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ABSTRACT Most methods for classifying data streams operate under the hypothesis that the distribution 

of classes is balanced. Unfortunately, the phenomenon of class imbalance widely exists in many real-world 

applications. In addition, the underlying concept of data stream may change in a certain way over time, and 

attacks increase the difficulty of data stream mining. Motivated by this challenge, a Two-Stage Cost-

Sensitive (TSCS) classification is proposed for addressing the class imbalance issue in non-stationary data 

streams. We propose a novel two-stage cost-sensitive framework for data stream classification by utilizing 

cost information in both feature selection stage and classification stage. Moreover, a window adaptation and 

drift detection mechanism, which guarantees that an ensemble can adapt promptly to concept drift, is 

embedded in our method. Our algorithm is compared with competitive algorithms on different kinds of 

datasets. The result demonstrates that TSCS obtains significant improvement in terms of class imbalance 

data stream metrics. 

INDEX TERMS Data streams, classification, class imbalance, concept drift, cost-sensitive, ensemble 

learning.

I. INTRODUCTION 

Extracting knowledge from data stream environment has 

gained growing attention owing to its wide applications, 

such as credit card fraud detection, spam filtering, intrusion 

detection and data analysis in Internet of Things networks 

[1-5]. Concept drift [6-9], i.e., the distribution of data 

stream evolving over time, is the crucial characteristic of 

data streams, which deteriorates the classification 

performance due to data distribution evolving. For example, 

the characteristics of spam often change with users’ 

preferences, and weather prediction models affected by 

atmospheric dynamics. Therefore, classifications should 

have the capacity of detecting the stability-plasticity 

dilemma caused by concept drift [10, 11]. 

Although much work has been put forward to focus on 

concept drift issue [5-7]. In practice, class imbalance [12] is 

the mining case that the instances of one class (normally of 

interesting) is much smaller than that of other classes which 

poses the well-known challenge in machine learning. 

Learning from data stream with class imbalance and 

concept drift becomes a more challenging task. The 

phenomenon of class imbalance presences widely in many 

applications, including severe weather forecasting, rare 

event monitoring, text classification, medical diagnosis, 

networks intrusion detection and fault identification. In fact, 

the learning with the simultaneous occurrence of the two 

issues in data stream classification is largely unexplored.  

Class imbalance issue has extensively studied in static 

learning scenarios [13-18]. These methods can be organized 

into three main groups: a) data preprocessing oriented 

approaches, b) cost-sensitive oriented approaches, and c) 

ensemble oriented approaches. Cost-sensitive oriented 

approaches assign different misclassification cost values for 

each class in classification. Research has shown that cost-

based strategies are an effective method. Moreover, 

research indicates that cost-sensitive learning strategy can 

be adopted to solve the class imbalance issue naturally [19].  

Both cost-sensitive learning and online classification 

have been studied extensively in data mining community, 
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respectively. Unfortunately, there are relatively few studies 

consider the application of cost-sensitive learning strategy 

in data stream scenarios due to its nature of dynamic 

changes [19].  

Finding a way to perform cost-sensitive learning in non-

stationary environment and to adopt effective learning 

strategies to deal with class imbalance to pursuit better 

performance of classification with concept drifting is the 

main aim of this research. In addition, the task of learning 

from evolving data streams with class imbalance is to tail 

the cost-sensitive learning strategy into the evolving online 

scenarios. The most challenge of our work is to devise an 

effective cost-sensitive online learning paradigm that can 

effectively extract knowledge from data stream with class 

imbalance and concept drift. 

This study is on the topic of adaptive ensemble, which is 

considered as the most popular technique for handling 

concept drifts. Differs from existing ensemble architectures, 

we tail the cost-sensitive learning strategy into the evolving 

data stream classification scenarios, and a novel cost-

sensitive online ensemble, named Two-Stage Cost-

Sensitive (TSCS) scheme, is devised seeking towards both 

issues simultaneously. The main contribution of this paper 

is to generalize cost-sensitive learning algorithms to their 

online versions. For each newly arrived data block, TSCS 

first uses a cost-sensitive learning mechanism to preprocess 

the feature set, that is, effectively use cost information to 

select a feature subset that helps to improve the model's 

performance on minority instances; then, define the feature 

subset in the feature space, use TSCS to train the classifier 

on the current data block; finally, TSCS evaluates the 

accuracy and misclassification cost of the existing classifier 

on the current data block, and weights the classifier based 

on the evaluation result. Compared with existing algorithms, 

TSCS can achieve better performance on artificially 

synthesized and real-world class imbalance concept drift 

data streams. 

To summarize, there are four key original contributions 

of our algorithm.  

(1) In the feature selection stage, a Cost-Sensitive 

Principal Component Analysis (CSPCA) by continuously 

selecting the optimal set of features according to the cost 

information is employed for performing feature selection on 

imbalanced data streams. The exploration of feature 

subspace can improve the generalization ability of the 

algorithm, and can better adapt to various concept drifts. 

(2) In the classification stage, a cost-sensitive 

weighting schema is developed, which introduces cost 

information into the learning framework to effectively 

manage the improvement of the learning performance. 

(3) An adaptive window change detection mechanism 

is also employed in the framework to react promptly to 

different kinds of changes.  

(4) An extensive experimental study was carried out 

on a variety of data stream benchmarks. The results 

indicated that the proposed method obtained better 

performance than the competitive methods, particularly 

under dynamic data streams with class imbalance 

environments.  

