
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Two-Stage Cost-Sensitive Learning for Data
Streams with Concept Drift and Class
Imbalance

YANGE SUN1,2, YI SUN3, HONGHUA DAI4, 5

1School of Computer and Information Technology, Xinyang Normal University, Xinyang, 464000, P.R. China
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P.R. China
3The Institute of Zhengzhou Information Science and Technology, Zhengzhou, 450004, P.R. China
4Institute of Intelligent Systems and Innovation, Deakin University, Melbourne VIC 3125, Australia
5Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou Henan, 450000, China

Corresponding author: Yange Sun (e-mail: ygsun1982@126.com).

ABSTRACT Most methods for classifying data streams operate under the hypothesis that the distribution

of classes is balanced. Unfortunately, the phenomenon of class imbalance widely exists in many real-world

applications. In addition, the underlying concept of data stream may change in a certain way over time, and

attacks increase the difficulty of data stream mining. Motivated by this challenge, a Two-Stage Cost-

Sensitive (TSCS) classification is proposed for addressing the class imbalance issue in non-stationary data

streams. We propose a novel two-stage cost-sensitive framework for data stream classification by utilizing

cost information in both feature selection stage and classification stage. Moreover, a window adaptation and

drift detection mechanism, which guarantees that an ensemble can adapt promptly to concept drift, is

embedded in our method. Our algorithm is compared with competitive algorithms on different kinds of

datasets. The result demonstrates that TSCS obtains significant improvement in terms of class imbalance

data stream metrics.

INDEX TERMS Data streams, classification, class imbalance, concept drift, cost-sensitive, ensemble

learning.

I. INTRODUCTION

Extracting knowledge from data stream environment has

gained growing attention owing to its wide applications,

such as credit card fraud detection, spam filtering, intrusion

detection and data analysis in Internet of Things networks

[1-5]. Concept drift [6-9], i.e., the distribution of data

stream evolving over time, is the crucial characteristic of

data streams, which deteriorates the classification

performance due to data distribution evolving. For example,

the characteristics of spam often change with users’

preferences, and weather prediction models affected by

atmospheric dynamics. Therefore, classifications should

have the capacity of detecting the stability-plasticity

dilemma caused by concept drift [10, 11].

Although much work has been put forward to focus on

concept drift issue [5-7]. In practice, class imbalance [12] is

the mining case that the instances of one class (normally of

interesting) is much smaller than that of other classes which

poses the well-known challenge in machine learning.

Learning from data stream with class imbalance and

concept drift becomes a more challenging task. The

phenomenon of class imbalance presences widely in many

applications, including severe weather forecasting, rare

event monitoring, text classification, medical diagnosis,

networks intrusion detection and fault identification. In fact,

the learning with the simultaneous occurrence of the two

issues in data stream classification is largely unexplored.

Class imbalance issue has extensively studied in static

learning scenarios [13-18]. These methods can be organized

into three main groups: a) data preprocessing oriented

approaches, b) cost-sensitive oriented approaches, and c)

ensemble oriented approaches. Cost-sensitive oriented

approaches assign different misclassification cost values for

each class in classification. Research has shown that cost-

based strategies are an effective method. Moreover,

research indicates that cost-sensitive learning strategy can

be adopted to solve the class imbalance issue naturally [19].

Both cost-sensitive learning and online classification

have been studied extensively in data mining community,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

respectively. Unfortunately, there are relatively few studies

consider the application of cost-sensitive learning strategy

in data stream scenarios due to its nature of dynamic

changes [19].

Finding a way to perform cost-sensitive learning in non-

stationary environment and to adopt effective learning

strategies to deal with class imbalance to pursuit better

performance of classification with concept drifting is the

main aim of this research. In addition, the task of learning

from evolving data streams with class imbalance is to tail

the cost-sensitive learning strategy into the evolving online

scenarios. The most challenge of our work is to devise an

effective cost-sensitive online learning paradigm that can

effectively extract knowledge from data stream with class

imbalance and concept drift.

This study is on the topic of adaptive ensemble, which is

considered as the most popular technique for handling

concept drifts. Differs from existing ensemble architectures,

we tail the cost-sensitive learning strategy into the evolving

data stream classification scenarios, and a novel cost-

sensitive online ensemble, named Two-Stage Cost-

Sensitive (TSCS) scheme, is devised seeking towards both

issues simultaneously. The main contribution of this paper

is to generalize cost-sensitive learning algorithms to their

online versions. For each newly arrived data block, TSCS

first uses a cost-sensitive learning mechanism to preprocess

the feature set, that is, effectively use cost information to

select a feature subset that helps to improve the model's

performance on minority instances; then, define the feature

subset in the feature space, use TSCS to train the classifier

on the current data block; finally, TSCS evaluates the

accuracy and misclassification cost of the existing classifier

on the current data block, and weights the classifier based

on the evaluation result. Compared with existing algorithms,

TSCS can achieve better performance on artificially

synthesized and real-world class imbalance concept drift

data streams.

To summarize, there are four key original contributions

of our algorithm.

(1) In the feature selection stage, a Cost-Sensitive

Principal Component Analysis (CSPCA) by continuously

selecting the optimal set of features according to the cost

information is employed for performing feature selection on

imbalanced data streams. The exploration of feature

subspace can improve the generalization ability of the

algorithm, and can better adapt to various concept drifts.

(2) In the classification stage, a cost-sensitive

weighting schema is developed, which introduces cost

information into the learning framework to effectively

manage the improvement of the learning performance.

(3) An adaptive window change detection mechanism

is also employed in the framework to react promptly to

different kinds of changes.

(4) An extensive experimental study was carried out

on a variety of data stream benchmarks. The results

indicated that the proposed method obtained better

performance than the competitive methods, particularly

under dynamic data streams with class imbalance

environments.

The structure of the paper is organized as follows. In

Sections II, we briefly retrospect some closely related work.

Next, we describe our algorithm in detail in Section III.

Section IV demonstrates the experiments results. Finally, a

conclusion is drawn.

II. RELATED WORK

This section reviews the recent work of the major

contributions that are closely related to our research

presented in this paper which covers approaches in handling

concept drift and in dealing with the class imbalance.

A. HANDLING CONCEPT DRIFT IN DATA STREAMS

Concept drift is a hot research topic in the field of data

mining community and a lot of classification algorithms have

been developed. These methods have been reviewed by

Tsymbal [6], Gama [7], Dilter [8], Khamassi [10] and Lu [11]

et al, providing valuable insight into addressing the concept

drift.

In the literature [6], the surveyed concept drift adaptation

methods are divided into three main categories: instance

selection methods, weight-based approaches and ensemble-

based methods. The method based on instance selection is

the most widely used technique for processing concept drift.

Specifically, it refers to selecting a part of the data to be

processed, that is, selecting the most relevant instance of the

current concept for learning, so as to improve the efficiency

of algorithm learning. Such methods are often implemented

through sliding window technology (Sliding Window). The

method based on instance weighting increases its influence in

the new model by assigning larger weights to the data that is

most relevant to the current data. Many methods for setting

weights have been proposed. The more commonly used ones

are based on the age of the instance (such as the time when

the data arrives, etc.), or based on the degree of relevance of

the data in the processing of the new concept. The ensemble

learning refers to the use of multiple base classifiers to form a

set of classifiers by means of model averaging, and then use

voting or weighted voting to combine them to predict

unknown data.

Dilter et al. divided the methods into two main categories

[8]: active approaches and passive approaches. The active

approaches are mainly by adding a concept drift detection

mechanism to the classifier to actively discover detection

drift. The single classification model uses the concept drift

detection mechanism to actively detect the concept drift in

the data stream. Once the concept drift is detected, the

current model will be adjusted to delete outdated concepts

and adapt to the new concepts in time. However, for the slow

concept drift with gentle changes, it may be difficult to detect

once it appears, causing the old concepts not be deleted in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

time, thus affecting the performance of model. It is notable

that the passive adaptation method does not actively detect

concept drift, nor consider the occurrence of concept drift in

the data block, and is not sensitive enough to capture the drift.

When sudden conceptual drift occurs, it is difficult to deal

with it in time.

In this paper, we group methods for handling concept

drift in data streams into three categories, namely single

classifiers, drift detectors and ensemble-based methods. Most

single-classifier methods improve and extend traditional

classification algorithms to adapt to the changing

environment of data streams. In addition, single-classifier

methods generally provide implicit drift processing

mechanisms (such as concept drift detection, sliding window,

and instance weighting). William et al. proposed a method

called Paired Classifiers including two classifiers for

complementary consideration: using the more accurate

classifier as the candidate for prediction [20]. Much earlier

than Paired Classifiers methods, Zhuang and Dai introduced

an inexact approach for Dual Imbalance Text Classification

[21]. Hulten et al. extended the classic VFDT algorithm [22],

and proposed an algorithm named CVFDT [23] that can

handle concept drift. CVFDT maintains a window for storing

the most recent data, and uses a candidate sub-tree to train on

the window data. If its performance exceeds the original. For

the sub-tree corresponding to the tree, the candidate sub-tree

is used instead of the original sub-tree. Gama et al. also

improved VFDT and proposed the VFDTc algorithm [24].

The VFDTc algorithm can process continuous attribute data

and detect concept drift by comparing the data distribution

between two windows. Most of the work is based on decision

tree algorithms, including Hoeffding Adaptive Tree (HAT)

[25], Adaptive-Size Hoeffding Tree (ASHT) [26], and Ultra

Fast Forest of Trees (UFFT) [27].

