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Abstract: Predicting residential energy consumption is tantamount to forecasting a multivariate time
series. A specific window for several sensor signals can induce various features extracted to forecast
the energy consumption by using a prediction model. However, it is still a challenging task because of
irregular patterns inside including hidden correlations between power attributes. In order to extract
the complicated irregular energy patterns and selectively learn the spatiotemporal features to reduce
the translational variance between energy attributes, we propose a deep learning model based on the
multi-headed attention with the convolutional recurrent neural network. It exploits the attention
scores calculated with softmax and dot product operation in the network to model the transient
and impulsive nature of energy demand. Experiments with the dataset of University of California,
Irvine (UCI) household electric power consumption consisting of a total 2,075,259 time-series show
that the proposed model reduces the prediction error by 31.01% compared to the state-of-the-art deep
learning model. Especially, the multi-headed attention improves the prediction performance even
more by up to 27.91% than the single-attention.

Keywords: convolutional recurrent neural network; multi-headed attention; time-series forecasting;
energy consumption prediction

1. Introduction

According to the World Energy Outlook 2019, the International Energy Agency (IEA) pointed
out that the energy demand will rise by 1.3% each year to 2040 with unrestrained planning by further
efforts to improve efficiency [1]. The residential power consumption sector, which is a major factor that
accounts for 27% of global electricity consumption [2], provides an ideal testbed for power demand
prediction and analysis with a relatively limited and closed environment. The machine learning
approach including the deep learning algorithms is convincing as a premise for power supply planning
due to its non-linear learning capability [3].

Residential power consumption prediction is defined as a multivariate time series prediction
problem [4]. As depicted in Figure 1, the differentiated features from sensor-level signals consisted
of energy consumption attributes are extracted to predict the power consumption levels with the
prediction model [5]. The process of predicting the future power demand from the historical power
consumption with the other power attributes is essential in the field of energy management system
(EMS) including the recently noted smart grid services. The main issue at the planning stage of the
plan-do-check-act operation cycle [6] in traditional EMS is modeling the nature of energy consumption,
which is limited to naive time-series models such as linear regression.
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Figure 1. A typical problem formulation and the hyperparameters of the energy consumption prediction
task with the resolution of the time and the time lag parameter.

In the domain of energy, machine learning aims at exploiting a database generated with the
historical data of all the clients and predicting the future energy demand. Various regression techniques,
including autoregressive integrated moving average [7] and support vector regressor [8], which are
representative methods for the energy prediction, successfully model the long-term behavior of
end-users and improve the prediction accuracy. Yet, in the prediction task under high-temporal
resolution conditions [9] aimed at modeling the short-term behaviors that expose the behavioral
patterns, a more complex and practical time series modeling method is required.

The power prediction models based on deep learning which achieved the highest performance
so far [10], on the other hand, encounter two major hurdles: One is the multicollinearity between
active power consumption patterns and other power attributes [11,12], and the other is the transient
and impulsive nature of power consumption mainly occurring from the usage of electronic products.
Although the convolution operation to learn the filter to extract the local correlation has been devised,
the simultaneous or exclusive usage of power consuming facilities that have a critical effect on the
active power cause the performance degradation of the deep learning models. Specifically, it is known
that the state-of-the-art models that do not focus on modeling the multivariate and impulsive properties
have their performance degradation in energy peaks.

The dataset of UCI household electric power consumption consisting of a total 2,075,259 time-series
and seven variables is a representative example of the typical difficulty of modeling between the
active power and the power consuming facilities. Figure 2 shows the correlation between the active,
reactive power, voltage, intensity and three sub metering attributes. With the color of the graph is
shown the active power level grouped into three stages, the existing deep learning-based models have
the limitation to hardly concentrate the control facility to predict power consumption.

