
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027099, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.2020.DOI

Entrainable Neural Conversation Model
Based on Reinforcement Learning
SEIYA KAWANO1, MASAHIRO MIZUKAMI2, KOICHIRO YOSHINO1 (Member, IEEE), SATOSHI
NAKAMURA1 (Fellow, IEEE)
1Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.
2NTT Communication Science Laboratories, Kyoto, Japan.

Corresponding author: Seiya Kawano (e-mail: kawano.seiya.kj0@is.naist.jp).

This research and development work were supported by JST PRESTO (JPMJPR165B) and JST CREST (JPMJCR1513).

ABSTRACT The synchronization of words in conversation, called entrainment, is generally observed in
human-human conversations. Entrainment has a high correlation with dialogue success, naturalness, and
engagement. In this paper, we define entrainment scores based on the word similarities in semantic space to
evaluate the entrainment of system generation. We optimized a neural conversation model to the entrainment
scores using reinforcement learning so that the system can control the degree of entrainment of the system
response. Experimental results showed that the proposed entrainable neural conversation model generated
comparable or more natural responses than conventional models and satisfactorily controlled the degree of
entrainment of the generated responses.

INDEX TERMS Neural Conversation Model, Conditional Response Generation, Entrainment, Dialogue
Evaluation, Reinforcement Learning

I. INTRODUCTION

ENtrainment is a well-known conversational phe-
nomenon in which dialogue participants mutually syn-

chronize with regards to various aspects: lexical choice [1],
syntax [2], style [3], acoustic prosody [4], [5], turn-taking [6],
[7], and dialogue acts [8]. Entrainment has a high correlation
with dialogue success, naturalness, and engagement [9]–[11].
Some existing works evaluated the dialogue quality and the
performance of dialogue systems through entrainment anal-
ysis [12]. Although phenomena related to entrainment sug-
gest that the quality of human-human and human-machine
dialogues can be improved, it remains challenging to build a
dialogue system that can explicitly consider the entrainment
phenomena in the framework of a neural conversation model,
which has been actively studied in recent years [13], [14].

In this paper, we incorporate entrainment phenomena into
a neural conversation model for building a more natural and
user-satisfied dialogue system. We construct a neural conver-
sation model that can control the degree of entrainment of
generated responses based on a framework of reinforcement
learning (RL) [15]. We define the automatic entrainment
scores based on the local interpersonal distance [11], which
focuses on lexical entrainment. We use this score to optimize
a neural conversation model by RL.

In Section III, we describe our task of entrainable con-
versation modeling (Section III-A), a conditional generation
model based on conventional architecture (Section III-B),
and our proposed model optimized to entrainment scores
by RL (Section III-C2). In experiments, we performed a
preliminary analysis using the defined entrainment scores
to clarify the relationship between user assessment and en-
trainment phenomena in a chit-chat dialogue domain (Sec-
tion IV). Experimental results showed that our entrainment
scores correlated with human assessment in human-human
and human-machine dialogues in the chit-chat domain (Sec-
tion V). As a model evaluation, we conducted subjective
and objective evaluations (Section VI). Our proposed model
generated comparable or more natural responses compared
with general neural conversation models, which optimized by
word prediction based on cross-entropy loss, and controlled
well the degree of entrainment of the generated responses
(Section VII). We discuss the challenges for the advancement
of entrained response generation in neural conversation mod-
els by analyzing our experimental results (Section VIII).

II. RELATED WORKS

Many studies have analyzed entrainment in dialogues and
shown that we can observe the phenomena in dialogues
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from various aspects: lexical choice [1], syntax [2], style [3],
acoustic prosody [4], turn-taking [6], and dialogue acts [8].
Furthermore, automatic entrainment scores have been pro-
posed that focuses on these aspects. These entrainment scores
were highly correlated with dialogue success, naturalness,
and engagement [9]–[11].

Some studies used the knowledge obtained by analyzing
the entrainment to the dialogue system. One work [6] pre-
dicted the user’s turn-taking behavior by considering entrain-
ment. Another work [16] modeled a dialogue strategy to
intentionally increase the accuracy of the automatic speech
recognition using entrainment, and another [17] unified these
works. Although these studies were conducted on modeling
and predicting the entrainment of the user’s behaviors, it
remains challenging problem to build a dialogue system
that can make entrainment to users to improve the dialogue
system’s response quality. In other words, insufficient studies
have positively affected users through entrainment by the
system.

On the other hand, recent neural conversation models focus
on the efficient use and encoding of dialogue history [14],
[18]. However, they do not directly handle entrainment phe-
nomena because they are achieved by minimizing the cross-
entropy loss of word prediction in decoder networks. Both
the model networks that consider the dialogue context and
the objective function of the model itself must be improved
to achieve entrainable response generation.

In this paper, we introduce a reinforcement learning (RL)
framework [15], [19] to optimize a neural conversation model
for automatic entrainment scores. Entrainment scores are
given as RL rewards that enable neural conversation mod-
els to generate appropriately entrained responses for their
dialogue contexts. Existing studies have already described
the correlation between human assessments and automatic
entrainment scores. We performed a follow-up analysis using
chit-chat dialogue corpora to confirm that we can use the
scores as an objective function. By optimizing the model to
maximizing these scores, we expect that our neural conversa-
tion model can generate more natural responses.

