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ABSTRACT Electrocardiogram (ECG) gives essential information about different cardiac conditions of
the human heart. Its analysis has been the main objective among the research community to detect and
prevent life threatening cardiac circumstances. Traditional signal processing methods, machine learning and
its subbranches, such as deep learning, are popular techniques for analyzing and classifying the ECG signal
and mainly to develop applications for early detection and treatment of cardiac conditions and arrhythmias.
A detailed literature survey regarding ECG signal analysis is presented in this paper. We first introduce a
stages-based model for ECG signal analysis where a survey of ECG analysis related work is then presented
in the form of this stage-based process model. The model describes both traditional time/frequency-domain
and advanced machine learning techniques reported in the published literature at every stage of analysis,
starting from ECG data acquisition to its classification for both simulations and real-time monitoring
systems. We present a comprehensive literature review of real-time ECG signal acquisition, prerecorded
clinical ECG data, ECG signal processing and denoising, detection of ECG fiducial points based on feature
engineering and ECG signal classification along with comparative discussions among the reviewed studies.
This study also presents a detailed literature review of ECG signal analysis and feature engineering for
ECG-based body sensor networks in portable and wearable ECG devices for real-time cardiac status
monitoring. Additionally, challenges and limitations are discussed and tools for research in this field as
well as suggestions for future work are outlined.

INDEX TERMS ECG analysis, cardiac arrhythmias, QRS and ST detection, ECG classification, deep
learning.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Heart diseases, also called Cardiovascular Diseases
(CVDs), are the main causes of high mortality rates.
They arise with a lack of blood in the coronary artery
that also supplies blood to the heart itself. CVDs result
in irregular beats called arrhythmia and sudden death
can occur depending on the severity of the arrhythmia
condition. Electrocardiogram/Eletrokardiogram (ECG/EKG)
demonstrates the electrical activity of the human heart and
the ECG signal morphologies provide information about
various types of arrhythmia based on different cardiac
conditions. Fast and accurate identification of arrhythmia
from the ECG wavegraph can potentially save many lives
and much in terms of health care costs worldwide [1]. This

motivated us to perform a detailed review of ECG analysis
and present it in the form of a stages-based process model
to further clarify and categorize the flow and significance
of each phase of ECG signal analysis. With the enormous
impact that effective ECG signal analysis offers on public
health and economy, giving a perspective of hardware and
software tools along with real-time monitoring using portable
and wearable devices to analyze an ECG signal in the form
of stages-based process is another motivation that led us to
conduct this study.

Analyzing the ECG signal and detecting different types
of arrhythmia requires assistance from traditional signal
processing and/or machine learning techniques for early
treatment and prevention of CVDs. Advances in machine
learning, in conjunction with computer-aided design (CAD)
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FIGURE 1: Stages-based ECG signal analysis model

diagnostic systems [2], have many health applications such
as data processing and retrieving relevant information from
these data. These systems have increased the accuracy of
early detection of CVDs and offer a significant reduction in
cardiologist workload. Traditional and kernel-based neural
network (NN) methods [3], [4] use handcrafted features
to analyze the ECG waveform for processing, detection,
and classification. Deep learning methods have overcome
the problems of these time and resource-consuming
processes and have improved feature engineering [5], [6],
detection and classification by learning important features
automatically that were manually determined in the past [7].
Whether it is real-time monitoring, detection, recognition,
or classification, the ECG signal goes through different
processes. We present these processes as a stages-based
ECG signal analysis model, as depicted in Figure 1. The
first stage describes different sources of ECG data, such
as clinically prerecorded and sources of real-time ECG
acquisition sensory data. In the second stage, we discuss
different techniques reported in the literature to remove
noise that has been introduced during the acquisition of the
ECG signal at the first stage. Detection of fiducial points
of the ECG signal is very crucial for classifying different
heart conditions accurately. Identifying these fiducial points
is part of the third stage of the ECG signal analysis
process. Each wave and segment of the ECG signal has
its importance in determining the type of arrhythmia in
context. After the right selection of the data source and
identifying the ECG fiducial points, different heart conditions
can be detected and classified at the fourth stage of the ECG
signal analysis process using traditional signal processing or
machine learning methods. Each stage is discussed in more
detail in section IV.

B. CONTRIBUTIONS
This study aims to contribute to the growing area of

research for the detection of heart conditions and different
arrhythmias by analyzing the ECG signal in real-time to
prevent these conditions and exploring tele-health options
and best practices. Our contributions to this area of research
can be summarized as follows:

1) Present a detailed overview of the heart and its
electrical activity by discussing ECG, its waveform and
different arrhythmia types that can be retrieved from
ECG

2) Present the stages-based ECG signal analysis process
model from data acquisition source selection to the
classification process. We present a comprehensive
survey of ECG analysis work in the form and context
of the introduced stages-based model.

3) Present a detailed literature review of ECG datasets
(stage 1) that are used to evaluate machine learning
classification algorithms in both research and portable
wearable devices for real-time detection

4) Discuss and summarize denoising methods to clean
the ECG signal to reduce false alarms and improve
classification (stage 2). We present a comparison of
different techniques and their usage in various research
areas along with their reported performance evaluation
metrics.

5) Present an overview of the latest research of traditional
and machine learning features engineering-based
ECG classification algorithms (stages 3 and 4) and
summarize their performance metrics evaluated on
different datasets

6) Discuss real-time monitoring systems using body
sensors in portable and wearable devices, its feature
engineering mechanisms, ECG sensor networks, and
ECG classification for portable and wearable devices
(relevant to all 4 stages, and mainly stage 3). We further
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outline the latest hardware of portable systems and
wearable smart devices for real-time heart monitoring.

7) Discuss tools that are available to perform research in
this area of interest

8) Discuss the challenges and limitations of this area of
research and present a comparative summary table of
this survey and other related survey papers in the field

C. PAPER ORGANIZATION
This paper is organized as follows. In section II, the

article selection and survey process for this paper is
described. In section III, we provide a detailed explanation of
Electrocardiography. This section is further divided into four
subsections. ECG leads and ECG waveforms are described in
subsections III-A and III-B, respectively. ECG morphology
for ischemia and infarction is explained in subsection III-C,
and subsection III-D discusses the arrhythmia types. In
section IV, we glance at prior related work published in the
literature regarding both traditional time/frequency domain
and advanced machine learning methods used in each stage
of ECG signal analysis from data acquisition source to the
classification process. This section is further subdivided into
four subsections. Different data sources of ECG signal data
acquisition for evaluating the beat detection and classification
algorithms and their characteristics are explained in section
IV-A. In section IV-B, the different techniques for signal
smoothing and filtering noise from the ECG signal are
described. Followed by feature engineering, section IV-C
presents prior related work on traditional and machine
learning-based approaches of ECG fiducial points and/or
other features detection. In section IV-D, ECG classification
models published in the literature are explained. Section V
details the solutions reported in the literature regarding ECG
signal acquisition, feature engineering, and classification
using body sensor networks. Section VI elaborates on
the devices and tools available for research and real-time
monitoring systems/simulations. In section VII, a discussion
of challenges and a comparative summary are presented, and
in section VIII, the limitations are further discussed. Section
IX concludes this paper and describes future directions for
the continuation of this research.

II. ARTICLE SELECTION AND SURVEY PROCESS
This paper aims to review the work published in the

literature in the last two decades regarding ECG analysis,
from signal preprocessing, feature extraction to real-time
classification. Relevant articles from 2000 to 2020 were
collected from various resources and publishers including
IEEE, MDPI, SPRINGER, ELSEVIER, SENSORS, PLOS
and IOP. Different keywords, such as "ECG classification
with machine learning" and "real-time monitoring systems
for ECG" were used to collect the relevant articles. The
review covers different stages that ECG data goes through,
starting from the data acquisition source, denoising stage,
feature engineering, to finally, the classification stage.
Fiducial points such as R-peaks and QRS complex detected

by different transforms and machine learning methods are
also presented. ECG classification in real-time using machine
learning and its subbranches are additionally presented. The
initial number of retrieved articles was 180. The selection
process was based on specific criteria, such as:

1) Being relevant to ECG
2) Being relevant to types of arrhythmia
3) Being relevant to machine algorithms related to ECG

classification
4) Being relevant to ECG datasets
5) Being relevant to ECG feature engineering techniques
6) Being relevant to performance evaluation metrics of

ECG classification algorithms
Fifty articles were excluded by reviewing the titles and
abstracts of the retrieved articles based on the selection
criteria.

