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Abstract: In this article, we present a novel tight coupling inertial localization system which
simultaneously processes the measurements of two inertial measurement units (IMUs) mounted on
the leg, namely the upper thigh and the front part of the foot. Moreover, the proposed system exploits
motion constraints of each leg link; that is, the thigh and the foot. To derive these constraints, we carry
out a motion tracking experiment to collect both ground truth data and inertial measurements from
IMUs mounted on the leg. The performance of the tight coupling system is assessed with a data
set of approximately 10 h. The evaluation shows that the average 2D-position error of the proposed
tight coupling system is at least 50% better than the average 2D-position error of two state-of-the-art
systems, whereas the average height error of the tight coupling system is at least 75% better than the
average height error of the two state-of-the-art systems. In this work, we improve the accuracy of
the position estimation by introducing biomechanical constraints in an inertial localization system.
This article allows to observe, for the first time, heading errors of an inertial localization system
by using only inertial measurements and without the need for using maps or repeating totally or
partially the walked trajectory.

Keywords: fusion; model; heading; experiment; wearables; inertial navigation; step and heading;
strapdown; parameter estimation; evaluation; ground truth

1. Introduction

The safety of first responders like firefighters or police officers during emergency responses is key
to guarantee their success in keeping us all safe. To this day, the safety of first responders relies mainly
on strict operation protocols. In some cases, technology enables added functionality, for example,
radio communication systems for firefighters [1] or monitoring of heart rate, temperature and
humidity [2].

There is one important challenge that technology does not cover yet: accurate indoor
localization of first responders during emergency responses in challenging environments, for example,
environments with poor reception of satellite signals or fragile infrastructure. A potential solution is
the use of inertial technology [3], which can also be used to predict the user’s activity [4], which is an
added value of this technology. For instance, we can use inertial localization systems to detect if a
firefighter collapsed during the emergency response.

Inertial localization has multiple challenges; among which the most characteristic one is the
heading drift [5,6]. The heading is the direction of the user’s walk and the heading drift is the error
accumulation in the heading [7], which occurs due to the integration of the errors in the turn rate
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measurements during the estimation of attitude of the IMU.Such error accumulation is a challenge
common to all inertial localization systems [5,6] and affects the accuracy of the estimated odometry,
that is, the position solution. There are different techniques that target the mitigation of the effect
of the heading drift in the accuracy of the position estimation. We refer to these techniques as
drift-compensation techniques and we distinguish two categories:

• drift compensation based on algorithms. In this category, inertial localization systems use
techniques like simultaneous localization and mapping (SLAM) [8,9] or landmark detection
[10–12] to reduce the drift in the odometry estimation.

• drift compensation based on sensor fusion. In this category, inertial localization systems
incorporate information from other sensors, for example, global navigation satellite system
(GNSS) measurements [13–15] or WiFi measurements [10,16] to correct the position solution of
the inertial localization system.

In this work, we focus on drift-compensation techniques based on sensor fusion. More specifically,
we focus on the combination of the measurements from different IMUs. We refer to these as multi-IMU
localization systems. One approach that exploits multiple IMUs for inertial localization is to create
an IMU array and average the raw measurements. For instance, Skog etal show that the noise in the
accelerometer measurements can be reduced by averaging the measurements of the sensors placed
on a 2D-array [17]. The authors of Reference [18] propose different algorithms to combine up to five
IMUs. Each of the proposed algorithms combines the raw measurements of the IMUs in a different
way and the authors analyze the benefits and shortcomings of each algorithm.

There are different works that use multiple IMUs and incorporate motion constraints. For instance,
Meng etal use seven IMUs distributed around both legs to estimate the step length [19]. The authors
propose a leg model that incorporates not only the attitude of each leg limb, but also hard constraints
on some of the attitude angles. Another example can be found in Reference [20], where the authors
place an IMU on each foot. The proposed algorithm estimates two different position estimations
with the raw measurements form each respective IMU. Then, the authors apply a constraint on the
maximum separation allowed between both position estimations. This constraint is based on the
physiological limitations of a pedestrian.

We have noticed that the state-of-the-art does not guarantee that the attitude estimation of an
inertial localization system is coherent with respect to human motion. In this work, we use the term
coherent motion of a body limb to refer to the motion that is expected from this body limb. Such motions
have been extensively studied and characterized in medicine [21]. For instance, Skog etal do not take
into account the motion of the limbs during the walk [20]. Moreover, Meng etal impose hard constraints
on the motion of the limbs which do not model the limb motion that the IMU is measuring [19].

Our study in Reference [22] shows that the error accumulation in an inertial localization
system leads to the estimation of an incoherent motion of the limb on which the IMU is mounted.
In Reference [22], we have studied two independent single-IMU localization systems. More specifically,
a localization system based on a thigh-mounted IMU and a localization system based on a
foot-mounted IMU.

The overall goal of this article is to propose a tight coupling system for pedestrian localization
based on the fusion of the inertial measurements from a thigh-mounted IMU and a foot-mounted IMU,
as Figure 1 indicates. Our proposed system exploits the motion constraints of the human leg. We have
the following objectives:

• Analyze the motion constraints of the human leg and formulate them in terms of the Euler angles
of both the upper thigh and the foot.

• Propose a tight coupling system for pedestrian localization which combines the inertial
measurements of a thigh-mounted IMU and a foot-mounted IMU and integrates motion
constraints of both leg links, namely the upper thigh and the foot.
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• Evaluate the effect of the motion constraints in the estimation of the Euler angles of the tight
coupling system.

• Evaluate the performance of the tight coupling system and compare it to the performance of state
of the art systems.
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Figure 1. (Left) Representation of the navigation frame (xn, yn, zn), which is fixed, and the IMU frame
(x, y, z). (Right) Representation of the human leg as a set of joints, namely the hip, knee, ankle and
metatarsal, and links, namely the thigh, shank and foot. The IMUs are indicated by the orange boxes.
This figure exemplifies the mounting of the IMUs on the human leg and how the tight coupling system
uses the measurements of both sensing devices simultaneously to estimate the pedestrian’s position.