The structure of the paper is organized as follows. In 

Sections II, we briefly retrospect some closely related work. 

Next, we describe our algorithm in detail in Section III. 

Section IV demonstrates the experiments results. Finally, a 

conclusion is drawn. 

II. RELATED WORK 

This section reviews the recent work of the major 

contributions that are closely related to our research 

presented in this paper which covers approaches in handling 

concept drift and in dealing with the class imbalance. 

A. HANDLING CONCEPT DRIFT IN DATA STREAMS 

Concept drift is a hot research topic in the field of data 

mining community and a lot of classification algorithms have 

been developed. These methods have been reviewed by 

Tsymbal [6], Gama [7], Dilter [8], Khamassi [10] and Lu [11] 

et al, providing valuable insight into addressing the concept 

drift. 

In the literature [6], the surveyed concept drift adaptation 

methods are divided into three main categories: instance 

selection methods, weight-based approaches and ensemble-

based methods. The method based on instance selection is 

the most widely used technique for processing concept drift. 

Specifically, it refers to selecting a part of the data to be 

processed, that is, selecting the most relevant instance of the 

current concept for learning, so as to improve the efficiency 

of algorithm learning. Such methods are often implemented 

through sliding window technology (Sliding Window). The 

method based on instance weighting increases its influence in 

the new model by assigning larger weights to the data that is 

most relevant to the current data. Many methods for setting 

weights have been proposed. The more commonly used ones 

are based on the age of the instance (such as the time when 

the data arrives, etc.), or based on the degree of relevance of 

the data in the processing of the new concept. The ensemble 

learning refers to the use of multiple base classifiers to form a 

set of classifiers by means of model averaging, and then use 

voting or weighted voting to combine them to predict 

unknown data. 

Dilter et al. divided the methods into two main categories 

[8]: active approaches and passive approaches. The active 

approaches are mainly by adding a concept drift detection 

mechanism to the classifier to actively discover detection 

drift. The single classification model uses the concept drift 

detection mechanism to actively detect the concept drift in 

the data stream. Once the concept drift is detected, the 

current model will be adjusted to delete outdated concepts 

and adapt to the new concepts in time. However, for the slow 

concept drift with gentle changes, it may be difficult to detect 

once it appears, causing the old concepts not be deleted in 
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time, thus affecting the performance of model. It is notable 

that the passive adaptation method does not actively detect 

concept drift, nor consider the occurrence of concept drift in 

the data block, and is not sensitive enough to capture the drift. 

When sudden conceptual drift occurs, it is difficult to deal 

with it in time. 

In this paper, we group methods for handling concept 

drift in data streams into three categories, namely single 

classifiers, drift detectors and ensemble-based methods. Most 

single-classifier methods improve and extend traditional 

classification algorithms to adapt to the changing 

environment of data streams. In addition, single-classifier 

methods generally provide implicit drift processing 

mechanisms (such as concept drift detection, sliding window, 

and instance weighting). William et al. proposed a method 

called Paired Classifiers including two classifiers for 

complementary consideration: using the more accurate 

classifier as the candidate for prediction [20]. Much earlier 

than Paired Classifiers methods, Zhuang and Dai introduced 

an inexact approach for Dual Imbalance Text Classification 

[21]. Hulten et al. extended the classic VFDT algorithm [22], 

and proposed an algorithm named CVFDT [23] that can 

handle concept drift. CVFDT maintains a window for storing 

the most recent data, and uses a candidate sub-tree to train on 

the window data. If its performance exceeds the original. For 

the sub-tree corresponding to the tree, the candidate sub-tree 

is used instead of the original sub-tree. Gama et al. also 

improved VFDT and proposed the VFDTc algorithm [24]. 

The VFDTc algorithm can process continuous attribute data 

and detect concept drift by comparing the data distribution 

between two windows. Most of the work is based on decision 

tree algorithms, including Hoeffding Adaptive Tree (HAT) 

[25], Adaptive-Size Hoeffding Tree (ASHT) [26], and Ultra 

Fast Forest of Trees (UFFT) [27].  

Concept drift detection algorithm, also known as concept 

drift detector, refers to an algorithm that detects input data 

information according to data distribution. It monitors the 

changes in the data stream distribution, and once it finds a 

concept drift, it will warn the classifier and take 

corresponding actions to adjust it to the new data distribution. 

In [28], Gama et al. proposed a method called Drift 

Detection Method (DDM) by monitoring the error-rate of the 

algorithm. Although DDM can effectively capture sudden 

concept drifts, it cannot detect the gradual drift in time. To 

solve this problem, Baena-Garcia et al. improved the DDM 

algorithm and presented the Early Drift Detection Method 

(EDDM) method [29], which detects the standard deviation 

between the error rates of two connections. Bifet et al [30] 

proposed the ADWIN method to adapt to concept drift, 

which cuts each window into two sub-windows, representing 

the new data and the old data respectively, and determines 

the best split according to the rate of change between the sub-

windows, and then the new data use the training model to 

replace the old model. In [31], Philipp et al. proposed a 

parallelized version of ADWIN algorithm. Gomes et al. [32] 

proposed an online version of random forest classifier, 

named Adaptive Random Forest classification (ARF), which 

uses a concept detector to decide when to replace trees in the 

forest to deal with concept drift. 