III. ELECTROCARDIOGRAPHY
Electrocardiography was invented by a Dutch physiologist

Willem Einthoven more than a century ago. The
Electrocardiogram (ECG) is the recording of electrical
activity taking place in a cardiac cycle of the heart. It is
captured on a graph paper shown in Figure 2 (two ECG
cycles are shown in this figure). The electrical activity
is in the form of small potential generated by the heart
tissues, picked up through electrodes of the ECG leads. The
miniature signals are amplified and recorded as ECG. The
electrical activity is normally generated spontaneously by the
specialized cells of the Sinoatrial Node (SA node) exhibiting
automaticity. The generation of impulse is due to the reversal
of electrical polarity of the cardiac cell wall, which is
more positively charged on its outer surface in the normal
resting state. This reversal produces negativity on the outer
surface of the cell wall, which spreads as an impulse to the
adjoining cardiac tissue. In addition to detecting ischemia and
myocardial infarction (MI), ECG is also used for detecting
arrhythmias and conduction disturbances. The worldwide
use of modern medical therapy of acute MI (i.e., heart

FIGURE 2: Electrocardiograph
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attack) and the development of interventional cardiology has
substantiated the importance of ECG regarding its Specificity
and Sensitivity in myocardial ischemia and MI [8], [9].

A. ECG LEADS
There are twelve ECG leads called conventional leads.

Six leads are named as limb leads, and the remaining six
leads are named as chest or precordial leads. The limb
leads record the potential across the frontal plane, while the
precordial leads record the potential across the horizontal
plane, through their respective electrodes. Three limb leads
are bipolar leads called standard limb leads, and the other
three are called unipolar augmented leads. Each standard
limb lead separately records the potential difference between
two limbs as detailed below and illustrated in Figure 3.

1) Standard Lead I: between the left arm and right arm
2) Standard Lead II: between left leg and right arm
3) Standard Lead III: between left leg and left arm
Leads I, II and III have their positive terminals attached to

the left arm, the left leg and the left leg, respectively. The
three unipolar leads measure the voltage "V" on a single
point in relation to an electrode attached to the right leg
having zero potential. The potential detected by the unipolar
limb lead terminals, are augmented and are denoted by small
"a", as depicted in Figure 3. These augmented leads are
"aVR: right arm", "aVL: left arm", "aVF: left leg" with their
positive terminal being attached to the respective limb. The
six unipolar precordial leads are attached to the chest wall
and named V1-V6. The twelve conventional ECG leads can
be considered to be reflecting a three-dimensional view of the
electrical activity in the heart [8], [9].

B. ECG WAVEFORMS
The different ECG waves are named in an alphabetic

order, called P, QRS, and T-U waves. Their shape, amplitude,
and time intervals give important information regarding
health and the state of the heart. The P wave reflects
atrial depolarization. The QRS complex reflects ventricular
depolarization. The repolarization of ventricles is reflected by
the T-U wave. The electrocardiograph records a positive wave
for an ECG lead whenever a depolarization current spreads
toward the positive pole of the respective lead. In contrast, a
negative wave appears in the case when the current spreads
away from the pole.

C. MORPHOLOGY OF ECG IN ISCHEMIA AND
INFARCTION

Before describing various ECG abnormalities, it would be
appropriate to understand the ECG leads’ orientation and
arrangement, especially the limb leads, for localizing the
ischemia and infarction as given below:

1) Lead I and aVL, V5-V6 are oriented toward the
anterolateral surface of the heart.

2) Lead II, III, and aVF are oriented toward the inferior
surface of the heart.

3) Lead aVR is facing towards the cavity of the heart and
normally shows the negative depolarization wave.

Regarding precordial (chest) leads, V1 and V2 are oriented
toward the right ventricle. Leads V3 and V4 face the
interventricular septum anteriorly. V5 and V6 face the
left ventricle anterolaterally, with their positive terminals
attached to the chest wall separately. MI mostly involves
the ventricles, and the resultant QRS abnormalities are
also accompanied by the ST-T abnormalities. In the early
stage of MI, the ST-segment elevation occurs, and it settles
down within a few days with the appearance of Q waves
and/or the inversion of T-waves in the respective leads.
The serially increasing ST elevation is significant as far as
the medical treatment is concerned as compared to non-ST
elevation MI (NSTEMI). The importance of ECG is well
recognized in the diagnosis of myocardial ischemia and MI.
The ECG findings are however, variable. Ischemia affects
the electrical properties of the myocardial cell membrane,
shortens the action potential and results in a difference of
potential between the ischemic and the normal portion. This
current of injury is reflected as changes in the ST-segment.
These changes depend upon the severity and the location
of ischemia or MI. The current of injury is directed toward
the outer surface of the heart, in case the ischemia or MI is
transmural. It, therefore, produces ST elevation in the leads
with their positive terminals facing the affected portion of the
heart. When those leads show the ST depression, the current
of injury is flowing away from their positive terminals.

D. TYPES OF ARRHYTHMIA
Abnormal electrical impulses cause irregular heartbeats

called cardiac arrhythmias. There are mainly two classes of
arrhythmia. The first class is bradyarrhythmias, accompanied
by low heart rates (less than 60 beats/minute). The second
class is tachyarrhythmias with a heart rate greater than 100
beats/minute and is further divided into two types. The
first type is supraventricular tachycardia, such as AV nodal
tachycardia and AV junctional tachycardia. The second type
is called ventricular arrhythmia such as premature ventricular
beats, ventricular tachycardia and ventricular fibrillation.

Four types of arrhythmias can be grouped as normal,
non-life-threatening, abnormal and life-threatening

arrhythmia [10]. The Association for Advancement
of Medical Instrumentation (AAMI) has divided the
non-life-threatening arrhythmias into five classes: (N)-
non ectopic, (S)-supraventricular ectopic, (V)-vetricular
ectopic, (F)-fusion and (Q)-other unknown.

IV. RELATED WORK OF ECG SIGNAL ANALYSIS
STAGES

In the past two decades, many researchers have conducted
different experiments in each stage of the ECG signal
analysis process. This paper provides a thorough review
of methods and approaches for each stage of ECG signal
analysis. It compares their work in terms of selection criteria

4 VOLUME 0, 2020



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3026968, IEEE Access

FIGURE 3: ECG leads

and evaluation metrics to give researchers in this field more
insights and broader understandings of the contributions of
related work.

A. STAGE1: DATA ACQUISITION SOURCE/DATASET
When it comes to ECG signal analysis for feature

extraction and/or beat classification based on different
arrhythmias, the dataset selection drives the motive. The
attributes that are recorded with the ECG signal help in
deciding which features would be extracted or explored
further. Annotation, type, lead number, and the number of
leads used in the recording, number, age, and gender of
patients and their health condition are all attributes that give
direction to the rest of the stages of the ECG signal analysis
process for its classification. This stage covers various ECG
data acquisition sources as the input to the stages-based
model, with a special emphasis on the source of the data
(rather than the electronics of the data acquisition circuitry).

ECG analysis is mostly performed on PC-based tools and
evaluated on publicly available databases. These databases
contain different morphological patterns for recorded ECG
signals. Some databases used tele-health monitors to record
these ECG signals under certain recording conditions. ECG
recording specifications for these databases are summarized
in Table 1. Research has shown that ECG classification based
on the single-lead recording in some cases can be as effective
as twelve-lead ECG records. This makes the ESC-ST-T
database popular for researchers as it has recordings from
a single lead, which is the limb lead and could be used to
evaluate wearable ECG sensors and devices’ performances.
The CSE database is the second most cited database,
according to Scopus.