III. ENTRAINABLE NEURAL CONVERSATION MODEL
In this paper, we focus on lexical entrainment, which is
related to lexical choice in dialogues. We introduce an en-
trainment score based on the similarity in semantic spaces
in word-distributed representation [11], [20] to capture local
entrainment trends for each turn in the dialogue. We optimize
the neural conversation model using RL to maximize the
entrainment scores of the generated responses. We formulate
the problem as conditional neural conversation modeling,
which uses the degree of entrainment of the response as a
condition, because generating a highly entrained response is
not always appropriate even though the model has to control
the degree of entrainment based on the dialogue contexts.

In this section, we first describe an overview of the re-
sponse generation task tackled in this paper (Section III-A).
Then we describe the architecture of a conditional neural

conversation model given the degree of entrainment (Sec-
tion III-B). Finally, we describe a method that optimizes the
conditional neural conversation model using RL to fit the
given degree of entrainment (Section III-C).

A. TASK DEFINITION

We formally define the task of entrainable conversation mod-
eling as a response generation task given a dialogue context
and a degree of entrainment to the dialogue context. Define
generated response word sequence R = {w1, w2, · · · , wT },
given dialogue context H = {H1, H2, . . . ,HN} and degree
of entrainment of target response rtarget ∈ R. N is the dia-
logue length, and T is the number of words in an utterance.

FIGURE 1: Task of entrainable conversation generation

In this setting, responseR is required to satisfy not only the
appropriateness to the dialogue context but also the degree of
entrainment to the dialogue context (Fig. 1). In other words,
the neural conversation model enforces entrainment degree
rgenerated ∈ R of the actual generated response to be closer
to indicated entrainment degree rtarget. This optimization is
achieved by minimizing the relative error of both entrainment
degrees:

minimize
rgenerated∈R

relative_error(rtarget, rgenerated). (1)

As an approach to building such neural conversation mod-
els controllable by a given condition, such as the entrainment
degree, vector concatenation is widely used between a word
vector and the vectorized condition to feed a decoder input
[21], [22]. Some other works proposed to extend models [23],
[24] for conditional generation according to given emotion
labels in the task of the emotional dialogue generation.

B. NEURAL CONVERSATION MODEL BASED ON
ENTRAINMENT DEGREE

We introduce a conditional neural conversation model based
on a hierarchical encoder-decoder model [14] with a context
attention mechanism, which explicitly gives an embedded
vector of entrainment degree to the decoder (Fig. 2). We
apply the vector concatenation as a widely used method for
conditioning the decoder.

The encoder network has a hierarchical structure that
consists of utterance and context encoders. The utterance
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FIGURE 2: Neural conversation model with entrainment de-
gree as a condition

encoder receives a word at each time step using forward
RNNs to encode an utterance into a fixed-length vector:

hi,t = RNNutterance(hi,t−1,Embed(wi,t)). (2)

Here i is the number of turns in the dialogue context, and hi,t
is the hidden vector obtained by inputting each word wi,t in
utterance Hi. Each word wi,t, which is encoded to a fixed-
length vector using an embedding layer, is used as input.

In the context encoder, utterance vectors are input to
encode the dialogue history:

ci = RNNcontext(ci−1, hi,T ). (3)

Here hi,T is a hidden vector obtained at the last step in the
encoding for each utterance. Resultant vector ci is fed into
the decoder to generate a response sentence as initial hidden
state h′0. In the decoder, hidden state h′t of the decoder and
the output probability of word pt are calculated:

h′t = RNNdec(h
′
t−1, [Embed(wi,t−1); Linearent(rtarget)]),

(4)

pt = softmax(Linearproj(h
′

t)). (5)

Here Linearproj is a projection layer, which maps h′t to a
vector of vocabulary size |V|. Linearent is a linear transfor-
mation layer that embeds target entrainment degree rtarget into
a fixed-length vector. wi,t is sampled from pt and used as a
part of the input for the next step. In this decoding architec-
ture, we expect the decoder to generate a response with an
appropriate degree of entrainment for the dialogue history by
also inputting entrainment degree rtarget in addition to already
generated words. Note that we used teacher-forcing in the
training process [13].

We also introduce a simple attention mechanism to the
above decoder for efficiently handling the information from
the encoded dialogue context. Specifically, let c1:N be a
sequence of vectors obtained by the context encoder, and
let h′t be the hidden states of the decoder in the t step. We
compute the alignment weights based on general-attention

[25] for each hidden state and obtain context vector h̄t:

αj =
exp(score(cj , h

′
t))∑N

j̃=1 exp(score(cj̃ , h
′
t)
, (6)

h̄t =
N∑
j̃=1

αj̃ · cj̃ . (7)

The output words in step t are predicted using computed
context vector h̄t:

ĥt = tanh(Linearattn([h̄t;h
′
t])), (8)

pt = softmax(Linearproj(ĥt)). (9)

In general, training the neural conversation model is based
on minimizing the cross-entropy:

LCE = −
T∑
t=1

log
exp(xt,e)∑|V|
k exp(xt,k)

. (10)

Here |V| denotes the vocabulary size, xt ∈ R|V| denotes
the output of the projection layer in the decoding steps, and
xt,e ∈ R|V| denotes the e-th element that correspond to target
word wt.