In this paper, we propose a deep learning model based on multi-headed attention to model the
local connectivity between electric attributes and active power with the learnable feature extraction of
convolution and weighting mechanism in time-series modeling [13,14]. The key idea is to extract the
features from the multivariate electric attributes with the convolution operation, perform time-series
modeling of the power spectrum with the gating operation, and effectively predict the transient and
impulsive values of power consumption with multi-headed attention that performs probabilistic data
localization based on the softmax operation. Taken together, our hypothesis of the proposed method is
that the weighting function of attention can model the short-term patterns of time-series electricity
data including the energy peaks. We will show that the multi-headed attention selectively extracts
the power consumption patterns to cope with the challenge mentioned previously. To the best of
our knowledge, this is the first attempt that multi-headed attention is incorporated to predict power
consumption. The main findings of this research can be summarized as follows:
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e  The multi-headed attention works well for modeling the short-term patterns of time-series data,
resulting in the best deep learning model for predicting the energy demand.

e  The class activation map appropriately visualizes how the proposed method forecasts the energy
demand from the time-series data.
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Figure 2. Results of multivariate correlation of the energy attributes by the consumption level.

The remainder of this paper is organized as follows. In Section 2, we review the previous power
consumption models based on deep learning and clarify the contributions of this paper by discussing
the differences between them. In Section 3 we illustrate how the electric attributes are selectively
extracted by the deep learning model with multi-headed attention. The performance of the model
is evaluated in Section 4 through various experiments, including the visualization of multi-headed
attention vectors and comparison with recent models based on deep learning. Finally, Section 5
concludes the paper with some discussion of future directions.

2. Related Works

In this section, we review the relevant models based on deep learning for forecasting energy
consumption. According to the similarities of the fields and the techniques used, we present the
traditional signal processing methods as well as the power prediction studies based on deep learning.
Table 1 summarizes the significant studies of the last five years on predicting power consumption in
terms of the feature extraction and time series modeling. Most of the methods before the inception
of deep learning focused on the issue of time series modeling based on the symbolic-dynamic
approach [15,16]. Due to the limitations that slight shifts along the time axis causing a large distance
between the two time series, Lin et al. extracted and modeled the rotation-invariant symbols and
constructed the bag-of-patterns [17].

Meanwhile, the superiority claims by the power demand models based on machine learning
encountered a major hurdle: the methods are evaluated for short-term forecasting horizons and do not
consider medium and long-term ones [7]. In order to build time-invariant features and perform the
non-linear mapping for predicting the power consumption, Tso and Yau presented a neural network
and compared the performance with existing prediction methods based on the rules and symbols [18].
Among the power demand forecasting methods based on machine learning such as the autoregressive
integrated moving average (ARIMA) [7] and decision tree [8], the neural network achieved the best
performance, and its non-linear mapping capability attracted much attention [19]. In particular,



Energies 2020, 13, 4722 40f17

combining the approach of machine learning algorithms like the ensemble of recurrent neural network
and support vector regressor [20] improved the accuracy and the stability of power demand prediction.

Table 1. Related works on the residential energy consumption prediction based on deep learning.

. . . Prediction MSE
Time-Scale Author Domain/Data Forecasting Method (Time-Scale)
Factored Conditional 0.6211
Mocanu [21] UCI Household Power Restrict Boltzmann ;
. (1-h)
Machine
. Sequence-to-sequence 0.6420
Marino [22] UCI Household Power LSTM (1-h)
. New South Wales and 0.4059
Li [20] Victorian Australia RNN-SVR Ensemble (1-h)
Smart Grid Smart City 0.2903
Kong [23] (SGSC) Australia RNN, LSTM (1-h)
. Applied Building Stacked Autoencoder, 40.6747
Li [24] Ener Extreme Learning (30-min)
8y Machine
. M3-competition ARIMA, NN, GP, k-NN, 0.3252
Makridakis [7] Time-series Data SVR (1-h)
Rahman [25] Sal; Lfake ]glt'i]dl')ubhc LSTM 0.129}?3
Short afety Building (1-h)
(30-min Gonzalez-Briones  Shoe Store Ppwer Data LR, DT, RE, k-NN, SVR 0.4234
or [8] Spain (1-h)
1-h) . -
Nord Pool Electricity P 1n€ Function-based, 0.2428
Shah [26] Dat Polynomial Regression, (1-h)
ata ARIMA
Hong Kong 1182
Fan [27] Educational Building NN, RNN, LSTM :
' (24-h)
Operational Data
Kim [10] UCI Household Power CNN-LSTM 0(12_8}?)3
Irish Customer . .
Wang [28] Behavior Trials, Low Quantlli;});/s[-gmded 0(]1_5}15)2
Carbon London
CNN-LSTM with
Particle Swarm 0.3258
Kim [29] UCI Household Power Optimization-based o
. (30-min)
Architecture
Optimization
Smart Metering 0.4505
Medium Shi [30] Electricity Customer Pooling-based RNN (l-£non th)
(1-month) Behavior Trial (CBT)
. French National LSTM with Genetic 270.4
Bouktif [31] Enerev Consumption Algorithm-based Time (1-month)
8y P Lag Optimization
Long China Jiangsu Province LSTM, Quantile 594.8
Guo [32] .
(1-year) Power Regression (1-year)