The third solution is a common strategy for addressing 

concept drift issue. Ensemble-based approaches [33, 34] have 

proved to be an efficient and powerful technique of handling 

concept drift due to their flexible structure. Generally, 

constructing ensemble can be divided into three main steps: 

Training a set of base classifiers (or component classifiers), 

selecting a subset of base classifiers, and making the final 

prediction. It is considered to be an effective way to update 

knowledge without changing the model structure. On one 

hand, ensemble learning can learn new knowledge very 

efficiently. It only needs to add new classifier members to the 

ensemble model. On the other hand, integrated learning 

provides a natural mechanism for forgetting irrelevant 

knowledge.  

The above work only focuses on the issue of concept drift. 

The following subsections review some major work in 

learning from data with class imbalance. 

B. LEARNING FROM CLASS IMBALANCE DATA  

Ensemble approaches have the capability of easily adapting 

to changing data stream scenarios due to their modular 

structure. Thus becoming one of the most popular methods 

used for dealing with drift. The ways of processing data 

streams can be roughly divided into two types: data block-

based processing and single instance online processing. 

Ensemble-based methods for data streams classification can 

be categorized into the following three types: block-based 

ensembles, online ensembles, and hybrid ensembles [35].   

(1) Specifically, in block-based ensemble, data stream is 

divided into fixed-size blocks. Block-based ensemble adapts 

to change by periodically updating its components and 

replacing the weakest members with new ones. Streaming 

Ensemble Algorithm (SEA) [36] is a block-based ensemble, 

which maintains a fixed number of base classifiers based on 

blocks and employs a heuristic classifier replacement 

strategy. Wang et al. present a method named Accuracy 

Weighted Ensemble (AWE) [37], which is the best-known 

representative block-based ensemble. AWE maintains the 

top-k classifiers learnt from sequential blocks of instances 

and dynamically weights each classifier according to the 

most recent block. In [38], an algorithm named Accuracy 

Updated Ensemble (AUE1) was proposed. AUE1 

incrementally trains and updates component classifiers after 

each block. Its improved version AUE2 [39], by periodically 

weighting ensemble members, could obtain better response 

to gradual drifts. At the meanwhile, it improves performance 

on abruptly changing streams environment. In [40], the 

algorithm dynamically weights each classifier according to 

time-adjusted accuracy on change of distribution. The 

performance of block-based ensembles is greatly affected by 

the size of block. Another disadvantage is that their delay in 
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response to sudden change in time because true labels can be 

entirely available after each full data block.  

(2) For online ensembles, incremental classifiers are 

maintained and updated as soon as a new instance arrives. 

Kolter and Maloof proposed the most cite online-based 

ensemble, named Dynamic weighted majority (DWM) [41]. 

When there is an error in algorithm classification, DWM 

dynamically adds a new expert, when there is an error in the 

expert, it reduces the weight of the expert, when the expert 

performance is poor, DWM removes an expert, and 

incrementally trains exist component experts through online 

learning. Similar to DWM, Gomes and Enembreck presented 

a dynamic ensemble classification called Streaming 

Ensemble Algorithm (SEA2) [42], which is represented by 

an undirected graph. More specifically, SEA2 is an ensemble 

algorithm represents as a network in which connections are 

created between two classifiers if they have similar 

predictions. The weights of edges in the graph represent the 

similarity of the two classifiers. Recently, Lu et al. proposed 

a Dynamic Weighted Majority for Imbalance Learning 

(DWMIL) based on the DWM framework [43]. DWMIL 

processes the data incrementally and dynamically weighting 

the base classifiers to ensure timely processing of concept 

drifts. Moreover, DWMIL uses under-bagging technology 

before the base classifier training, to balance the class 

distribution. However, it has the shortcoming of over-fitting. 

Online-based ensembles update the component classifiers 

after each new arriving instance. Hence, they have the 

capacity of adapting to sudden changes rapidly. 

Unfortunately, online ensembles have the disadvantage of 

higher computational costs compared with block-based 

ensembles.  

(3) The hybrid ensembles combine the advantages of 

weighting mechanism of block-based and online processing. 

It continuously updates base classifiers online according to 

the coming instances. Nishida et al. proposed an adaptive 

ensemble algorithm, named Adaptive Classifier Ensemble 

(ACE) [44]. The ACE algorithm is based on the data block 

period weighting mechanism and online learning method. It 

detects mutation concept drift by monitoring the error rate of 

classifiers, and builds a base classifier on the data block to 

cope the gradual concept drift. When there are large data 

blocks, training the classifier will consume too much time. 

Brzezinski et al. proposed a hybrid ensemble named Online 

Accuracy Updated Ensemble (OAUE) [45]. However, it has 

a potentially drawback of unable to adapt to sudden changes 

due to the fixed window size. Recently, Gama et al. 

introduced a dynamic weighting ensemble algorithm, named 

Kappa Update Ensemble (KUE) [46], which adopts Kappa 

metric to guide the member classifiers’ selection and 

weighting. 

In this subsection, we surveyed recent advances in 

strategies for learning from class imbalance data in general. 

In the next subsection, we will provide a review on 

approaches for learning from class imbalance data streams in 

particular. 

C. LEARNING FROM CLASS IMBALANCE DATA 
STREAM 

Basically, both class imbalance data and data involving 

concept drift are special types of low quality data [47].  Dai 

[48] pointed out three strategies for learning from low quality 

data: preprocess data before learning; improve data quality 

while learning and introduce learning algorithms that tolerate 

low quality data.  All these three strategies are applicable in 

guiding the creation of new learning approaches.   