However, perhaps models based on minimizing cross-
entropy loss do not efficiently use the information in the
dialogue context [26]. Furthermore, since cross-entropy loss
is not designed to handle entrainment phenomena, we have
to define a new objective function for building a neural
conversation model that is optimized to entrainment scores.

C. MODEL OPTIMIZATION TO ENTRAINMENT DEGREE
BASED ON REINFORCEMENT LEARNING
Our final goal is to build an entrainable neural conversational
model based on the given entrainment degree. However,
model optimization based on existing cross-entropy loss does
not satisfactorily control the generation because the optimiza-
tion is calculated word-by-word. In contrast, optimization
based on reinforcement learning has the potential to train
such a controllable response generation model [27]. Thus,
we introduce the REINFORCE algorithm, which is based on
reinforcement learning [15], [19].

In this section, we describe the objective function and
its optimization method using the REINFORCE algorithm
(Section III-C1). We introduce a reward function using an
automatic entrainment score to optimize the model (Sec-
tion III-C2) and scrutinize the training procedure for our
neural conversation model based on reinforcement learning
(Section III-C3).

1) REINFORCE Algorithm
The generation process in the neural conversation model is
formalized as a Markov decision process (MDP) and opti-
mized with reinforcement learning (RL) [28]. The problem
of response generation in the neural conversation model is
generating response word sequence R = {w1, w2, · · · , wT }
that corresponds to given dialogue history H and target
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entrainment degree rtarget. Formally the generation process is
defined as choosing an action to generate word wt given a
state, already generated words {w1, w2, · · · , wt−1}, in time-
step t [29]. Such a word selection process in the generation
is defined as an action sequence, which is generated by an
actual policy in MDP.

We define a reward function based on entrainment scores
to encourage the model to generate entrained responses. The
entrainment’s evaluation score is fed as a reward to update
the generator’s policy in the RL. We use a policy gradient
(REINFORCE algorithm) [15], [19] to train the policy. The
objective function and its gradient are defined:

JRL (θ) =
∑
w1:T

Gθ(wt|w1:t−1) ·QGθ (w1:t−1, wt), (11)

∇JRL(θ) ' 1

T

T∑
t=1

∑
wt∈V

QGθ (w1:t−1, wt)

· ∇θGθ(wt|w1:t−1) (12)

=
1

T

T∑
t=1

Ewt∼Gθ [QGθ (w1:t−1, wt)

· ∇θ log p(wt|w1:t−1)]. (13)

Here θ is a parameter of the policy. V is a vocabulary,
w1:t−1 indicates the already generated word sequence (state
in MDP), and p(wt|w1:t−1) = Gθ(wt|w1:t−1) is the gener-
ative probability of word wt ∈ V (action in MDP) in the
decoder. QGθ (w1:t−1, wt) is an action-value function that
gives an expected future reward when the system generates
word wt given the state: already generated word sequence
w1:t−1.

The action-value function for each step is calculated using
a Monte Carlo tree search (MCTS) [29], [30] under the
current policy and its parameter θ:

QGθ (R1:t−1, wt) = (14){
1
N

∑N
n=1 r(H,Rn1:t, R

ref, rtarget) for t < T ,
r(H,R1:t, R

ref, rtarget) for t = T .

Here r(·) is a reward function that evaluates the entrainment
degree of response R1:T = {w1, w2, · · · , wT }. Rn1:t is
the generated response using a roll-out [29] from partial-
generated responseR1:t using parameter θ.Rref is a reference
response, and n is the number of roll-outs1. This reward
function calculates the reward based on the relative error
between a given entrainment degree and the entrainment
degree of the actual generated response to allow it to control
the entrainment degree of the generated response. Note that
we can use an arbitrary score in this formulation. We use
a reliable entrainment score based on the similarity of the
semantic space of the words to feed the entrainment degree
(score) as the reward.

1We set the number of roll-outs to 5. However, since the computation
cost of MCTS is high when training the large model, we can also adopt an
approach for speeding up the training, such as REGS [28], instead of MCTS.

2) Reward Function for Evaluating Entrainment Degree
We construct a reward function based on the idea of a local
interpersonal distance (LID), which is a previously proposed
turn-level entrainment score [11]. LID uses a predefined
number of turns (context lengths) in response to the utter-
ances of the primary speaker (anchor). The anchor utterance
and response pair that has a minimum distance is chosen to
calculate LID. This calculation is based on local entrainment,
which is not always observed in the immediate response
to the primary speaker’s turn. It might be sustained and
exhibited after a few turns [31]. In this paper, unlike the LID’s
original definition [11], we calculate the similarity between
the anchor utterance and each past contextual utterance by
another speaker and choose an anchor and contextual utter-
ance pair with minimum distance. However, note that there is
no difference in the nature of both scores.