The deep learning models, including the long short-term memory (LSTM) which can learn
temporal gating functions and the convolutional neural network (CNN) which can extract local
correlation between power spectrums, are making remarkable achievements in the field of energy
consumption forecasting and energy pattern classification [10]. Moreover, designed as a probabilistic
approach using CNN and LSTM layers as building blocks, autoencoder (AE) [24] and adversarial
learning models like generative adversarial network (GAN) [33] indirectly demonstrate the popularity
and possibility of deep learning for power consumption prediction.
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However, electricity demand forecasting is a difficult task due to the characteristics that demand
time-series exhibit. The characteristics include the non-constant mean and variance, calendar effects,
multiple periodicities, high volatility, jumps, et cetera. Mocanu et al. introduced a stochastic
pretraining stage into the power consumption prediction with a neural network and evaluated it under
various temporal conditions [21]. Restricted Boltzmann machine (RBM) is a representative neural
network model of unsupervised learning that aims to minimize the divergence of the Kullback-Leibler
divergence between the layers [34]. The stacked RBM is suitable for learning the prior distribution
from the power consumption data and has been contributed significantly to improving the prediction
performance. Marino et al. and Kong et al. attempted to predict the power consumption by using
the recurrent neural network (RNN) with LSTM designed for time series modeling, and verified
that the feasibility of a neural network with memory cell could significantly improve the prediction
performance [22,23].

To account for the different characteristics of the demand-series, recently, researchers suggested
optimization methods for forecasting models. The optimization of deep learning architecture or loss
function has been performed for the remarkable performance improvement in various domains. Li et
al. introduced the autoencoder before the time-series modeling to extract multivariate features [24],
and the RNN with pooling operation to selectively update the gradient [30]. A method of optimizing
the time lag parameters, a critical factor for prediction performance, by genetic algorithm (GA) was also
introduced [31]. Furthermore, the optimization of the power prediction model with particle swarm
optimization (PSO), which has faster convergence and larger exploration of searching the space than
GA, attracted the attention by outperforming the performance of existing deep learning models [29].
In addition, studies have proceeded to optimize or develop the loss functions, such as adaptation of
quantile loss function into neural networks [27,32].

From the relevant studies on deep learning applications to predicting energy consumption, it is
obvious that this area serves as a competitive platform for various deep learning techniques. In this
paper, we present another model based on the multi-headed attention on top of the most superior
model based on CNN-LSTM (convolutional neural network-long short-term memory).

3. Convolutional Recurrent Neural Network with Multi-Headed Attention

In this section, we describe the architecture of the CNN-LSTM network with multi-headed
attention that extracts the spatiotemporal features and models the power consumption from the
power spectrum. Two major components of the conventional power prediction model are adopted
and modified with end-to-end neural network architecture. Here, the multi-headed attention is
implemented with softmax and dot product operation to model the transient and impulsive values of
electricity demand.