The main recent developed approaches for learning from 

class imbalance can be classified into three categories [12-

13]: 1) data preprocessing oriented approaches; 2) cost-

sensitive oriented approaches, and 3) ensemble oriented 

approaches. 

(1) Data preprocessing oriented approaches are fit into 

the first category in fixing the imbalance before learning.  

This type of approaches aims to reduce the imbalance of 

class distribution by changing the distribution of data. 

Specifically, during data preprocessing, the distribution of 

data is balanced by adding minority instances (oversampling) 

or reducing majority instances (undersampling). The 

Synthetic Minority Oversampling TEchnique (SMOTE) [13] 

proposed by Chawla et al. is the most famous preprocessing 

oriented algorithm adopting the random oversampling 

technology. More specifically, SMOTE generates new 

instances by performing random linear interpolation between 

a small number of instances and their similar neighbors, 

which increases the possibility of overlapping between 

classes. The experimental results show that compared with 

other standard approaches, classification accuracy of the 

minority class is improved. However, the duplication or 

synthetic creation of the minority class instances often leads 

to over-fitting.  

(2) Cost-sensitive learning methods [14] fit into the 

second type of learning strategy fixing imbalance data issue 

during the learning. This type of methods assigns distinct 

misclassification costs to different classes and obtains the 

optimal decision boundary by minimizing the total 

misclassification cost. Most of the cost-sensitive methods are 

improved to traditional machine learning methods. For 

example, applying the cost-sensitive strategy to the SVM 

algorithm [15], the cost-sensitive Hinge loss function is 

minimized. AdaCost algorithm [16] introduces cost- sensitive 

strategy into the weight function of AdaBoost to reduce the 

weight of misclassified instances. Subsequently, Sun et al. 

proposed a family of AdaBoost algorithms based on cost-

sensitive strategy: AdaCl, AdaC2, and AdaC3 [17].  

(3) Ensemble methods belong to the third type strategy 

which is capable of tolerating class imbalance. These 

methods are mainly classified into three categories [18]: 

bagging-based approaches, boosting-based approaches, and 

hybrid ensembles. Bagging-based methods mostly combine 

bagging technology, such as OverBagging, UnderBagging, 
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UnderOverBagging, and DES-MI. Data preprocessing is 

introduced to the boosting algorithm, and the weights of 

misclassified instances are adjusted by updating the 

distribution weights. Some prominent boosting-based 

methods include SMOTEBoost and RUSBoost. 

SMOTEBoost [49] introduces SMOTE to create synthetic 

instance technology into the AdaBoost iteration. Similar to 

SMOTEBoost, RUSBoost [50] randomly randomizes the 

majority of instances in each iteration. The hybrid ensemble 

method combines both bagging and boosting strategy. Some 

prominent methods include EasyEnsemble and 

BalanceCascade [21]. 

Data streams also exhibit class imbalance problem. In 

fact, addressing the two issues simultaneously is a nontrivial 

task due to the need to adhere the following requirements: 1) 

detecting changes as soon as possible; 2) adapting to changes 

quickly; and 3) recovering to the accuracy level before 

changes. 

In [51], Gao et al. proposed an ensemble framework using 

oversampling technology, named Sample and Ensemble (SE). 

In such framework, incoming data block is divided into two 

parts: one represents the positive class instances (P) and 

another represents the negative class instances (Q). To take 

all these instances into account, we choose some positive 

instances from P and obtain a subset of Q then merge them 

together. Then we use all these instances to learn a new 

classifier to obtain a better performance. Chen and He [52] 

proposed a novel algorithm, named SERA (SElectively 

Recursive Approach), which used a similar measure to select 

the previous minority instances. Similar to SERA, Gao et al. 

proposed an algorithm that selects the “best” n minority class 

according to Mahalanobis distance. Unfortunately, it is not 

strictly incremental, as it requires to access previous data.  

Mirza et al. [53] introduced a method based on Extreme 

Learning Machine (ELM), which incorporates sampling and 

cost-sensitive weighting technique to solve class imbalance 

and use window technology to deal with concept drift. It is 

the first meta-cognitive framework to solve class imbalance 

and concept drift problem. Ditzler and Polikar [54] presented 

an extension of Learn++.NSE, named Learn++.NIE. It 

employs subensemble and class-independent error weighting 

mechanism with a penalty constraint strategies to address the 

two issues. 

Ghazikhani et al. introduced cost-sensitive learning to 

neural networks and proposed an online neural network 

ensemble algorithm [55] for dealing with the class imbalance 

issue. Recently, Li et al. [56] presented a novel ensemble 

algorithm based on multi-window technology to address the 

issue. Lu et al. [57] proposed an algorithm, called Dynamic 

Weighted Majority for Imbalance Learning (DWMIL), 

which dynamically weights the performance of base 

classifier on each newly arriving block to ensure timely 

processing of concept drift. Moreover, DWMIL uses 

underbagging technology before the base classifier training; 

that is, during each bagging iteration, undersampling 

technology is used to ensure that the training instance class 

distribution is balanced. However, it has the shortcoming of 

overfitting. 