To calculate the distance between two utterances, we use
Word Mover’s Distance (WMD) [20], which is calculated
from the distributed vector representations of words in a
document. WMD targets both semantic and syntactic infor-
mation to get a distance between text documents. WMD
calculates the Earth Mover’s Distance [32] between sets
of word vectors that are contained in the target sentences
(documents). This calculation is based on the minimum travel
distance. Specifically, let ei ∈ Rd represents i-th word, as
defined by word-embedding E ∈ Rd×n for vocabulary of n
words. We also define a and b are n-dimensional normalized
vectors, which consist of bag-of-words of two sentences.
ai indicates the count of the word i in the sentence2. The
WMD introduces an transport matrix T ∈ Rn×n, such that
Ti,j indicates how much of ai should be transported to bj .
Formally, the WMD learns T to minimize:

WMD(a, b) = min
T≥0

n∑
i=1

n∑
j=1

Tij ||ei − ej || (15)

subject to
n∑
j=1

Tij = ai ∀i,

and
n∑
i=1

Tij = bj ∀j.

To solve this minimization problem, we used the efficient
implementations [20], [33], [34]3.

We define target entrainment degree rtarget based on the
idea of LID :

sim(x, y) = e−WMD(bow(x),bow(y))2 , (16)

rtarget = rtarget(H,R
ref) = max

Hother
j ∈Hother⊂H

sim(Hother
j , Rref).

(17)

Here the sim(·) function normalizes the calculation results
of WMD as the similarities between utterances (x and y). e

2Note that ai is normalized over all words in a.
3https://github.com/RaRe-Technologies/gensim
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is a natural logarithm, and bow(·) is a function to convert
the given sentence to bag-of-words representation. Rref is the
reference response corresponding to dialogue history H , and
Hother ⊂ H is a set consisting of the most recent k utterances
from the dialogue historyH , excluding the primary speaker’s
utterances. rtarget is assumed to be a similarity that takes
values from 0 to 1.

Next we define entrainment degree rgenerated of the actual
generated response:

utarget = utarget(H,R
ref) = arg max

Hother
j ∈Hother⊂H

sim(Hother
j , Rref),

(18)

rgenerated = rgenerated(H,Rref, R) = sim(R, utarget).
(19)

Here utarget is a target utterance to make entrainment by
system generation, which has the maximum similarity of
every pair formed by the anchor utterance of the reference
and a context utterance. Thus, rgenerated is calculated as the
similarity between the generated response and the target.

The reward given to the generated response is calculated
from the relative error between rtarget and rgenerated:

r = r(H,R,Rref, rtarget) = 1−
|rtarget − rgenerated|

max(rtarget, 1− rtarget)
.

(20)

This reward function gives more reward when the relative er-
ror between the entrainment degree of the generated response
and the indicated entrainment degree is small. In other words,
it gives penalty if the generated utterance is over or under-
entrained compared with the reference.

We used different functions for rtaget and rgenerated because
using the same function will lead to learning a lazy policy
that always refers to the previous utterance.

3) Model Training based on REINFORCE Algorithm
The training procedure of a neural conversation model with
RL is shown in Algorithm 1.

Algorithm 1 Training Procedure

Require: generator policy Gθ; roll-out policy Gθ
1: Initialize Gθ with random weights θ
2: Pretrain Gθ to minimize LCE . (10)
3: for number of iterations do
4: G′θ ← Gθ
5: for number of steps do
6: sample (H,Rref, rtarget) from training data
7: generate response R using G′θ on H and rtarget
8: compute QGθ for (H,R, rtarget) using G′θ . (14)
9: update Gθ based on JRL(θ) . (11)

First, we pre-train the neural conversation model by mini-
mizing cross-entropy loss LCE. Then we train it to maximize
objective function JRL(θ) using reinforcement learning and
add LCE to the loss to stabilize the training. This approach

works as a teacher forcing and prevents the collapse of
policies due to the model’s inability to access the reference
response [28]. The policy used to calculate QGθ is updated
every 20 steps. We use the model with the highest reward sum
for the generated response and the deterioration of perplexity
within 1.0 points in the validation set for the evaluation.

IV. ENTRAINMENT ANALYSIS SETTING
LID, which is used as a reward in this paper, probably
correlates with human assessment (therapeutic outcomes and
affective behaviors) in the dialogues of clinical psychology
and psychotherapy [11]. On the other hand, no examination
has focused on chit-chat dialogues, which are the main focus
of this paper. Therefore, we performed a preliminary anal-
ysis to clarify the relationship between user assessment and
entrainment in chit-chat dialogues.

We used Spearman’s rank correlation coefficient to eval-
uate the relationship between the Conversational Linguistic
Distance (CLiD) [11], a dialogue session-level entrainment
score calculated by the mean of the LIDs, and the user
assessment assigned to each dialogue. CLiD is defined:

CLiD(D) =

∑
(H,Rref)∈D rtarget(H,R

ref)

|D|
. (21)

We applied (17) to each turn of the dialogues and averaged
the results as the dialogue level entrainment scores. Here,
(H,Rref) ∈ D is a context and response pair for each turn
in the dialogue. Note that the definition changes from the
original CLiD to fit our problem.