B. STAGE2: DENOISING
ECG analysis and classification requires prerecorded or

real-time ECG signals as the primary input. In both cases,

ECG data acquisition is achieved by attaching sensors and
leads to the body. During the ECG signal acquisition,
noise is also captured along with the original signal, which
significantly affects the quality and classification of ECG.
Removal of noise is called denoising, and it has been
a top interest of researchers to remove noise from the
ECG signal for accurately identifying different anomalies.
Conventional methods to denoise the ECG signal include
applying band-pass filters (0.05-45Hz) with sample entropy
to verify the quality. Noise can cause false alarms that are
crucial to assessing the health status. Noise can be in any
form but can be categorized into two primary forms: internal
embedded noise and external noise. External noise can be
either power-line noise or any other white noise. In ECG
analysis, noise is usually removed after acquiring data from
data sources. There are many different methods to clean

FIGURE 4: Noisy electrocardiograph
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TABLE 1: Stage 1: ECG Dataset Specifications

Database [Ref.], Year # of
Files

# of
Leads

# of
Classes

Sampling
Frequency
fs (Hz)

Voltage Duration of
Recording Collection

Method/Device
Purpose

MITDB [11], 2001 48 2 5 360 5µV 30 min Not Reported
(NR)

Arrhythmias

ESCDB [12], 1992 90 2 NR 250 5µV 120 min Holter Machine Ischemia
Detection, ST and
T-Wave Changes

LTSTDB [13], 1998 86 2-3 NR 250 20 mV 24 hour Holter Machine ST-Segment
Detection

QTDB [14], 1997 105 2 NR 250 5µV 15min Holter Machine ECG Delineation,
Wave limit
validation

TWADB [15], 2008 100 2-12 NR 500 5µV 2 min NR T-Wave Alternants
CSEDB [16], 2017 125 15 NR 500 1µV 10 sec NR Diagnostic ECG

Analyzers

PTBDB [17], 1995 549 12 7 1k 16.38
mV NR MI Detection and

Localization
TELE ECG 250 1 NR 500 5mV 5 sec TeleMedCare

Monitor
NR

AHA 1985 DB 80 NR 8 250 10 mV 30 min NR NR
MITNSTDB [18], 1984 2 NR NR 360 NR 30 min Acquired from

MITBIH
Noisy ECG Signal
Analysis

INCARTDB [19], 2001 75 12 9 257 NR 30 min Holter Machine NR
ChallengeDB2017 [20],
2017 3658 1 4 300 NR 9-61 sec AliveCor Atrial Fibrillation

(AF) Detection
CPSCDB2018 [21],
2018 6877 12 9 500 NR 6-60 sec NR NR

TABLE 2: Stage 2: Summary and comparison of various ECG denoising techniques

Method [Ref.], Year Noise Performance Metrics Database
HDL-Based FIR Filter [22], 2016

Gaussian White Noise
NR

MITDB

Kalman Filter [23], 2016 1.28mse
Wavelet Filter [24], 2009 99.51%acc
Unbiased FIR [25], 2019 Equipment induced noise 99.3%acc
SSRLS [26], 2016

Power-line Interference
20SNR

ANF [27], 2019 0.44rmse
Non-linear FFT Filter [28], 2013 2.5secconvergence rate Simulated ECG Signal
NN-Based DAE [29], 2019 Added Noise to Datasource 0.063rmse MITSTDB

the noisy signal. The quality of the ECG signal can be
checked with the Structural Similarity Matrix (SSIM) [30]
and assessed with measures such as the signal to noise ratio
(SNR). Other performance metrics reported by researchers
in the ECG denoising stage include Accuracy (acc), Mean
Square Error (mse), Root Mean Square Error (rsme), or
Convergence Rate.

As summarized in Table 2, various filters such as the
Finite Impulse Response (FIR) filter, Adaptive Notch Filter
(ANF), and other filter-based approaches have been adopted
by researchers in the recent studies to remove noise from
the ECG signal. Whether it is traditional leads with cables
or a wireless body sensor, any equipment can introduce
noise into the ECG signal, as shown in Figure 4. Authors in
[25] have attempted to remove internal noise by smoothing
the ECG signal using the FIR filters and have achieved
99.3% accuracy. On the other hand, external Power-Line
Interference (PLI) is the most disturbing noise that the
ECG signal is susceptible to. PLI is a significant source
of noise in the frequency range of 50-60 Hz. State Space

Recursive Least Square Adaptive Filter (SSRLS), ANF,
and Fast Fourier Transform (FFT) Filter-based denoising
of power-line interference is performed by [26–28], [31]
and unknown external disturbances are removed by adaptive
control schemes in [32]. Other external white noise can be
removed by Hardware Descriptive Language (HDL)-based
Finite Impulse Response (FIR) filters and NN-based
Denoising Autoencoders (DAE) [22–24], [29].

C. STAGE3: FEATURE ENGINEERING

ECG classification requires proper detection of fiducial
points in its waveform. The QRS complex is an important
wave in the ECG signal that reflects the ventricular
contraction activity of the heart. Its shape gives the basis
for automated detection of different characteristics, which
is the starting point for different classification methods.
QRS complex detection provides a foundation for almost
all automated ECG analysis algorithms. However, there are
difficulties in accurate QRS detection due to its physiological
variability and presence of different sources of noise
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in the ECG signal. The derivative-based approaches had
higher performance index for low-frequency noises, while
algorithms based on digital filtering performed well for
high frequency noise. In the last decade, many traditional
signal processing and machine learning approaches have
been proposed towards Feature Engineering (FE) to detect
the QRS complex, ST-Segment, R-peak, and other fiducial
points. The following two sections present these approaches
published in the reported literature.

1) Traditional signal processing approaches
The QRS complex is a crucial part of the ECG signal,

and its detection is first in detecting other fiducial points
and extraction of all kinds of other features. Any QRS
detector should detect different QRS morphologies that
further helps to classify the ECG signal to detect different
types of arrhythmias. Once the ECG signal passes through
the denoising stage, a clean, good quality ECG signal
is achieved. The ECG signal would then go through a
feature engineering stage where fiducial points such as the
R-R interval, ST-segment, J-point, and T-wave are detected.
Figure 2 shows the fiducial points along with different
ECG waves and the R-peaks between the R-R interval
in a two-cycle ECG. Furthermore, to improve identifying
ST-segment changes, the J-point and heart rate features are
additional characteristics that play an essential role in ECG
beat classification. ST-segment is an integral part of the ECG
cycle that gives information about ischemic diseases. MI and
angina are life-threatening conditions that result in changes
and abnormalities in the ST-segment.

In this section, we present different methods and
techniques reported in the literature that detect the QRS
complex, ST-segment, and other fiducial points. Wavelet
Transform (WT) is one of the popular methods that has been
adopted by many researchers to detect different points of the
ECG signal. Wavelet transform decomposes and transforms
the signal into space where both time and frequency
information about the signal can be observed at the same
time. There are other transforms such as Wigner distribution
and Fourier Transform that provide this information as well,
but WT and its time and frequency representation can be
of interest if a particular portion is essential to study. For
example, the QRS complex in ECG can provide event-related
information, and by knowing its time intervals, ECG fiducial
points can be identified, and features can be extracted. WT
was introduced to overcome some shortcomings and as an
alternative to the Short Time Fourier Transform (STFT).
When it comes to the analysis of a signal with computational
efficiency, the Discrete Wavelet Transform (DWT) provides
information for both analysis and synthesis of the signal
with less computation time. DWT is easier to implement,
and its foundations date back to 1976 when Croiser, Galand,
and Esteban came up with the technique to decompose time
domain signals into discrete representations. DWT represents
the signal in both the time and frequency domain. This
transform became a popular tool to analyze biomedical

signals such as ECG. DWT transforms the ECG signal into
different levels of resolution by decomposing the signal. This
scaled signal can then be analyzed further using different
filters to extract different points. Details about WT, DWT and
its other variations such as Continuous Wavelet Transform
(CWT), Cross Wavelet Transform (XWT), and others are
provided in [33]. Nonetheless, WT can be represented by
Equation 1, where * denotes the complex conjugate.

