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A B S T R A C T

Energy crisis concentrates attentions in the field of building energy consumption through optimization of HVAC
control systems. Studying the HVAC systems and optimizing them will help to save energy. Exergy is defined as a
new energy function that can maximize accessible work by the second law of thermodynamics. The present
study, discusses about HVAC system that is in operation for mushroom growing hall. The Exergy destruction is
calculated for HVAC and the whole system and is linked to effective parameters as independent variables.
Adaptive neuro fuzzy inference system (ANFIS) and multi layered perceptron (MLP) methods are used to model
the studied system. Accordingly, after training by different number of neurons in the hidden layer for MLP
network and by different types of membership function for ANFIS method, 10 numbers of neurons were selected
as the best number of neurons for MLP network and Gaussian type of membership function for ANFIS method.
The results indicate that MLP by consumption of 11.556 kj/s more energy compared to ANFIS, imposes 1.343 ×
10−5 $/s more cost and 2.687 × 10−4 m3/s more consumption of natural gas. Therefore, applying ANFIS model
prevents energy, time, cost losses and more GHG emission, so it can be the best and suitable model to adopt in
real system.

1. Introduction

Industrial and agricultural production units such as greenhouses
and poultry farms are the main consumers of HVAC (Heating, venti-
lating and air conditioning) systems. A typical HVAC system has indoor
and outdoor air loops, condenser, chilled water and refrigerant loops
[1,2]. In buildings that are using HVAC systems, about 40% of energy
consumption is directed to HVAC systems [3,4]. Energy crisis has
caused more attention in the field of building energy consumption
through optimization of HVAC control systems [5]. Therefore studying
on this issue and optimizing these systems will help to energy saving
discussion, especially now that the energy crisis is considered as a
serious restriction. There are several studies in the field of optimization
of HVAC systems. Hussain et al. [6] used fuzzy controlling method with
the aim of finding a method to moderate the energy consumption.
Wang et al. [5] studied energy conservation performance of one passive
school building and classroom thermal comfort enhancement. They

concluded that the optimal control system is optimizing energy con-
sumption. Nowadays one of the most significant challenges is the es-
calating of energy demands [7]. These challenges have led to opti-
mizing and efficient use of energy. Exergy is a new energy function [8].
Exergy is the maximum accessible work that is defined by the second
law of thermodynamics [9–11]. Energy systems are the main targets of
exergy analysis. In fact, exergy analysis is offering suitable and more
efficient method compared to energy analysis for the study of energy
cycles [12]. Because it can determine the actual values of losses and
their causes [13]. Exergy discusses the energy in both terms of quality
and quantity [14]. Exergy Analysis calculates the destroyed exergy in
different parts of the system that are created by entropy [14–16]. The
total Exergy is equal to the sum of destroyed exergy of each part. This
Exergy destruction is equal to the energy which for various reasons that
have not been converted to useful work. There are many studies that
used exergy in optimizing thermodynamic systems. Studying HVAC
systems are also part of the thermodynamic systems.
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Alimoradi [8] presented exergy analysis for forced convection heat
transfer in a heat exchanger and investigated the effect of operational
and geometrical parameters on the exergy efficiency. Andersen et al.
[17] presented the continuous time modeling that the model para-
meters were estimated using a ML method for the heat dynamics of a
building. The estimated parameters seemed reasonable compared to the
expected values of the equivalent thermal components and it gives a
good description of the heat dynamics of the nominated building.
Chengqin et al. [18] discussed the principles of exergy analysis in HVAC
system in an analytical review of similar studies. Du et al. [19] pre-
sented a control-perfect index method to evaluate control of HVAC
systems to achieve an ideal operation. The basis of this concept was to
minimize the exergy loss in HVAC system.

Satyavada et al. [20] illustrated a modular control-oriented mod-
eling for HVAC performance benchmarking with the ability to effec-
tively catch all interaction between HVAC equipment that the user can
add and remove as many components as desired. This method lead to
improvements in occupants' thermal comfort while at the same time
consistently attaining energy savings. Satyavada et al. [21] compared
baseline and optimal PI strategies based on PI-auto tuning strategy to
ensure the occupant's comfort and reduced energy consumption of
HVAC systems.

In recent years, soft computing methods were used in most fields of
science [1,22]. Soft computing methods are able to predict the target
model [23]. Neuro-fuzzy inference system (ANFIS), artificial neural
networks and many other methods are different types of soft com-
puting. These methods are widely used in the field of energy and exergy
analyzing in different systems. Based on reports from numerous re-
searches, ANN method is one of soft computing methods that have been
studied in various energy systems [24–26]. Keçebaş et al. [27] devel-
oped ANN modeling to predict the exergy efficiency of a geothermal
district heating system. They used correlation coefficient (r) and root
mean square error (RMSE) as performance parameters. The results

showed maximum correlation coefficient and minimum RMSE value. It
was concluded that the prediction model had high precision in pre-
diction process. Park et al. [28] developed an artificial neural networks
model for predicting exergy by utilizing the networks’ feasibility of
information extraction and self-organization. The results indicated that
the trained mapping was able to characterize the development trend of
exergy at different groups of sample sites in different time periods and
the developed models were possible to predict exergy at con-
temporaneous and subsequent sampling times. Strusnik and Avsec [25]
studied a computation model for a thermo economic analysis using an
artificial neural network (ANN). The developed model used energy and
exergy methods to compute the results of the MFs. Taghavifar et al.
[29] selected 10 input variables to analyze most important objective of
output parameters. They applied ANN model with capability to predict
responses with great confidence. The results were acceptable and in-
dicated the accuracy of prediction process.