For the entrainment analysis, we used the following chit-
chat dialogue corpora:

• ConvAI2-wild-evaluation: Dialogues between a hu-
man and a system that participated in the ConvAI2
competition4. Each dialogue was evaluated by human
participants on a five-point scale.

• NTT-chit-chat : Dialogues between human participants
that covered as wide range of topics [35]. Participants
in each dialogue evaluated it from the following three
viewpoints on a seven-point Likert scale: 1) strongly
disagree; 2) disagree; 3) Slightly disagree; 4) neither;
5) slightly agree; 6) agree; 7) strongly agree.　

– Q1: “I am satisfied with the current dialogue. I’d
like to have such a dialogue again.”

– Q2: “I found myself interested in the topic of the
current dialogue.”

– Q3: “In the current dialogue, I spoke positively on
my own.”

TABLE 1: Number of dialogues/utterances in each corpus

Corpus Dialogues Utterances
ConvAI2-wild-evaluation 2,483 41,415

NTT-chit-chat 3,483 56,566

4http://convai.io/data
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V. ENTRAINMENT ANALYSIS RESULTS
We performed a correlation analysis of ConvAI2-wild-
evaluation, as shown in Table 2. Here ρ is the correlation
calculated by Spearman’s rank correlation analysis, and the
p-value is the probability of the null hypothesis. We calcu-
lated the CLiD for two types based on their attributes because
the speaker has distinctly different attributes: “Human →
System” shows the human responses to the system, and
“System → Human” shows the system responses to the
humans.

TABLE 2: Entrainment analysis results for ConvAI2-wild-
evaluation

k = 1 k = 2
Types ρ p-value ρ p-value

Human→System 0.19 6.25× 10−22 0.24 2.83× 10−33

System→Human 0.22 9.22× 10−31 0.23 5.51× 10−31

As shown in Table 2, we confirmed that CLiD has a
positive correlation with human scores, regardless of any
setting used to calculate it. This result indicates that the
entrainment degree is critical for improving the quality of
human-machine dialogues. Since many systems based on a
neural network are not able to handle the dialogue context
[26], this result might be deeply related not only to entrain-
ment but also to whether the system can generate a context-
relevant response. To compare cases using different values of
k, we confirmed a stronger correlation in the case of k = 2.
In fact, humans often respond with an awareness of both the
previous utterances but also deeper utterances from the past
in a dialogue history [31].

We also performed a correlation analysis between average
assessments by two participants and CLiD in an NTT-chit-
chat (Table 3).

TABLE 3: Entrainment analysis results for NTT-chit-chat

k = 1 k = 2
Question ρ p-value ρ p-value

Q1 0.13 2.45× 10−15 0.10 7.13× 10−10

Q2 0.11 6.30× 10−12 0.08 4.11× 10−7

Q3 0.09 4.19× 10−8 0.07 2.66× 10−5

Table 3 shows a moderately positive correlation between
the user assessments corresponding to these questions and
the CLiD. This result suggests that using entrainment in
dialogues is an effective strategy to improve user satisfaction
in chit-chat dialogues. As stronger correlation is observed in
k = 1 than in k = 2. This is probably because NTT-chit-
chat has multiple utterances per turn. In other words, when
we apply CLiD to dialogues that contain a lot of information
in one turn, it is difficult to find strong correlations between
CLiD and human scores, because LIDs, which are CLiD
components, will be biased by the number of words in the
utterances.

These results indicate that CLiD, which is calculated by
LID averages, is a useful and strict score to evaluate dia-
logues in the chit-chat domain, if their utterance length is

limited. In other words, these results support our hypothesis:
maximizing the LIDs in dialogues increases dialogue quality.

VI. EVALUATION SETTING FOR RESPONSE
GENERATION
We confirmed that improving LID scores is important in
human-machine dialogue setting as well, which is a basic
hypothesis of our entrainable dialogue modeling. In this
section, we describe the experimental settings to confirm the
effect of our proposed entrainable neural conversation model.

1) Dataset
We used the dataset provided at the ConvAI2 competition,
which was also used to train the system in the ConvAI2-wild-
evaluation described in Section IV. This dataset was divided
into train, validation, and test sets (Table 4). We divided the
original development data into validation and test sets5.

TABLE 4: Number of dialogues/utterances in ConvAI2
dataset

Dialogues Utterances
Train 17,876 262,862

Validation 498 7,798
Test 499 7,788

2) Competing Models
We compared the following different types of neural conver-
sation models in our evaluations:
• ASEQ2SEQ: a standard neural conversation model that

encodes a previous utterance as a query for decod-
ing a response with an attention mechanism (general-
attention) [25].

• HED: a hierarchical encoder-decoder model [14] with-
out an attention mechanism and conditioning to a de-
coder.

• AHED: a model that combines an attention mechanism
with the HED model.

• C-ASEQ2SEQ: a model with conditioning based on
ASEQ2SEQ. We gave the condition (degree of entrain-
ment) as described in Section III-B.

• C-HED: a HED model with a conditioning mechanism.
We gave the condition (degree of entrainment) as de-
scribed in Section III-B.