F(a,b) =

∫ ∞
−∞

f(t)ψ∗(a,b)(t)dt (1)

Heuristic-based methods using different transforms have
been proposed as QRS detection techniques in [34–37].
The best Sensitivity of 99.95% is achieved by the
DWT based windowing method presented by [38–41]. A
delineation algorithm [42] in conjunction with the DWT
based windowing method has outperformed QRS, P, and
T-wave detection evaluated on multiple databases with a
Sensitivity of 99.84%. Different fiducial points detection
by windowing algorithms have been proposed by [43–45].
Their best accuracy of 99% is comparable to the DWT
based windowing methods. Methods based on Time Domain
(TD) [46–48], Mathematical Morphology (MM) [49–51]
with Very-Large-Scale-Integration (VLSI) [52], Gaussian
filter based Synthesized Mathematical Model (SMM) [53]
and derivative based [54] methods have reported the best
Sensitivity of 99.81%, yet a bit lower than DWT based
methods. The Karhunen-Loeve Transform (KLT), along with
the Legendre Polynomials-based Transform (LPT) employed
in [55], [56] have been useful to detect the ST-segment,
but their Sensitivity is much lower than [34]. To improve
the QRS detection, more than one threshold in the wave
is normally required. However, the Phasor Transform (PT)
can reliably be used to detect R-peaks regardless of the
amplitude. This is an advantage of detecting low-amplitude
QRS complexes in ECG signals [57]. A modified wavelet
transform called Dyadic Wavelet Transform (DyWT) takes
the convolution of the ECG and gives dyadically time-scaled
wavelets of the signal being analyzed. DyWT is similar to
the Hamilton-Tomplins (HT) algorithm with a couple of
advantages over it. Authors in [58] and [59] have used DyWT
and multiwavelet transforms to detect the QRS complex but
achieved average accuracy levels. The detection of the QRS
complex with the derivative-based algorithm [54] compares
the feature with a threshold value computed by heuristically
found rules. The best method with the highest Sensitivity to
detect QRS complex has been proposed by [39], [60] which
was based on multilead Area Curve Length (ACL)-based
DWT and FIR filters using adaptive thresholds, whereas [34]
achieved the highest Sensitivity in detecting the ST-segment
using wavelet transforms evaluated on the same dataset of
MITDB. Table 3 illustrates a list of these traditional signal
processing approaches that extract ECG signal features with
reported performance metrics of Sensitivity (sen), Specificity
(spe), Positive Predictive Value (ppv), F1-score (F1), Mean
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Error (me), Error (err), Root Mean Square Error (rmse) and
Accuracy (acc).

2) Machine learning approaches

Various irregular conditions of the heart are categorized
as different arrhythmias, and analyzing the ECG signal
can guide through the classification process for each
type of arrhythmia. A trained cardiologist can classify
the ECG signal to its appropriate arrhythmia class by
analyzing ECG signal through visual inspection. However,
this traditional process takes much time from the moment
patients experience symptoms at home or workplace to the
time they visit the Emergency Room (ER) and wait for the
ECG to be recorded and analyzed by the doctor. This delay
in the process of ischemic or MI detection is crucial to health
and could be prevented if faster methods are developed. The
growing technology and automation have made this possible
by detecting ECG conditions with mathematical computing
and artificial neural networks (ANN). However, these smart
technologies heavily rely on proper detection of fiducial
points of which, QRS complex is an important morphology
and a dominant feature of the ECG signal. The detection of
QRS in the ECG signal has been the interest of researches for
more than 40 years.

The recent and advanced high computing developments,
such as GPU has evolved software-based QRS detection
techniques. Many Artificial Intelligence (AI) algorithms have
been proposed to detect the QRS complex, ST-segment,
and other fiducial points. Within the past two decades,
software detection approaches of ECG fiducial points have
replaced the hardware detectors. The QRS complex has
been detected using variational mode decomposition (VMD),
K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support
Vector Machine (SVM) based approaches in [61], [62] where
the best Sensitivity of 99.93% was achieved with 12-lead
ECG data and 99.79% with single-lead ECG. On the other
hand, ST-segment and its changes have been detected using
Decision Tree (DT) [63] and Google’s Inception based
2-D Convolutional Neural Network (CNN) [64], but didn’t
perform well in Sensitivity as compared to [41] which
employed the ensemble NN-based isoelectric level detector.
These different methods are summarized in Table 4 with
reported performance metrics of Sensitivity (sen), Specificity
(spe), Positive Predictive Value (ppv), F1-score (F1), Error
(err), Root Mean Square Error (rmse) and Accuracy (acc).

D. STAGE4: CLASSIFICATION
Once the ECG signal is acquired and has been passed

through noise filtration and feature engineering stages, the
last stage of ECG signal analysis process classifies the ECG
signal into its different classes using the detected fiducial
points and based on the problem of interest. This section
discusses both traditional and machine learning approaches
reported in the literature to classify the ECG signal.

1) Traditional ECG classification approaches
ECG beat classification of Normal and Abnormal beats

have been attempted by threshold-based techniques [67],
[68]. A modified Pan-Tompkins [70] based adaptive
thresholding approach was presented in [65]. DWT is also
used to classify ECG with the help of Principle Component
Analysis (PCA) and Independent Component Analysis
(ICA), as described in [3]. However, the Multimodel
Decision Learning (MDL) algorithm has achieved better
Sensitivity of 100% in classifying ECG as Normal and
Abnormal when evaluated on the MIT-BIH arrhythmia
dataset. These different methods are summarized in Table 5.

2) Machine learning classification approaches
AI and Machine Learning (ML) is a branch of

computer science that deals with the intelligent behavior
of computers. It comprises of different methods that allow
computers to learn an efficient representation of data
with the help of different algorithms. AI is used for
prediction or classification and could be performed using
unsupervised or supervised learning with different goals.
While unsupervised learning focuses on underlying structure
discovery, supervised learning involves the classification
of multiple categories such as "Normal versus Abnormal
rhythm". Supervised learning heavily relies on datasets with
labeled/structured data. Every predictive modeling requires
feature selection called predictor variables. AI has been
proven to be very useful in FE.

FIGURE 5: Neural network

ANN are models of machine learning inspired by the
human brain. The NN shown in Figure 5 consists of multiple
layers, including an input layer followed by one or more
hidden layers and an output layer. Each layer has multiple
nodes called neurons, which are weighted sums of the
output from the previous layer neurons. That is how each
layer is connected to the next layer. The weighted sum at
each neuron is further passed through an activation function
such as Sigmoid, Relu, TanH or Softmax. Depending on
the model and goal, the appropriate activation function is
selected. The output is calculated by the weighted sum from
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TABLE 3: Stage 3: Feature engineering with traditional signal processing approaches

Fiducial Points [Ref.], Year Detection Method Performance Metrics Dataset
ST-Segment [34], 2015

Wavelet Transform

99%sen MITDB

QRS-Complex [35], 2011

[99.77%sen,
99.86%ppv]MITDB,
[99.81%sen,
99.56%ppv]ESCDB

MITDB, ESCDB

QRS-Complex [36], 2004

[99.8%sen, 99.86%ppv,
0.34me]MITDB, [99.92%sen,
99.88%ppv, 0.20me]QTDB,
[99.61%sen, 99.48%ppv,
0.90me]ESCDB,

MITDB, QTDB,
ESCDB

QRS, ST-Segment [37], 2015 0.09secQRS duration,
0.11secST duration

MITDB, ESCDB

QRS, R-peak [38], 2012 DWT 99.64%sen, 99.82%ppv,
0.54err MITDB

QRS-Complex [39], 2011 DWT-Based ACL 99.94%sen, 99.91%ppv,
0.14err

ST-Segment, J-Point [40], 2011 DWT-Based Windowing [93.33%acc]ESCDB,
[96.35%acc]MITDB

ESCDB, MITDB

QRS-Complex [41], 2008 DWT 90.75%sen, 89.2%ppv ESCDB

QRS, P and T-Wave [42], 2009 DWT-Based Windowing 99.84%sen, 99.8%ppv,
0.0113err

MITDB, ESCDB,
QTDB and
TWADB2008

QRS-Complex [58], 2010 DyWT with Matlab 86.25%acc CSEDB

QRS-Complex [59], 2017 Multiwavelet Transform 93.35%acc, 98.5%sen,
97%ppv, 0.04428err