Concept drift detection algorithm, also known as concept

drift detector, refers to an algorithm that detects input data

information according to data distribution. It monitors the

changes in the data stream distribution, and once it finds a

concept drift, it will warn the classifier and take

corresponding actions to adjust it to the new data distribution.

In [28], Gama et al. proposed a method called Drift

Detection Method (DDM) by monitoring the error-rate of the

algorithm. Although DDM can effectively capture sudden

concept drifts, it cannot detect the gradual drift in time. To

solve this problem, Baena-Garcia et al. improved the DDM

algorithm and presented the Early Drift Detection Method

(EDDM) method [29], which detects the standard deviation

between the error rates of two connections. Bifet et al [30]

proposed the ADWIN method to adapt to concept drift,

which cuts each window into two sub-windows, representing

the new data and the old data respectively, and determines

the best split according to the rate of change between the sub-

windows, and then the new data use the training model to

replace the old model. In [31], Philipp et al. proposed a

parallelized version of ADWIN algorithm. Gomes et al. [32]

proposed an online version of random forest classifier,

named Adaptive Random Forest classification (ARF), which

uses a concept detector to decide when to replace trees in the

forest to deal with concept drift.

The third solution is a common strategy for addressing

concept drift issue. Ensemble-based approaches [33, 34] have

proved to be an efficient and powerful technique of handling

concept drift due to their flexible structure. Generally,

constructing ensemble can be divided into three main steps:

Training a set of base classifiers (or component classifiers),

selecting a subset of base classifiers, and making the final

prediction. It is considered to be an effective way to update

knowledge without changing the model structure. On one

hand, ensemble learning can learn new knowledge very

efficiently. It only needs to add new classifier members to the

ensemble model. On the other hand, integrated learning

provides a natural mechanism for forgetting irrelevant

knowledge.

The above work only focuses on the issue of concept drift.

The following subsections review some major work in

learning from data with class imbalance.

B. LEARNING FROM CLASS IMBALANCE DATA

Ensemble approaches have the capability of easily adapting

to changing data stream scenarios due to their modular

structure. Thus becoming one of the most popular methods

used for dealing with drift. The ways of processing data

streams can be roughly divided into two types: data block-

based processing and single instance online processing.

Ensemble-based methods for data streams classification can

be categorized into the following three types: block-based

ensembles, online ensembles, and hybrid ensembles [35].

(1) Specifically, in block-based ensemble, data stream is

divided into fixed-size blocks. Block-based ensemble adapts

to change by periodically updating its components and

replacing the weakest members with new ones. Streaming

Ensemble Algorithm (SEA) [36] is a block-based ensemble,

which maintains a fixed number of base classifiers based on

blocks and employs a heuristic classifier replacement

strategy. Wang et al. present a method named Accuracy

Weighted Ensemble (AWE) [37], which is the best-known

representative block-based ensemble. AWE maintains the

top-k classifiers learnt from sequential blocks of instances

and dynamically weights each classifier according to the

most recent block. In [38], an algorithm named Accuracy

Updated Ensemble (AUE1) was proposed. AUE1

incrementally trains and updates component classifiers after

each block. Its improved version AUE2 [39], by periodically

weighting ensemble members, could obtain better response

to gradual drifts. At the meanwhile, it improves performance

on abruptly changing streams environment. In [40], the

algorithm dynamically weights each classifier according to

time-adjusted accuracy on change of distribution. The

performance of block-based ensembles is greatly affected by

the size of block. Another disadvantage is that their delay in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

response to sudden change in time because true labels can be

entirely available after each full data block.

(2) For online ensembles, incremental classifiers are

maintained and updated as soon as a new instance arrives.

Kolter and Maloof proposed the most cite online-based

ensemble, named Dynamic weighted majority (DWM) [41].

When there is an error in algorithm classification, DWM

dynamically adds a new expert, when there is an error in the

expert, it reduces the weight of the expert, when the expert

performance is poor, DWM removes an expert, and

incrementally trains exist component experts through online

learning. Similar to DWM, Gomes and Enembreck presented

a dynamic ensemble classification called Streaming

Ensemble Algorithm (SEA2) [42], which is represented by

an undirected graph. More specifically, SEA2 is an ensemble

algorithm represents as a network in which connections are

created between two classifiers if they have similar

predictions. The weights of edges in the graph represent the

similarity of the two classifiers. Recently, Lu et al. proposed

a Dynamic Weighted Majority for Imbalance Learning

(DWMIL) based on the DWM framework [43]. DWMIL

processes the data incrementally and dynamically weighting

the base classifiers to ensure timely processing of concept

drifts. Moreover, DWMIL uses under-bagging technology

before the base classifier training, to balance the class

distribution. However, it has the shortcoming of over-fitting.

Online-based ensembles update the component classifiers

after each new arriving instance. Hence, they have the

capacity of adapting to sudden changes rapidly.

Unfortunately, online ensembles have the disadvantage of

higher computational costs compared with block-based

ensembles.

(3) The hybrid ensembles combine the advantages of

weighting mechanism of block-based and online processing.

It continuously updates base classifiers online according to

the coming instances. Nishida et al. proposed an adaptive

ensemble algorithm, named Adaptive Classifier Ensemble

(ACE) [44]. The ACE algorithm is based on the data block

period weighting mechanism and online learning method. It

detects mutation concept drift by monitoring the error rate of

classifiers, and builds a base classifier on the data block to

cope the gradual concept drift. When there are large data

blocks, training the classifier will consume too much time.

Brzezinski et al. proposed a hybrid ensemble named Online

Accuracy Updated Ensemble (OAUE) [45]. However, it has

a potentially drawback of unable to adapt to sudden changes

due to the fixed window size. Recently, Gama et al.

introduced a dynamic weighting ensemble algorithm, named

Kappa Update Ensemble (KUE) [46], which adopts Kappa

metric to guide the member classifiers’ selection and

weighting.

In this subsection, we surveyed recent advances in

strategies for learning from class imbalance data in general.

In the next subsection, we will provide a review on

approaches for learning from class imbalance data streams in

particular.

C. LEARNING FROM CLASS IMBALANCE DATA
STREAM

Basically, both class imbalance data and data involving

concept drift are special types of low quality data [47]. Dai

[48] pointed out three strategies for learning from low quality

data: preprocess data before learning; improve data quality

while learning and introduce learning algorithms that tolerate

low quality data. All these three strategies are applicable in

guiding the creation of new learning approaches.

The main recent developed approaches for learning from

class imbalance can be classified into three categories [12-

13]: 1) data preprocessing oriented approaches; 2) cost-

sensitive oriented approaches, and 3) ensemble oriented

approaches.

(1) Data preprocessing oriented approaches are fit into

the first category in fixing the imbalance before learning.

This type of approaches aims to reduce the imbalance of

class distribution by changing the distribution of data.

Specifically, during data preprocessing, the distribution of

data is balanced by adding minority instances (oversampling)

or reducing majority instances (undersampling). The

Synthetic Minority Oversampling TEchnique (SMOTE) [13]

proposed by Chawla et al. is the most famous preprocessing

oriented algorithm adopting the random oversampling

technology. More specifically, SMOTE generates new

instances by performing random linear interpolation between

a small number of instances and their similar neighbors,

which increases the possibility of overlapping between

classes. The experimental results show that compared with

other standard approaches, classification accuracy of the

minority class is improved. However, the duplication or

synthetic creation of the minority class instances often leads

to over-fitting.

(2) Cost-sensitive learning methods [14] fit into the

second type of learning strategy fixing imbalance data issue

during the learning. This type of methods assigns distinct

misclassification costs to different classes and obtains the

optimal decision boundary by minimizing the total

misclassification cost. Most of the cost-sensitive methods are

improved to traditional machine learning methods. For

example, applying the cost-sensitive strategy to the SVM

algorithm [15], the cost-sensitive Hinge loss function is

minimized. AdaCost algorithm [16] introduces cost- sensitive

strategy into the weight function of AdaBoost to reduce the

weight of misclassified instances. Subsequently, Sun et al.

proposed a family of AdaBoost algorithms based on cost-

sensitive strategy: AdaCl, AdaC2, and AdaC3 [17].

(3) Ensemble methods belong to the third type strategy

which is capable of tolerating class imbalance. These

methods are mainly classified into three categories [18]:

bagging-based approaches, boosting-based approaches, and

hybrid ensembles. Bagging-based methods mostly combine

bagging technology, such as OverBagging, UnderBagging,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

UnderOverBagging, and DES-MI. Data preprocessing is

introduced to the boosting algorithm, and the weights of

misclassified instances are adjusted by updating the

distribution weights. Some prominent boosting-based

methods include SMOTEBoost and RUSBoost.

SMOTEBoost [49] introduces SMOTE to create synthetic

instance technology into the AdaBoost iteration. Similar to

SMOTEBoost, RUSBoost [50] randomly randomizes the

majority of instances in each iteration. The hybrid ensemble

method combines both bagging and boosting strategy. Some

prominent methods include EasyEnsemble and

BalanceCascade [21].

Data streams also exhibit class imbalance problem. In

fact, addressing the two issues simultaneously is a nontrivial

task due to the need to adhere the following requirements: 1)

detecting changes as soon as possible; 2) adapting to changes

quickly; and 3) recovering to the accuracy level before

changes.

In [51], Gao et al. proposed an ensemble framework using

oversampling technology, named Sample and Ensemble (SE).