• C-AHED: an AHED model with conditioning. We gave
the condition (degree of entrainment) as described in
Section III-B.

We trained these neural conversation models using con-
ventional cross-entropy loss (+CE) and our proposed opti-
mization based on reinforcement learning (+RL). We used
the entrainment scores as a condition given to the decoder
and explored the case with different k ∈ {1, 2} for score
calculation. When k = 1, the entrainment score is calculated
using only the previous utterance; when k = 2, it is calcu-
lated using the two most recent utterances by a non-primary

5Note that the original test set in ConvAI2 dataset are private.
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speaker. Since the dialogue is performed alternately by two
speakers, the neural conversation model needs to handle at
most four utterances in a dialogue history when k = 2.

3) Hyper-parameter Settings
We used the same hyper-parameter settings in these models.
The vocabulary size was 15000, the word embedding size
was 300, the entrainment embedding size was 50, the hidden-
size was 500. We used a two-layer Gated Recurrent Unit
(GRU) [36] as an RNN. In the training, we used a mini-
batch size of 128, and an Adam optimizer [37] with a learning
rate of 1e-4. For the WMD calculation, we used pre-trained,
word-distributed vectors6, which normalized the norm to 1
for each. We set the maximum length of the dialogue history
to 4.

4) Automatic Evaluations
We automatically evaluated the generation results using ref-
erences in the test set. We used a beam search (a beam width
of 5) for generating examples to be evaluated. For automatic
evaluation, we used the following five different metrics:
• Perplexity (PPL) is a general metric for evaluating a

language model performance. The model Likelihoods
of the reference responses are calculated. Note that the
perplexity scores do not directly reflect the quality of
generation; for example, dull responses also have good
perplexity scores.

• BLEU, which is the most popular automatic evaluation
metric of language generation tasks, calculates the sim-
ilarity between references and generated responses [38]
based on n-gram precision. We used BLEU2, which
considers uni-grams and bi-grams because matches in
higher-order n-grams are rarely observed response gen-
eration tasks.

• WMD is the average similarity between the references
and the generated responses for each case in the test set.
The similarity is calculated based on (16).　The score is
multiplied by 100 and displayed in a range of 0 to 100.

• r is an average reward calculated from (20) to each
generation. When this score is high, the entrainment
degree of the generated response shows a similar degree
to the reference. In other words, it shows that the neural
conversation model controlled the response content well
based on the entrainment degree. We sorted the test
sets by the entertainment scores of the references and
divided them into four parts to calculate r for each
(r0∼25%, r25∼50%, r50∼75%, r75∼100%). For example,
r0∼25% shows the average reward of examples that have
less entrainment scores in the references. These scores
are multiplied by 100 and displayed in a range of 0 to
100.

• Entropy (Ent) is a diversity metric [39] that
reflects the evenness of the empirical n-gram

6For English data: http://nlp.stanford.edu/projects/glove/
and for Japanese data: http://www.worksap.co.jp/nlp-activity/word-vector/

distribution for the given responses: Ent =
1∑

w∈V C(w)

∑
w∈V C(w) log C(w)∑

w′∈V C(w′) , where, V is
the set of all n-grams in the given responses, and C(w)
denotes the frequency of n-gram w. We set the uni-gram
for evaluation.

5) Human Subjective Evaluations
Automatic evaluation scores still have a problem since they
do not have high correlation with human subjective evalu-
ation results [40]. Thus, we also examined models with a
human subjective evaluation to confirm the naturalness of
the generated responses. In the evaluation of naturalness, we
used a 3-point scale in accordance with an existing work [41].
240 generated responses were randomly selected from the
test set, and human annotators added their evaluation scores
for each sample by looking at the dialogue contexts. Detailed
descriptions follow.
• +2: This response is not only relevant and natural, but

also informative and interesting.
• +1: This response can be used as a response to the

context, although it is universal, like “Yes, I see,” “Me
too,” or “I don’t know.”

• 0: This response cannot be used as a response to this
context. It is either semantically irrelevant or dis-fluent.

Three annotators evaluated each sample, and the final
score was decided by a simple majority. If the evaluation was
completely disagreed (0, +1, and +2), the example was scored
as 1.

VII. EXPERIMENTAL RESULTS ON ENTRAINED
RESPONSE GENERATION
A. AUTOMATIC EVALUATION RESULTS
We show the automatic evaluation results of response genera-
tion models in Table 5. Our proposed models using the target
entrainment degree as a condition showed improvement on
r from the baseline models and achieved comparable per-
formance on other metrics. Our proposed models controlled
the generation at a high level, based on the indicated en-
trainment degree. In particular, we confirmed a remarkable
improvement in models that applied reinforcement learning
(C-HED+RL and C-AHED+RL). C-AHED+RL showed the
best performance in k = 2, indicating that the attention
mechanism for context works well when the model uses
longer contexts. However, we still have a problem with gen-
eration performance r75∼100%, which gives very high entrain-
ment scores as a condition. In other words, generating highly
entrained responses is more challenging. Furthermore, our
proposed models based on reinforcement learning showed a
consistent improvement of WMD and Ent, and BLEU was
comparable to the baseline models.