3.1. Structure Overview

The main objective of the method is to forecast the electricity demand using CNN-LSTM network.
We incorporate the multi-headed attention mechanism and formulate it with the function ¢(-) that
extracts the spatiotemporal features and predicts the future energy demand. Since there is a complex
non-linear mapping expressed by stacking the multiple layers, we adopt a direct forecast strategy [35]
that avoids the accumulation of bias in the recursive strategy. The direct forecast strategy is formulated
with direct model ¢, and its parameter @j:

9 = (X2, Op) + ey (1)

where X", = [R;_, ..., Ri_j—,] with time lag @, @, = [P, 0] is the model parameter for horizon 1
where 1, is a set of hyperparameters and 0}, is a set of parameters, and ¢ ;, is the forecast error of the
model ¢y,. The electricity demand forecaster predicts h -step ahead, and we verify the model under
various conditions of {1-min, 10-min, ..., 1-day, 1-week} in Section 4. The input element R; of the



Energies 2020, 13, 4722 60of 17

sequence of the power attribute vector is composed of global active power, reactive power, voltage,
intensity, and three sub-meterings.

It is well known that the convolutional recurrent neural networks have the advantages represented
by data-driven filter learning focused on extracting spatiotemporal features in the field of signal
processing, including predicting the power consumption [10,36]. Figure 3 illustrates the overall
architecture of the CNN-LSTM with the multi-headed attention for predicting power consumption.
The proposed model for predicting the future power consumption from the input power data consists
of two major stages.

Implementation
Multi-headed Attention Mechanism Parameters

Attention-based CNN-LSTM Networks

Multivariate Power
Consumption Records

{ Voltage (V) ]
' T o T
[ Global Intensity (A) ] Spatial Feature Extractor: Power Consumption Regressor:
Convolution-Pooling Module LSTM-DNN
[ Kitchen (Wh) ]
Alignment Score

; [ Laundry (Wh) ] = flx.q)
: 7 .
! g g =)
g Climate Control 8 QU?{Z' _qxi e
| System (Wh) Y- Xe

Figure 3. Overall structure of the proposed CNN-LSTM with multi-headed attention.

First, the data preprocessing stage defines the hyperparameters required for training the
CNN-LSTM model. Min-max normalization per each power attribute and the sliding-window,
one of the most common preprocessing methods, are performed before defining the hyperparameter.
The sliding-window is defined by the length of the input signal w called time lag with the stride
parameter 7 that determines the amount of overlapping time steps. The power consumption data are
sampled with each period, and the proposed method is verified under the temporal resolution R; of 1,
15, 30, 45, and 60 min, 1 day, and 1 week, respectively.

Second, the modeling stage adjusts the weights of CNN-LSTM model according to the
hyperparameters defined. To extract spatiotemporal features from the power spectrum, we construct
a convolution-pooling operation that models the hidden correlations between power attributes [37],
and the gating operation applied to a recurrent memory cell that models the temporal relations from
time-series data [38]. Meanwhile, the multi-headed attention designed to interpret the activation
value as a probability and construct a correlation matrix with itself is implemented as a layer of the
CNN-LSTM model to be placed between each convolutional and recurrent layer [39]. In addition,
the class activation map (CAM) is put in the last convolutional layer for the analysis of the network
outputs, which can localize the receptive field by summing the weights of CNN’s top-most feature
maps [40].

3.2. Convolutional Recurrent Neural Networks

The major hurdle in modeling the power consumption with neural regressor lies in extracting
the spatiotemporal features from the limited consumption samples [41]. We construct the CNN and
LSTM for learning the features from the time-series power consumption data. The two deep learning
models are combined in a sequential manner, while maintaining the complementary relations from
spatiotemporal features.
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The convolution ¢.(-) and the pooling operation in CNNs, which have been successfully applied
in the field of the signal processing, are suitable to model the sequence of power consumption and
extract the features using local connectivity between windowed signals. The convolution operation is
known to reduce the translational variance between features [42] and preserves the spatial relationship
between power attributes by learning filters to extract the hidden correlations. Given the ¢-th time step,
the sequence of the convolutional operation is applied using m X 1 sized filter W with the a-th node in
the I-th layer and 7-th element in sequence of the power attributes R;:

m—1 t-w
S(Xi) = | ) WiR @)
a=0 =1

Because the dimension of the output vector that has been distorted and copied by the convolution
operation ¢ (-) is increased by the number of convolution filters, the summary statistic from nearby node
activations is extracted from ¢ () by a max-pooling operation. Pooling refers to a dimension reduction
process used in CNN in order to impose the capacity bottleneck and facilitate faster computation [43].
The max-pooling operation has effects on feature selection and dimensionality reduction under k x 1
sized area with pooling stride. The proposed 1D convolution-pooling operation aims to extract the
spatial features from the power spectrum per attributes and deliver the series of encoded vectors to
the following LSTM. The spatial features extracted by convolution-pooling function ¢, contain the
time-series information of the window size w according to the sliding-window preprocessing. The key
idea of LSTM is adapting the gating operation which is composed of input gate, forget gate, and output
gate o; and producing the encoded vector ¢y () with the cell state ¢; and the hidden value ; at the time
step £

¢L() = hy = o o tanh(cy) ®)

where o denotes the element-wise product and b denotes bias term. After the spatiotemporal features are
extracted by CNN-LSTM, the typical multi-layer perceptron (MLP) is used to complete the regression
function ¢ (-) with activation function ¢ and weight matrix W':

¢'(Xe) = o( WL (¢F2(Xp)) + ') @)

where a linear activation function is used in the last layer of MLP so that the output scalar value 7 is
interpreted as a power prediction. The CNN-LSTM regressor is updated by the backpropagation
algorithm with gradient descent optimization, by minimizing the loss function represented by mean
squared error (MSE) where 1 denotes the number of observations:

1 v .
Luse = Z(]/i -9:)° (5)
i=1

3.3. Multi-Headed Attention

Attention is used to compute an alignment score between elements from two sources [44,45].
Intuitively, the attention mechanism is formulated as an operation to calculate the similarity between
query and key, and to extract the value related to the query as a weighted sum. Given the time step ¢
of the window X{’ = [R, ..., R;—,] and the spatiotemporal feature vector representation of a query
g, attention computes the alignment score by a compatibility function f(R¢, Q) which measures the
correlation between R; and Q. The alignment score vector A; = [f(Ry, Q)]t;‘; consists of a series of
correlations between the elements of query and key measured by the compatibility function:

Ar = [f(R, Q)] ©6)
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The compatibility function is interpreted as a probability distribution p(z
operation, with the indicator variable z as defined as follows:

X, Q) by a softmax

p(2IR;, Q) = softmax(Ay) @)

The correlation between the query Q and the key expressed on the scale of [0,1] can be expressed as a
random variable defined in the following equations as the attention score s, and can be written as the
expectation of the energy consumption sampled according to its importance:

B exp(f(R,Q))
PlE=42) = 9 exp(f(Re, Q) ®

t—w
1= ZT:t P(z = 7[Ry, Q) = Et”P(Z|Rt,Q) (Rt) )

The compatibility function f is commonly used as an additive or multiplicative operation.
The function f is implemented as the multiplicative (dot-product) operation that guarantees
memory-efficient and fast convergence when considering the characteristics of the power consumption
data of huge instances, with the spatiotemporal feature encoding function ¢, (-) defined in Section 3.2:

f(R, Q) = ¢y (Rr) - 91, (Q) (10)

The attention mechanism is implemented as the deep learning layers; the attentive layer is placed
between the modeling steps of the power spectrum and the time series. The attention layers are
suitable for modeling the sudden increase in the usage of the power facilities which were difficult to
predict by conventional deep models for predicting the power consumption. Self-attention is a special
case of the attention: it replaces query Q with a source signal X;. The single-attention mechanism
intuitively performs dot-product on itself encoded by the convolution-pooling operation, and as the
effect of obtaining the covariance between spatiotemporal feature vectors.