In such framework, incoming data block is divided into two

parts: one represents the positive class instances (P) and

another represents the negative class instances (Q). To take

all these instances into account, we choose some positive

instances from P and obtain a subset of Q then merge them

together. Then we use all these instances to learn a new

classifier to obtain a better performance. Chen and He [52]

proposed a novel algorithm, named SERA (SElectively

Recursive Approach), which used a similar measure to select

the previous minority instances. Similar to SERA, Gao et al.

proposed an algorithm that selects the “best” n minority class

according to Mahalanobis distance. Unfortunately, it is not

strictly incremental, as it requires to access previous data.

Mirza et al. [53] introduced a method based on Extreme

Learning Machine (ELM), which incorporates sampling and

cost-sensitive weighting technique to solve class imbalance

and use window technology to deal with concept drift. It is

the first meta-cognitive framework to solve class imbalance

and concept drift problem. Ditzler and Polikar [54] presented

an extension of Learn++.NSE, named Learn++.NIE. It

employs subensemble and class-independent error weighting

mechanism with a penalty constraint strategies to address the

two issues.

Ghazikhani et al. introduced cost-sensitive learning to

neural networks and proposed an online neural network

ensemble algorithm [55] for dealing with the class imbalance

issue. Recently, Li et al. [56] presented a novel ensemble

algorithm based on multi-window technology to address the

issue. Lu et al. [57] proposed an algorithm, called Dynamic

Weighted Majority for Imbalance Learning (DWMIL),

which dynamically weights the performance of base

classifier on each newly arriving block to ensure timely

processing of concept drift. Moreover, DWMIL uses

underbagging technology before the base classifier training;

that is, during each bagging iteration, undersampling

technology is used to ensure that the training instance class

distribution is balanced. However, it has the shortcoming of

overfitting.

Most recently, Zhao et al. [58] propose to introduce a

novel cost-sensitive online classification framework, named

Adaptive regularized Cost-sensitive Online Gradient descent

algorithms (ACOG), which employs the adaptive

regularization during the classification. Wang [59] et al.

proposed a cost-sensitive home algorithm using an online

gradient descent algorithm to solve online optimization tasks

by maximizing weights or minimizing weighted

classification error costs; and theoretically analyzed cost

sensitivity. Recently, Wang et al. [60] convert a series of

batch-based cost-sensitive ensembles into online versions,

including new online extensions of UnderOverBagging,

SMOTEBagging, AdaC2, CSB2, RUSBoost, and

SMOTEBoost.

In [61], Khanchi et al. proposed an active learning

algorithm named StreamGP, which adapt over time as

genetic programming (GP) individuals improve. Korycki et

al. [62] present an online framework called Active Learning

Strategy (MD-OAL) for imbalanced data streams with

partially labeled.

Most of the above algorithms are based on techniques for

static data that are used to reduce the imbalance in data.

These methods have the following disadvantages: SE only

builds a classifier for the current data block, and cannot save

the concepts that have been learned, and most of the data

block use real-time update mechanisms that cause excessive

time consumption. The base classifier in IMDWE increases

linearly, resulting in a sharp increase in time consumption.

Learn++.CDS and Learn++.NIE lead to excessive time

consumption; and SERA requires constant access to previous

data, so it is not a strictly incremental algorithm. While,

StreamGP and MD-OAL are specially designed for partially

labeled data stream scenarios.

III. OUR METHOD

This section firstly introduces a change detector based on

adaptive window strategy to deal with concept drift, and then

our cost-sensitive principal component analysis method is

described in detail. After that our proposed two-stage cost-

sensitive ensemble method is presented.

A. CHANGE DETECTOR BASED ON ADAPTIVE
WINDOW

In our method, a novel change detection algorithm, which

utilizes a two-window change detection schema to monitor

the change of distribution, is presented. In order to

quantitatively measure whether the data in the sliding

window has concept drift, it utilizes Kullback-Leibler

divergence as the metric to compare the distance between the

windows. The Kullback-Leibler divergence of two

distributions p(x) and q(x) is defined as Equation (1).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

where x is the space of the events.

More formally, let W1={x1, x2, … , xn) and W2={xn+1, … ,

x2n) represent the reference window and the current window.

Our change detection can be expressed as hypothesis testing

uses the following methods to detect whether the data

sequence has concept drift:

where KL(W1||W2) is a metric that measures the dissimilarity

of W1 and W2, ε is a threshold. If the Kullback-Leibler

divergence of the data in the new window and the data in the

historical window is greater than the threshold, it indicates

that a concept drift has occurred.

Adaptive window change detection can detect sudden

concept drift, gradual drift and recurring concept. A concept

drift is detected when the value of distance function exceeds

the threshold. A recurring concept is recognized when the

measure is zero. ε is a threshold calculated according to

Bernstein inequality, refer to our previous work [63]. The

change detector alarms a signal when a change is detected.

Then the outdate data is discarded. If the stream is stationary,

the windows slide step by step. The pseudo-code of the

adaptive window detector is specified in the Algorithm 1.

Algorithm 1 Change Detection based on Adaptive

Windowing

Input: S is a data stream, n is maximum size of

windows;

Output: alarm signal

Procedure:

01: Set t to 0;

02: Set W1 to{ xt+1, …, xt+n};

03: Set W2 to { xt+n+1, …, xt+2n };

04: while not at the end of S do

05: if KL(W1, W2)>ε then

06: Alarm a drift signal at t;

07: Discard the outdate instances and goto step 02;

08: else if KL(W1, W2)==0 then

09: Alarm a recurring concept signal;

10: end if

11: else W2 is slide by 1 step;

12: end if

13: end while

14: end.

B. COST-SENSITIVE FEATURE SELECTION BASED ON
PRINCIPAL COMPONENT ANALYSIS

In our algorithm, we apply a cost-sensitive learning strategy

in the feature selection. Principal component analysis (PCA)

[64] is one of the most popular feature selection techniques,

which uses orthogonal transformations to gain a low-

dimensional representation of data called the principal

components. In order to deal with class imbalance data, we

tailor the traditional PCA algorithm into cost-sensitive

mode, named Cost-Sensitive Principal Component Analysis

(CSPCA). More specially, we apply cost-sensitive strategy

in feature selection stage, by incorporating cost value into

the process of feature selection.

The majority and minority classes in training instances

use different cost ratios:

1
1

= (2)
1

1

i i

i

i i

C If y
N

C

C If y
N














  


   



where i=1, …, n instances; N- and N+ are the total number

of negative and positive instances, respectively. α∈[0, 1] is

a parameter.

Consider the data matrix X mn, where the n

represents the total number of instances, and the m are the

number of features. w1 is the first principal component of p

dimensions and p<<m. w1 is calculated according to

Equation (3):

 2

1 1

,

w =argmax w)i, j j

i j

 X（ (3)

where i and j are the rows and columns of X respectively.

Geometrically, the first step of PCA is centered data by

subtracting the average of the data from all points. However,

in class imbalance case, covariance matrix usually

represents the variance of most of the class instances, and

the maximum variance direction of the data may be largely

captured from most spaces. For this reason, we introduced

the cost-sensitive learning into the PCA algorithms to solve

imbalance problems. For binary classification, it is assumed

that the negative and positive instances are discounted by

imbalance cost ratios C- and C+ respectively. Thus, the

weighted rth principal component is:
2 2

1 1 1

=-1 =+1

w =argmax w) w) (4)
i i

i i, j j i i, j j

i y j i y j

C C    X X
： ， ： ，

（ （

where j is the index of the dimension,
iC  and +

iC are

calculated according to Equation (2).

Using different cost ratios for negative and positive

classes can reduce the dominant role of negative instances

in selecting features. CSPAC selects a relatively small

subset of relevant features from the original set of features.

For this reason, the CSPCA can address the class imbalance

at the feature selection level without changing the

distribution of data or modifying the algorithm.

C. TWO-STAGE COST-SENSITIVE ENSEMBLE
LEARNING

In this section, a novel two-stage cost-sensitive ensemble

framework is put forward for effectively handling the joint

issue of class imbalance and concept drift. TSCS provides a

combination of online and block-based approaches, both

continuously updating base classifiers and replacing them

with new ones when necessary. More specifically, TSCS

0 1 2

1 1 2

(,)

(,)

H KL W W

H KL W W










()
(||)= () log (1)

()X

p
KL p q p

q


x

x
x

x

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

relearn a classifier based on the instances in latest window.

Another strategy is to use hybrid ensemble learning scheme,

in which the base classifiers are weighted their performance

and cost of the latest block, and incremental learning the

classifiers on the latest block. Hence, it is a hybrid method

that offers both implicit (change detection mechanism) and

explicit mechanisms (ensemble weighting mechanism) to

deal with concept drifts.

The basic framework of the TSCS algorithm is shown in

Figure 1, which mainly involves two stages:

1) PCA-base feature selection stage: It employs a cost-

sensitive learning mechanism in the feature selection process

to filter out feature sets that are more meaningful for

effective prediction and classification of minority samples,

and at the same time. It also has the effect of reducing data

dimensions.

2) Ensemble classification stage: A cost-sensitive

weighting schema is designed, that is, based on both the

accuracy and the total cost of misclassification of the base

classifiers on the latest data block to update its weight, and

then the weighted voting schema is employed for prediction.

FIGURE 1. The framework of TSCS algorithm.