The present study is performed in an agro-industrial cultivation of
mushrooms in Ardabil province of Iran that used HVAC systems.
According to the obtained results of this production unit, the highest
cost is related to cooling, heating of growth rooms and repairing the
HVAC systems. Therefore, it was decided to do a study on cooling and
heating exergy of one growing hall. This identifies the most vulnerable
areas of exergy destruction and picks up the most effective step to in-
crease energy efficiency. The modeling of exergy of studied system
creates a comprehensive model and helps to prevent the confusion,
system complexity and extent of the debates.

As mentioned previously, the main purpose of this study is to cal-
culate exergy destruction using thermodynamic equations that are
presented by researchers and to model the exergy destruction using
ANN and ANFIS methods based on experimental data. Accordingly, this
study has four steps. The first step introduces the studied system.
Second step calculates the exergy destruction using presented thermo-
dynamic equations. The third step develops the prediction models

Nomenclature

A area (m2)
h enthalpy (kj/kg)
U heat transfer coefficient
m

.
mass flow rate (kg/s)

T temperature (K)
Q thermal energy (kj)
Q ̇ thermal power (kW)
P pressure (kpa)
Eẋ exergy rate (kW)
ψEx exergy efficiency
ω humidity ratio
ϖ molar humidity ratio

Cp specific heat capacity at constant pressure
Cv specific heat capacity at constant volume
R gas constant

Subscribes

D destruction
in input
out output
0 dead state
a air
w water

Fig. 1. A schematic of studied system.
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based on related inputs and outputs and the last step presents the ob-
tained results and compares the accuracy of the developed models and
suggests the best and the most accurate prediction model.

2. Material and methods

2.1. Studied system

Ardabil Province is positioned in 38′ 15′′ N and 48′ 17′′ E and is one
of the provinces of Iran. Experiments were carried out from a HVAC
system in Sabalan Mushroom agro-industry, one of the broadest
mushroom growing farms of Ardabil province. Fig. 1 illustrates an
overview of general system.

The growing hall has an area of 143 m2 and average height of 4.5 m.
There are 5 parts that should be studied to calculate the system exergy
and to indicate the exergy efficiency of the system. There are five PT-
100 sensors, two HIH-4000 sensors and two manometers that were used
in order to measure the temperature, relative humidity, and pressure of
marked spots, respectively. All data were recorded via DAQ Master, the
interface software of temperature measuring device, and a data logger
for recording relative humidity data and also pressures were measured
manually. By considering the season of experimental testing (winter),
there was no need to cool circuit of system, therefore the study was
performed on heating and ventilating sector of HVAC unit. Sabalan
Mushroom agro-industry has 40 mushroom growing halls. In order to
supply the required heating and cooling energies, there is a central
boiling and a central chilling unit. Ardabil is located in a mountainous
area of country and has the lowest annual average temperature
(283.04 K) among other provinces of Iran [30]. Fig. 2 shows the
average monthly temperature of Ardabil province from 2004 to 2014
according to the reports of Meteorological Organization of Iran [30].

According to Fig. 2, the highest temperature was accord on Aug
(292.41 K) and the lowest temperature was accord on Jan (271.81 K).

The required temperature for growing the bottom mushroom is
between 291.15 K and 297.15 K [31–33]. It is clear that the average
temperature is more than 291.15 K, only on July and August, it means
that the temperature for most months of the year is lower than the
required temperature. Therefore, the need to heat the unit is more
evident and accordingly the energy consumption in heating unit is al-
located the highest amount. Optimization of energy consumption in this
sector in a production plant can be an effective step in reducing costs
and pollutions. The experimental testing was performed on February.
Additionally, data recording process was performed on 20 working days
of agro industrial farm. Then, the data of 16 days (80% of total data)
were employed to model the system and the data of four days (20% of
total data) were employed to validate the model. Fig. 3 indicates the
average variation of daily temperatures in four days of week that were
recorded by related sensor (Fig. 3).

In heating and air-conditioning systems of heat exchanger, liquid or
gas flow is widely used. Heat transfer in a heat exchanger, which
usually involves convection in each fluid and conduction through the
wall separating the two fluids. Heat transfer between two fluids is a

process that occurs on HVAC system [1]. The study of system was done
based on some assumptions. By considering to that the experimental
study on winter season, so there was no cooling process. Based on the
calculations on experimental data, the efficiency factor of HVAC system
in heat exchanging process was 0.78. The temperature of heating water
during the day time is a constant value, because there is one central
boiler for the entire collections of production room. So, the parameters
that are able to change individually for one growing room are T3, m3

and m1. The values of T3 were obtained by data collector using the
relevant sensor. The average daily temperature was extracted for a
week on Jan 2015 (Table 1). Energy and exergy balances should be
applied to each component to analyze the system [34] (Table 2).