The proposed multi-headed attention, on the other hand, is an extension of the attention
mechanism, which holds multiple attention in a single window and performs better than single-headed
attention [45]. Figure 4 shows the multi-headed attention. Instead of computing a single scalar score
f(X¢, X¢) for each time step, we define the output of compatibility function f with the vector of the
same length as X;. Z; denoting the alignment score from the compatibility function. Since we have
expanded the dimension of the attention vector into [f(R¢, Q)],, we can formalize the importance
weight vector Py, for the element of the power attribute or encoded feature k in each step t:

Py = p(Zx = i|R, Q) (11)

—w de )
5= [Z:t P kTthq]k:l = [Et“P(ZHRhQ)(RItd)]Z:l (12)
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Figure 4. The operations of the multi-headed attention.
4. Experimental Results

In this section, we present how the CNN-LSTM with multi-headed attention predicts the power
consumption and evaluate the performance with 10-fold cross-validation in terms of prediction error,
which is followed by quantitative comparison with the relevant deep learning models.

4.1. Dataset and Implementation

We validate the proposed CNN-LSTM with multi-headed attention on the dataset of UCI household
electric power consumption [46]. As shown in Table 2, the data were collected as approximately
2.07 million multi-channel sensors recording the household power consumption from December 2006
to November 2010, and the attributes include global active power (GAP), global reactive power (GRP),
voltage, intensity, and additional three sub meterings. The data are normalized and processed in a
sliding-window with time lag parameter w. The prediction model receives the seven attributes under
the time resolution condition and produces the GAP of the next time step.

Table 2. The attributes and statistics of the UCI household electric power consumption dataset.

Global Global Global Climate

Attributes  Date Active Reactive Vo(l‘t;;ge Intensity K(l‘t:,}}:m La(txl}:i)ry Controls
Power (kW)  Power (kW) (A) (Wh)
Average - 1.0916 0.1237 240.8399 4.6278 1.1219 1.2985 6.4584
Std. Dev. - 1.0573 0.1127 3.2400 4.4444 6.1530 5.8220 8.4372
Max 26/11/2010 11.1220 1.3900 2541500  48.4000 88.0000 80.0000 31.0000
Min 16/12/2006 0.0760 0.0000 223.2000 0.2000 0.0000 0.0000 0.0000

The architecture of CNN-LSTM can be modified variously according to the number of stacked
convolution-pooling and LSTM layers, as well as the number of convolutional filters, the kernel
size and the number of the nodes in LSTMs. Given that typical deep learning models require an
optimization process, it is essential to adjust and optimize the hyperparameters. The hyperparameters
of the proposed model are determined by the intuition from the statistics of energy consumption
as well as a through empirical study of iterative optimization summarized in Table 3. Figure 5
shows the overall architecture of the proposed model, where the time-distributed convolution-pooling
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layers, the self-attention, and LSTM layers are depicted. The spatiotemporal features from the power
consumption data at each time step are exclusively extracted from time-distributed convolution and
LSTM layers, respectively.

Table 3. Summary of the hyperparameters of the proposed model.

No. of Activation No. of
Operation C.onvolution Kernel Size  Stride Function Parameters
Filters/Nodes
TimeDistributed(Conv1D) 64 2x1 1 tanh 192
TimeDistributed(MaxPool1D) - 2 tanh 0
TimeDistributed (Multi-Attention) - - softmax 0
TimeDistributed(Conv1D) 64 2x1 1 tanh 8256
TimeDistributed(MaxPool1D) - 2 tanh 0
TimeDistributed (Multi-Attention) - - softmax 0
Dropout 0.5 - - - 0
LSTM 64 - - tanh 73,984
LSTM 64 - - tanh 33,024
Dropout 0.5 - - - 0
Dense 64 tanh 4160
Dense 64 tanh 4160
Dense 1 linear 65

Figure 5. Implementation of the proposed CNN-LSTM with multi-headed attention.