Assume there are

─d Stream data window Wj; contains the current data (1

≤ j ≤ d);
─k base classifiers hi=fi(Wj) (1 ≤ i ≤ k);
─m instances It (1≤t≤m);

To implement our two stage cost-sensitive ensemble

learning, we need to introduce the weight weightij and the

cost ctij. The more important a base classifier outcome is, the

higher weight is assigned. Similarly the higher cost of a base

classifier, the less important the base classifier would be.

Specifically, a data stream can be described as S={s1, s2, ...,

st, ...}, where st=(xt, yt) represents the instance at time t.

E={h1, h2, …, hk} represents the ensemble containing k

weighted base classifiers. First, TSCS continuously uses

CSPCA algorithm to select effective feature subset, and

learns a base classifier hi base on the new feature space of the

latest window Wj, i. e., hi=fi(Wj). And then, for each incoming

instance xt, instead of evaluating base classifiers every d

instances, each classifier hi∈E is weighted based on the data

in the latest window according to Equation (5).

1
(5)ij

ij ij r

weight
ct MSE MSE


   

2()(1 ())r

y

MSE p y p y 

2

(,)

1
(1 ())

| |
j

i

ij y

x y Wj

MSE f
W 

  x

where MSEij is the prediction error of base classifier hi on the

recent window Wj, while MSEr represents the mean square

error of a randomly predicting classifier and is employed as

the baseline for predicting the current distribution.

Additionally,  is a very small positive value.
()i

yf x

represents the probability of using hi to classify x as y.

ctij is the total cost of the misclassification of classifier hi

on current window Wj, which can be computed using

Equation (6):

'

{ , } '

1
cos (, ') () (6)

| |
j

i

ij y

x y W yj

ct t y y f
W 

   x

where cos (, ')t y y represents the cost of instance x of class y

being classified as y'.

The intuition underlying of Equation (5) is that the weight

of the classifier hi is inversely proportional to the error and

the cost value, that is, the larger the classification error rate

and cost of the classifier on the data of latest window, it

indicates that the classifier is not suitable for the current data

distribution, and its weight in the ensemble classification

should be weakened.

After the generation of base classifiers, a new classifier h'

is trained then added into the ensemble when drift is detected.

When the number of base classifiers reaches the specified

maximum value, the worst classifier is replaced by the new

classifier. The final prediction of ensemble is based on the

weighted majority voting rule according to Equation (7).

1

() () (7)
k

t i i t

i

E weight f


x x

where
1

1
k

i

i

weight


 , 0 < weighti < 1.

To assume
1

1
k

i

i

weight


 and 0<weighti<1 hold true.

We normalize the weights of base classifiers in the following

way:

Assume k individual weights obtained via formula (5) is

<w1, w2, …, wk> (Here we fix the window on current one so

we omit the subscript j). We let

and we let the weights we used in Equation (7) as

follows

Data preprocessing

Data stream
Change

detection

Base classifier

Prediction

Cost sensitive

learning

CSPCA

Feature selection stage Classification stage

(9)i

i

w
weight

w


1

(8)
k

i

i

w w




This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

When the algorithm detect a drift or the instances in the

long-term buffer exceeds the specified max value (line 4), a

classifier that represents the new concept is built according to

the instances in B (line 5), weighted (line 6), and added to the

ensemble (line 8). The final prediction is based on the

weighted majority voting rule. The pseudo-code of TSCS is

given in Algorithm 2.

Algorithm 2 Two-Stage Cost-Sensitive Ensemble

input: D: change detector, S: data stream, k: max number of

classifiers, d: maximum size of windows

output: E: ensemble with k base classifiers

Procedure:

01: E←

02: for each current Wj in S

03: apply CSPCA algorithm;

04: if |Wj| > d or detected a change then

05: train a new candidate classifier h' based on new

feature subset of Wj;

06: weight new classifier h';

07: weight all classifiers hi in E according to Equation (5);

 train all classifiers hi in E incrementally;

08: if E is not full then add the classifier h' to ensemble;

09: else the worst base classifier is replaced by h';

10: reset D;

11: reset current window;

12: end if

13: end for

14: end.

IV. EXPERIMENTAL STUDY

The experiments are carried out with Massive Online

Analysis (MOA) [65] software package. MOA is the most

famous open source framework for data stream mining and it

provide an environment for implementing the state-of-the-art

algorithms of data stream mining.

a. DATA BENCHMARKS

A thorough experimental study, comparing TSCS to 14

state-of-the-art algorithms over 6 synthetic and 8 real-world

data stream benchmarks. The synthetic data streams were

simulated by the MOA Generators.

The imbalance rate (IR) represents the ratio between the

majority class instances and the minority class instances.

Two types of class imbalance benchmarks are selected in

the experiment: (a) static class imbalance benchmarks; (b)

dynamic class imbalance datasets, whose IR values change

dynamically over time. The detail of the datasets is

described in Table I.

1) SYNTHETIC DATASETS

We first generate data streams through the generators in

MOA, and then use the ConceptDriftStream generator to

simulate concept drifts. Finally, we set the imbalance rate of

the ImbalancedStream generator to simulate data streams

with class imbalance. For multi-class classification, the first

class is set as the major class, the remainder classes are the

minority classes.

The Agrawal data stream is used to generate one of ten

specified functions, including a total of 9 attributes. We use

the MOA Agrawal generator to produce a stream with 1000,

000 instances.

TABLE I

CHARACTERISTIC OF THE DATASETS

Stream #Inst #Attrs #Clas IR Drift

Agrawal 1M 9 2 1 gradual

STAGGER 1M 9 2 1 sudden

HyperPlane 1M 10 2 1~20 gradual

LED 1M 24 10 3 mixed

Rotating spiral 1M 40 3 19 gradual

SEA 1M 3 4 10 sudden,

recurring

Spam 581K 53 7 4 unkown

German 1K 24 2 7 unknown

Poker 1M 10 10 13 unkown

Electricity 1M 10 2 5 unkown

Airlines 539K 7 2 2 unknown

IJCNN1 49, 990 22 2 5 unknown

Sensor 2M 5 54 54 unkown

Weather 18, 159 8 2 10 unkown

The STAGGER data set was proposed by Schlimmer et al.

It is a widely used dataset of simulated concept drift. . In the

experiment, we utilized the STAGGERGenerator in MOA

to generate a dataset having 1, 000, 000 instances. It

contains 3 concepts. The concept 1 is set as the majority

class. The imbalance ratio with the other two categories is 5.

Hyperplane is the most popular synthetic dataset in data

stream classification experiments. It is a classic two class

classification problem that simulates a d-dimensional

hyperplane. We simulate a stream with gradual drift

containing 1, 000, 000 instances.

The LED dataset is to predict the numbers on LED

display. In the experiment, we produced 24 binary attributes

version of the LED, of which 17 are irrelevant. Simulate

concept changes by exchanging related attributes. We

generate a LED with mixture drift. It contains 1, 000, 000

instances.

The Rotating Spiral stream is used to describe four types

of spirals. It contains 1, 000, 000 instances, of which about

5% are positive instances. Therefore, the Rotating spiral is a

dataset with class imbalance and gradual concept drifts.

The SEA stream has three attributes, only two of them are

relevant. The dataset contains four concepts which represent

a block of data. The dataset uses f1+f2≤Ɵ to classify the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

instances in the blocks. 9, 8, 7 and 9.5 are the most common

used threshold. We generate a SEA dataset with sudden

recurring concept drift, containing 1, 000, 000 instances. We

use the RecurrentConceptDriftStream generator to simulate

recurrent concept drifts.

2) REAL-WORLD DATASETS

It is impossible for real-world data sets to know exactly

when drift begins, what kind of drift exists, or even whether

it does exist. Therefore, it is more meaningful to verify the

adaptability of algorithms. The static datasets can be

downloaded at MOA website
1

, and then use the MOA

generators to simulate them into streams.

 Spam dataset represents information of a message, and is

divided into two types: spam (only 20%) and legitimate

messages, so it is a dataset with class imbalance. It contains

9, 324 instances, each instance have 500 attributes. The

characteristics of the spam slowly evolving over time. And

then simulate static dataset into stream by the generator in

MOA.

The Electricity dataset is the most frequently used real-

world data stream. It has 45, 312 instances, and each

described by 7 attributes. The purpose of Electricity dataset

is to predict the trend of electricity price changes in

Australia.

The German credit dataset contains 1000 instances, and

each instance is described by 24 attributes. The purpose of

the dataset is to predict the tendency of loan default based

on bank loan information and the occurrence of overdue

loans of applied customers. It can be obtained from

LIBSVM website
2
.

The Poker Hand dataset comes from UCI repository [66].

It indicates the issue of recognizing hand in a poker game.

The Poker dataset has 1000, 000 instances. Each instance is

described by 10 attributes, representing a group of five

cards in hand. The class is described as “Poker Hand”.

The purpose of Airlines dataset is to predict whether a

flight will be delayed based on the given information of

scheduled departure. The dataset contains 539, 383

instances, and each instance consists of three numeric

attributes and five nominal attributes. The class of the

Airlines is delay, indicating whether a flight is delayed.

IJCNN1 dataset comes from the IJCNN competition in

2001, and uses the pre-processed data of LIBSVM as

experimental data. It has 49, 990 instances.

The Sensor dataset comes from 54 sensors information in

the Intel Berkeley Research Laboratory, as shown in Figure

2. It consists of 2, 219, 803 instances and each instance

with 5 attributes. Brightness and temperature change over

time, leading to concept drifts.