2.2. Energy analysis

In order to evaluate the state of the system in terms of energy, the
input, output and dissipated energies should be calculated. Therefore,
the generated energy by HVAC should be calculated and be in balance
with the energy losses and the required energy to keep the temperature
constant condition that is one of the important factors of mushroom
growing [31]. At first, the input thermal power of room that is gener-
ated by HVAC system (Qi̇n) is calculated by Eq. (1):

=Q m ḣ ̇in 4 (1)

where h is the enthalpy of output air from HVAC system and m4 is the
output air flow from HVAC unit.

The second stage is to calculate the required thermal power for
holding the growing hall temperature at a set point temperature (in this
study the set point is considered 294.15 K, the average of 291.15 and
297.15 K). Therefore, the Heat Transfer (HT) from walls and roof using
the heat transfer coefficients of the used construction materials should
be calculated [31]. Then Ql̇oad (thermal energy) is calculated by Eq. (2).
It should be noted that time is not considered in calculating of thermal
energy, but if the variation of temperature be assumed momentary
(Fig. 3 and Tables 3 and 4),Ql̇oad can be considered as thermal power for
calculations:

Fig. 2. Average monthly temperature of Ardabil province from
2004 to 2014.

Fig. 3. Average daily temperature of four days.
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where U is heat transfer coefficient of wall, A is the area of walls or roof,
T3 is the ambient temperature and Thall is the indoor temperature of
growing hall.

At the end, the output energy from exhaust of hall is calculated by
Eq. (3):

=Q m ḣ ̇out 5 (3)

where ṁ5 is the air flow of exhaust. Now, the energy balance that would
remain in hall is calculated by Eq. (4):

= − +Q Q Q Q̇ ̇ ( ̇ ̇ )balance in load out (4)

2.3. Exergy analysis

Exergy is defined as available energy based on the second law of
thermodynamics [35]. The other definition that can express the nature
of exergy is the maximum ability of working in relation to the en-
vironment [36]. There is no commonly accepted definition for the ex-
ergy efficiency [37]. The following equation (Eq. 5) is used to calculate
the exergy efficiency for each component of the system [37]:

=ψ Ex
Ex
̇
̇Ex
out

in (5)

Eẋout is the output exergy of one component that arises by Tout, ṁout,
and Pout and Eẋin is the input exergy of the same component that arises
by Tin, ṁin, and Pin. In order to find Eẋin and Eẋout , all equations follow
one principle. Calculating exergy whether for input or output can be
obtained by following equations (Eqs. (6), (7)) [37]:

= − − −Ex m h h T s ṡ ̇ ( ( ))0 0 0 (6)

= + − −
+ + + + +
+

Ex m C ω T T T T T
ϖ P P R ϖ ϖ ϖ

ϖ ϖ ω

̇ ̇ ( ( .C )).( ( .ln( / ))
( R T ln( / )) T ((1 )ln((1 )/(1 ))

ln( / ))

pa pv 0 0 0

a 0 4 0 a 0 0

0 (7)

where ṁ is the flow rate, h is the enthalpy, T is temperature, P is
pressure and T0(s-s0) is the specific exergy caused by generated entropy.
The last term of Eq. (7) is the specific chemical exergy that is occurred
in ventilating unit of HVAC system. The proportionality between spe-
cific humidity ratio ω and specific humidity ratio on a molal basis ϖ is
given by =ϖ ω1.608 . Furthermore, each system has its own exergy
destruction that is calculated by Eq. (8):

∑ ∑= −Ex Ex Eẋ ̇ ̇D in out (8)

where∑ Eẋin is the sum of all input exergies to system and∑ Eẋout is the
sum of all output exergies to system. All of variables include ṁ, T and P
can be effective on exergy and exergy destruction. For all studies on
exergy analyzing, the main aim is to reduce the exergy destruction of
system. This means that reduction of exergy destruction creates more
ability of working to system. In this study, Engineering Equation Solver
(EES) was used to perform the project. Based on Fig. 1, there are five
points that exergy should be calculated. Accordingly, Eẋ1, Eẋ2, Eẋ3, Eẋ4
and Eẋ5 were calculated as exergy of each points. Eẋ1, Eẋ3 and Eẋ2, Eẋ4
are respectively input and output Exergies of HVAC system and Eẋ4 and
Eẋ5 are respectively input and output exergies of growing rooms. Then,
ψEx was calculated for Eẋ1 and Eẋ2 (as exergy efficiency of heating unit
of HVAC), for Eẋ3 and Eẋ4 (as exergy efficiency of ventilating unit of
HVAC) and for Eẋ4 and Eẋ5 (as exergy efficiency of growing hall).