2. Research Methodology

In this section, we describe in detail our tight coupling system which incorporates the
biomechanical dimension into the position estimation process. Firstly, we analyze the motion of
the leg in order to understand how a person moves and the limitations of human physiology. Then,
we study how the errors in an inertial localization system translate into the leg motion. Secondly,
we integrate the outcome of the aforementioned analysis in the tight coupling system. One of our
main considerations in to avoid the use of hard constraints in our tight coupling system, as opposed to
Reference [19].

2.1. Background: Motion Tracking Experiment

In order to analyze the motion of the leg, we carry out an experiment to simultaneously measure:

• Inertial data, that is, acceleration and turn rate, of each of the leg links of one leg. The inertial data
is measured with an inertial sensor, more specifically a MTw from Xsens [23].

• Ground truth, that is, position and attitude, of each of the leg links of one leg. The ground
truth is measured with a camera-based motion tracking system (https://www.vicon.com/file/
vicon/bonita-brochure.pdf) which tracks continuously over time the position and attitude of
predefined objects.

https://www.vicon.com/file/vicon/bonita-brochure.pdf
https://www.vicon.com/file/vicon/bonita-brochure.pdf
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Figure 2. (Left) Mounting frame prepared for the experiments. On each mounting frame, we mounted
an inertial sensor (orange boxes) and a set of reflectors which uniquely identify each mounting frame.
(Right) Set up of the mounting frame on a volunteer’s leg. In this work, we only make use of the data
from the thigh and the foot mounting frames.

The experiments here presented have also been used in Reference [22]. During these experiments,
the volunteers were equipped with the mounting frames presented in Figure 2. Although it shows
that the volunteer wears three mounting frames, namely on the thigh, shank and foot; we only
make use of the thigh and foot information in this work. The volunteers performed three different
types of trajectories in an 8 m × 3 m area: a rectangle trajectory, an eight-shape trajectory and a
random trajectory. Moreover, each trajectory was repeated twice. The experiments are summarized
in Table 1. A total of nine volunteers of different heights and weights participated in the experiment.
In total, we have more than 3 h of data, that is, the inertial measurements and the true position and
attitude of each leg link. An example is shown in Figure 3 of the Euler angles and the associated
rectangle trajectory.

An important aspect of our experiment is the synhronization of the inertial data with the ground
truth data. In order to synchronize these two types of information, we asked each volunteer to
perform a synchronization sequence at the beginning and end of each walk. By means of this
synchronization sequence, we could synchronize the inertial data with the ground truth data and
therefore compare them.

In the following, we analyze the motion of the legs in two parts—the tilt angles, that is, the roll
and pitch, and the heading difference between the thigh and the foot. The reason for this approach is
that the heading is not observable with inertial measurements [24]. Therefore, we study the heading of
one limb with respect to the heading of another limb. In contrast, the roll and pitch are observable
with inertial measurements thanks to the measurement of the gravity force. Thus, we can analyze the
roll and pitch of one leg link independently of the roll and pitch of another leg link.

Table 1. Summary table of the experiments to evaluate the biomechanical motion of the leg.

Feature Value or Description

Number of users 9
Number of trajectories 3
Repetitions per trajectory 2

Total amount of data 3 h 37 min
Output data (motion tracking system) 3D position and attitude
Output data (IMU) 3D acceleration and 3D turn rate



Sensors 2020, 20, 5364 5 of 22

20 40 60 80 100 120 140 160 180
-20

-10

0

10

20

30

A
ng

le
 (

°)

-6 -4 -2 0 2 4 6
-4

-3

-2

-1

0

1

2

3

Figure 3. (Left) Tilt angles, i.e., roll and pitch, associated to the rectangle trajectory. (Right) Example of
a rectangle trajectory during the motion tracking experiment. The red cross at (0, 0) indicates the start
and end of each walk.

2.2. Biomechanical Analysis of the Tilt Angles

For completeness, we present a summary of our analysis of the tilt angles of an inertial localization
system [22]. This analysis was first proposed for single-IMU localization systems. However, the results
are extensible to inertial localization systems based on more than one inertial sensor.

Anatomical studies show that human motion is constrained [21]. In the case of inertial localization
systems, the Euler angles are the signals that inform about human motion. More specifically, the roll
and pitch measure the motion of the body limb where the inertial sensor is mounted and we can
analyze these angles thanks to the experiment described in Section 2.1.

Our analysis revealed that the pairs roll-pitch of a leg link are distributed around a constrained
area, which we refer to as comfort zone, see the white rectangle in Figure 4. The comfort zone of a leg
link tells us that not only is its motion constrained, but also that the leg links of different people move
in a similar way regardless of their height, weight and walking style. It is also interesting to observe
that the comfort zone of the upper thigh is larger than the comfort zone of the foot, which is expected
since the range of motion of the thigh while walking is larger than the range of motion of the foot.

�✁✁✂ ✄☎ ✆✂✝☎✞✟ ✠✡✝✆✟

☛✄☞✟

Figure 4. (Left) Heat map of the comfort zone (white rectangel) of the thigh. The red marks are the roll
and pitch estimated by the inertial localization system based on a thigh-mounted inertial sensor [25].
(Right) Evolution of the right leg—in grey—during the stance phase.