The Nebraska Weather Prediction (Weather) dataset

contains the daily weather measurements of the Offutt Air

Force Base in Bellevue. It consists of 18, 159 instances. It

1 http://moa.cms.waikato.ac.nz/datasets/.
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

is a dataset with diverse weather patterns and concept drifts.

Figure 2. The sensor distribution map in the inter Berkeley

Research Lab
3

b. EVALUATION METRICS

Since the classification accuracy is not suitable for

imbalanced data distribution, we adopt G-mean [67, 68] as

alternate metrics for evaluating the performance of classifiers

in class imbalance scenarios.

(1) Precision and Recall

Precision and recall can be calculated as:

=precision
TP

TP FP
(10)

=
TP

recall
TP FN

(11)

(2) F-measure

F-measure is the harmonic mean of precision and recall, as

shown in Equation (12).

2Precision Recall
-measure

Precision Recall
F





 (12)

(3) G-mean

G-mean is the most commonly used evaluation measure in

class imbalance environments. G-mean is the geometric

mean of the recall of abnormal classes and normal classes.

Formally, the G-mean can be calculated as follows [67].

TP TN
G mean

TP FN TN FP
  

 
(13)

C. EXPERIMENTAL SETUP

All algorithms are written in Java and executed under the

MOA framework. The experiments were carried out on a

3.0GHz Pentium CPU with 32GB of RAM and Microsoft

Windows 10.

In the experiments, we use the prequential evaluation

strategy in MOA to evaluate the performance of all compared

methods. Therefore, a classifier is evaluated before all

instances are obtained. This evaluation method can generate

an incremental learning curve, where the two-dimensional

3 http://www.cse.fau.edu/~xqzhu/stream.html

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

curve corresponding to the horizontal axis to the number of

instances that have been classified, and the vertical axis are

the dynamic changes of evaluation indicators.

In the study, all tested ensemble methods set k to 15. The

Hoefffding tree was selected as the basic classifier. This is

mainly because the decision tree is probably the most widely

used algorithm equipped with ensemble technology, and can

effectively deal with concept drift. For the Hoeffding tree

algorithm, we set grace period nmin to 100, set tie-threshold τ

to 0.05, and set split confidence δ to 0.01.

d. RESULTS AND ANALYSIS

The proposed method was evaluated against ten state-of-the-

art algorithms. The first five is non-stationary learning

algorithms and the last five are designed for evolving

environments with class imbalance.

 ARF: ARF [32] is an online version of random forest

classifier, which uses a concept detector to deal with

concept drift.

 AWE: AWE [37] is the most representative block-

based ensemble, which maintains the top-k classifiers

learnt from sequential blocks of instances and dynamic

weights each classifier according to the most recent

block.

 OzaBagAdwin: OzaBagAdwin is the online bagging

version equipped with ADWIN as the change detector.

 LeverageBagging (Lev Bagging): Lev Bagging extends

the traditional bagging algorithm to the online mode,

and randomizes the weights of instances in the input

data stream to enhance the performance of the ensemble.

 AUE2: AUE2 [39] is a block-based ensemble. It uses a

non-linear base classifier weighting scheme,

incrementally updates each data block after it arrives to

address sudden concept drift.

 KUE: KUE [46] is a hybrid ensemble which using the

Kappa metric for dynamically weighting base

classifiers in ensemble.

 Online SMOTEBagging (OSB): OSB [61] is an online

version of bagging based cost-sensitive learning

algorithm.

 Learn++.NIE: Learn++.NIE [54] is an ensemble

algorithm that adopts bagging-based subensembles to

generate subensemble of classifiers and weighting

strategy based on recall, Fmeasure, or G-mean.

 ACOG: ACOG [58] is the state-of-the-art online

classification based on adaptive regularization.

The results are evaluated by the metrics of G-mean, F-

measure, and running time, as shown in Tables Ⅱ-Ⅳ.

G-mean Analysis. As shown in Table Ⅱ, in terms of G-

mean, on average TSCS achieved the best, AWE is the worst.

In the case of data streams, the best average performance is

obtained on LED, SEA, Poker, Sensor and Weather datasets.

Compared with other algorithms, TSCS can achieve better

performance under class imbalance data streams environment.

This is because TSCS has a concept drift detection

mechanism and uses the cost-sensitive strategy, so it can

handle class imbalances and concept drift well. Due to AWE

unable to deal with the class imbalance problem, so its

average performance is the worst. Meanwhile, the cost

sensitive learning strategy is adopted in TSCS classification

stage, and a feature subset space which can effectively

balance the data distribution is selected. During the training

stage, a new base classifier is learned in the feature subspace

when concept drift is occurred. In the prediction process,

TSCS uses the cost-sensitive ensemble method to make

prediction.

F-measure Analysis. As shown in Table Ⅲ , on most

scenarios, Lev performs the worst compared with other

algorithms. This is because there is no mechanism in Lev to

deal with class imbalanced issue, thus it performs poorly.

TSCS is ranked the second directly next to the best. For

TSCS, cost-sensitive feature selection strategy is

implemented by deleting irrelevant and redundant features

from the original feature set, and then classification is

performed based on this feature set, which further affects the

overall classification performance.

Time Analysis. As shown in Table Ⅳ, we observe that

OSB and ACOG are the most time-consuming methods. The

better performance of our algorithm might be partially

because our algorithm benefits from the adaptive window

change detection strategy to capture drift in a timely manner.

In most datasets, TSCS adapts to concept changes faster than

most of the competitive techniques.

In conclusion, TSCS achieves better average performance

with respect to G-mean, time and F-measure on different types

of concept drift scenarios compared to other ensemble

approaches that use the same base learner. This is principally

for the following reasons: (1) The two-stage cost-sensitive

learning schema injected the information of cost into the

procedures of feature selection and classification, which can

effectively deal with class imbalance issue. (2) The

management of the change detection mechanism improves

the generalization of classification in different situations,

particularly in non-stationary environments.

Figure 3-5 shows the changes of the G-mean of the

algorithms as the number of instances processed increases.

Such graphical plots can display the algorithms’ adaptability

to different kinds of drifts intuitively.

The scenario of LED data stream simulates a complex

change by joining two gradually evolving streams. As shown

in Figure 3, all the algorithms show relatively smooth curves

at the beginning up to 60, 000 instances processed. When

concept drift occurs, all the G-mean curves suffer from

instantaneous accuracy rates fluctuation, including that of

TSCS. Since TSCS can track the sudden change immediately

using the change detector, it can update the ensemble

classifier to adapt to gradual changes in a timely manner.

These results confirm that our algorithm provide a certain

guarantee for the stability of different kinds of concept drift.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

Conceptual changes in real-world stream environments has

the characteristics of uncertainty, so it can verify the

adaptability of data stream algorithms. Figure 4 shows G-

mean of the algorithms on the Poker dataset. The curves of

all methods suffer a sudden drop, which indicates that there

may exist concept drift. Since this is a real dataset with class

imbalance, the AWE and ARF do not have the ability to deal

with class imbalance, so the performance is poor. In contrast,

the curves of TSCS and Learn++.NIE are relatively stable.

Our method adapts the classification model to non-stationary

environments passively, incorporates two-stage cost-sensitive

mechanisms to address class imbalance issue.

TABLE Ⅱ

G-MEAN COMPARISON OF 10 ALGORITHMS

 ARF AWE Oza Lev AUE2 KUE OSB NIE ACOG TSCS

Agrawal 0.53 (1) 0.45 (7) 0.47 (6) 0.48 (5) 0.43 (8) 0.38 (10) 0.49 (4) 0.52 (3) 0.41 (9) 0.52 (2)

STAGGER 0.74 (9) 0.73 (10) 0.76 (7) 0.75 (8) 0.89 (1) 0.86 (3) 0.79 (6) 0.83 (5) 0.88 (2) 0.85 (4)

HyperPlane 0.83 (7) 0.79 (10) 0.85 (4) 0.84 (5) 0.82 (8) 0.93 (1) 0.82 (8) 0.89 (2) 0.86 (3) 0.84 (5)
LED 0.63 (8) 0.67 (3) 0.67 (3) 0.68 (2) 0.63 (8) 0.66 (6) 0.61 (10) 0.67 (3) 0.66 (6) 0.69 (1)

Rotating spiral 0.62 (10) 0.66 (9) 0.80 (6) 0.84 (3) 0.69 (8) 0.81 (5) 0.86 (1) 0.74 (7) 0.85 (2) 0.83 (4)

SEA 0.76 (3) 0.64 (6) 0.65 (5) 0.63 (8) 0.66 (4) 0.78 (2) 0.60 (10) 0.64 (6) 0.62 (9) 0.79 (1)

Spam 0.66 (8) 0.64 (9) 0.62 (10) 0.73 (6) 0.68 (7) 0.76 (3) 0.75 (4) 0.74 (5) 0.83 (1) 0.81 (2)

German 0.76 (6) 0.74 (8) 0.83 (3) 0.81 (4) 0.76 (6) 0.86 (1) 0.62 (10) 0.66 (9) 0.80 (5) 0.85 (2)

Poker 0.84 (4) 0.65 (10) 0.67 (8) 0.68 (7) 0.81 (6) 0.83 (5) 0.86 (3) 0.66 (9) 0.87 (2) 0.89 (1)
Electricity 0.73 (8) 0.83 (3) 0.84 (2) 0.80 (4) 0.69 (10) 0.73 (8) 0.85 (1) 0.80 (4) 0.79 (6) 0.76 (7)