ReLu + BatchNorm + Dropout

x
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Consumption

4.2. Power Consumption Prediction Performance

Figure 6 compares the results of the prediction performance for the machine learning models
including the convolution neural network and LSTM neural network. The proposed model designed
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to selectively model the spatiotemporal features has achieved the error reduction of 21.82%, compared
to the conventional CNN-LSTM neural network. The evaluation is based on the mean squared error
(MSE) for measuring the errors in Euclidean space:

n 1 n
MSE = %Zizl(}/t -9 = - Zi:l(yt — (X)) (13)

We further evaluate the proposed model in various time resolutions of 1, 15, 30, 45, and 60 min, 1 h,
1 day, and 1 week in Table 4. Each MSE is the result of the 10-fold cross validation. We compare machine
learning methods for power demand forecasting published in the last two years. The prediction error
is the highest at the unit time of 45 min and 1 h, and sometimes the performance degradation occurs
due to the loss of short-term temporal features that might disturb the long-term temporal modeling.
Considering that the end-user’s long term behavior is reflected as a trend at low temporal resolution,
the smoothing strategy is effective. It is known that the autoregressive integrated moving average
(ARIMA) can model the overall trend of the time-series based on the moving average operation.
As expected, the advantages of ARIMA emerge in the long period of 1W and 1D, and nonlinear
mapping methods such as support vector regressor (SVR) and neural networks alleviate errors in
a short period of 1H and 1M. The proposed method achieves the best performance in all temporal
resolutions against the latest machine learning methods [7,8] and deep learning method [10].

0.1026
0.13 0.1003

0.11
0.0844 0.0802

0.09
? % 0.0741
0.0666 == 0.0660 (0516
=== =

MSE

0.07
0.05

0.03
LR DT RF MLP CNN LSTM CNN Ours

-LSTM [10]
Figure 6. 10-fold cross validation of the methods including the deep learning models.

Table 4. Comparison of MSE according to time resolution and modeling method (LR: linear regression;
ARIMA: autoregressive integrated moving average; DT: decision tree; RF: random forest; SVR: support
vector regression; MLP: multilayered perceptron; CNN: convolution neural network; and LSTM: long
short-term memory).

Resolution LR ARIMA [7] DT RF SVR [8] MLP CNN LSTM CNI\E](;]S ™ Ours
M 0.0844 0.0838 0.1026  0.0802 0.0797 0.1003  0.0666  0.0741 0.0660 0.0516
15M 0.2515 0.2428 0.4234  0.3972 0.3228 02370 02123  0.2208 0.2085 0.1838
30M 0.3050 0.2992 0.5199  0.3951 0.3619 02813 02684  0.2773 0.2592 0.2366
45M 0.3321 0.3431 0.4804 04315 0.4247 0.3208  0.3183  0.3220 0.3133 0.2838
1H 0.3398 0.3252 0.5259  0.4344 0.4059 03072  0.2865  0.2903 0.2803 0.2662

1D 0.1083 0.0980 0.1891  0.1190 0.1311 0.1134  0.1069  0.1129 0.1013 0.0969
i 0.0624 0.0616 0.0706  0.0617 0.0620 0.0441  0.0333  0.0387 0.0328 0.0305

We confirm the effect of changes in time lag parameter w. Figure 7 shows the MSE performance
by iterative evaluations according to the temporal resolution and the time lag. As in the previous
experimental results, it is observed that the prediction error considerably increases and yields
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0.3848 MSE in the condition of 45 to 60 min, and the prediction error similarly increases regardless of
the resolution with a short time lag.

——y 0.3848
MSE
0.35
10
0.25 20
30
0.15
40
0.05

50

IM 15Mm
30M 45M 1 = lwéoTimeLag

Resolution
Figure 7. Comparison of MSEs by the time lag parameter w.