Accordingly, EẋD HVAC, and EẋD Hall, were calculated as destruction
exergy of HVAC unit and growing hall, respectively and finally the sum
of EẋD HVAC, and EẋD Hall, was reported as the total exergy destruction of
system.

Table 1
The results of recorded Data.

Mean Std. deviation Std. error mean Min Max

Tamb (K) 285.35 12.44625 1.24462 268.15 304.15
ṁair (kg/s) 0.635 0.15554 0.01555 0.38 0.89
ṁwater (kg/s) 2.9577 1.20274 0.12027 0.99 4.93
RHamb 0.6 0.24403 0.02440 0.2 1
Exergy Kj ṡ ( / )D total, 5.1143 3.43478 0.34348 0.65 14.48

Table 2
The characteristics and HT of walls and roof.

Area (m2) Area (f2) HT (Btu/h.°F) HT (kj/s.°F)

North wall 29.25 314.85 40.93 × 1.1 11.99 × 1.1
South wall 29.25 314.85 40.93 × 1.1 11.99 × 1.1
West wall 99 1065.62 138.53 × 1.1 40.59 × 1.1
East wall 99 1065.62 138.53 × 1.1 40.59 × 1.1
Roof 143 1539.24 92.36 × 1.1 27.06 × 1.1
Total 145.45

Btu/h = 0.293 J/s [49].

Table 3
The overall heat transfer of growing hall in each month.

Month Temperature (T)
(K)

Set-point
(SP) (K)

Difference of
temperatures (SP-T)

Overall HT
(kj/s)

Jan. 271.81 294.15 22.34 3.25
Feb. 273.92 294.15 20.23 2.94
Mar. 278.67 294.15 15.48 2.251
Apr. 282.8 294.15 11.35 1.65
May. 287.4 294.15 6.75 0.981
Jun. 290.51 294.15 3.64 0.529
July. 292.28 294.15 1.87 0.272
Aug. 292.41 294.15 1.74 0.253
Sep. 289.09 294.15 5.06 0.736
Oct. 284.81 294.15 9.34 1.358
Nov. 278.48 294.15 15.67 2.28
Dec. 274.41 294.15 19.74 2.871

Table 4
Results of energy evaluating.

Hour Temp. (K) Energy balance
(kj/s)

Consumption of natural
gas (m3/s)

Realised CO2

(gr/s)

00:00 270.65 0.1825 0.00000424 0.00840
01:00 269.9 0.07345 0.00000171 0.00338
02:00 270.15 0.1098 0.00000255 0.00505
03:00 270.4833 0.158364 0.00000368 0.00729
04:00 269.15 −0.0356 −0.00000083 −0.00164
05:00 269.15 −0.0356 −0.00000083 −0.00164
06:00 270.65 0.1825 0.00000424 0.00840
07:00 269.15 −0.0356 −0.00000083 −0.00164
08:00 269.15 −0.0356 −0.00000083 −0.00164
09:00 269.65 0.0371 0.00000086 0.00171
10:00 270.8167 0.206734 0.00000481 0.00951
11:00 273.4833 0.594466 0.00001382 0.02736
12:00 275.9 0.94585 0.00002200 0.04353
13:00 277.65 1.2003 0.00002791 0.05524
14:00 278.9 1.38205 0.00003214 0.06360
15:00 280.15 1.5638 0.00003637 0.07197
16:00 280.15 1.5638 0.00003637 0.07197
17:00 279.15 1.4184 0.00003299 0.06528
18:00 277.9 1.23665 0.00002876 0.05691
19:00 276.4 1.01855 0.00002369 0.04688
20:00 274.65 0.7641 0.00001777 0.03516
21:00 272.65 0.4733 0.00001101 0.02178
22:00 271.9 0.36425 0.00000847 0.01676
23:00 271.4 0.29155 0.00000678 0.01342
Total 13.62511 0.00031686 0.62705
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3. Modeling

3.1. Artificial neural network

Multi Layered Perceptron (MLP) neural network was used to de-
velop a prediction model of exergy destruction and energy consumption
of studied system as the most popular and most used method among
other methods of neural network [38]. Prediction, classification, mod-
eling, signal processing, error filtering and so on [39] are applications
of neural network. Receiving the information by corresponding nodes
of input layer activates the external nodes and emits a signal to the next
layer. Each node of the input layer has unique and one by one con-
nection with each node of the output layer. These signals are passing
through the output layer. Each connection between two nodes in two
adjacent layers are related to each other by weighting coefficients, that
this weights adjusts the signal strength based on the input data [40].
Depending on the strength of the signal, nodes can be stimulated or
inhibited. In training of back propagation method, error is determined
by comparing the model's output and the desired output and this error
is returned to hidden and input layers to the next training processes.
The network training operation ends when the error comes down of the
specified value by user [39]. Developing of model was performed using
the Artificial Neural Network Toolbox in MATLAB in two separate
models, one for exergy destruction and the other for energy consump-
tion. Fig. 4 indicates the structure of developed network. Independent
variables that were placed in input layer were ṁ3 and ṁ1 as the flow rate
of hot water and air by kg/s, respectively and the variations of ambient
temperature by K and ambient Relative Humidity (RH) and the only
independent variable was the total exergy destruction. The total data
were divided into two categories. One for training and the second for
testing data. As previously was said, the data of sixteen days were ap-
plied to training process. The training process was conducted with
different numbers of neurons in the hidden layer and the function of
each parameter was measured with respect to the base parameter, so
that in first stage of training process, the network was trained with one
neuron on hidden layer and in next stages the number of neurons were
added. In each training process of network, weights and biases were
corrected to reduce tilt of performance function and the output matrix
of network was obtained. For a certain neurons in the hidden layer,
different results may be obtained in each training process. Therefore,
training process for each number of neurons on hidden layer was done
in three repetitions and the value of performance function (Mean
Square Error (MSE)) was calculated for each repetition and the average
value of performance function for three repetitions was obtained. Cal-
culating the average value eliminates the effect of the output difference
(Table 5).