Airlines 0.58 (10) 0.63 (7) 0.66 (3) 0.67 (2) 0.62 (9) 0.63 (7) 0.64 (5) 0.65 (4) 0.68 (1) 0.64 (5)

IJCNN1 0.79 (1) 0.72 (5) 0.70 (7) 0.69 (8) 0.62 (10) 0.76 (2) 0.63 (9) 0.72 (5) 0.73 (4) 0.74 (3)
Sensor 0.84 (3) 0.78 (6) 0.76 (8) 0.75 (9) 0.83 (4) 0.86 (2) 0.71 (10) 0.77 (7) 0.82 (5) 0.87 (1)

Weather 0.41 (8) 0.40 (9) 0.47 (4) 0.42 (5) 0.36 (10) 0.42 (5) 0.49 (3) 0.42 (5) 0.53 (2) 0.55 (1)

Average 0.69 (6) 0.67(10) 0.70 (4) 0.70 (4) 0.68 (9) 0.73 (3) 0.69 (6) 0.69 (6) 0.74 (2) 0.76 (1)

TABLE Ⅲ

F-MEASURE COMPARISON OF 10 ALGORITHMS

 ARF AWE Oza Lev AUE2 KUE OSB NIE ACOG TSCS

Agrawal 0.057 (9) 0.099 (5) 0.068 (8) 0.039(10) 0.086 (6) 0.194 (1) 0.157 (2) 0.137 (3) 0.078 (7) 0.135 (4)

STAGGER 0.118 (1) 0.106 (4) 0.080 (6) 0.062 (7) 0.045 (9) 0.035(10) 0.110 (3) 0.056 (8) 0.089 (5) 0.112 (2)

HyperPlane 0.451 (4) 0.345 (5) 0.221 (7) 0.207(10) 0.477 (2) 0.479 (1) 0.454 (3) 0.345 (5) 0.221 (7) 0.217 (9)
LED 0.097 (8) 0.187 (5) 0.141 (6) 0.189 (4) 0.247 (2) 0.235 (3) 0.089 (9) 0.129 (7) 0.268 (1) 0.086(10)

Rotating spiral 0.098 (5) 0.036(10) 0.069 (8) 0.058 (9) 0.156 (4) 0.224 (2) 0.098 (5) 0.075 (7) 0.210 (3) 0.262 (1)

SEA 0.027 (9) 0.110 (7) 0.169 (4) 0.029 (8) 0.248 (2) 0.216 (3) 0.027 (9) 0.113 (6) 0.169 (4) 0.273 (1)

Spam 0.039 (9) 0.049 (6) 0.078 (4) 0.047 (7) 0.057 (5) 0.043 (8) 0.239 (1) 0.033(10) 0.178 (3) 0.181 (2)

German 0.120 (9) 0.135 (6) 0.136 (5) 0.073(10) 0.147 (3) 0.169 (2) 0.121 (8) 0.127 (7) 0.146 (4) 0.186 (1)

Poker 0.046 (6) 0.034(10) 0.055 (4) 0.045 (8) 0.047 (5) 0.059 (3) 0.046 (6) 0.037 (9) 0.068 (1) 0.067 (2)
Electricity 0.156 (2) 0.097 (3) 0.078 (7) 0.052(10) 0.086 (6) 0.094 (4) 0.157 (1) 0.093 (5) 0.078 (7) 0.066 (9)

Airlines 0.118 (9) 0.156 (8) 0.280 (3) 0.262 (5) 0.245 (6) 0.236 (7) 0.118 (9) 0.356 (1) 0.281 (2) 0.274 (4)

IJCNN1 0.450 (3) 0.345 (6) 0.220(10) 0.232 (8) 0.407 (4) 0.489 (1) 0.451 (2) 0.345 (6) 0.221 (9) 0.364 (5)

Sensor 0.089(10) 0.127 (9) 0.140 (8) 0.189 (5) 0.237 (2) 0.235 (3) 0.149 (6) 0.197 (4) 0.141 (7) 0.274 (1)

Weather 0.081 (7) 0.160 (5) 0.061(10) 0.112 (6) 0.076 (8) 0.062 (9) 0.173 (1) 0.167 (2) 0.162 (4) 0.165 (3)

Average 0.139 (8) 0.142 (7) 0.128 (9) 0.114(10) 0.183 (3) 0.198 (1) 0.171 (4) 0.158 (6) 0.165 (5) 0.190 (2)

TABLE Ⅳ

TIMES COMPARISON OF 10 ALGORITHMS (SECONDS)

 ARF AWE Oza Lev AUE2 KUE OSB NIE ACOG TSCS

Agrawal 35.54 (5) 5.33(1) 65.03 (8) 48.11 (7) 45.54 (6) 25.33 (3) 765.03(10) 115.47(9) 14.56 (2) 27.45 (4)
STAGGER 18.64 (3) 52.03 (5) 82.29 (7) 14.60 (2) 11.64 (1) 52.23 (6) 82.29 (7) 40.24 (4) 84.41 (9) 96.89(10)

HyperPlane 39.67 (2) 76.13 (8) 30.29 (1) 74.69 (6) 69.67 (5) 76.03 (7) 82.29 (9) 156.41(10) 47.36 (3) 51.23 (4)

LED 12.11 (2) 36.01 (5) 43.35 (7) 31.34 (4) 18.71 (3) 36.01 (5) 43.35 (7) 52.23 (9) 68.29 (10) 7.89 (1)

Rotatingspiral 24.31 (4) 25.47(6) 44.56 (8) 37.45 (7) 17.46 (3) 15.47 (2) 14.56 (1) 25.33 (5) 765.03(10) 48.11 (9)

SEA 50.47 (5) 40.24 (1) 84.41 (9) 76.89 (8) 46.29 (4) 41.23 (2) 84.41 (9) 55.47 (6) 44.56 (3) 67.45 (7)

Spam 58.69 (6) 56.41 (4) 247.75(10) 51.34 (3) 59.60 (7) 56.41 (4) 47.58 (2) 140.24 (9) 84.41 (8) 36.89 (1)

German 58.05 (8) 46.27(3) 50.29 (5) 67.89(10) 55.05 (6) 42.23 (1) 59.29 (9) 56.41 (7) 47.40 (4) 44.75 (2)

Poker 45.54 (4) 52.33 (7) 75.03 (10) 48.11 (5) 45.03 (2) 45.33 (3) 65.03 (8) 52.23 (6) 39.29 (1) 67.89 (9)

Electricity 21.64 (4) 52.23 (9) 29.29 (6) 14.60 (3) 11.64 (1) 12.23 (2) 37.29 (8) 25.33 (5) 75.03 (10) 35.02 (7)
Airlines 68.13 (1) 76.03 (4) 86.29 (10) 74.69 (3) 69.67 (2) 76.03 (4) 80.29 (7) 85.47 (9) 84.56 (8) 77.45 (6)

IJCNN1 52.11 (4) 56.01 (7) 63.35 (8) 71.34 (9) 52.39 (5) 46.01 (2) 53.35 (6) 50.24 (3) 84.41 (10) 45.89 (1)

Sensor 45.54 (1) 55.33 (3) 165.03 (9) 148.11(7) 47.54 (2) 59.33 (4) 65.03 (6) 156.41 (8) 247.37(10) 61.73 (5)
Weather 41.23 (3) 84.41 (9) 55.76 (6) 43.54 (5) 67.45 (8) 14.56 (1) 43.35 (4) 63.34 (7) 118.71(10) 31.69 (2)

Average 40.83 (1) 51.02 (5) 80.19 (8) 57.34 (6) 44.12 (3) 42.75 (2) 108.80 (9) 76.77 (7) 128.96(10) 50.02 (4)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

FIGURE 3. G-mean of algorithms on the LED dataset.

FIGURE 4. G-mean of algorithms on Poker dataset.

FIGURE 5. G-mean of algorithms on Sensor dataset.

Specially, as shown in Figure 5, TSCS is superior to the

other algorithms on the Sensor dataset. More importantly, we

can observe that the curves of AUE2, ADOB and ARF

decrease at the period of after learning 200K instances to

learning 300K instances. Thus, we can infer that there may

exist concept drift in this period. However, TSCS performs

well in this period. The ensemble methods (TSCS, OSB,

Lear++.NIE, ACOG) achieve better generalization

performance than the other five algorithms. AUE2 and AWE

are not designed for dynamic environments and therefore

performs poorly on this dataset. TSCS gained the best

performance, followed by KUE. The curve of TSCS is

relatively stable compared to that of other algorithms. This is

due to the fact that TSCS employs the hybrid ensemble

algorithm uses an online manner to update the model.

Sensitivity to Imbalance Ratio. To further verify the

adaption of the five algorithms (KUE, OSB, NIE, ACOG and

TSCS) are affected by the imbalance rate (IR). In the

experiment, we vary the value of IR from 1 to 20 on the

HyperPlane data stream. As the imbalance rate increases over

time, the classification task becomes more and more difficult.

As shown in Figure 6, the curves of all algorithms drop

sharply as the imbalance ratio increase, except TSCS. This

might be attributed to the combination of cost-sensitive

feature selection and cost-sensitive weighting strategies that

provides a good trade-off between improved robustness to

class imbalance features and applicability to dynamic data

streams scenario. The results indicate that TSCS has strong

adaptability to dynamic environment of class imbalance rate.

0 2 4 6 8 10 12 14 16 18 20 22

0.5

0.6

0.7

0.8

0.9

1.0

G
-m

e
a
n

IR

 KUE

 OSB

 NIE

 ACOG

 TSCS

FIGURE 6. Sensitivity to Imbalance Ratio on HyperPlane dataset.