We use the comfort zone of each leg link to generate a probabilistic model of the roll and
pitch of each leg link. More specifically, we model the roll and pitch of both the thigh and the
foot during the stance phase of the foot as Gaussian distributions. Thanks to the maximum likelihood
estimation (MLE) [26], we estimate the mean and standard deviations that best model the angles.
These parameters are shown in Table 2. The advantage of Gaussian distributions is that they are easily
integrated into Kalman filters [27], which is the algorithm through which we implement our inertial
localization system [3].
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Table 2. Parameters of the maximum likelihood estimation (MLE) Gaussian distributions of each tilt
angle of the thigh and the foot.

Variable Mean µ [◦] Standard Deviation σ [◦]

Thigh roll 4 4.5
Thigh pitch −0.8 8
Foot roll 0.8 1.7
Foot pitch 0.8 3

It is important to highlight the consequences of our findings:

1. We can observe errors in inertial localization systems by analyzing human motion.
2. The errors in the Euler angles estimation of the inertial localization systems translate into

incoherent motion of the leg links where the inertial sensor is mounted, see the red marks
in Figure 4.

3. To analyze if an inertial localization system is estimating incoherent motion, we do not need
the true trajectory. We need only to statistically characterize human motion and compare the
estimated angles to the expected ones, for example, the probability density functions (PDFs) of
the roll and pitch angles.

Our approach in Reference [22] is extensible to multi-IMU localization systems because
their estimation of the roll and pitch of each leg link is the same as the one of a single-IMU
localization system.

2.3. Biomechanical Analysis of the Relative Heading

The approach of the previous section is not applicable to observe the errors in the heading
estimation. The reason is because the true heading cannot be estimated only with inertial
measurements [24].

We propose to analyze the heading difference between the thigh heading and the foot heading
in order to observe the errors in the heading estimation. The reason is that the heading estimation
represents the direction of the walk which intuitively should be the same for both leg links. To analyze
if our intuition is valid, we define the relative heading (ψr) as the difference between the thigh heading
(ψt) and the foot heading (ψ f ):

ψr = ψt − ψ f . (1)

Figure 5 plots the ground truth relative heading between the thigh and the foot for one of the
users that participated in the experiment of Section 2.1. In this figure, we observe that the ground truth
relative heading has two components: a constant value or offset and vibrations. The constant value is
due to the mounting of the sensors on the thigh and foot because the associated sensor frames were
not perfectly aligned, see Figure 1. The vibrations around the offset are due to the motion of the leg
links, that is, thigh and foot, during the walk.
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Figure 5. (Left) Relative heading between the thigh and foot as defined by Equation (1). (Right)
Decomposition of the relative heading in its two components. This model is based on the data recorded
during the motion tracking experiment in Section 2.1.
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All in all, we consider that our intuition is correct: the relative heading of two leg links is
approximately the same. Yet, our experiment reveals that there are components of the relative heading
that are not intuitive, for example, the effect of the mounting of the sensing devices on the leg links.
These components of the relative heading are only observable when carrying out experiments like
the one in presented in Section 2.1. That is, an experiment where devices that can measure absolute
headings are used.

Figure 6 shows the relative heading estimated with both the ground truth data from the motion
tracking system and the heading estimations of the inertial localization systems based on the
thigh-mounted and foot-mounted inertial sensors. It is interesting to compare both estimations:
while the ground-truth relative heading remains constant over time, the inertial relative heading
increases linearly over time. In order to understand the biomechanical implications of Figure 6, let us
imagine a user walking on a straight line, for example, with an initial heading of 0 ◦. According to
the inertial relative heading, while the user is walking on a straight line, the user’s thigh and foot are
constantly rotating with respect to each other around the z-axis. This fact is not only false but also
impossible from a biomechanical perspective because most users cannot rotate their thigh and foot as
much as the inertial relative heading indicates in Figure 6.

0 20 40 60 80 100 120 140 160 180 200
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Figure 6. (Left) Relative heading between the thigh and foot, as defined by Equation (1), estimated with
both the ground truth and the inertial data. (Right) Decomposition of the inertial relative heading in
its two components. This model is based on the inertial measurements recorded during the motion
tracking experiment in Section 2.1.

Figure 6 shows also a simplified model of the inertial relative heading. In contrast to the model
of the ground truth relative heading, the model of the inertial relative heading includes an error
component, which is the difference between the heading drift of both the thigh and the foot. To analyze
this error component, let us write the heading estimation of the inertial localization systems as follows:

ψt = ψ + ψvt + ψet, (2)

ψ f = ψ + ψv f + ψe f , (3)

where ψ is the user’s true heading, ψvi is the vibration in the heading due to the motion of the leg link
during the walk and ψei is the heading drift due to the attitude tracking algorithm. The subindex i
refers to the thigh (t) or the foot ( f ). By subtracting the two equations above, the relative heading can
be expressed as:

ψr =
(

ψvt − ψv f

)
+
(

ψet − ψe f

)
, (4)

where each addend represents each of the components on the right-hand picture of Figure 6,
respectively.

In the inertial relative heading, we only observe the difference in the heading drift of the thigh and
the foot, namely ψet − ψe f . Therefore, the relative heading allows us to perceive the error difference
between the drift of the thigh heading and the drift of the foot heading. In general, both drifts are
different and therefore the second addend in Equation (4) is non-zero, which allows us to observe that
two inertial localization systems are estimating an incoherent heading.
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Depending on the independent drifts, namely ψet and ψe f , the incoherent behaviour of the inertial
relative heading will be more or less highlighted. More specifically, the higher the difference in the
heading drifts, the steeper the slope of the inertial relative heading, see Figure 6. This slope is an
incoherence from the biomechanical point of view as it means that the thigh and foot are constantly
rotating with respect to each other while the user is walking.

To sum up, the relative heading is a new magnitude that represents the heading difference
between the heading estimations of two inertial sensors mounted on two different leg links. Thanks to
the relative heading, we can observe not only the heading errors but also that the heading error leads
to a biomechanical incoherent motion. The limitation of our approach is that we can observe the
difference in the heading errors but we are not able to estimate the heading drift associated to the thigh
heading and the foot heading.