3.2. Adaptive neuro fuzzy inference system (ANFIS)

In this section, a prediction model of system was developed using
ANFIS method. Structure of an adaptive network contains a number of
nodes that are connected through directional links. These adaptive
nodes make the outputs using on modifiable parameters. Learning rules
are responsible for minimizing error by updating parameters [41].
ANFIS uses fuzzy logic and neural network systems and constructs a
hybrid intelligent system with advantages of both fuzzy logic and
neural networks [42]. ANFIS has five layers [38,43,44] (Fig. 5):

• Layer 1. This layer gets the inputs of fuzzy system and introduces to
ANFIS model.

• Layer 2. This layer gets the output of first layer and decides about
fuzzy rules based on prior values of MFs that have received by the
first layer.

• Layer 3. This layer normalizes the degree of activity of any rules.

• Layer 4. This layer adopts the nodes and provides a primary model
using functions.

• Layer 5. This layer gets the outputs of layer 4 and prepares them as
output values of network.

The ANFIS model was developed for prediction of total exergy de-
struction of system using ANFIS toolbox on MATLAB software. Input
parameters were ṁ3 and ṁ1 as the flow rate of hot water and air in kg/s,
respectively and the variations of ambient temperature by K and am-
bient Relative Humidity (RH), and the output of model was the total
exergy destruction. The network was trained with two numbers of
membership functions. Selecting the type of membership functions are
the main part of training process. In order to select the type of mem-
bership function, training of networks was performed with g bell, gauss
and trap types of membership functions and the performance para-
meters were calculated for each type (Table 5). The types of output
membership functions were selected linear type because of its ability to
further reduce of errors. Training of FISs was performed with hybrid
optimum method and 0 value of error tolerance.

4. Evaluation of developed models

The evaluation and comparing performance of MLP and ANFIS
models were performed by comparing the results of the output of net-
works and target values using Root Mean Square Error (RMSE), Pearson
correlation coefficient (R), mean absolute error (MAE) and mean square
error (MSE) as follow [38,45]:

∑= −
=

MSE
N

A P1 ( )
i

N

1

2

(9)

∑= −
=

RMSE
N

A P1 ( )
i

N
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2

(10)

= ⎛

⎝
⎜ − ⎛
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∑ −
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=

=
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A P
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1
( )i

n

i
n

i

1
2

1
2

1/2

(11)

=
∑ −=MAE

A P
N

i
N

1
(12)

where A is the target value and P is the predicted value [46]. The RMSE
was used to calculate the difference between the predicted and target
values. Decreasing the difference between output and target values
decreases the RMSE value. The Pearson correlation coefficient (r) was
used for expressing linear correlation between actual and predicted
values and is as a measure of the degree of linear dependence between
two variables [1].

5. Results and discussions

This section presents the results of study which has four stages. The
first stage presents the results of energy analyses and discussions. The

Fig. 4. Structure of MLP network.
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second stage focuses on exergetic analyses. The third one presents the
modeling results and the last one discusses the pollution and economic
costs and effect of the developed models.

Table 1 demonstrates the primary results of recorded data that is
obtained by analyzing the samples using T-test with IBM SPSS Statistics
19 software.

Based on Table 1, Tamb is varying from 268.15 to 304.15 K that has
the mean value of 285.35 K by deviation of 12.44 K. The ṁair was
changed from 0.38 to 0.89 kg/s by variation of input air flow of HVAC.
It has the mean value of 0.635 kg/s by deviation of 0.155 kg/s. The
variation of ṁwater is in range of 0.99–4.93 kg/s by deviation of
1.202 kg/s. This variation was performed by variation of input water
flow of HVAC heating coils. From the other hand, the variation of
RHamb for the studied region, based on meteorology data was a range of
0.2–1, approximately. By combining these parameters as independent
variables of study, the total exergy destruction of system was calculated
from 0.65 to 14.48 KJ/s. This parameter has the mean value of
5.1143 KJ/s by deviation of 3.434 KJ/s and standard mean error of
0.343.