Most recently, Zhao et al. [58] propose to introduce a 

novel cost-sensitive online classification framework, named 

Adaptive regularized Cost-sensitive Online Gradient descent 

algorithms (ACOG), which employs the adaptive 

regularization during the classification. Wang [59] et al. 

proposed a cost-sensitive home algorithm using an online 

gradient descent algorithm to solve online optimization tasks 

by maximizing weights or minimizing weighted 

classification error costs; and theoretically analyzed cost 

sensitivity. Recently, Wang et al. [60] convert a series of 

batch-based cost-sensitive ensembles into online versions, 

including new online extensions of UnderOverBagging, 

SMOTEBagging, AdaC2, CSB2, RUSBoost, and 

SMOTEBoost.  

In [61], Khanchi et al. proposed an active learning 

algorithm named StreamGP, which adapt over time as 

genetic programming (GP) individuals improve. Korycki et 

al. [62] present an online framework called Active Learning 

Strategy (MD-OAL) for imbalanced data streams with 

partially labeled. 

Most of the above algorithms are based on techniques for 

static data that are used to reduce the imbalance in data. 

These methods have the following disadvantages: SE only 

builds a classifier for the current data block, and cannot save 

the concepts that have been learned, and most of the data 

block use real-time update mechanisms that cause excessive 

time consumption. The base classifier in IMDWE increases 

linearly, resulting in a sharp increase in time consumption. 

Learn++.CDS and Learn++.NIE lead to excessive time 

consumption; and SERA requires constant access to previous 

data, so it is not a strictly incremental algorithm. While, 

StreamGP and MD-OAL are specially designed for partially 

labeled data stream scenarios. 

III. OUR METHOD 

This section firstly introduces a change detector based on 

adaptive window strategy to deal with concept drift, and then 

our cost-sensitive principal component analysis method is 

described in detail. After that our proposed two-stage cost-

sensitive ensemble method is presented. 

A.  CHANGE DETECTOR BASED ON ADAPTIVE 
WINDOW 

In our method, a novel change detection algorithm, which 

utilizes a two-window change detection schema to monitor 

the change of distribution, is presented. In order to 

quantitatively measure whether the data in the sliding 

window has concept drift, it utilizes Kullback-Leibler 

divergence as the metric to compare the distance between the 

windows. The Kullback-Leibler divergence of two 

distributions p(x) and q(x) is defined as Equation (1). 
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where x is the space of the events. 

More formally, let W1={x1, x2, … , xn) and W2={xn+1, … , 

x2n) represent the reference window and the current window. 

Our change detection can be expressed as hypothesis testing 

uses the following methods to detect whether the data 

sequence has concept drift: 

 

 

 

where KL(W1||W2) is a metric that measures the dissimilarity 

of W1 and W2, ε is a threshold. If the Kullback-Leibler 

divergence of the data in the new window and the data in the 

historical window is greater than the threshold, it indicates 

that a concept drift has occurred.  

Adaptive window change detection can detect sudden 

concept drift, gradual drift and recurring concept. A concept 

drift is detected when the value of distance function exceeds 

the threshold. A recurring concept is recognized when the 

measure is zero. ε is a threshold calculated according to 

Bernstein inequality, refer to our previous work [63]. The 

change detector alarms a signal when a change is detected. 

Then the outdate data is discarded. If the stream is stationary, 

the windows slide step by step. The pseudo-code of the 

adaptive window detector is specified in the Algorithm 1.  

 

Algorithm 1 Change Detection based on Adaptive 

Windowing 

Input: S is a data stream, n is maximum size of 

windows;  

Output:  alarm signal  

Procedure: 

01:  Set t to 0; 

02:  Set W1 to{ xt+1, …, xt+n}; 

03:  Set W2 to { xt+n+1, …, xt+2n }; 

04:    while not at the end of S do 

05:     if KL(W1, W2)>ε then 

06:        Alarm a drift signal at t; 

07:         Discard the outdate instances and goto step 02; 

08:         else if KL(W1, W2)==0 then 

09:            Alarm a recurring concept signal; 

10:             end if 

11:        else W2 is slide by 1 step; 

12:        end if 

13:    end while 

14: end. 

B. COST-SENSITIVE FEATURE SELECTION BASED ON 
PRINCIPAL COMPONENT ANALYSIS 

In our algorithm, we apply a cost-sensitive learning strategy 

in the feature selection. Principal component analysis (PCA) 

[64] is one of the most popular feature selection techniques, 

which uses orthogonal transformations to gain a low-

dimensional representation of data called the principal 

components. In order to deal with class imbalance data, we 

tailor the traditional PCA algorithm into cost-sensitive 

mode, named Cost-Sensitive Principal Component Analysis 

(CSPCA). More specially, we apply cost-sensitive strategy 

in feature selection stage, by incorporating cost value into 

the process of feature selection.  

The majority and minority classes in training instances 

use different cost ratios: 
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where i=1, …, n instances; N- and N+ are the total number 

of negative and positive instances, respectively. α∈[0, 1] is 

a parameter.  

Consider the data matrix X mn, where the n 

represents the total number of instances, and the m are the 

number of features. w1 is the first principal component of p 

dimensions and p<<m. w1 is calculated according to 

Equation (3): 
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where i and j are the rows and columns of X  respectively.  

Geometrically, the first step of PCA is centered data by 

subtracting the average of the data from all points. However, 

in class imbalance case, covariance matrix usually 

represents the variance of most of the class instances, and 

the maximum variance direction of the data may be largely 

captured from most spaces. For this reason, we introduced 

the cost-sensitive learning into the PCA algorithms to solve 

imbalance problems. For binary classification, it is assumed 

that the negative and positive instances are discounted by 

imbalance cost ratios C- and C+ respectively. Thus, the 

weighted rth principal component is: 
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where j is the index of the dimension,
iC   and +

iC  are 

calculated according to Equation (2). 