2.4. Proposed Tight Coupling System

This section presents the implementation of the tight coupling system, which takes as inputs
the raw measurements of the thigh and foot inertial sensors and outputs the 3D-position of the user.
The key feature of the tight coupling system is the integration of biomechanical constraints that
guarantee that the Euler angles estimation of the tight coupling system is coherent with respect to
human motion. By guaranteeing the coherence of the Euler angles, the biomechanical constraints are
directly and indirectly influencing the accuracy of the position estimation of the tight coupling system.

The block diagram of the tight coupling system is presented in Figure 7 and it consists of three
main blocks: the stance phase detection block, the attitude tracker block and the 3D position tracker.
The stance phase detection block detects when the foot is in stance phase, see Figure 4. The reader is
referred to Reference [3] and references therein for the description of stance phase detection algorithms.
The detection of the stance phase is necessary to apply the constraints of the tilt angles, see Section 2.2.

Circular
mean

Gravity

Relative
heading

Comfort
zone

Prediction Update

Attitude tracker

Attitude
propagation

Acc, gyr

Stance phase
detection

Stance phase flag

(thigh)

Acc, gyr

(foot)

Strapdown

Steps sampling

Stairs sampling

2D position est.
(12), (13)

Height est.
(14)

p

3D position tracker

Steps & stairs
detection

p
s

Figure 7. Block diagram of the tight coupling system. The inputs are the acceleration vector (acc) and
the turn rate vector (gyr) of both the thigh inertial sensor and the foot inertial sensor. The output is the
3D-position of the user (p) and est. stands for estimation.

The attitude tracker estimates the Euler angles of both the thigh and the foot. This block takes as
input the raw data of both inertial sensors as well as the stance phase flag. This block also integrates the
biomechanical constraints derived from the study in Sections 2.2 and 2.3. Finally, the 3D position tracker
block estimates the user’s position by exploiting characteristic features from both the thigh-mounted
and the foot-mounted sensors.

The next sections detail the implementation of the attitude tracker block and the 3D position
tracker block.

2.4.1. Attitude Tracker

The attitude tracker implements an unscented Kalman filter (UKF) [28], which is suitable for
processes that are non-linear, like the tracking of the attitude of a body [29]. The states vector (x) of our



Sensors 2020, 20, 5364 9 of 22

attitude tracker comprises the following elements: the attitude vector of the thigh (Ψt) the gyroscope
bias vector of the thigh-mounted inertial sensor (bg t), the attitude vector of the foot (Ψ f ), the gyroscope
bias of the foot-mounted inertial sensor (bg f ) and the user’s heading (ψu):

x =
[
ΨT

t , bg
T
t , ΨT

f , bg
T
f , ψu

]T
, (5)

where (·)T indicates the transpose operation. It is worth highlighting that all vector magnitudes are
column vectors and that the user’s heading is a scalar.

Similarly to all Kalman filters, the UKF has two stages, namely the prediction and the measurement
update, see Figure 7. During the prediction, the states vector is propagated following the process
model. In our case, the process model to estimate both the attitude vectors and the gyroscope bias
vectors is detailed in Reference [3] and references therein. In the case of the user’s heading (ψu), it is
estimated as the circular mean [30,31] between the thigh heading (ψt) and the foot heading (ψu):

ψu = arctan

(
sin(ψt) + sin(ψ f )

cos(ψt) + cos(ψ f )

)
. (6)

The main advantage of the circular mean is that it is better suited to estimate the average of circular
magnitudes like angles, in this case, the average of the thigh heading and the foot heading.

The second stage of the UKF is the measurement update, during which some states are corrected
with external measurements. In our case, the attitude tracker block implements three measurement
updates: the gravity update, the comfort zone update and the relative heading update. The gravity
update corrects the tilt angles of both leg links, namely the thigh and foot, when these are static or
quasi-static. The reader is referred to Reference [3] and references therein for more details on the
implementation of the gravity update.

In the following, we focus on the description of the implementation of the comfort zone update
and the relative heading update since these are the result of the biomechanical study presented in
this article.

Comfort Zone Update

The goal of the comfort zone update is to ensure that the tilt angles estimation of the attitude
tracker is coherent with respect to the motion of the leg link. The motion of each leg link, namely the
thigh and foot, is characterized by the Gaussian distributions of the comfort zone of each tilt angle of
both the thigh and foot during the stance phase.

The knowledge provided by the Gaussian distributions is integrated in the UKF as soft
constraints [32]. A soft constraint is a measurement update in which a state is expected to take a
certain value which has an associated confidence. In our case:

• the states are the roll and pitch of both the thigh and foot,
• the expected values are the mean of the associated Gaussian distributions,
• the confidence values are the standard deviations of the associated Gaussian distributions.

Following the approach already proposed in Reference [22], the comfort zone update is applied
upon the detection of the stance phase. The measurement vector (zc) is the following:

zc =
[
φz

t , θz
t , φz

f , θz
f

]
, (7)

where φz
t , θz

t , φz
f and θz

f are the average values of the roll (φ) and pitch (θ) of the thigh (t) and foot
( f ), respectively, given in Table 2. The covariance matrix associated to the measurement vector (zc)
is a diagonal matrix where the elements in the diagonal are the variance of each of the Gaussian
distributions given by Table 2.
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Relative Heading Update

The goal of the relative heading update is to ensure that the relative heading between the thigh
and the foot remains coherent with respect to human motion, which means that the relative heading
between the thigh and the foot should not increase over time, see Figure 6. Let us model the relative
heading (ψr) as a first-order linear regression over time (t):

ψr = ar · t + br. (8)

There are two main parameters that define the behaviour of the relative heading over time, namely
the slope ar and the offset br. According to Section 2.3, the offset br is given by the mounting of the
sensors on the leg links. This offset cannot be estimated with inertial measurements because inertial
measurements do not allow for the estimation of the absolute heading [24].