4.3. Effects of Multi-Headed Attention

For a thorough comparison, in addition to the neural networks proposed in previous works for
energy prediction, we implement four additional neural networks and compared the prediction errors
in Table 5. The scalability of the multi-headed attention can be evaluated by improving the different
neural network architectures. It can be seen that the multi-headed attention improves the performance
for power prediction in all cases. Interestingly enough, the single-attention significantly improves the
performance of 2D-CNN, implying that a filter of extracting temporal features within a 2D convolution
filter is appropriately learned from the local connectivity of time steps.

Table 5. Effect of various attention mechanisms on different neural network architectures (MSE).

Attention Type CNN (1D) CNN (2D) LSTM CNN-LSTM
None 0.0724 0.0666 0.0741 0.0676
Single-attention 0.0701 0.0542 0.0706 0.0660
Multi-headed 0.0688 0.0538 0.0683 0.0516
Attention

We compare the prediction performance of the proposed model with that of a competitive
CNN-LSTM model by plotting the ground-truth and prediction values in Figure 8. The prediction
values in the red line are quite similar to the actual power consumption values in the black line,
which shows the superiority of the prediction in the transient and impulsive cases mentioned in
Section 1.
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—— GAP s
—-— CNN-LSTM
----- with Attention
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390190 590195 590200 590205 590210 90215

27215 27220 27225 27230 27235 27240 1875 1880 1885 1890 1895 1900

(Time lag=60, Resolution=1D) (Time lag=60, Resolution=1H)
Figure 8. Verification of robustness to transient, impulsive characteristics of power consumption data.
4.4. Discussion

Meanwhile, we discover the two patterns of prediction failure mainly occurred in the case of
Figure 9. The attention vector is uniformly distributed over all entire time steps in the window.
Considering that the attention score is expressed as a probability distribution at the scale of (0,1) by
the softmax operation, we conclude that the output of the deep learning models diverges and fails to
extract spatiotemporal features.

Figure 9a shows the heat map of the convolutional filter for the two prediction failures that can be
analyzed as the delay in weighting the control facility occurred in preparation for the sudden increase
of the GAP. In Figure 9b, on the other hand, a sudden decrease in GAP without reason is observed,
and it can be confirmed that it is difficult to model only by the historical power consumption data.

Taken together, in terms of the power prediction performance and the effect of the attention
mechanism, we have evaluated the performance and the robustness in the transient and impulsive
signals by quantitative and qualitative experiments. The general power prediction, however,
still requires additional mechanism to cope with the aleatoric uncertainty [47] caused by the distribution
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of the power consumption data. This problem can be handled by extending the proposed model with
generative deep learning and adopting the unsupervised learning.

51 = Ground Truth
~=- Predicted

14'75 l4I80 1485 14’90 ]4é5

= Ground Truth
~=- Predicted

14'75 l4I80 1485 14’90 14é5

GAP GAP
GRP " ' GRP =
Voltage Voltage
Intensity Intensity
Kitchen Kitchen
Laundry Laundry
Control Control [ R
Others Others
GAP GAP

GRP
Voltage
Intensity
Kitchen
Laundry
Control
Others

(a) Prediction Failure on
Increasing Watt-hour

GRP
Voltage
Intensity
Kitchen
Laundry
Control

Others

(b) Prediction Failure on
Decreasing Watt-hour

Figure 9. The gradients in the convolutional layers depicted by class activation map.

5. Concluding Remarks

In this paper, we have proposed a deep learning model with the multi-headed attention for

predicting power consumption. After addressing the issues to model the power consumption and
reviewing the power prediction models based on deep learning, we have presented the proposed
model of CNN-LSTM for extracting the spatiotemporal features and the multi-headed attention for
learnable weighting. The model has been evaluated in various temporal conditions and the deep
learning parameters are analyzed by class activation map to understand the prediction failures.

Meanwhile, events that are outside the long-term behavior can be considered as possible events
happening and failure to correctly predicting them within accuracy, which the rest of the prediction
profiles present, can be attributed as outlier points. As a future work, we will take care of this issue
through aggregation practices which smooth out the effect of such mis-prediction, and treat it within
the tolerable error by the provided flexibilities of the hybrid approach.
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