MITDB

ST-Segment [55], 2016 KLT and LPT [90%acc,91%sen]KLT,
[82%acc,85%sen]LPT

LTSTDB

ST-Segment [56], 2004 KLT-Based Modular Detector [81.3%sen, 89.2%ppv]ESCDB,
[78.9%sen, 80.7%ppv]LTSTDB

ESCDB, LTSTDB

QRS, P and T Waves [57], 2010 Phasor Transform 99.81%sen,99.89%ppv,
0.017err

QTDB

QRS-Complex [49], 2009 MM 99.81%sen, 99.8%ppv,
99.61%Detection Rate

MITDBQRS-Complex [50], 2006 MM 0.21err, 99.97%Detection Rate
QRS-Complex [51], 2010 MM 85.76%Detection Rate

QRS-Complex [52], 2012 MM+VLSI Detector 99.76%sen, 99.82%ppv,
99.57%Detection Rate

QRS-Complex [53], 2020 Gaussian + SMM 0.17rmse MITDB, QTDB

QRS and R-Peak [43], 2018
Windowing Algorithm

94.3%acc, 96%sen, 97.3%ppv,
0.3err MITDB

P, Q, R, S, T waves [44], 2014

99%acc, P[96.72%sen],
Q[97.12%sen],
R[96.04%sen], S[97.32%sen],
T[97.56%sen],

R-Peak, ST-Segment [45], 2015 90.1%acc ESCDB
R-Peak, QRS [54], 2012 Derivative Based Approach 99.8%sen PTBDB
ST-Segment [46], 2016 TD 91.37%sen, 45.53%ppv ESCDBST-Segment [47], 2019 TD NR

QRS, ST-Segment [48], 2012 TD Morphology and Gradients [0.04err]QTDB,
[0.06err]PTDB QTDB, PTBDB

QRS-Complex [60], 2015 FIR-Based Adaptive Thresholds

[99.9%sen,
99.87%ppv]MITDB,
[99.84%sen,
99.71%ppv]ESCDB

MITDB, ESCDB

the input to the last layer which is called forward pass or
forward propagation. The error is then calculated based on
the predicted output and the labeled output. Each weight
is then updated to reduce the error using different methods
such as Stochastic Gradient Descent (SGD), Adam, and so
forth. This process is called back pass or backpropagation.
One complete cycle of forward and backpropagation is

called iteration or epoch. The number of epochs depends on
the convergence of error and is determined with repetitive
experiments or heuristically. NN can be optimized if used in
feedback systems, as presented by [113].

In this study, we present the known AI-NN and techniques
that have been reported in the recent literature for ECG
analysis and classification of its different abnormalities.

VOLUME 0, 2020 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3026968, IEEE Access

TABLE 4: Stage 3: Feature engineering with machine learning approaches

Fiducial Points [Ref.], Year Detection Method Performance Metrics Dataset
Fragmented-QRS and R-peak [61], 2018 VMD and KNN, NB, SVM 86%sen, 89%ppv, 88%acc QTDB

QRS [62], 2007 Entropy-Based SVM

[99.7%Sen,97.75%ppv]
1-lead,
[99.93%sen,99.13%ppv]
12-lead

CSEDB

ST-Deviation [41], 2008 Ensemble NN 90.75%sen, 89.2%ppv ESCDB
ST-Segment and T-Wave [63], 2016 DT and RUSBoost 86%sen, 94.85%ppv,

77%acc, 0.6F1

ST-Changes [64], 2018 Google’s Inception V3 2-D CNN 82.64%sen, 80.34%ppv,
87.38%F1

LTSTDB

TABLE 5: Stage 4: ECG classification with traditional algorithms

Class [Ref.], Year Algorithm Performance Metrics Dataset
Normal, Abnormal [24], 2009 Modified Tompkins 99.51%acc, 0.0049err

MITDBNormal, Abnormal [65], 2010 Adaptive-profiling 97.47%acc, 99.8%sen, 99.79%ppv, 0.0258err
Normal, Abnormal [3], 2013 PCA, ICA 99.28%acc, 97.97%sen, 99.21%ppv
Normal, Abnormal [66], 2016 MDL 93.33%acc, 100%sen, 81.81%spe, 90.47%ppv

Normal, Abnormal [67], 2013 Threshold based 97.6%acc, 97.3%sen, 98.8%spe PTBDB
Normal, Ischemic [68], 2016 Threshold based 98.12%sen, 98.16%spe ESCDB
Normal, Abnormal [69], 2019 Regression 97%sen, 88%spe, 97%ppv Sample Collection

With the help of ANNs, complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) [110]
and multi-module neural network system (MMNNS) [2],
attempts have been made to classify different types of
arrhythmias into Normal versus Abnormal from the ECG
signal analysis using Ensemble Decision Tree (DT) [108] and
particle swarm optimization (PSO) based Fast forward neural
networks (FFNN) [109].

Support Vector Machine (SVM) is, to some extent, similar
to ANN and creates a hyperplane from high-dimensional
space and then linearly separates classes. Therefore, SVM
is generally known as a linear classifier. Researchers
have detected arrhythmias using SVM [96], [98], [101]
with Sequential Minimal Optimization-SVM (SMO-SVM))
[102], Multi-class Support Vector Machine (MSVM)/Complex
Support Vector Machine (CSVM) [104] and in conjunction
with other ML methods such as Ensemble-SVM [97].
Even though SVM is a linear classifier, it can still capture
nonlinear relationships in the cardiovascular functionalities,
often making highly accurate predictions such as classifying
ECG as Normal versus Abnormal [99], [100] and detecting
different heartbeats [103]. However, it has computational
limitations in the sense that it can be difficult in
high-dimensional space and results in non-probabilistic
classification such as divided outcomes. Other methods, such
as isotonic regression, have overcome this problem.

Convolutional Neural Network (CNN) is a branch of
machine learning and an extension to ANN with multiple
layers of the network as depicted in Figure 6. Its application
to cardiology goes back more than twenty years [114],
[115]. In cardiology, and especially in ECG analysis, CNN
has many applications such as detection of arrhythmias
[85], [87], ST-changes detection [86] and Normal versus
Abnormal [116] classification. There are many variations to

CNN and few are stated in this paper to detect arrhythmias
with Residual CNN [88], Recurrent Neural Network (RNN)
and Long-Short Term Memory (LSTM) network [89], [90],
[92–95] as well as detecting MI [91] events.

Deep neural networks also called deep learning [117] is
a subbranch of machine learning and also considered an
extension to ANN and special cases of CNN. It is a non-linear
classifier that learns complex features from the data
automatically and is becoming state-of-the-art for feature
engineering. Its nonlinear representation learning of features
makes it very compelling. Deep learning is emerging due to
the availability of Graphical Processing Unit (GPU)-based
computing. It has a wide variety of applications such as
biometrics authentication, object detection, classification,
compression, image classification, and other computer vision
related technology fields. Deep learning has great potential of
applications in cardiology such as ECG arrhythmia detection
with Deep-CNN [71], [72], [74], [76], [77], [79], [80],
Robust Deep Dictionary Language (RDDL) [73], Deep Brief
Network with Restricted Boltzmann Machine (DBN+RBM)
[75] and Deep Neural Network (DNN) [78]. MI detection is
performed with Deep-CNN [81] and Deep Neural Network
(DNN) [82] while detecting heartbeats is performed by DNN
in [83]. There is a variety of neural networks; LeCun et
al. [6] presented a detailed introduction to deep learning.
Other machine learning methods such as Decision Tree
Detection, Genetic Algorithm (GA), KNN and Probabilistic
Neural Network (PNN) are used to detect ischemic [105],
[106] events, MI [107] and arrhythmia using PCA and
Linear Discriminant Analysis (LDA) [4], respectively. These
different methods are summarized in Table 6 with reported
performance metrics of Sensitivity (sen), Specificity (spe),
Positive Predictive Value (ppv), F1-score (F1), Error (err),
Root Mean Square Error (rmse) and Accuracy (acc).
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TABLE 6: Stage 4: ECG classification with machine learning algorithms

