are lists 
of activities and plans are then fed into the DTA model. The DTA model generates 
a new set of time-dependent skim matrices as inputs to ABM for the next iteration. 
This process is continued until the convergence will be reached in the OD matrices 
output. Model systems applying the sequential integration paradigm can be found 
in most of the studies in the literature. For example, Castiglione [129] integrated 
DaySim which is an activity-based travel demand model developed for Sacramento 
with a disaggregate dynamic network traffic assignment tool TRANSIMS router. 
Bekhor [130] investigated the possibility of coupling the Tel Aviv activity-based 
model with MATSim as an agent-based dynamic assignment framework. Hao [116] 
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integrated the TASHA model with MATSim. Ziemke [107] integrated CEMDAP, 
which is an activity-based model with MATSim to check the possibility of transfer-
ring an activity-based model from one geographic region to another. Lin [131] 
introduced the fixed-point formulation of integrated CEMDAP as an activity-based 
model with an Interactive System for Transport Algorithms (VISTA). Based on the 
mathematical algorithm of household activity pattern problem (HAPP), ABM and 
DTA were integrated [132] by presenting the dynamic activity-travel assignment 
model (DATA) which is an integrated formulation in the multi-state super network 
framework.

In the sequential integration, the ABM and DTA models run separately until 
they reach convergence. At the end of an iteration, these models perform data 
exchange before iterate again. Therefore, this kind of integrated framework cannot 
react quickly and positively to network dynamics and is unable to adapt to real-time 
information available to each traveler. In addressing this limitation, integrated 
models that adopt a much tighter integration framework have been developed 
recently. This approach is quite similar to the sequential approach, however; the 
resolution of time for ABM simulation is one minute rather than 24 hours (complete 
day). Relating to this level of dynamic integration, Pendyala [133] investigated the 
possibility of integrating OpenAMOS which is an activity-travel demand model 
with DTA tool name MALTA (Multiresolution Assignment and loading of traffic 
activities) with appropriate feedback to the land-use model system. For increasing 
the level of dynamic integration of ABM and DTA models, dynamic integration 
having pre-trip enroute information with full activity-travel choice adjustments 
has been introduced. In this level of ABM & DTA integration, it is assumed that 
pre-trip information is available for travelers about the condition of the network. It 
means that travelers are capable of adjusting activity-travel choices since they have 
access to pre-trip and Enroute travel information. Another tightly integrated mod-
eling framework was proposed in [134] to integrate ABM (openAMOS) and DTA 
(DTALite) to capture activity-travel demand and traffic dynamics in an on-line 
environment. This model is capable of providing an estimation of traffic manage-
ment strategies and real-time traveler information provision. Zockaie et al. [135] 
presented a simulation framework to integrate the relevant elements of an activity-
based model with a dynamic traffic assignment to predict the operational impacts 
related to congestion pricing policies. Auld et al. [39] developed an agent-based 
modeling framework (POLARIS) which integrates dynamic simulation of travel 
demand, network supply, and network operations to solve the difficulty of integrat-
ing dynamic traffic assignment, and disaggregate demand models. A summary of 
the current literature on ABM and DTA integration is presented in Table 2.

The above discussion illustrates that most of the model integration platforms 
between ABM + DTA work based on sequential integration. This loose coupling 
platform is the most straightforward and popular approach albeit is not responsive 
to network short-term dynamics and real-time information. Efforts to develop a 
comprehensive simulation model that can account for all components of dynamic 
mobility and management strategies continue. Further developments will have to 
deal with the implementation of an integrated ABM + DTA platform on a large net-
work to support decision-makers, focus on the integration between activity-based 
demand models and multimodal assignment [136] as well as reducing computa-
tional efforts via better data exchange procedure and improving model communica-
tion efficiency. Defining practical convergence criteria is another issue which needs 
further investigations. Fully realistic convergence is normally never happened in 
sequential integration due to applying a pre-defined number of feedback loops in 
order to save model runtime.
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Paper ABM structure DTA Structure Method of 

integration

Insights

[137] Kutter Model 

developed for the city 

of Berlin

Multiagent 

Simulation 

(MATSim)