5.1. Energy analysis

Energy analysis was performed on various values of Tamb with the
aim of discussing on the effect Tamb on required heating energy to keep
the indoor temperature in the desired range. It is require calculating the
HT based on the coefficient of the construction materials of production
hall. The construction materials that were used to build the hall are
mainly solid brick with thickness of 16′′ (40.6 cm) with plastered on
furring with thickness of 1′′ (2.5 cm) for walls that has the heat transfer
coefficient (HTC) equal to 0.13 (Btu/h.ft2.°F) [47,48] and for the roof of
hall is from concrete with gypsum board with thickness of 12′′ (30 cm)
that has the HTC equal to 0.06 (Btu/h.ft2.°F) [47,48]. Table 2 presents
the characteristics and HT of walls and roof.

The HT values were multiplied to 1.1 in order to obtain heat load.
Multiplying HT values to difference temperature of indoor and outdoor
obtains the overall heat transfer of growing hall in different ambient
temperatures.

Table 3 illustrates that the values of HT are require for holding the
indoor temperature at 294.15 K and it is clear that the maximum
overall HT belongs to Jan (3.25 kj/s) and the minimum value is for Aug
(0.253 kj/s). It means that between coldest and warmest season of year
there is a difference about 3 kj/s for one growing mushroom hall. The

reported number of heating value of natural gas in references is about
43,000 kj/m3 [50]. So, the difference of coldest and warmest season is a
value about 0.07 × 10−3 m3/s for one growing hall in this study. The
fuel of natural gas has more than 96% of methane in Iran. Therefore, it
is equal to about 0.0672 × 10−3 m3/s of methane. Using fossil energy
for economic activities from manufacturing to agricultural industries,
results in GHG emissions in almost all region of the world [51]. One kg
of fuel combustion of methane releases 2.875 kg of carbon dioxide in
stoichiometric condition (Eq. (13)):

+ + → + + ×OCH 2
0.21

(0.21O 0.79N ) CO 2H 2 0.79
0.21

N4 2 2 2 2 2 (13)

The density of methane is 0.717 kg/m3, so it will be equal to
0.0481 gr/s of methane. CO2 is the most unwanted gases among GHG
emissions caused by energy production [52]. The related released CO2

will be 0.138 gr/s.
Based on the collected data, Table 4 was prepared to demonstrate

the energy evaluation. Table 4 shows the values of Qi̇n, Ql̇oad and Qȯut
The negative sign is defect of energy and positive sign is surples of
energy. The basis of calculations is the average ambient temperature of
four days (previously was said as validation data-set) of week that was
recorded by related temperature sensor (Fig. 3).

Based on the results, the value of energy balance is negative at
temperature of 269.15 K. it is clear that at this temperature, the system
is unable to supply the required heating energy. On other temperatures,
there are excess of energy. The italic numbers on values relative the
temperature of 269.15 K indicate that the value of natural gas was
consumed less and related CO2 emission was prevented. Based on
Table 4, by increasing the ambient temperature, the values of excess
energy has been increased such that at the temperature of 280.15 K is
reached to its maximum value (1.5638 kj/s). As an initial result, it can
be said that one of the reasons in arising this issue is the lake of precies
controlling system and the system is controlled manually by operator.
By adding the values of surplus energy, it was calculated that there was
13.7675 kj/s of energy losses that was equal to 3.201 × 10−4 m3/s of
natural gas and production of 0.633 gr/s of CO2. The price of 1 m3 of
natural gas in Iran is about 0.05 $ [53]. Therfore this energy losses is
equal to 1.6 × 10−5 $/s for one mushroom production hall that is equal
to about 41.49 $ more cost for one month.

5.2. Exergy analyses

Exergy analysis was performed using EES software. Therefore, the
independent variables of study were considered as the parameter that
can affect the exergy destruction and exergy efficiency. Accordingly,
after importing the required equations in EES, the values of exergy
destruction of each component, exergy efficiency of HVAC unit and
generated exergy of each component were exported. Then, by im-
porting experimental data, the trends of each dependent variable were
investigated. Fig. 5 indicates the results of exergy destruction of system
against the energy balance of system by changing temperature. Fig. 6
shows the exergy destruction and exergy efficiency of HVAC system.
These parameters are displayed in one chart in order to compare them.

Table 5
The results of selecting the best predictor model.

ANFIS MLP

Type of MFs MSE Number of neurons Average MSE

Guass. 0.000614 8 0.0761
Trap. 0.0829 10 0.0154
G bell. 0.0174 12 0.3413

Fig. 5. General structure of ANFIS model.
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Therfore, due to range of exergy efficiency that is between 0 to 1 and is
a small range comparing to exergy destruction, it was normalized be-
tween 0 and 10 by multiplying to 10, only to enlarge the range of data
for a better comparison.