Class [Ref.], Year Algorithm Performance Metrics Dataset

N, S, V, F, Q [71], 2017 Deep-CNN

[95.14%acc, 91.64%sen, 96.01%spe, 85.17%ppv]N,
[96.82%acc, 98.04%sen, 98.77%spe, 94.76%ppv]S,
[97.84%acc, 94.07%sen, 98.74%spe, 95.08%ppv]V,
[97.97%acc, 95.21%sen, 98.67%spe, 94.69%ppv]F,
[99.16%acc, 97.39%sen, 99.61%spe, 98.40%ppv]Q MITDB

N, S, V, F, Q [72], 2019 Deep-CNN + Batch
weighted loss 99.79%acc, 94.65%sen, 99.36%spe, 97.71%ppv

N, S, V, F, Q [73], 2017 RDDL 97%acc, [100%sen,67.2%spe]F, [16.9%sen,100%spe]S,
[90.1%sen,100%spe]V

N, L, R, V, S [74], 2020 Deep-CNN +
2D2PCA 98.81%acc, 98.33%sen, 99.09%spe, 98.34%ppv

S, V [75], 2018 DBN+RBM 0.047err, [93.63%acc, 88.62%sen]S, [95.87%acc,
85.54%sen]V

N, AF, Other [76], 2018 Deep-CNN 84.24acc, 0.83F1-score
ChallengeDBN, AF, Other [77], 2020 86F1, [0.93err]N, [0.82err]AF, [0.79err]Other

N, AF, Other [78], 2019 DNN [0.91N, 0.81A, 0.75O]F1 2017
AF [79], 2018

Deep-CNN
76.47%sen, 93.6%ppv ChallengeDB 2001

Multi-class [80], 2019 [98.24%PTBDB,97.7%MITDB, 99.71%ChallengeDB2001]acc
PTBDB, MITDB,
ChallengeDB2001

Normal, MI [81], 2017 93.5%acc, 93.71sen, 92.83spe, 98.03%ppv PTBDBMI [82], 2019
DNN

93.3%sen, 89.7%spe, 93.6%ppv

Heartbeats [83], 2020 0.006mse, 99.34%acc, 93.83%sen, 99.57%spe,
89.81%ppv, 91.44%F1

MITNSTDB

Control, AF, VF, ST [84], 2018 97.23%acc, 97.02%sen, 97.76%ppv, 97.35%F1 MITDB, ESCDB

S, V [85], 2015
CNN

[97.6%acc, 60.3%sen, 99.2%spe]S, [99%acc, 93.9%sen,
98.9%spe]V

MITDB

ST-Change [86], 2018 89.6%auc, 84.4%sen, 84.9%spe LTSTDB
Multi-class [87], 2018 81%acc, 81%f1-sore CPSCDB2018

N, S, V, F, Q [88], 2020 Residual CNN [99.06%acc, 93.21%sen, 96.76%ppv]1-Lead,
[99.38%acc, 94.54%sen, 98.14%spe]2-Lead MITDB

S, V [89], 2018 RCNN
[99.1%acc, 92.7%sen, 99.3%spe, 80.2%ppv]S,
[99.6%acc, 98.8%sen, 99.6%spe, 95.5%ppv]V

Multi-class [90], 2020 83.5%F1 CPSCDB2018
MI Detection [91], 2020 End-to-end CNN 98.21%acc, 97.5%sen, 98.01%spe PTBDB
N, L, R, V, S [92], 2018 CNN+LSTM 98.1%acc, 97.5%sen, 98.7%spe MITDBMulti-class [93], 2020 97.15%acc, 95.40%sen, 96.80%spe, 95.56%ppv

Multi-class [94], 2018 RNN+LSTM 74.15%F1 CPSCDB2018
Multi-class [95], 2020 LSTM 90%acc CSEDB2020

Arrhythmia Beats [96], 2016 SVM+GA 0.0163rmse, 97.3%acc, 97.5%sen, 99.32%spe,
97.41%ppv

MITDB

Heartbeats [97], 2020 Ensemble SVM 94.4%acc, 65.26%sen, 93.25%spe, 66.24%F1
Multi-class [98], 2020 SVM 99.27%acc, 96.22%sen, 99.58%spe
Normal, Abnormal [99], 2016 SVM+NN 0.3err, 98.91%acc, 98.91%sen, 97.85%spe
Normal, Abnormal [100], 2018 SVM 96%acc

N, S, V, F, Q [101], 2015 98.49%acc, [99.57%N, 97.91%S, 92.18%V,
76.54%F, 97.22%Q]acc

N, S, V [102], 2017 SMO-SVM 99.20%acc,98.01%sen, 99.49%spe
N, LBBB, RBBB, Q [103], 2017 SVM+NN 0.0042err, 98.39%acc, 96.86%sen, 98.92%spe

N, V, S, F [104], 2015 MSVM+CSVM [86%acc]MSVM, [94%acc]CSVM ESCDB
Normal, Ischemic [105], 2007 DT+Fuzzy Model 91.7%acc, 91.2%sen, 92.2%spe ESCDB, MITDB
Ischemic [106], 2004 MDA-based GA 91%sen, 91%spe ESCDB
MI [107], 2012 KNN 98.8%acc, 99.97%sen, 99.9%spe PTBDB
Arrhythmia [4], 2013 PNN+PCA+LDA 99.71%acc, 97.98%sen, 99.1%spe MITDB

Normal, Abnormal [108], 2014 ANN+Ensemble
DT [98.73%acc]ANN, [99.4%acc]Ensemble MITDB, QTDB,

ESCDB
Normal, Abnormal [109], 2019 ANN+PSO+FFNN 93.6%acc,92%sen MITDBN, L, R, V, S [110], 2019 ANN+CEEMDAN 99.9acc, 99.7sen, 99.9spe

S, V [2], 2019 ANN+MMNNS [[97.3%acc, 64.4%sen, 98.6%spe, 63.7%ppv]S]MITBDB,
[[98.8%acc, 91%sen, 99.3%spe, 90%ppv]V]ESCDB

MITDB, ESCDB

Ischemic [111], 2002 ANN+PCA 90%sen, 90%spe ESCDB

N, S, V, F, Q [112], 2016 Random Forest
94.61%acc, [94.67%sen, 99.73%ppv]N, [20%sen,
0.16%ppv]S, [94.2%sen, 89.78%ppv]V, [50%sen,
0.52%ppv]F, [0%sen, 0%ppv]Q

MITDB
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FIGURE 6: Convolutional neural network

V. REAL-TIME MONITORING

The main cause of death in the United States due to
Cardiovascular Diseases (CVD) is accounted for 17.9% of
national expenditure. This number is projected to be 45.1%
by 2035 totaling to $1.1 trillion [118]. Portable and wearable
battery-operated smart devices and wireless sensors have
the potential to be integrated with devices such as mobile
phones, smartwatches, ePatch, and wearable handheld
monitoring devices. The integration provides continuous
ECG monitoring and can improve real-time monitoring,
detection, and early treatment of different cardiovascular
diseases. These portable and wearable sensors are capable
of recording and analyzing the ECG signal to detect the
QRS complex as well as other ECG characteristics. ECG
monitoring and analysis can be achieved in three different
ways. For the purpose of this paper, we are labeling them as
three separate systems.

1) System 1: As shown in Figure 7, a recorder is used that
acquires the ECG signal to be diagnosed later in an
offline mode. Devices like Holter, GE MAC5500, GE’s
SEER Digital Holter, Philips’s Digitrack, BIOPAC
MP150, ePatch by DELTA and Midmark’s IQmark
are few of the popular devices that provide several
hours bedside or body attached acquisition. The data
acquired is analyzed offline by algorithms such as
wavelet transforms [119–124]. In many cases, a doctor
would analyze the data. Limitations to such a method
include non-real-time classification.