Then we traced the changes in the generation performance
when we gave different fixed examples of rtarget as a con-
dition for the generation models instead of the oracle. The
results are shown in Fig. 3. Here the vertical dashed line
is the median of oracle rtarget. Our proposed models, which
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TABLE 5: Automatic evaluation results for each neural conversation model

Models (k = 1) PPL BLEU2 WMD r0∼25% r25∼50% r50∼75% r75∼100% r Ent
ASEQ2SEQ+CE 40.80 7.82 38.77 91.22 88.24 82.80 62.35 81.15 5.03
HED+CE 37.53 6.62 36.40 90.72 89.21 83.79 63.06 81.69 5.21
AHED+CE 39.11 6.71 38.16 91.04 88.44 82.40 62.11 81.00 5.11
C-ASEQ2SEQ+CE 40.05 3.69 38.77 90.90 88.08 84.19 68.82 83.01 5.33
C-HED+CE 37.12 6.56 39.17 91.41 88.52 84.25 70.04 83.55 5.20
C-AHED+CE 39.91 6.64 38.84 91.58 89.25 85.00 70.02 83.96 5.11
C-ASEQ2SEQ+RL 41.41 7.28 39.59 91.60 89.36 86.12 72.65 84.93 5.59
C-HED+RL 37.54 6.69 40.57 91.72 90.51 88.01 74.53 86.19 5.97
C-AHED+RL 40.01 7.42 39.96 91.84 90.53 86.36 72.75 85.37 5.52
Models (k = 2) PPL BLEU2 WMD r0∼25% r25∼50% r50∼75% r75∼100% r Ent
HED+CE 37.53 6.62 36.40 87.99 86.69 82.45 62.74 79.97 5.21
AHED+CE 39.11 6.71 38.16 88.11 86.21 81.14 61.86 79.33 5.11
C-HED+CE 37.01 7.28 39.89 90.79 88.84 84.77 70.15 83.64 5.17
C-AHED+CE 38.76 5.17 38.43 89.49 87.64 84.44 67.54 82.27 5.18
C-HED+RL 37.24 6.39 40.67 90.25 89.49 86.91 74.18 85.21 5.62
C-AHED+RL 40.79 7.30 40.48 90.93 91.24 87.14 72.63 85.49 5.87

are optimized by reinforcement learning, showed consistent
improvement compared with the other models. For r, we
confirmed the highest performance around the median of
oracle rtarget. Lower scores on high rtarget were probably
caused by a lack of training samples of high rtarget. For WMD
and Ent, we confirmed increasing trends in both scores when
we give a high rtarget. On the other hand, both scores are low
in the range of low rtarget. This result was caused by dull
responses, which have small diversity and little relevance to
the references. In some cases, our models outperformed the
results of giving the oracle conditions. This indicates that our
models are robust even if the condition given to the model is
different from the oracle.

B. HUMAN SUBJECTIVE EVALUATION RESULTS
Table 6 shows the human evaluation results for the natu-
ralness of the generated responses in each model. We used
the oracle entrainment degrees as the given conditions. Our
proposed models, based on reinforcement learning, generated
a more acceptable response to the dialogue context than the
baseline models under the oracle condition. C-AHED+RL
(k = 2) showed the highest performance. However, C-
HED+RL (k = 2) did not improve the score compared with
C-HED+RL (k = 1). This indicates that C-HED model,
which has no attention mechanism, can not take enough
advantage of reward signals that considering the more past
context.

We also evaluated the relationship between human evalu-
ation scores and entrainment scores based on LID7. Fig. 4
shows the box-plots for human evaluation scores and en-
trainment scores of three models (no-conditioned models and
C-HEDs, C-AHEDs). Here the horizontal axis indicates the
human evaluation scores and the vertical axis indicates the

7The LID was calculated based on (17).

entrainment scores. Note that C-HEDs and C-AHEDs are in-
cluding both results of cases in +CE and +RL. We calculated
the polyserial correlation ρ [42] between human scores and
entrainment scores instead of Spearman’s rank correlation
since there is only a 3-point scale for human scores. We
identified significant positive correlations between human
scores and entrainment scores for all of the groups regardless
of the k settings. This result is consistent with the results
of the preliminary analysis in Section V. Note that we can
not compare the magnitude of the correlations in each group.
This is due to the correlations will be small for groups with
a low frequency of score 0 since the nature of the evaluation
score based on the 3-point scale.

TABLE 6: Frequency of each subjective evaluation score.
Weighted-Avg is a weighted average by frequency of scores.

Models 2 1 0 Weighted-Avg
HED+CE 44 85 111 0.72

AHED+CE 33 119 88 0.77

C-HED+CE (k = 1) 43 88 109 0.73
C-HED+CE (k = 2) 40 103 97 0.76
C-HED+RL (k = 1) 49 105 86 0.85
C-HED+RL (k = 2) 45 106 89 0.82

C-AHED+CE (k = 1) 45 105 90 0.81
C-AHED+CE (k = 2) 44 110 86 0.83
C-AHED+RL (k = 1) 38 123 79 0.83
C-AHED+RL (k = 2) 47 126 67 0.92

Table 7 shows the generation examples of the compared
models based on AHED in k = 2. Their naturalness seems at
least comparable; even our proposed models generated more
entrained responses. Note that it is difficult to find using the
same words because our proposed method is based on WMD
that calculates the semantic similarity in semantic spaces.