FIGURE 7. Critical-different diagram for all the algorithms.

0 500000 1000000 1500000 2000000

0.65

0.70

0.75

0.80

0.85

0.90

G
-m

e
a

n

processed instances

 ARF

 AWE

 Oza

 Lev

 AUE2

 KUE

 OSB

 NIE

 ACOG

 TSCS

0 20000 40000 60000 80000 100000

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

G
-m

e
a

n

processed instances

 ARF

 AWE

 Oza

 Lev

 AUE2

 KUE

 OSB

 NIE

 ACOG

 TSCS

0 200000 400000 600000 800000 1000000

0.0

0.2

0.4

0.6

0.8

G
-m

e
a

n

processed instances

 ARF

 AWE

 Oza

 Lev

 AUE2

 KUE

 OSB

 NIE

 ACOG

 TSCS

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

Finally, we did a non-parametric Friedman test for all

competing algorithms [69]. In the statistical test, we set the

significance level α to 0.05. The test result rejects the null

hypothesis, which indicates that there is no significant

difference between the performances of all algorithms. Next,

we adopt the Nemenyi post-hoc test [70] (p=0.05) to further

verify the results. The results shown in Figure 7 reveal that

our method is significantly better than AUE2 and AWE.

In summary, all of the above experimental results confirm

that TSCS is superior to the competitive existing methods

mainly in the following aspects: (1) The cost-sensitive

feature selection strategy is implemented by deleting

irrelevant and redundant features from the original feature set,

and then classification is performed based on this feature set,

which further affects the overall classification performance;

(2) TSCS can deal with concept drifts quickly and

appropriately; and (3) TSCS provides a good performance in

both static and dynamic class imbalance environments.

V. CONCLUSION

This study seeks to understand the capability and explain the

role of cost-sensitive learning in dealing with the class

imbalance issue under non-stationary data stream. This

research introduced a novel and efficient learning approach

to deal with the classification of data streams with class

imbalance and concept drifts. It provides an effective way to

tackle the learning challenge when concept drifts and class

imbalance occurs simultaneously using a two-stage cost-

sensitive learning scheme. First, in feature selection process,

CSPAC algorithm incorporates cost information into feature

selection, which can not only delete redundant features but

also be capable of handling class imbalance issue in data

stream. Secondly, a cost-sensitive weighting ensemble

scheme is devised. In addition, the ensemble is equipped with

an adaptive window change detect mechanism to determine

when to build a new candidate classifier to adapt drift quickly.

Experimental results manifest that our proposed TSCS

approach outperforms other methods and achieves the best

performance assessed with measurement metrics commonly

applied by researchers in the research area, especially for

evolving data streams with class imbalance environments.

ACKNOWLEDGMENT

This work is supported by National Natural Science

Foundation of China (No. 62062004, 3190070833,

61702550), the Innovation Team Support Plan of University

Science and Technology of Henan Province (No.

19IRTSTHN014), Teacher Education Curriculum Reform

projects of Henan Province (No. 2020-JSJYYB-034), Key

scientific research projects of Henan Province (No.

20B520030), and Nanhu Scholars Program for Young

Scholars of XYNU.

REFERENCES
[1] C. C. Aggarwal, “Data streams: Models and algorithms,” Berlin:

Springer-Verlag, 2007

[2] J. Gama, “Knowledge Discovery from Data Streams,” New York: CRC
Press, 2010.

[3] I. Zliobaite, M. Pechenizkiy, J. Gama, “An overview of concept drift

applications,” Big data analysis: new algorithms for a new society.
Springer, Cham, 2016. 91-114.

[4] G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, and W. Fan, “IoT

Big Data Stream Mining,” in Proc. the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2016), New

York: ACM Press, 2016, pp. 2119-2120.

[5] H. M. Gomes, J. Read, and A. Bifet, “Machine learning for streaming
data: state of the art, challenges, and opportunities,” ACM SIGKDD

Explorations Newsletter, vol. 21, no. 2, pp. 6-22, Feb., 2019.

[6] A. Tsymbal, “The problem of concept drift: Definitions and related
work,” Technical Report, Department of Computer Science, Trinity

College, Dublin, Ireland, 2004.

[7] J. Gama, I. Žliobaitė, and A. Bifet, et al, “A survey on concept drift

adaptation,” ACM Computing Surveys, vol. 46, no. 4, pp. 231-238, Apr.

2014.

[8] G. Ditzler, M. Roveri, and C. Alippi, “Learning in nonstationary
environments: A survey,” IEEE Computational Intelligence Magazine, vol.

10, no. 4, pp. 12-25, Oct. 2015.

[9] G. I. Webb, R. Hyde, and H. Cao, et al, “Characterizing concept drift,”
Data Mining and Knowledge Discovery, vol. 30, no. 4, pp. 964-994, Jul.

2016.

[10] I. Khamassi, M. Sayed-Mouchaweh, and M. Hammami, et al,
“Discussion and review on evolving data streams and concept drift

adapting,” Evolving systems, vol. 9, no. 1, pp. 1-23, Jan. 2018.
[11] J. Lu, A. Liu, F. Dong, et al, “Learning under Concept Drift: A

Review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31,

no. 12, pp. 2346-2363, Oct. 2018.
[12] H. He, E A. Garcia, “Learning from Imbalanced Data,” IEEE

Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.

1263-1284, Jun. 2009.
[13] N. V. Chawla, K.W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.

Res., vol. 16, no. 1, pp. 321-357, Jun. 2002.
[14] X. Y. Liu, J. Wu, and Z. H. Zhou, “Exploratory undersampling for

class-imbalance learning,” IEEE Transactions on Systems Man &

Cybernetics Part B, vol. 39, no. 2, pp. 539-550, Apr. 2009.
[15] P. Cao, D. Zhao, and O. Zaiane, “An optimized cost-sensitive SVM

for imbalanced data learning,” in Proc. the Pacific-Asia conference on

knowledge discovery and data mining, Springer, Berlin, Heidelberg, 2013,
pp. 280-292.

[16] W. Fan, S. J. Stolfo, and J. Zhang, et al, “AdaCost: Misclassification

Cost-sensitive Boosting,” in Proc. the Sixteenth International Conference
on Machine Learning, Morgan Kaufmann Publishers Inc. 1999, pp. 97-105.

[17] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive

boosting for classification of imbalanced data,” Pattern Recognition, vol.

40, no. 12, pp. 3358-3378, Dec. 2007.

[18] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,

“A Review on Ensembles for the Class Imbalance Problem: Bagging-,
Boosting-, and Hybrid-Based Approaches,” IEEE Transactions on Systems

Man & Cybernetics Part C Applications & Reviews, vol. 42, no. 4, pp.

463-484, Aug. 2012.

[19] I. Žliobaite, M. Budka, and F. T. Stahl, “Towards cost-sensitive
adaptation: When is it worth updating your predictive model?”

Neurocomputing, vol. 150, pp. 240-249, Feb. 2015.

[20] M. Jacob, A. Samal1, K. Prahalada and R. Matthew, “Paired trial
classification: a novel deep learning technique for MVPA,” Frontier in.

Neuroscience, Apr. 2020.

[21] L. Zhuang and H. Dai, “A Novel Field Learning Algorithm for Dual
Imbalance Text Classification,” in Proc. the Second International

Conference on Fuzzy Systems and Knowledge Discovery, Springer-Verlag,

2005, pp. 39-48.

[22] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data

streams,” in Proc. the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2001), New York: ACM
Press, 2001, pp. 97-106.

[23] I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, et al,

“Online adaptive decision trees based on concentration inequalities,”
Knowledge-Based Systems, vol.104, pp. 179-194. July 2016.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

[24] P. Domingos, and G. Hulten, “Mining high-speed data streams,” in
Proc. the 6th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD 2000), New York: ACM Press, 2000,

pp. 71-80.
[25] J. Gama, R. Rocha, P. Medas, “Accurate decision trees for mining

high-speed data streams,” in Proc. the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, New York: ACM
Press, 2003, pp. 523-528.

[26] A. Bifet, G. Holmes, B. Pfahriner, et al, “New ensemble methods for

evolving data streams,” in Proc. the very and Data Mining (KDD 2009),
New York: ACM Press, 2009, pp. 139-148.

[27] A. Bifet, R. Gavaldá, “Adaptive learning from evolving data

streams,” in Proc. the. 8th International Symposium on Intelligent Data
Analysis (Lyon, France), Berlin, Germany: Springer-Verlag, 2009. pp.

246-260.

[28] J. Gama, P. Medas, G. Castillo, et al, “Learning with drift detection,”

in Proc. the. 17th Brazilian Symposium on Artificial Intelligence (SBIA

2004, LNCS 3171), Berlin: Springer-Verlag, 2004, pp. 286-295.

[29] M. Baena-García, D. J. Campo-Ávila, R. Fidalgo, et al, “Early drift
detection method,” in Proc. the Fourth International Workshop on

Knowledge Discovery from Data Streams (KDD 2006), New York: ACM

Press, 2006, pp. 77-86.
[30] A. Bifet, and R. Gavalda, “Learning from time-changing data with

adaptive windowing,” in Proc. the 7th SIAM International Conference on

Data Mining (SDM 2007), Philadelphia, PA: SIAM, 2007, pp. 443-448.
[31] G. Philipp, et al. “Scalable detection of concept drifts on data streams

with parallel adaptive windowing,” in Proc. the 21st International
Conference on Extending Database Technology (EDBT), 2018.