The slope ar is, however, known: it should be zero. Otherwise, the relative heading would indicate
that the thigh and foot are constantly rotating with respect to each other over time, which is not true,
see Section 2.3. We consider this expected value of the slope ar to be a pseudo-measurement; that is,
a measurement that is not directly measured but known based on a physiological phenomenon [33].
The associated pseudo-measurement (zr) is as follows:

zr = ar = 0. (9)

For the implementation of the relative heading update, we need to sample the slope of each of
the sigma points of the UKF to then estimate a weighted average of the slope of each sigma point [28].
The estimated slope of the i-th sigma point at the k-th time (ak

r,i) is calculated as:

ak
r,i =

ψk
r,i − ψk−te

r,i

te
, (10)

where ψk
r,i is the relative heading of the i-th sigma point, with i = {1, 2, . . . , 2n + 1}, at the k-th time,

n is the number of states of the UKF, that is, n = 13, and te is the elapsed time. In the practical
implementation, continuous time is transformed to samples taking into account that the sampling
frequency of the inertial sensors is 100 Hz. Figure 8 depicts the estimation of the slope ak

r,i.

 i;r

Time
te

 k
i;r

 k−te
i;r aki;r

Figure 8. Visualization of the estimation of the slope of the relative heading for the i-th sigma point.

The relative heading of each sigma point (ψk
r,i) is estimated as the average over the last tw seconds

of the difference between the thigh heading (ψk
t,i) and the foot heading (ψk

f ,i) of the i-th sigma point,
that is:

ψk
r,i =

1
tw
·

k

∑
j=k−tw

(
ψk

t,i − ψk
f ,i

)
. (11)

For the implementation of the relative heading update, it is necessary to set the parameters te

and tw. In this article, the value of these parameters is heuristically determined and set to 1 s and
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10 s, respectively. These parameters indicate that the attitude tracker block applies the relative heading
update every second (te = 1 s). During this update, the relative heading is estimated as the average
over the last 10 s (tw = 10 s) of the difference between the thigh heading and the foot heading.

The last parameter to be set in order to apply the relative heading update is the covariance of the
pseudo-measurement. In this case, the pseudo-measurement is a perfect measurement which means
that its covariance is zero [32]. However, setting the covariance of perfect measurements to zero has
caused malfunctions in other works [34]. Therefore, we decide to set the covariance of the relative
heading update to 4 ◦, which is a value that we determine heuristically.

2.4.2. 3D Position Tracker

The 3D position tracker in Figure 7 estimates the 3D-position of the pedestrian based on the
following information: the 3D-acceleration of the foot, the attitude of the foot inertial sensor, the stance
phase detection flag and the pitch angle of the thigh.

More specifically, the 3D position tracker follows the next steps:

1. in the strapdown block, the strapdown algorithm is implemented. This algorithm double-integrates
the 3D-acceleration of the foot to estimate the pedestrian’s 3D position. Prior to the
double-integration, the 3D-acceleration of the foot has to be projected onto the navigation frame,
see Figure 1. This projection is done with the attitude of the foot IMU. Additionally, the strapdown
block implements the Zero Velocity UpdaTe (ZUPT) to correct the velocity, and therefore the
pedestrian’s 3D-position, upon the detection of the foot stance phase. For more details on the
implementation of the strapdown block, the reader is referred to References [3,29].

2. in the steps & stairs detection block, horizontal steps as well as vertical steps, that is, steps walking
upstairs and steps walking downstairs, are detected. This detection is done by analyzing the
amplitude of the thigh pitch as well as its maximum and minimum values [25]. An example of
the thigh pitch while a user is walking on a flat surface as well as upstairs is given in Figure 9.
We can clearly observe how the thigh pitch is different regarding its amplitude, maximum and
minimum while walking on a flat surface than while walking the stairs.

3. It samples the output of the strapdown block (ps) upon the detected steps to estimate the horizontal
displacement (s) and vertical displacement (v) between consecutive steps or stairs as follows:

• the horizontal displacement (s), or step length, is estimated as sk = |pk
s,xy − pk−1

s,xy |, where k is
the step or stair index, ps,xy is the horizontal position vector estimated by the strapdown block
and | · | denotes the norm of the argument. An example is given in Figure 10. This figure
shows the norm of the horizontal distance and the step detection flags.

• the vertical displacement (v) is estimated as vk = pk
s,z − pk−1

s,z , where k is the step or stair
index and ps,z is the z-component, or height, estimated by the strapdown block. An example
is given in Figure 10. The vertical displacement is estimated only when the user is walking
the stairs.

4. Finally, the tight coupling system estimates the 3D-position of the pedestrian (p) as follows:

pk
x = pk−1

x + sk · sin (ψu) , (12)

pk
y = pk−1

y + sk · cos (ψu) , (13)

pk
z = pk−1

z + vk, (14)

where pk =
(

pk
x, pk

y, pk
z

)
, k is the step or stair index and, as previously indicated, ψu is the user’s

heading estimated by the attitude tracker block. These equations are implemented in the 2D
position est. and Height est. blocks in Figure 7.
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Figure 9. Thigh pitch over time. The steps and stairs flags are also plotted. These flags are generated
based on the analysis of the amplitude of the thigh pitch.

The aforementioned technique of sampling the output of the strapdown upon the stairs detection
has successfully been implemented in Reference [35]. In this article, we extend this approach by
sampling not only the z-component of the position vector (ps) upon the detected stairs but also the
horizontal position vector upon the detected steps. By implementing the sampling of the position
vector (ps), we aim at reducing the error accumulation due to the integration of the errors in the signals
that are inputs to the strapdown block. For instance, this error accumulation is clearly observed in the
height profile of Figure 10 by comparing the true height to the height estimated by the strapdown block.
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Figure 10. Norm of the horizontal distance (left) and height profile (right) estimated by the strapdown
block of the tight coupling system. The grey area indicates when the user was walking the stairs.