VIII. CONCLUSION
We proposed a neural conversation model that can control
the entrainment degree of generated responses according
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(a) Performance comparison when k = 1

(b) Performance comparison when k = 2

FIGURE 3: Changes in generation performance when given a fixed rtarget

(a) Box-plots for entrainment scores and human scores when k = 1

(b) Box-plots for entrainment scores and human scores when k = 2

FIGURE 4: Relationships between human scores and entrainment scores
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TABLE 7: Generated responses from models given a dialogue history and a target entrainment degree: A and B denote system
and user. One utterance of each speaker is given as a history in the example. Generation results of each model are shown after
the context. Before generation results, given target entrainment degrees and rewards bestowed on generated responses are
indicated by brackets.

A hi there ! how is your day ?
B: AHED+CE i am doing well . how are you ?
B: C-AHED+CE (rtarget = 0.51, r = 0.79) i am doing well . just got back from the gym . how are you ?.
B: C-AHED+RL (rtarget = 0.51, r = 0.98) hello , i am good thanks . how are you ?
B: REFERENCE (rtarget = 0.51, r = 1.0) i am doing great out here
A have you thought about finding another job ?
B i want to leave the job but my parents make me stay
A maybe if you found a better one before leaving .
B yeah but i’ll move out my parents soon .
A very cool ! i loved it when my kids left .
B i’ll love it when i leave then i can do as i like
A: AHED+CE i am sorry to hear that . do you have any pets ?
A: C-AHED+CE (rtarget = 0.62, r = 0.72) i am sorry to hear that . do you have any pets ?
A: C-AHED+RL (rtarget = 0.62, r = 0.83) i hope so too ! what else do you like to do in your spare time ?
A: REFERENCE (rtarget = 0.62, r = 1.0) it does not always work out that way
A uh , i guess that is cool , so you like food ?
B yup love it . i also survived cancer though .
A bet that was pretty rough’　
B yes it was hard . i love to run . how about you ?
A i spend a lot of time trying to cook , i’m not super good .
B that is fine . i also like preparing for marathons .
A: AHED+CE i love to cook , but i do not have a job , but i do not like it
A: C-AHED+CE (rtarget = 0.73, r = 0.45 ) i am sorry to hear that . do you have any pets ?
A: C-AHED+RL (rtarget = 0.73, r = 0.55) that is awesome , what kind of music do you like ?
A: REFERENCE (rtarget = 0.73, r = 1.0) is that super hard work ?
A i used to paint and would need to stop taking my meds to do a big job .
B i understand . i like the city .
A i am currently a cleaning lady and do alot of work in the city .
B that sounds fun and interesting .
A it is . what do you do ?
B i work on construction right now .
A: AHED+CE that sounds like a lot of fun . do you have any hobbies ?
A: C-AHED+CE (rtarget = 0.23, r = 0.95) that sounds like a lot of fun . do you have any hobbies ?
A: C-AHED+RL (rtarget = 0.23, r = 0.84) that is cool . i am a professional person .
A: REFERENCE (rtarget = 0.23, r = 1.0) do you have any hobbies ?
A that’s great , i am a grad student
B do you have any hobbies ? i really love sky diving , rollercoasters and cooking shows !
A kayaking and reading psychology books
B i’d go kayaking but i’m really not good at swimming so i’d be scared
A i love it , i’m an awesome swimmer
B do you like hummus ? it is a great alternative as a vegan , i love it !
A: AHED+CE i do not have any pets , i do not have any pets
A: C-AHED+CE (rtarget = 0.28, r = 0.93) i like to go to the beach , do you have any hobbies ?
A: C-AHED+RL (rtarget = 0.28, r = 0.95) i like to go to the park and listen to music
A: REFERENCE (rtarget = 0.28, r = 1.0) not really a fan , i am a meats kind of guy

to the given entrainment degree. We applied reinforcement
learning to optimize our model for automatic entrainment
scores that incorporate local interpersonal distance as a re-
ward. Experimental results showed the entrainment scores
correlated with human assessments in both human-human
and human-machine dialogues in a chit-chat domain. Our
proposed model also generated comparable or more natural
responses than conventional models based on the minimiza-
tion of cross-entropy loss, while the degree of entrainment of
the generated responses is well controlled.

Although our method outperformed the existing method
based on cross-entropy loss, the entrainment degree of gen-
erated response can still be improved. This is because our
method does not have any mechanism to explicitly access
the vocabulary used in the dialogue context on its decoding
process. Hierarchical attention [43] or a copying mechanism
[44] may explicitly solve this problem based on the word

information in dialogue contexts. Incorporating such differ-
ent aspects of entrainment as dialogue act choice is also
important [8], [27].

A phenomenon where synchronization with each other in
a dialogue, such as entrainment, is strongly related to the
attributes of the dialogue participants and the relationships
between them [45]. Therefore, we will focus on individuality
or personality to control entrainment [21].
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