Fig. 6 illustrates the maximum destruction of exergy which was
occurred when the energy balance was negative. It means that for this
condition the system could'nt supply the required thermal energy, and
this condition is for low values of ambient temperature. For this con-
dition, the exergy destruction of HVAC system is maximum and con-
sequently the exergy efficiency of HVAC system is minimum. Increasing
ambient temperature, increases the energy balance of system and ex-
ergy efficiency of HVAC system and accordingly decreases the exergy
destruction of system and HVAC unit. Based on the definition of exergy,
this means that increasing ambient temperature and accordingly in-
creasing the value of Energy balance increases using the energy op-
portunity and provides the energy efficiency and decreases the energy
losses. At the highest value of temperature, the maximum energy bal-
ance and maximum efficiency of HVAC and minimum exergy destruc-
tion were gained. But variation of ambient temperature is not a con-
trolable parameter and is natural. For achieving the optimum condition
in term of exergy analyzing, there is a need to define system based on
controlable parameters.

Based on experimental data, there was a centeral boiling unit for
fourty growing halls. Each growing hall was at different stages of crop
growth, so each growing hall had the different thermal requirements.
The temperature of centeral boiling unit was hold in constant value and
accordingly it was unable to be changed for one growing hall.
Therefore, the flow rate of input air and input hot water were the
parameters that could be controlled. Fig. 7 indicates the system beha-
vior with changing ṁair and ṁwater at constant values of ambient and
water temperatures.

Fig. 7(a, c and e) are related to variation of exergy destruction of
system and exergy efficiency of HVAC based on flow rate of air as in-
dependent variable. Fig. 7(b, d and f) are related to variation of in-
dependent variables by flow rate of water. Fig. 7(a and b) are the
surface of variations. In order to do better analysis, the countours of
Fig. 7(a and b) was presented in Fig. 7(c and d). Fig. 7(c) shows that for
outside of a specified range, increasing the flow rate of air, increases the
exergy destruction of system and exergy efficiency while these is a
contradictory issue about two parameters. On the other hand, Fig. 7(d)
shows that increasing flow rate of water increases exergy efficiency of
HVAC and decreases exergy destruction of system. The variation of
these parameters have a nonlinear trend.

Fig. 7(e and f) indicate the optimum values of air and water flow,
respectively and system behavior against the flow rate of air and water
that were calculated by response surface method (RSM) in Design Ex-
pert software. Optimization was performed with the aim of maximizing
exergy efficiency of HVAC system and minimizing the total exergy
destruction. Therefore, 0.8553 kg/s of air flow and 0.001 m3/s (about

1 L/s) of water flow are the best and optimal values to reach the
maximum accessible exergy efficiency of HVAC and minimum exergy
destruction of system.

6. Modeling

6.1. Training process

Modeling process was performed by the MLP and ANFIS methods.
To perform modeling operations, total exergy destruction of system was
considered as the independent variable (output of network). Also, air
flow rate, water flow rate ambient relative humidity, and ambient
temperature were considered as independent variables (inputs of net-
work).

During the modeling operations, 10 neurons in the hidden layers for
MLP network (Table 5) and Gaussian membership function for ANFIS
network (Table 3) provided the best and highest performance (lowest
MSE) and precies output values. In process of selecting the best number
of neurons in hidden layer for MLP network and the best type of
membership function of ANFIS network, the networks gain the best
response when the performance function's values for training data are
at their lowest value. Accordingly, after training by different number of
neurons in the hidden layer for MLP network and by different types of
membership function for ANFIS method, 10 numbers of neurons were
selected as the best numbers of neurons for MLP network and Gaussian
type of membership function for ANFIS method (Table 5).

The training of MLP network was performed in three repetition and
the value of MSE was calculated for each repetition and its average
value was reported. This can eliminate the effect of the output differ-
ence in each repetition.

6.2. Testing process

In order to develop model, the validation data-set of energy ana-
lyzing were imported to models. This can evaluate the exergy de-
struction of system in parallel to energy analysis and help to analyze
system. Accordingly, Table 6 was prepared to indicate the results of
training and testing, numerically.

Deviation is the sum of differences between target and output values
of developed models based on exergy destruction with unit of kj/s.
Increasing deviation between target and output values of models, in-
creases the exergy and energy loss. Therfore, system losses or the
chance of useful work Would be negligible.

In training process (Table 6), there is no significant difference be-
tween the results of MLP and ANFIS methods. Such that the linearity of
ANFIS's outputs with target values is 0.9999 and the linearity of MLP's
outputs with target values is 0.9992. This conclusion also is true about
deviation values. For training process, the loss of useful energy (de-
viation value) is 0.3547 kj/s for ANFIS method that is equal to 0.825 ×
10−5 m3/s of natural gas, 1.632 × 10−2 gr/s of CO2 and 4.125 × 10−7