2) System 2: As shown in Figure 8, these systems
use real-time detection and diagnosis of the device
itself. Examples of such devices include smartwatches,
smartphones, Nuvant Corventis PiiX, AliveCor,
SmartCardia INYU and MyThrob System on Chip
(SoC) in which the R-peaks are detected using
Relative-Energy-based WeArable R-Peak Detection
(REWARD) [125], and wavelet transform [126], [127],
ST-segments using SVM [128], and the QRS complex
is detected using WT [129]. Diagnosis is performed on
the smart device itself using appropriate classification
methods. However, these types of systems put a burden
on the device in terms of computational complexity,
memory, and battery life.

3) System 3: As shown in Figure 9, these systems use
a three-layer structure discussed later in this section.
ECG is acquired with attached patches, portable or
wearable sensors and is sent to a coordinator such
as Personal Digital Assistant (PDA), smartphone or a
controller that processes the ECG data and sends it
to a central location with live connection for further
diagnosis and classification. Jurik et al. [130] have
explained this in a three-tier form. Limitations of this
method are the lack of real-time feedback for early
treatment.

Beyond the traditional analysis of ECG, the automated
analysis is receiving significant attention and has gone
through substantial advances. Deaths by cardiovascular
diseases have an economic fallout, and its burden is expected
to rise due to unhealthy lifestyles and the growing population
of the world. This requires continuous supervision and
medical care of cardiovascular diseases and comes with the
cost of medical equipment. Wireless body sensor network
(WBSN) technologies provide scalable and cost-effective
solutions to this problem. They are able to measure the
ECG signal continuously, provide real-time monitoring by
sending data to a centralized location, integrate the data with
the person’s medical history, and provoke early diagnosis
and medical support. Wearable devices and its automated
ECG analysis have gained both academic and industrial
attention in supporting a fairly new term Next Generation
Mobile Cardiology (NGMC). Such attention resulted in the
development of many wearable and portable devices both for
commercial and research purposes. Similar to the American
Heart Association [131] which offers practice standards
for bedside ECG monitoring at hospitals, any sensor that
receives the ECG signal must follow the Food and Drug
Administration (FDA) regulation under 21 CFR 870.2360,
class II Code DRX and 501(k) for marketing clearance.
Real-time monitoring usually follows the structure of System
3 for ECG signal analysis and diagnosis in real-time for early
detection and treatment, which undergoes the process of three
layers:

FIGURE 7: System 1
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FIGURE 8: System 2

1) Layer 1: Body Sensors: As shown in Figure 10, this
layer consists of sensors attached to the patient’s
body to sense the ECG signal and send it to the
next layer. Portable and wearable monitoring devices
for ECG, also called ECG patch monitoring (EPM),
cleared by FDA are limited by recording capabilities
such as being only a single lead. AD8232 with three
leads, Zio Patch [132], Sensium Life Pebble and
two-channel Shimmer3 [133] which is a Bluetooth
based wireless sensor are a few popular devices that are
used as sensors attached to the body surface for ECG
acquisition, detection of the QRS complex [134], [135]
and sending the ECG signal to the coordinator.

2) Layer 2: Coordinator: Devices such as Arduino,
ADuCM361 and TI MSP430 controllers receive the
data from previous layers using directly attached cables
or over radio protocols such as wireless IEEE802.11x,
Bluetooth IEEE802.15.1, and Zigbee IEEE802.15.4
[136] for graphical representation, which then sends
the data to the next layer over a data network such
as GSM. Sending data over these protocols consume
and require bandwidth. Compressing the ECG signal
without compromising data is essential to reduce
the overall energy consumption of the coordinator
role of portable devices. Techniques like Quad Level
Vector (QLV) [127], lossless compression by [137],
or huffman coding can be used to compress the ECG
signal while keeping its features intact.

3) Layer 3: Diagnoses: This layer receives the data
from previous layers for analysis and diagnosis of
ECG conditions. This could be a remote server with
GPU computing or a cloud hosted solution such as
Amazon Web Services (AWS) Core IoT, Thingspeak
and Ubidots for graphical representation or analysis
with AI algorithms for diagnosis of different heart
conditions.

Major improvements in monitoring systems of cardiac
activity have been taking place by the deployment of AI

algorithms, ischemia monitoring, noise reduction schemes
and detection with reduced number of leads. Tele-healthcare
is gaining wide attention with the growing technology of
body sensors and its integration with portable and wearable
devices. It may become standard procedure for the treatment
of certain health conditions as the technology matures and
gains further acceptance. The different features of ECG,
detected with different methods, sensors, hardware platforms
and their evaluations on different databases is summarized
in Table 7 along with reported performance metrics of
Sensitivity (sen), Specificity (spe), Positive Predictive Value
(ppv), F1-score (F1), Error (err), Root Mean Square Error
(rmse) and Accuracy (acc).

VI. RESEARCH TOOLS

When it comes to evaluating detection or classification
algorithms, researchers use PC-based software to train,
test, and evaluate their methods. There are computer-based
software such as Labview, Python, and Matlab that include a
lot of libraries which can be used to evaluate an algorithm.
These tools provide methods to import prerecorded ECG
signals from the publicly available databases discussed in
section IV-A. However, the "R" tool can be used to analyze
datasets itself. Even though datasets come with explanations
of the recording environment and other details, by using
"R," one can have different views to see the attributes,
annotations and analyze the datasets differently. On the
other hand, there are emulator boards sometimes called
Open Source HardWare (OSHW) such as Arduino Mega
2560, Duino Olimexino-5510, TI MSP430-T5510 and many
other available tools for experimental and testing purposes.
Emulation software is required with each of these for
programming purposes so that the ECG acquisition and
processing can be performed. Arduino IDE and MSPSim
are examples of emulation software. ECG sensors such as
AD8232 can be used with these boards using patch, clip
or cup electrode ECG cables to acquire the ECG signal
and process it using these emulators. However, on-board
(on-chip) analysis and classification of ECG requires further
processing capabilities. There are boards called System
on Module (SOM) such as RK3188 and AM335X with
ARM Cortex Quad-Core processor on-board to provide
embedded processing of algorithms along with System on
Chip (SOC) boards such as NXP Nexperia-8550. Android
provides a developmental platform that can be used to
develop applications on ARM Cortex based OSHW and
SOM boards. There are also portable simulators available
such as AliveCor, Fluke ProSim 8 ECG Patient Simulator,
TriSmed TSM3000B, and many others [142] that can be
used to acquire ECG and perform some tests in real-time.
Moreover, 12 lead ECG portable simulators are available for
testing purposes, such as Zoll CS1201. A similar 12-lead
portable simulator is designed and proposed by [143].
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FIGURE 9: System 3: Wireless body sensor network

FIGURE 10: Body sensors

VII. DISCUSSION
Emerging of AI with traditional and advanced algorithms

has allowed numerous improvements in many real-world
tasks. Consider a logistic regression example. For instance,
the estimation of statistical values and coefficients requires
strong assumptions such as collinearity among variables
and independent observations, in which case the statistical
inference may hinder the performance of a model. AI
algorithms overcome such assumptions with improved
prediction and classification. Thus, cardiology can benefit
from AI and machine learning in conjunction with other
real-time monitoring systems.

High computing capabilities and mobile connectivity
of electronic devices have provided a surge in mobile
health technologies that are geographically independent with
smart and wearable devices. Real-time data streaming has

enhanced clinical care in an automated fashion with decision
support tools. However, the lack of a framework for cost,
regulatory standard, and security protocols is a big hurdle in
the adaption of these modern technologies in real life. Efforts
need to be established to overcome these barriers to take full
advantage of mobile health, tele-health, real-time monitoring
and care in the field of medicine and specifically, cardiology
[163].

Various techniques have been reviewed in this paper for
ECG analysis to show the automated detection of ECG
fiducial points and classifying related conditions such as MI.
However, not all studies have performed their experiment
with the same lead(s) and/or databases. Some have used
single-lead ECG [81], [164], [165], and others have used
12-leads [107], [166], [167] to introduce their models and
analysis of ECG. Another major challenge is that generally
all 12 ECG leads are required to accurately identify the
ST-segment changes for MI. This is while 12-lead ECG
is mostly used in clinical settings and inconvenient for
real-time monitoring with portable/wearable ECG devices.
Highly accurate, time dependent sequential data interpolation
methods may be required to represent the ECG data from
other leads using only a single lead.