3. Results

In this section, we analyze two different aspects of this work. Firstly, we evaluate the effect
that the motion constraints have in the estimation of the Euler angles of both the thigh and the foot.
Secondly, we evaluate the performance of the tight coupling system and compare it to the performance
of two state-of-the-art inertial localization systems based on only one inertial sensor.

3.1. Evaluation of the Coherence of the Euler Angles

This section divides the evaluation of the Euler angles into two parts: the evaluation of the tilt
angles, that is, roll and pitch, and the evaluation of the relative heading.

3.1.1. Evaluation of the Tilt Angles

In the case of the tilt angles, we want to evaluate the effect of the comfort zone update on the
estimation of both the roll and pitch. To that end, we will assess the cumulative distribution function
(CDF) of the tilt angles of the thigh and foot before and after applying the comfort zone update.
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We use the data collected from the motion tracker during the motion tracking experiment,
see Section 2.1, to estimate a reference CDF of the tilt angles of the thigh and foot. Then, we make
use of the residual sum of squares (RSS) to compare the reference CDF to the CDF of the tilt angles
estimated by the tight coupling system. The RSS is frequently used in statistics to compare the
discrepancy between a data set and a model [36]. Thus, the larger the RSS the more different the
data set and the model are and therefore, the less accurate the model fits the data set. The RSS (rss) is
estimated as follows:

rss =
n

∑
i=1

(yi − f (xi))
2 , (15)

where yi is the i-th sample of a data set with n samples, xi is the observation and f (xi) represents the
model that estimates yi. In our particular case, yi is given by the reference CDF and f (xi) is given by
the estimated CDF.

Figures 11 and 12 show the CDFs of the tilt angles of the thigh and foot respectively. In these
plots, we can visually compare the CDF of the tilt angles estimated by the tight coupling system to
the respective reference CDFs. We can clearly observe how the CDF of each tilt angles is closer to the
reference CDF after applying the comfort zone update.
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Figure 11. Cumulative distribution function (CDF) of the tilt angles of the thigh inertial sensor during
the stance phase.
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Figure 12. CDF of the tilt angles of the foot inertial sensor during the stance phase.

Table 3 present the RSS of all the distributions in Figures 11 and 12. Both tilt angles of the thigh
inertial sensor benefit from the comfort zone update. This fact is indicated in Table 3 by RSS values that
are smaller when the comfort zone is applied than when it is not applied in the tight coupling system.

Table 3. Residual sum of squares (RSS) of the tilt angles distribution of the thigh inertial sensor and the
foot inertial sensor. The angles are taken only during the stance phase. The values of this table have no
units since they represent a difference between probabilities.

System Description
Thigh Foot

Roll Pitch Roll Pitch

Without comfort zone 8.1 5.5 3.0 16.4
With comfort zone 4.5 2.1 3.9 0.8
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In Table 3, we can see how the comfort zone update improves the distribution of the foot pitch
significantly. In fact, the RSS is reduced from 16.4 to 0.8. This reduction is reflected in Figure 12 by an
estimated CDF that is significantly close to the reference one when the comfort zone update is applied.

In the case of the foot roll, we observe that the RSS increases slightly from 3.0 to 3.9. When we
analyze the associated plot in Figure 12, we see that the CDF without the comfort zone models almost
perfectly the reference distribution around 0 ◦ but around the elbows of the CDF, the estimated CDF
models the reference CDF less accurately. In contrast, the CDF of the roll after applying the comfort
zone update models better the reference CDF around its elbows than around 0 ◦. The reason is that,
during the comfort zone update, the foot roll is corrected to a value of 0.8 ◦ instead of 0 ◦, which seems
to be the value of the foot roll without the comfort zone update according to the true CDF of the foot
roll. Since the range of values of the foot roll is smaller than the range of values of the foot pitch,
small shifts in the angle values are more noticeable for the foot roll than the foot pitch. Therefore,
provided the results of Table 3, one could decide not to implement the comfort zone update of the
foot roll.

Figure 13 shows the tilt angles of the thigh before and after the application of the comfort zone
update. It is clearly observed that, when the comfort zone update is not applied, the attitude tracker
estimates incoherent tilt angles. The incoherence is observed by the average values of both angles,
which vary over time. However, after the comfort zone update is applied, both the roll and pitch
become coherent with an average value that is approximately constant over time.
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Figure 13. Tilt angles of the thigh before the comfort zone update (left) and after the comfort zone
update (right).

3.1.2. Evaluation of the Relative Heading

We now evaluate the effect of the relative heading update in the relative heading between the
thigh and the foot. To that end, we model the relative heading as a first-order linear regression,
see Equation (8). Then, we estimate the parameters of the model, that is, the slope ar and the offset br

of the relative heading of each walk. Finally, we compare the slope of the relative heading before and
after applying the relative heading update.

For this evaluation, we use the walks presented in Reference [37]. The reason why we choose
these walks are because they are longer, that is, at least 15 minutes each. Therefore, they will allow
us for an appropriate estimation of the parameters of the first-order linear regression model. It is
important to highlight that the reference slope is zero, as indicated in Section 2.3.

Figure 14 shows the first-order liner regressions for each of the walks before and after applying
the relative heading update in the tight coupling system. We observe that the slope of the relative
heading decreases after the application of the relative heading update. As expected, the relative
heading of one walk drifts differently than the relative heading of a different walk. Nonetheless, it is
clear from Figure 14 that the relative heading update improves the coherence of the relative heading
by reducing its slope. In fact, if we estimate how much the slope of the relative heading is reduced in
each walk and average these values, we see that the relative heading update reduces the slope of the
relative heading in 78.5 %. We consider this reduction a significant improvement in the performance of
the relative heading of the tight coupling system.
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Figure 14. First-order linear regressions that model the relative heading before and after applying the
relative heading update in the tight coupling system.