Using different cost ratios for negative and positive 

classes can reduce the dominant role of negative instances 

in selecting features. CSPAC selects a relatively small 

subset of relevant features from the original set of features. 

For this reason, the CSPCA can address the class imbalance 

at the feature selection level without changing the 

distribution of data or modifying the algorithm. 

C. TWO-STAGE COST-SENSITIVE ENSEMBLE 
LEARNING 

In this section, a novel two-stage cost-sensitive ensemble 

framework is put forward for effectively handling the joint 

issue of class imbalance and concept drift. TSCS provides a 

combination of online and block-based approaches, both 

continuously updating base classifiers and replacing them 

with new ones when necessary. More specifically, TSCS 
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relearn a classifier based on the instances in latest window. 

Another strategy is to use hybrid ensemble learning scheme, 

in which the base classifiers are weighted their performance 

and cost of the latest block, and incremental learning the 

classifiers on the latest block. Hence, it is a hybrid method 

that offers both implicit (change detection mechanism) and 

explicit mechanisms (ensemble weighting mechanism) to 

deal with concept drifts. 

The basic framework of the TSCS algorithm is shown in 

Figure 1, which mainly involves two stages:  

1) PCA-base feature selection stage: It employs a cost-

sensitive learning mechanism in the feature selection process 

to filter out feature sets that are more meaningful for 

effective prediction and classification of minority samples, 

and at the same time. It also has the effect of reducing data 

dimensions.  

2) Ensemble classification stage: A cost-sensitive 

weighting schema is designed, that is, based on both the 

accuracy and the total cost of misclassification of the base 

classifiers on the latest data block to update its weight, and 

then the weighted voting schema is employed for prediction. 

 

FIGURE 1.  The framework of TSCS algorithm. 

 

Assume there are 

─d Stream data window Wj; contains the current data (1 

≤ j ≤ d ); 
─k base classifiers hi=fi(Wj) (1 ≤ i ≤ k ); 
─m instances It (1≤t≤m); 

To implement our two stage cost-sensitive ensemble 

learning, we need to introduce the weight weightij and the 

cost ctij. The more important a base classifier outcome is, the 

higher weight is assigned. Similarly the higher cost of a base 

classifier, the less important the base classifier would be. 

Specifically, a data stream can be described as S={s1, s2, ..., 

st, ...}, where st=(xt, yt) represents the instance at time t. 

E={h1, h2, …, hk} represents the ensemble containing k 

weighted base classifiers. First, TSCS continuously uses 

CSPCA algorithm to select effective feature subset, and 

learns a base classifier hi base on the new feature space of the 

latest window Wj, i. e., hi=fi(Wj). And then, for each incoming 

instance xt, instead of evaluating base classifiers every d 

instances, each classifier hi∈E is weighted based on the data 

in the latest window according to Equation (5). 
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where MSEij is the prediction error of base classifier hi on the 

recent window Wj, while MSEr represents the mean square 

error of a randomly predicting classifier and is employed as 

the baseline for predicting the current distribution. 

Additionally,  is a very small positive value. 
( )i

yf x
 

represents the probability of using hi to classify x as y.  

ctij is the total cost of the misclassification of classifier hi 

on current window Wj, which can be computed using 

Equation (6): 
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where cos ( , ')t y y  represents the cost of instance x of class y 

being classified as y'. 

The intuition underlying of Equation (5) is that the weight 

of the classifier hi is inversely proportional to the error and 

the cost value, that is, the larger the classification error rate 

and cost of the classifier on the data of latest window, it 

indicates that the classifier is not suitable for the current data 

distribution, and its weight in the ensemble classification 

should be weakened.  

After the generation of base classifiers, a new classifier h' 

is trained then added into the ensemble when drift is detected. 

When the number of base classifiers reaches the specified 

maximum value, the worst classifier is replaced by the new 

classifier. The final prediction of ensemble is based on the 

weighted majority voting rule according to Equation (7). 
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We normalize the weights of base classifiers in the following 

way: 

Assume k individual weights obtained via formula (5) is 

<w1, w2, …, wk> (Here we fix the window on current one so 

we omit the subscript j). We let  
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When the algorithm detect a drift or the instances in the 

long-term buffer exceeds the specified max value (line 4), a 

classifier that represents the new concept is built according to 

the instances in B (line 5), weighted (line 6), and added to the 

ensemble (line 8). The final prediction is based on the 

weighted majority voting rule. The pseudo-code of TSCS is 

given in Algorithm 2.  

 

Algorithm 2 Two-Stage Cost-Sensitive Ensemble  

input: D: change detector, S: data stream, k: max number of 

classifiers, d: maximum size of windows 

output: E: ensemble with k base classifiers  

Procedure: 

01: E← 

02:  for each current Wj in S 

03:  apply CSPCA algorithm; 

04:  if |Wj| > d or detected a change then 

05:    train a new candidate classifier h' based on new 

feature subset of Wj; 

06:    weight new classifier h'; 

07:    weight all classifiers hi in E according to Equation (5); 

   train all classifiers hi in E incrementally; 

08:    if E is not full then add the classifier h' to ensemble; 

09:    else the worst base classifier  is replaced by h'; 

10:    reset D; 

11:    reset current window; 

12:  end if 

13: end for 

14: end. 