To better understand the contributions of this study, we
present a comparative summary table (Table 8) that lists our
contributions in comparison with other related survey papers
in the field. ECG is a well researched area and to date, many
ECG survey papers have been published. Reputable ECG
survey papers with high number of citations were selected
for this comparative summary. The main focus area of each
survey paper is listed in the table of comparison. The table
clearly depicts that this study has reviewed a larger number
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TABLE 7: Stage 3: Feature engineering methodologies for real-time monitoring

Fiducial Points
[Ref.], Year Detection Method Performance Metrics Sensor Platform Application Dataset

R-Peak [125],
2019 REWARD+WT 99.33%sen, 99.28%ppv,

2.74%err

Silicon
EFM32

Emulator
Board

Simplicity
Studio QTDB

R-Peak [126],
2018

Maximum
Value-based
Formula

NR
OLIMEX
Shield
EKG-EMG

Smartphone Android
SDK Sensor Data

R-Peak [127],
2009 QLV 95.63%sen, 97.04%ppv

MITDB Data

TI MSP430
Microcontroller NR

MITDBQRS,R-Peak
[138], 2007

First and Second
Derivative NR

NokiaN91,
Siemens C75,
Nokia 6280

Java

QRS,P,T-Wave
[139], 2018

LocalMaximum
Point +
LocalMinimum
Point

99.17%sen, 99.55%ppv,
1.28%err

Opal Kelly
XEM6001
FPGA

Verilog

QRS [119],
2010

Wavelet-Transform

99.8%sen, 99.86%ppv,
35%err

ASIC CMOS
IC NR

QRS [120],
2012 99.57%sen, 99.57%ppv ePatch Delta Matlab +

WFDB

QRS [121],
2011 NR

CC2420
Zigbee
Transceiver TI MSP430

TinyOS with
C and Java Sensor Data

QRS,P,T-Wave
[122], 2011 99.97%sen, 98.72%ppv

Shimmer

Micro
controller

FreeRTOS
with CCE
Compiler QTDB

QRS [134],
2017

First and Second
Derivative 100%sen, 99.51%ppv

Matlab +
WFDB

QRS [123],
2012 Wavelet-Transform 78%sen, 87%ppv IcyHeart SoC NR CSEDB2017

QRS [140],
2012 89.5%sen, 80.6%spe

Smartphone

Android
SDK MITDB

QRS [135],
2013

First and Second
Derivative 570-700ustime required

Front End
Circuit Java

QRS [129],
2017 jqrs Detector 83%F1 AliveCor SVM ChallengeDB2017

ST-Segment
[128], 2010 SVM + PCA 96%acc HeartToGo ESCDB

Arrhythmias
[141], 2015

Context-Aware
System 97.7%acc, 94.7%sen

Self-Design
Sensor

Designed
Application Sensor Data

of papers, collectively, regarding ECG databases, real-time
monitoring and research tools in each stage of the ECG signal
analysis process model, as shown in Figure 1. This survey
also stands out among others in terms of more focused areas
and performance metrics included in the comparative study
with respect to other reported survey and review papers.
Comprehensively reviewing ECG signal analysis techniques
in the structure of a stages-based model, the detailed study
on research tools for ECG analysis as well as the study of
real-time ECG monitoring systems along with elaborated
discussions of the challenges/limitations are among the main
contributions of this survey paper. This survey sheds light on
ECG research avenues in a stages-based ECG signal analysis
process model where new and experienced researchers can
refer to initiate or further continue progressing in this
competitive area.

Performance metrics such as accuracy and f1-score are
among the well-known measures of assessing the efficiency
of ECG analysis systems. On the other hand, systems

engineering and system dynamics are other quantitative
and qualitative approaches to evaluate the effectiveness
of ECG analysis systems in a broader context [168]. In
such approaches, nonlinear feedback relationship models are
designed, where in addition to the ECG system’s device
and analysis algorithm factors, other societal (patient care
and well-being), environmental (green resources and energy)
and economic (cost) factors also play a significant role in
determining the overall effectiveness of the ECG analysis
system.

VIII. LIMITATIONS
After carefully reviewing a large body of existing papers

in the field of ECG signal analysis where numerous ideas
have been compared and contrasted, one can observe that
traditional signal processing approaches may not perform as
accurate as recent deep and machine learning approaches. On
the other hand, deep/machine learning approaches generally
have higher computational complexities and therefore would
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require higher cost processors to operate. The main
limitations of various ECG studies can be quantitatively
noted in terms of performance metrics (such and accuracy
and f1-score, etc.), and time and computational complexity
(generally reported in Big O notations). Remedies to
these limitations involve tradeoff in the design procedure
and possibly employing an ensemble of techniques. Other
limitations include concerns regarding the lack of a
globally unified regulatory standardization for the number
of ECG leads, databases, ECG analysis platforms, unified
performance metrics and security protocols, among others.

This comprehensive literature study, though uncovers the
massive body of research regarding ECG signal analysis,
also reveals certain challenges and unsettleties in this
competitive research field. The lack of consistent ECG
signal distributions among devices/datasets as well as the
lack of unified metrics used to report the performance
of different techniques are among the top concerns. With
the variety of ECG devices used in medical and research
settings, the distribution of ECG data varies, making one
ECG analysis technique practically not suitable for ECG
data captured differently. In general, deep/machine learning
techniques require that the development set used for training
be from the same distribution of the test set to prevent
high variance. Thus, there is a need for a unified standard
or a common-ground framework for ECG signal analysis -
starting from the data distribution to quantification of results
- where researchers and/or industries developing portable and
wearable ECG devices must follow to compare the ideas and
results with one another and build-up from there to achieve
better performance of ECG signal classification. Real-time
ECG tele-health and early treatment can be improved
with the assurance of accreditation or certification of such
framework or standard. Moreover, bio-data augmentation
of the heart functionality from the ECG signal, especially
required in heart surgery settings as well as medical schools
for education and research purposes, can significantly benefit
from such unified standard.

In the context of this survey paper, additional limitations
include the fact that with the enormous body of ECG
studies existing in the literature, only a portion has been
has been reviewed. We have made best efforts to provide a
comprehensive review of the majority portion of the body
of ECG research and wide range of ECG analysis literature,
but there are more methods and techniques used to analyze
the ECG signal that can further be reviewed and verified.
The selection of related survey papers for the purpose of
comparing the contributions and advantages of this study
(Table 8) with other related survey papers consists of highly
reputable journals. However, we rely on integrity of these
work for what they have reported. Verifying the results
reported in other related work is beyond the scope of this
survey paper.

IX. CONCLUSION AND FUTURE WORK
ECG is an important tool and can be used to diagnose

abnormalities of the heart function. Early diagnosis of MI
can save lives and is a challenging task, but with CAD and
machine learning techniques, automated diagnosis of MI can
be achieved with ECG analysis and classification. This paper
presented a comprehensive review of different traditional
and machine learning methods used in every stage of ECG
signal analysis, specifically for the ECG classification task.
Both automated and somewhat automated machine learning
techniques to detect ECG fiducial points such as R-peaks
and QRS complexes have been presented. Deep learning
techniques show more efficient detection and classification
results in the recently published work.

We have introduced a stages-based model for ECG signal
analysis in this paper where the bulk of any ECG literature
can be categorized into one or more stages of the presented
model. In this survey paper, researchers are directed to the
huge corpus of ECG research literature with insights on how
the ECG signal goes through different stages/processes and
what is included in each stage in terms of data acquisition,
and the methods/techniques and algorithms related to each
stage of ECG signal analysis. A variety of software and
hardware tools for research in this field have also been
outlined. In addition, the major challenges and limitations
have been discussed and suggestions have been provided for
future research.

We summarized a variety of deep learning methods for
ECG analysis recently published in the literature in a tabular
form. From our survey, the majority of researchers have
used MITDB to evaluate their methods of ECG analysis
and classification based on one dimensional ECG data.
However, very little attention is paid towards the 2-D
image-based classification of ECG in the literature surveyed.
Building upon our recently published preliminary work in
this area [116], we plan to further explore deep CNNs for
2-D image-based ECG classification to distinguish multiple
classes of ECG beats.
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