Sequential Discuss the disadvantages 

of the integration of 

ABM and DTA using OD 

matrices and link travel 

times

[138] TASHA model Multiagent 

Simulation 

(MATSim)

Sequential Show the advantages 

of the microsimulation 

approach over conventional 

methodologies relying 

heavily on temporal or 

spatial aggregation

[139] CEMDAP (VISTA) Sequential Show the impacts of 

multiple time interval 

portioning and varying step 

size on reaching faster and 

more stable convergence 

results

[130] Tel Aviv activity-

based model

Multi-agent 

Simulation 

(MATSim)

Sequential Show improved run times, 

the full activity list can 

be used directly, without 

creating origin-destination 

matrices

[129, 

140]

DaySim ABM model 

developed for the 

Sacramento and 

Jacksonville

Disaggregate 

dynamic 

network 

assignment tool 

(TRANSIMS)

Sequential Running time limitations 

prevent the models to 

realistically represent the 

impacts of network events 

or disruptions on activity-

travel patterns

[141] Agent-based 

Dynamic Activity 

Planning and 

Travel Scheduling 

(ADAPTS) 

developed for the 

Chicago region

Disaggregate 

dynamic 

network 

assignment tool 

(TRANSIMS)

Sequential Choosing smaller time steps 

in the interaction of ABM 

and DTA makes integration 

more accurate

[133] Simulator of travel, route, activity, vehicles, 

emission and land use (SimTRAVEL) that 

integrates land-use, activity-based travel 

demand with DTA models

Dynamic 

integration

Show the proposed model 

is capable of simulating 

the behavioral pattern of 

human activity in space, 

time, and networks

[134] ABM (openAMOS) and DTA (DTALite) Dynamic 

integration

Show the model is capable 

of providing an estimation 

of traffic management 

strategies and real-time 

traveler information 

provision

[132] Formulation of a dynamic activity-travel 

assignment (DATA) model in the multi-

state supernetwork framework combining 

ABM and DTA

Dynamic 

integration

Show the power of the 

model to capture multi-

modal and multi-activity 

trip chaining at equilibrium 

states while sensitive to 

policy interventions

[142] Integrated ABM-DTA framework to 

consider congestion pricing in a large-scale 

network

Dynamic 

integration

A user-based approach 

to evaluate equilibrium 

conditions
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3.4 ABM and travel demand management applications

Travel demand management (TDM) strategies are implemented to increase the 
efficiency of the transportation system and reduce traffic-related emissions. Some 
examples include mode shift strategies (encouraging people to use public transport) 
[144], time shift (to ride in off-peak hours, congestion pricing), and travel demand 
reduction [145] (using shared mobility service or teleworking). Shared transport 
services including car sharing, bike sharing, and ridesharing have been implemented 
in most of the transport planning systems across the world. Applying activity-based 
travel demand models to study the optimal fleet size can be found in different studies 
in the literature [146, 147]. Parking price policies and their impacts on car sharing 
were investigated using MATSim in [148]. Results show shared vehicles use more 
efficient parking spaces in comparison to private vehicles. In the first attempt to 
model car sharing on more than one typical day [149] the agent-based simulation 
(mobitopp) was extended with a car-sharing option to study the travel behavior of 
the population in the city of Stuttgart in one week. In the recent study of [150], car 
sharing was integrated into an activity-based dynamic user equilibrium model to 
show the interaction between the demand and supply of car sharing. Among all the 
TDM strategies, telecommuting can be implemented in a shorter time [151–153]. The 
results of these studies present a reduction in vehicle-kilometers-traveled (VKT) 
during peak hours mainly because telecommuters change their trip timetable during 
these times. This plan rescheduling is also investigated and addressed in different 
studies [154] based on the statistical analysis of worker’s decisions about choice and 
frequency of telecommuting. While the plan rescheduling leads to reducing com-
mute travel, the overall impacts of telecommuting on the formation of worker’s daily 
activity-travel behavior is challenging. For example, this policy reduced total dis-
tance traveled by 75% on telecommuting days while telecommuting could reduce the 
total commute distance up to 0.8% and 0.7% respectively [151, 155]. Based on the 
adoption and frequency of telecommuting, a joint discrete choice model of home-
based commuting was developed for New York city using the revealed preference 
(RP) survey [156]. Their results show a powerful relationship among individuals’ 