IV. EXPERIMENTAL STUDY 

The experiments are carried out with Massive Online 

Analysis (MOA) [65] software package. MOA is the most 

famous open source framework for data stream mining and it 

provide an environment for implementing the state-of-the-art 

algorithms of data stream mining.  

a. DATA BENCHMARKS  

A thorough experimental study, comparing TSCS to 14 

state-of-the-art algorithms over 6 synthetic and 8 real-world 

data stream benchmarks. The synthetic data streams were 

simulated by the MOA Generators.  

The imbalance rate (IR) represents the ratio between the 

majority class instances and the minority class instances. 

Two types of class imbalance benchmarks are selected in 

the experiment: (a) static class imbalance benchmarks; (b) 

dynamic class imbalance datasets, whose IR values change 

dynamically over time. The detail of the datasets is 

described in Table I.  

1)  SYNTHETIC DATASETS 

We first generate data streams through the generators in 

MOA, and then use the ConceptDriftStream generator to 

simulate concept drifts. Finally, we set the imbalance rate of 

the ImbalancedStream generator to simulate data streams 

with class imbalance. For multi-class classification, the first 

class is set as the major class, the remainder classes are the 

minority classes. 

The Agrawal data stream is used to generate one of ten 

specified functions, including a total of 9 attributes. We use 

the MOA Agrawal generator to produce a stream with 1000, 

000 instances. 

 

TABLE I 

CHARACTERISTIC OF THE DATASETS 

Stream #Inst #Attrs #Clas IR Drift 

Agrawal 1M 9 2 1 gradual  

STAGGER 1M 9 2 1 sudden 

HyperPlane 1M 10 2 1~20 gradual 

LED 1M 24 10 3 mixed 

Rotating spiral 1M 40 3 19 gradual 

SEA 1M 3 4 10 sudden, 

recurring 

Spam 581K 53 7 4 unkown 

German 1K 24 2 7 unknown 

Poker 1M 10 10 13 unkown 

Electricity 1M 10 2 5 unkown 

Airlines 539K 7 2 2 unknown 

IJCNN1 49, 990 22 2 5 unknown 

Sensor 2M 5 54 54 unkown 

Weather 18, 159 8 2 10 unkown  

 

The STAGGER data set was proposed by Schlimmer et al. 

It is a widely used dataset of simulated concept drift. . In the 

experiment, we utilized the STAGGERGenerator in MOA 

to generate a dataset having 1, 000, 000 instances. It 

contains 3 concepts. The concept 1 is set as the majority 

class. The imbalance ratio with the other two categories is 5. 

Hyperplane is the most popular synthetic dataset in data 

stream classification experiments. It is a classic two class 

classification problem that simulates a d-dimensional 

hyperplane. We simulate a stream with gradual drift 

containing 1, 000, 000 instances.   

The LED dataset is to predict the numbers on LED 

display. In the experiment, we produced 24 binary attributes 

version of the LED, of which 17 are irrelevant. Simulate 

concept changes by exchanging related attributes. We 

generate a LED with mixture drift. It contains 1, 000, 000 

instances. 

The Rotating Spiral stream is used to describe four types 

of spirals. It contains 1, 000, 000 instances, of which about 

5% are positive instances. Therefore, the Rotating spiral is a 

dataset with class imbalance and gradual concept drifts. 

The SEA stream has three attributes, only two of them are 

relevant. The dataset contains four concepts which represent 

a block of data. The dataset uses f1+f2≤Ɵ to classify the 
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instances in the blocks. 9, 8, 7 and 9.5 are the most common 

used threshold. We generate a SEA dataset with sudden 

recurring concept drift, containing 1, 000, 000 instances. We 

use the RecurrentConceptDriftStream generator to simulate 

recurrent concept drifts. 

2) REAL-WORLD DATASETS 

It is impossible for real-world data sets to know exactly 

when drift begins, what kind of drift exists, or even whether 

it does exist. Therefore, it is more meaningful to verify the 

adaptability of algorithms. The static datasets can be 

downloaded at MOA website
1

, and then use the MOA 

generators to simulate them into streams. 

    Spam dataset represents information of a message, and is 

divided into two types: spam (only 20%) and legitimate 

messages, so it is a dataset with class imbalance. It contains 

9, 324 instances, each instance have 500 attributes. The 

characteristics of the spam slowly evolving over time. And 

then simulate static dataset into stream by the generator in 

MOA. 

The Electricity dataset is the most frequently used real-

world data stream. It has 45, 312 instances, and each 

described by 7 attributes. The purpose of Electricity dataset 

is to predict the trend of electricity price changes in 

Australia.  

The German credit dataset contains 1000 instances, and 

each instance is described by 24 attributes. The purpose of 

the dataset is to predict the tendency of loan default based 

on bank loan information and the occurrence of overdue 

loans of applied customers. It can be obtained from 

LIBSVM website
2
. 

The Poker Hand dataset comes from UCI repository [66]. 

It indicates the issue of recognizing hand in a poker game. 

The Poker dataset has 1000, 000 instances. Each instance is 

described by 10 attributes, representing a group of five 

cards in hand. The class is described as “Poker Hand”. 

The purpose of Airlines dataset is to predict whether a 

flight will be delayed based on the given information of 

scheduled departure. The dataset contains 539, 383 

instances, and each instance consists of three numeric 

attributes and five nominal attributes. The class of the 

Airlines is delay, indicating whether a flight is delayed. 