Figure 15 shows a comparison of the relative heading before and after the implementation of
the relative heading update in the attitude tracker block of the tight coupling system. We can clearly
observe that the relative heading grows much faster when the relative heading update is not applied
than when it is applied.
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With relative heading update
Without relative heading update

Figure 15. Comparison of the relative heading before and after the implementation of the relative
heading update in the attitude tracker.

3.2. Evaluation of the Tight Coupling System

In this section, we first present the ground truth system with which we will generate performance
metrics to characterize the proposed tight coupling system. Then, we evaluate it and compare its
performance to the ones of two state-of-the-art single-sensor inertial localization systems.

3.2.1. Evaluation Methodology

To this day, there is no widely-adopted evaluation methodology for inertial localization
systems [38]. Therefore, in this article, we use our own evaluation methodology which has been
presented in detail in Reference [37]. For completeness, we present a brief summary of our evaluation
methodology in the following points:

• our ground truth is based in ground truth points with known location. These points are deployed
throughout a five-storey building. We have measured the ground truth points with a laser distance
measurer which has approximately centimeter accuracy. We follow the recommendation of the
standard for evaluation of localization systems [39]. According to this standard, the accuracy
of the ground truth systems should be at least one order of magnitude better than the expected
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accuracy of the systems under test. Provided that the state of the art systems have an accuracy in
the order of meters [6], we consider our ground truth system to be accurate enough to evaluate
the performance of the localization systems under test. It is worth highlight that a similar ground
truth system has been used in indoor localization competitions [40].

• we use two metrics to evaluate the performance of the localization systems:

– position error ep, which is defined as:

ep = |pr
i − pw

i |, (16)

where pr
i is the true 2D-coordinate of the i-th ground truth point and pw

i is the position of the
i-th ground truth point estimated by the localization system.

– height error eh, which is defined as follows:

eh =
|hr

i − hw
i |

∆hr
i

, (17)

where hr
i and hw

i are the true height and the estimated height of the i-th ground truth point,
| · | denotes the absolute value of the argument. Finally, ∆hr

i is the total height change at the
i-th ground truth point and it is estimated as follows:

∆hr
i =

i

∑
j=0
|hj − hj−1|, (18)

where hj is the height of the j-th ground truth point. The height error in Equation (17) is
normalized to the change in height, which means that, for instance, a height error eh of
0.1 m/m tells us that the inertial localization system makes an error of 10 cm in a height change
of 1 m.

• In order to identify when the volunteer reaches a ground truth point, we follow a similar strategy
to that implemented in indoor localization competitions [40]. This strategy comprises two steps:

– We designed the trajectories a priori by defining the sequence in which the volunteer should
visit the ground truth points.

– We instructed the volunteer to stop for 2–3 s on each ground truth point. Then, we detected
that a volunteer was at a ground truth point by analyzing the norm of the acceleration and
turn rate vector of either the thigh-mounted or the foot-mounted inertial sensor.

• the data set is summarized in Table 4

Table 4. Summary of the experiments.

No. of Users Total Time Total No. of Ground Truth
Points

10 10 h 20 min 482

3.2.2. Results and Discussion

In the following, we evaluate three inertial localization systems:

• the tight coupling system, which is the system proposed in this article and whose performance
we want to quantify,
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• two state-of-the-art systems based on a single inertial sensor each. These systems are the reference
against which we want to compare the performance of our proposed tight coupling system,
namely:

– the thigh inertial localization system, which is an inertial localization system based on a
thigh-mounted inertial sensor [25], see Figure 1, and

– the foot inertial localization system, which is an inertial localization system based on a
foot-mounted inertial sensor, see Figure 1 [3].

Table 5 summarizes different statistics of the performance metrics of each of the inertial
localization systems under test. In addition to the mean and standard deviation of the 2D-position
and height error, we also include the third quartile of both errors. The third quartile of an error is
commonly used in inertial localization competitions to compare the performance of the competing
systems [40]. The third quartile of an error means that the respective error is equal to or less than a
given value.

Table 5. Summary of the statistics of the systems under test. Q3(·) stands for the third quartile of
the argument.

System Description 2D-Position Error (ep) Q3 (ep) Height Error (eh) Q3 (eh)
[m] [m] [m/m] [m/m]

Tight coupling system (our proposal) 8.4± 8.4 9.2 0.1± 0.2 0.12
Thigh inertial localization system ([25]) 16.6± 17.9 27 0.8± 2.0 0.23

Foot inertial localization system ([3]) 20.2± 19.0 32.7 0.4± 0.4 0.46

The tight coupling system reduces the average 2D-position error in 50% with respect to the thigh
inertial localization system and 58.4% with respect to the foot inertial localization system. The third
quartile, however, shows a greater performance improvement of the tight coupling with respect to
both inertial localization systems. More specifically, the third quartile of the tight coupling systems
outperforms in 66% and 72% the third quartile of thigh and the foot inertial localization systems
respectively. The performance improvement of the tight coupling over the single-sensor inertial
localization systems is also observed in the CDF of the 2D-position error, see Figure 16.
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Figure 16. CDF of the 2D-position error of the tight coupling system and the single-sensor inertial
localization systems based on a thigh-mounted and a foot-mounted inertial sensor.

The performance improvement of the tight coupling system over the single-IMU systems is due
to the integration of biomechanical constraints within the position estimation process. We believe
that this performance improvement is an indication that our approach of incorporating knowledge of
human motion into the inertial localization system to improve the accuracy of the position estimation
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is successful and worth further investigation. It is important to highlight that, in our proposal,
the knowledge on human motion is incorporated through the Euler angles of the leg links and that
these angles influence then the position estimation.