Paper ABM structure DTA Structure Method of 

integration

Insights

[39] POLARIS, which executes a continuous 

exchange of information between the ABM 

and DTA components

Dynamic 

integration

The resulting gains in 

computational efficiency 

and performance allow 

planning models to include 

previously separate aspects 

of the urban system

[92] Advanced demand 

models (InSITE 

ABM)

Time-sensitive 

traffic network 

model 

(DTALite)

Sequential Show the efficiency of 

the model over the static 

assignment-based ABM 

capturing behavioral 

changes at a finer time 

resolution

[143] The ABM 

(CT-RAMP)

DTA (DynusT) Sequential Evaluate different 

convergence 

measurements: ABM 

demand, DTA in terms of a 

gap of costs

Table 2. 
A summary of the empirical literature on ABM and DTA integration.
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attributes, households’ demographics, and work-related factors, and telecommuting 
adoption and frequency decisions. A similar study [157] estimated the telecom-
muting choice and frequency by using a binary choice model and ordered-response 
model respectively. In terms of using activity-based modeling, [158] POLARIS activ-
ity-based framework was applied to research telecommuting adoption behavior and 
apply MOVES emission simulator model to assess the consequences of implementing 
this policy on air quality. Their results show that considering 50% of workers in 
Chicago with flexible working time hours in comparison to the base case with 12% 
flexible time hour workers, telecommuting can reduce Vehicle Mile Traveled (VMT) 
and Vehicle Hour Traveled (VHT) by 0.69% and 2.09% respectively. This policy 
reduces greenhouse gas by up to 0.71% as well. Pirdavani et al. [159] investigated the 
impact of two TDM scenarios (increasing fuel price and considering teleworking) on 
traffic safety. In this work, FEATHERS model, which is an activity-based model, was 
applied to produce exposure matrices to have a more reliable assessment. The results 
show the positive impacts of two scenarios on safety (Figure 2).

The above section explores the relationship between transport demand manage-
ment policies and travel behavior in the ABM context. The use of an activity-based 
travel demand model provides flexibility to employ a range of policy scenarios, 
and at the same time, the results are as detailed as possible to obtain the impact of 
policies on a disaggregated level. The finding highlights the importance of imple-
menting different transportation policies management together to reach the most 
appropriate effect in terms of improving sustainability and the environment. The 
discussion emphasizes the need for considering more comprehensive transportation 
and environmental policies concerning sustainability to tackle travel planning in 
light of the increasingly diverse and complex travel patterns.

4. Summary and research directions

The use of activity-based models to capture complex underlying human’s travel 
behavior is growing. In this paper, we began by introducing the components of 

Figure 2. 
Travel demand management policies within the activity-based platform.
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activity-based models and the evolution of the existing developed ABM models. 
In the first part of this paper, the new resources of data for travel demand analysis 
were introduced. In the new era of travel demand modeling, we need to deal with 
a dynamic, large sample, time-series data provided from new devices, and as a 
result manage observation covering days, weeks, and even months. The outcome 
of the recent works revealed that since activity-based models originated from 
the concept of individual travel patterns rather than aggregate flows, they highly 
suited to these new big data sources. These big datasets, which document human 
movements, include the information about mobility traces and activities carried 
out. Based on the in-depth and critical review of the literature, it is clear that while 
these big datasets provide detailed insight into travel behavior, challenges remain 
in extracting the right information and appropriately integrating them into the 
travel demand models. In particular, extracting personal characteristics and trip 
information like trip purpose and mode of transport are still open problems as 
these big data resources which provide space-time traces of trip-maker behaviors. 
Research works along these lines have been started as it was reviewed in the first 
part; however, further researches should be conducted to handle the uncertainty 
of big data mobility traces in the modeling process. Also, new methods should be 
investigated to validate the results for each step of the data analysis and mining. The 
possibility of fusing data from different available datasets needs further investiga-
tion. For instance, to understand the mode inference both data from the smart card 
and CDRs can be analyzed simultaneously. Another challenging issue regarding the 
application of this rich new data in transport modeling is that the need for method-
ologies to extract useful information needed regarding the traveler’s in-home and 
out-of-home activity patterns, which highlights the combination of data science, 
soft computing-based approaches, and transport research methods. It requires new 
Different algorithms such as statistical, genetic, evolutionary, and fuzzy as well as 
different techniques including advanced text and data mining, natural language 
processing, and machine learning.