[32] H. M. Gomes, A. Bifet, J. Read, et al. “Adaptive random forests for

evolving data stream classification,” Machine Learning, vol. 6, pp. 1-27,
Oct. 2017.

[33] B. Krawczyk, L. L. Minku, J. Gama, et al, “Ensemble learning for

data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132-156,
Sept. 2017.

[34] H. M. Gomes, J. P. Barddal, F. Enembreck, et al, “A Survey on

ensemble learning for data stream classification,” ACM Computing
Surveys, vol. 50, no. 2, pp. 1-36, March 2017.

[35] D. Brzezinski, Block-based and online ensembles for concept-drifting

data streams, PhD thesis, Poznan University of Technology, 2015.
[36] W. N. Street, and Y. S. Kim, “A streaming ensemble algorithm (SEA)

for large-scale classification,” in Proc. the 7th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining
(KDD 2001), New York: ACM Press, 2001. pp. 377-382.

[37] H. Wang, W. Fan, and P. S. Yu, and J. W. Han, “Mining concept-

drifting data streams using ensembles classifiers,” in Proc. 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD 2003), New York: ACM Press, 2003, pp. 226-235.

[38] D. Brzeziński, and J. Stefanowski, “Accuracy updated ensemble for

data streams with concept drift,” in Proc. the 6th International Conference

on Hybrid Artificial Intelligent Systems (HAIS 2011, LNCS 6678), Berlin:

Springer-Verlag, 2011, pp. 155-163.
[39] D. Brzezinski and J. Stefanowski, “Reacting to different types of

concept drift: The accuracy updated ensemble algorithm,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 25, no. 1, pp. 81-94, Jan. 2014.
[40] R. Elwell and R. Polikar, “Incremental learning of concept drift in

nonstationary environments,” IEEE Trans. Neural Netw., vol. 22, no. 10,

pp. 1517-1531, Oct. 2011.
[41] J. Z. Kolter, and M. A. Maloof, “Dynamic weighted majority: An

ensemble method for drifting concepts,” J. Mach. Learn. Res., vol. 8, pp.

2755-2790, Dec. 2007.
[42] H. M. Gomes, and F. Enembreck, “SAE2: advances on the social

adaptive ensemble classifier for data streams,” in Proc. the 29th Annual

ACM Symposium on Applied Computing, ACM, 2014, pp. 798-804.
[43] Y. Lu, Y. Cheung, and Y. Y. Tang, “Dynamic weighted majority for

incremental learning of imbalanced data streams with concept drift,” in

Proc. the 26th International Joint Conference on Artificial Intelligence,
AAAI Press, 2017, pp. 2393-2399.

[44] K. Nishida, K. Yamauchi, and T. Omori, “ACE: Adaptive classifiers-

ensemble system for concept-drifting environments,” in Proc. the 6th
International Workshop Multiple Classifier Systems (MCS 2005, LNCS

3541), Berlin: Springer-Verlag, 2005, pp. 176-185.

[45] D. Brzezinski, J. Stefanowski, “Combining block-based and online
methods in learning ensembles from concept drifting data streams,”

Information Sciences, vol. 265, no. 5, pp. 50-67, May 2014.

[46] A. Cano, B. Krawczyk, “Kappa Updated Ensemble for drifting data
stream mining,” Machine Learning, vol. 109, no. 1, pp.175-218, Jan. 2020.

[47] H. Dai, X. Hang, G. Li, “Inexact field learning: an approach to induce

high quality rules from low quality data. ICDM 2001: 586-588.
[48] H. Dai, “Learning of Forecasting Rules from Very Large Noisy Real

Observational Meteorological Data Bases”, PhD. Thesis, Department of

Computer Science, Royal Melbourne Institute of Technology, 1994.
[49] N. V. Chawla, A. Lazarevic, L. O. Hall, “SMOTEBoost: improving

prediction of the minority class in boosting,” in Proc. the 7th European

Conference on Principles of Data Mining and Knowledge Discovery,
Springer, Berlin, Heidelberg, 2003, pp. 107-119.

[50] C. Seiffert, T. M. Khoshgoftaar, H. J. Van, “RUSBoost: a hybrid

approach to alleviating class imbalance,” Systems Man and Cybernetics,

vol. 40, pp. 185-197, Feb. 2010.

[51] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for

mining concept-drifting data streams with skewed distributions,” in Proc.
SIAM (ICDM), Apr. 2007, pp. 3-14.

[52] S. Chen and H. He, “Towards incremental learning of nonstationary

imbalanced data stream: A multiple selectively recursive approach,”
Evolving Syst., vol. 2, no. 1, pp. 35-50, Mar. 2011.

[53] B. Mirza, Z. Lin, “Meta-Cognitive Online Sequential Extreme

Learning Machine for Imbalanced and Concept-Drifting Data
Classification,” Neural Networks, vol. 80, pp. 79-94, Apr. 2016.

[54] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 25, no.

10, pp. 2283-2301, Oct. 2013

[55] A. Ghazikhani, R. Monsefi, H. S. Yazdi, “Ensemble of online neural
networks for non-stationary and imbalanced data streams,”

Neurocomputing, vol. 122, pp. 535-544, Dec. 2013.

[56] H. Li, Y. Wang, H. Wang and B. Zhou, “Multi-window based
ensemble learning for classification of imbalanced streaming data,” World

Wide Web, vol. 20, no. 6, pp. 1507-1525, Nov. 2017.

[57] Y. Lu, Y. Cheung, and Y. Y. Tang, “Dynamic weighted majority for
incremental learning of imbalanced data streams with concept drift,” in

Proc. the 26th International Joint Conference on Artificial Intelligence

AAAI Press, 2017, pp. 2393-2399.
[58] P. Zhao, Y. Zhang, M. Wu, S. C. H. Hoi, M. Tan and J. Huang,

“Adaptive Cost-Sensitive Online Classification,” IEEE Transactions on

Knowledge and Data Engineering, vol. 31, no. 2, pp. 214-228, Feb. 2019.
[59] B. Wang and J. Pineau, “Online Bagging and Boosting for

Imbalanced Data Streams,” IEEE Transactions on Knowledge and Data

Engineering, vol. 28, no. 12, pp. 3353-3366, Dec. 2016.
[60] J. Wang, P. Zhao, S. C. H. Hoi, “Cost-Sensitive Online

Classification,” Knowledge & Data Engineering IEEE Transactions on,

vol. 26, no. 10, pp. 2425-2438, Oct. 2014.

[61] B. Wang and J. Pineau, “Online Bagging and Boosting for

Imbalanced Data Streams,” IEEE Transactions on Knowledge and Data

Engineering, vol. 28, no. 12, pp. 3353-3366, Dec. 2016.
[62] Ł. Korycki, A. Cano and B. Krawczyk, “Active Learning with

Abstaining Classifiers for Imbalanced Drifting Data Streams,” in Proc. the

2019 IEEE International Conference on Big Data (Big Data), Los Angeles,
CA, USA, 2019, pp. 2334-2343.

[63] Y. Sun, Z. Wang, Y. Bai et al, “A Classifier Graph Based Recurring

Concept Detection and Prediction Approach,” Computational Intelligence
and Neuroscience, vol. 6, pp. 1-13, June 2018.

[64] H. Abdi, L J. Williams, “Principal component analysis,” Wiley

interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433-
459, Jul. 2010.

[65] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive

online analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601-1604, May 2010.
[66] M. Lichman, UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School

of Information and Computer Science.
[67] D. Brzezinski, J. Stefanowski, R. Susmaga and I. Szczech, “On the

Dynamics of Classification Measures for Imbalanced and Streaming

Data,” IEEE Transactions on Neural Networks and Learning Systems, vol.
31, no. 8, pp. 2868-2878, Aug. 2020,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3031603, IEEE Access

VOLUME XX, 2017 9

[68] S. Wang, L. L. Minku, and Y. Xin, “A systematic study of online
class imbalance learning with concept drift,” IEEE transactions on neural

networks and learning systems , vol. 29, no. 10, pp. 4802-4821, Oct. 2018.

[69] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

[70] N. Settouti, M. E. A. Bechar, and M. A. Chikh, “Statistical

comparisons of the top 10 algorithms in data mining for classification
task,” Int. J. Interact. Multimedia Artif. Intell. , Special Issue Artif. Intell.

Underpinning, vol. 4, pp. 46-51, Jan. 2016.

YANGE SUN is a lecture at Xinyang Normal

University, Xinyang, China. She received the Ph.D.

degree in computer science and technology in 2019
from Beijing Jiaotong University Beijing, China,

and the M.S. degree from the Central China Normal

University, in 2007, both in computer science. Her

research interests include data mining and machine

learning.

YI SUN is an associate professor at the Institute of

Zhengzhou Information Science and Technology,
Zhengzhou, China. She received the Ph.D. degree

in computer science and technology in 2015 from

Beijing Jiaotong University Beijing, China. Her
research interests include cloud computing, big

data security and stream secure exchange.

HONGHUA DAI received the Ph.D. degree

from the Department of Computer Science,
RMIT University in 1994, and the MSc degree

from the Graduate School, Chinese Academy of

Sciences in 1986.After he received his PhD, he
was working in the Department of Computer

Science, Monash University from 1994. His

major research interests include Minimum
Message Length Principle based causal discovery,

reliable knowledge discovery, machine learning

for weather forecasting, big data intelligence and digital health, and
Causality Intelligence.