On the average height error, Table 5 shows that the tight coupling system outperforms in
87.5% and 75% the thigh and the foot inertial localization systems, respectively. Nonetheless,
this improvement is less if we assess the third quartile of the height error, which shows that the
tight coupling system outperforms the thigh inertial localization system only in 47.8% although the
improvement with respect to the foot inertial localization system remains approximately similar,
namely 74%. Figure 17 depicts how the CDF of the height error of the tight coupling system
outperforms the CDFs of the height error of both the reference systems.
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Figure 17. CDF of the height error of the tight coupling system and the single-sensor inertial localization
systems based on a thigh-mounted and a foot-mounted inertial sensor.

Our proposed tight coupling system combines two approaches to reduce the height error:

1. The improvement in the coherence of the thigh pitch thanks to the comfort zone update [22].
This approach allows the thigh inertial localization system to better detect the stairs and therefore,
to estimate a vertical displacement only when necessary.

2. The stairs sampling of the z-component of the position estimated by the strapdown algorithm,
see Figure 7 [35]. This approach addresses the error accumulation in the z-component by
estimating a vertical displacement from the z-component of the position only when the user is
walking the stairs.

Now, we would like to analyze an example trajectory of the tight coupling system and compare
it to the trajectories estimated by the state-of-the-art systems. Prior to doing so, we would like to
comment on an important fact of the evaluation of inertial localization systems: the duration of the
walks. Our data set comprises walks that last at least 15 minutes. Provided that inertial localization
systems accumulate errors over time [29], the longer the walk used to evaluate an inertial localization
system is, the higher the average position error will be at the end of a trajectory. The duration of the
walks in this work is 3-5 times higher than the average duration of past works where we characterized
the performance of the thigh and foot inertial localization systems [5,6]. Therefore, it is expected
that the errors of these systems are higher in this work than the error values obtained in past works.
An alternative to address the time-dependency of the proposed performance metrics is to normalize
the 2D-position error with respect to the walked distance. However, such an approach would need
another type of ground truth system which is out of the scope of this work.

Figure 18 shows an example odometry of the first 5 min of one of the walks. By comparing
the estimated trajectories to the true trajectory, we can clearly see that the tight coupling system is
outperforming both the thigh and the foot inertial localization systems. In fact, we can see how the
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heading of both state-of-the-art inertial localization systems drift over time, which causes the estimated
trajectory to drift counterclockwise in this particular example. In contrast, the heading of the tight
coupling system has barely drift and therefore the estimated trajectory resembles the true trajectory.

(a) (b) (c) 

(d) 
(e) 

(f) (g) 
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Figure 18. (Left) Approximate true trajectory. (Right) Odometry estimated by the inertial localization
systems under test. The circle marks are the position of the ground truth points estimated by the
inertial localization systems under test. This figure shows the first 5 min of the walk.

Figure 19 shows the height profile estimated by the inertial localization systems. There are several
elements to highlight in this plot. Firstly, the height profile of the foot inertial localization system drifts
over time, which causes the height to increase even if the volunteer was walking on a flat surface.
Secondly, the height profile of the thigh inertial localization system is affected by the outliers in the
detection of the stairs, for example, at 59 s and 223 s. Finally, the tight coupling system is affected
by neither of the aforementioned problems. However, we see that the height change does not reach
the true height of the ground truth points on the third floor. The reason is that while walking the
stairs, the volunteer walked the first and last stairs with the leg that did not have the inertial sensors.
Therefore, these two stairs are not detected by the tight coupling system and, thus, are not accounted
for in the estimation of the height profile.
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Figure 19. Height profile estimated by the inertial localization systems under test. For visualization
purposes, we show only the first change in floors, namely from the initial floor (second floor) to the
next one (third floor).

Our tight coupling system offers an alternative for drift-compensation techniques that is based on
the use of only inertial technology. The tight coupling system relies on the relative heading to observe
the error difference between the error of the thigh heading and the foot heading. Our proposal differs
radically from the state-of-the-art, where drift-compensation techniques rely on either using a map,
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landmark detection or SLAM algorithms. The former technique relies on the availability of a map and
the latter two techniques require the total or partial repetition of a trajectory to compensate for the
heading drift. In our proposal, we depend on neither of these two requirements to compensate for the
heading drift.

4. Conclusions

In this article, we have presented the tight coupling system, which is an inertial localization
system that simultaneously processes the inertial measurements of two inertial sensors placed on the
upper thigh and on the front part of the foot. We have presented our analysis of the motion of the leg
and we have derived a set of constraints from this analysis. These constraints have been integrated in
the tight coupling system. Finally, we have assessed the performance of the tight coupling system and
compared its performance to the one of two state-of-the-art inertial localization systems.

From our work, we derive three main conclusions. The first one is that, thanks to our study
of the motion of the human leg, not only have we observed the errors in the tilt angles, but also
in the relative heading between leg links, namely the thigh and the foot. The second conclusion is
that, to the best of our knowledge, it is the first time that the heading errors are observed when only
inertial measurements are used and without any external reference nor partial or total repetition of
the trajectory. We have observed the heading errors through the definition of the relative heading.
The limitation of our approach is that we cannot estimate the heading drift of each heading and that our
approach does not work if both heading estimations drift in the same direction and by the same amount.
The last conclusion is that we can improve the accuracy of the position estimation by introducing the
biomechanical dimension in an inertial localization system, for example, by constraining the human
motion derived from the Euler angles estimated by an inertial localization system.

5. Patents

The work presented in this work is related to a patent which is being under consideration at the
German Patent Office. The file number is 10 2017 124 173.6.
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PDF Probability Density Function
RSS Residual Sum of Squares
UKF Unscented Kalman Filter
ZUPT Zero-velocity UPdaTe
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