The spatial transferability of activity-based travel demand models remains an 
important issue. Generally, it is found that the transferability of these models is more 
feasible than trip-based models, especially between two different regions with simi-
lar density or even between two areas in the same state. To date, most of the transfer-
ability research in activity-based travel demand modeling is motivated by a desire to 
save time, and very few studies that applied spatial transferability of activity-based 
models have undertaken rigorous validation of the results. While literature showed 
successful model transferability in terms of transferring activity/tour generation, 
time-of-day choice components, more studies are required on the model transfer-
ability regarding mode and location choice models as well as the validation test of 
activity-based models in different levels, i.e., micro, meso, and macro models.

As part of the second section of this study, this paper reviewed the progress 
made in the integration of activity-based models with dynamic traffic assignment.

Based on the literature, although evolution has occurred in DTA models, the 
loose coupling (sequential method) between ABM and DATA models still dominate 
the field. Two main challenges remain, namely poor convergence quality and exces-
sively long run time. Replacing MATSim as a dynamic traffic assignment tool with 
other route assignment algorithms in recent years was a technical solution to loose 
coupling, which considered route choice as another facet of a multi-dimensional 
choice problem. MATSim provides not only an integration between the demand and 
supply side, but it can also act as a stand-alone agent-based modeling framework. 
However; MATSim potential drawbacks include being based on unrealistic assump-
tions of utility maximization and perfect information. To remove these unreal-
istic rational behavioral assumptions, applying other approaches such as a new 
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innovative method of behavioral user equilibrium (BUE) is needed. This method 
helps trip-makers to reach certain utility-level rather than maximize the utility of 
their trip making [160]. Work along this approach has started (e.g., [161]).

The capability of activity-based models in generating other kinds of perfor-
mance indicators in addition to OD matrices was also reviewed. Literature proved 
activity-based models generate more detailed results as inputs to air quality models, 
however; error rises from the accuracy of the information has a relevant impact on 
the process of integration. So it is necessary to do a comprehensive analysis of the 
uncertainties in traffic data. Literature proved that despite of the improvements 
in such disaggregate frameworks and the capability of these models in replicating 
policy sensitive simulation environment; there is yet to develop the best and perfect 
traffic-emission-air quality model. While the issue of health has drawn extensive 
attention from many fields, activity-based travel demand models have proved 
to have the potential to be used in estimating health-related indicators such as 
well-being. However, very few studies have been found to investigate the theories 
required to extend the random utility model based on happiness. While it is proved 
that mobility and environment have direct impacts on transport-related health 
[162], investigations on how travel mode preferences and air pollution exposure are 
related in this context are needed. Another area of research within ABM platform 
which is yet to be studied is the relationship between individual exposure to air 
pollution and mobility, especially in space, and time.

In the last part of this paper, the capability of activity-based models in the 
analysis of traffic demand management was investigated. Generally, the influence 
of telecommuting on both travel demand and network operation is still incomplete. 
Very few studies were found in which activity-based framework is used to simulate 
the potential impacts of telecommuting on traffic congestion and network opera-
tion where the real power of activity-based models lie.

In conclusion, while there are still open problems in activity-based travel 
demand models, there has been a lot of progress being made which is evidenced 
by the various recent and on-going researches reviewed in this paper. The review 
showed that by applying different methodologies in the modeling of different 
aspects of activity-based models, these models are becoming more developed, 
robust, and practical and become an inevitable tool for transport practitioners, city 
planners, and policy decision-makers alike.
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