$/s of more cost. If we calculate this numbers for one month, we will
have 919.3 Mj loss of useful energy, 21.38 m3 more consumption of
natural gas, 42.31 kg CO2 emission and 1.07$ more cost. The loss of
useful energy of MLP network in training process is 0.7362 kj/s and this
value is equal to 1.712 × 10−5 m3/s of natural gas, 3.388 × 10−2 gr/s
of CO2 and 8.56 × 10−7 $/s of more cost. Accordingly, for one month it
will have 1908.23 Mj loss of useful energy, 44.377 m3 more con-
sumption of natural gas, 87.82 kg of CO2 emission and 2.21 $ more
cost. But the performance of modeling depends on the responses of
models in testing stage. The responses of models can be measured by
performance factors. After importing the testing data (Table 6) the re-
sults was a little different compared to the results of training process.
Such that, ANFIS with linearity of 0.9982 and RMSE of 0.0681 had the
best performance with deviation of 0.9694 kj/s that is equal to 2.254 ×
10−5 m3/s of natural gas, 4.461 × 10−2 gr/s of CO2 and 11.272 ×
10−7 $/s of more cost compared to MLP method that has linearity of

Fig. 6. The results of exergy destruction of system.
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Fig. 7. The system behavior by variation of controllable parameters.

Table 6
The results of training and testing processes.

Training process Testing process

R RMSE MAE Deviation (kj/s) r RMSE MAE Deviation (kj/s)

ANFIS 0.9999 0.0248 0.01496 0.3547 0.9982 0.0681 0.0402 0.9694
MLP 0.9992 0.1202 0.03106 0.7362 0.9511 0.5584 0.5218 12.5254
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0.9511 and RMSE of 0.5584 with deviation of 12.5254 kj/s that is equal
to 29.13 × 10−5 m3/s of natural gas, 0.576 gr/s of CO2 and 1.456 ×
10−5 $/s of more cost. This is a considerable value of energy loss and
CO2 emission of MLP network compared to ANFIS method. This com-
parision shows the ability of ANFIS method in prediction of exergy
destruction and modeling of studied system compared to MLP network.
Fig. 8 presents this claim, visually. There are several studies that re-
ported the high ability of ANFIS as predicting tool. The ability of ANFIS
in case of application on energy consumption was studied by Ekici et al.
[54] to predict energy consumption of building in a cold region. The
objective of this paper is to examine the feasibility and applicability of
ANFIS in building energy load forecasting area. Based on the results it
was observed that ANFIS can be a strong tool to predict the energy
consumption in buildings. Soyguder et al. [55] studied Adaptive Net-
work Based Inference System (ANFIS) model on HVAC system. Based on
their results, ANFIS could predict the performance of HVAC system
with a high accuracy.

As seen on Fig. 8(a), it is clear the trend of variation of target values
against the predicted values is devient as 9.54% from linear trend, by
Eq. (14) [31].

= − ×Devient from linearity ((1 R ) 100)2 (14)

This deviation causes 11.556 kj/s more energy consumption and
0.5318 gr/s of CO2 emission of MLP compared to ANFIS. In one month
it will cause 29.95 Gj more energy consumption and 1.378 t emission of
CO2. This claim is also considerable from Fig. 9.

Fig. 9 shows that the MLP has a trend with obvious distance from
target value. If the system be placed in a control circuit, the system will
try to reach a steady state and to overcome the current error, so the
system will change the inputs, constantly. This creates loss of time and
failure of system on MLP model compared to ANFIS model. The result of
this operation will yield to energy losses, cost rising and accordingly
would have more GHG emission by consuming more energy. Table 6
illustrates that by using MLP there would be 11.556 kj/s more energy
compared to ANFIS, imposes 1.343 × 10−5 $/s more cost (34.83 $ for
one month) and 2.687 × 10−4 m3/s more consumption of natural gas
(696.58 m3 for one month). Therefore, applying ANFIS model prevents
energy, time, cost losses and more GHG emission, so it can be the best
and suitable model to adopts in real system.

7. Conclusion

According to the main aim of the present study on exergy destruc-
tion, the study was developed using experimental data from one of the
mushroom growing farms. The results of this study are presented as

followings:

• Gaussian Mf type with performance of 0.000614 was selected for
ANFIS method and 10 neurons on hidden layer with performance of
0.0154 was selected for MLP network.

• In training process, there is no significant difference between the
results of MLP and ANFIS methods and there is a close value of
difference of target and output values of methods.

• By importing the testing data the results have been a little different
compared to the results of training process.

• ANFIS with linearity of 0.9982 and RMSE of 0.0681 had the best
performance with deviation of 0.9694 kj/s that is equal to 2.254 ×
10−5 m3/s of natural gas, 4.461 × 10−2 gr/s of CO2 and 11.272 ×
10−7 $/s of more cost.

• MLP method had a poor performance in this study by linearity of
0.9511 and RMSE of 0.5584 with deviation of 12.5254 kj/s that is
equal to 29.13 × 10−5 m3/s of natural gas, 0.576 gr/s of CO2 and
1.456 × 10−5 $/s of more cost.

Therefore, this comparision shows the ability of ANFIS method in
prediction of exergy destruction and modeling of studied system com-
pared to MLP network. So, If the system be placed in a control circuit,
applying ANFIS model prevents energy, time, cost losses and more GHG
emission, so it can be the best and sustainable model to adopt in real
system.
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Fig. 8. The results of testing the models. a. MLP b. ANFIS.
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