IJCNN1 dataset comes from the IJCNN competition in 

2001, and uses the pre-processed data of LIBSVM as 

experimental data.  It has 49, 990 instances.   

The Sensor dataset comes from 54 sensors information in 

the Intel Berkeley Research Laboratory, as shown in Figure 

2. It consists of 2, 219, 803 instances and each instance 

with 5 attributes. Brightness and temperature change over 

time, leading to concept drifts. 

The Nebraska Weather Prediction (Weather) dataset 

contains the daily weather measurements of the Offutt Air 

Force Base in Bellevue. It consists of 18, 159 instances. It 

                                                 
1 http://moa.cms.waikato.ac.nz/datasets/. 
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ 

is a dataset with diverse weather patterns and concept drifts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The sensor distribution map in the inter Berkeley 

Research Lab
3 

b. EVALUATION METRICS 

Since the classification accuracy is not suitable for 

imbalanced data distribution, we adopt G-mean [67, 68] as 

alternate metrics for evaluating the performance of classifiers 

in class imbalance scenarios. 

(1) Precision and Recall 

Precision and recall can be calculated as: 

=precision
TP

TP FP  
(10) 

=
TP

recall
TP FN  

(11) 

(2) F-measure 

F-measure is the harmonic mean of precision and recall, as 

shown in Equation (12). 

2Precision Recall
-measure

Precision Recall
F





 (12) 

(3) G-mean 

G-mean is the most commonly used evaluation measure in 

class imbalance environments. G-mean is the geometric 

mean of the recall of abnormal classes and normal classes. 

Formally, the G-mean can be calculated as follows [67]. 

TP TN
G mean

TP FN TN FP
  

   
(13) 

C. EXPERIMENTAL SETUP 

All algorithms are written in Java and executed under the 

MOA framework. The experiments were carried out on a 

3.0GHz Pentium CPU with 32GB of RAM and Microsoft 

Windows 10.  

In the experiments, we use the prequential evaluation 

strategy in MOA to evaluate the performance of all compared 

methods. Therefore, a classifier is evaluated before all 

instances are obtained. This evaluation method can generate 

an incremental learning curve, where the two-dimensional 

                                                 
3 http://www.cse.fau.edu/~xqzhu/stream.html 
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curve corresponding to the horizontal axis to the number of 

instances that have been classified, and the vertical axis are 

the dynamic changes of evaluation indicators. 

In the study, all tested ensemble methods set k to 15. The 

Hoefffding tree was selected as the basic classifier. This is 

mainly because the decision tree is probably the most widely 

used algorithm equipped with ensemble technology, and can 

effectively deal with concept drift. For the Hoeffding tree 

algorithm, we set grace period nmin to 100, set tie-threshold τ 

to 0.05, and set split confidence δ to 0.01. 

d.  RESULTS AND ANALYSIS 

The proposed method was evaluated against ten state-of-the-

art algorithms. The first five is non-stationary learning 

algorithms and the last five are designed for evolving 

environments with class imbalance. 

 ARF: ARF [32] is an online version of random forest 

classifier, which uses a concept detector to deal with 

concept drift. 

 AWE: AWE [37] is the most representative block-

based ensemble, which maintains the top-k classifiers 

learnt from sequential blocks of instances and dynamic 

weights each classifier according to the most recent 

block. 

 OzaBagAdwin: OzaBagAdwin is the online bagging 

version equipped with ADWIN as the change detector. 

 LeverageBagging (Lev Bagging): Lev Bagging extends 

the traditional bagging algorithm to the online mode, 

and randomizes the weights of instances in the input 

data stream to enhance the performance of the ensemble. 

 AUE2: AUE2 [39] is a block-based ensemble. It uses a 

non-linear base classifier weighting scheme, 

incrementally updates each data block after it arrives to 

address sudden concept drift. 

 KUE: KUE [46] is a hybrid ensemble which using the 

Kappa metric for dynamically weighting base 

classifiers in ensemble. 

 Online SMOTEBagging (OSB): OSB [61] is an online 

version of bagging based cost-sensitive learning 

algorithm. 

 Learn++.NIE: Learn++.NIE [54] is an ensemble 

algorithm that adopts bagging-based subensembles to 

generate subensemble of classifiers and weighting 

strategy based on recall, Fmeasure, or G-mean. 

 ACOG: ACOG [58] is the state-of-the-art online 

classification based on adaptive regularization. 

The results are evaluated by the metrics of G-mean, F-

measure, and running time, as shown in Tables Ⅱ-Ⅳ.  

G-mean Analysis. As shown in Table Ⅱ, in terms of G-

mean, on average TSCS achieved the best, AWE is the worst. 

In the case of data streams, the best average performance is 

obtained on LED, SEA, Poker, Sensor and Weather datasets. 

Compared with other algorithms, TSCS can achieve better 

performance under class imbalance data streams environment. 

This is because TSCS has a concept drift detection 

mechanism and uses the cost-sensitive strategy, so it can 

handle class imbalances and concept drift well. Due to AWE 

unable to deal with the class imbalance problem, so its 

average performance is the worst. Meanwhile, the cost 

sensitive learning strategy is adopted in TSCS classification 

stage, and a feature subset space which can effectively 

balance the data distribution is selected. During the training 

stage, a new base classifier is learned in the feature subspace 

when concept drift is occurred. In the prediction process, 

TSCS uses the cost-sensitive ensemble method to make 

prediction.  

F-measure Analysis. As shown in Table Ⅲ , on most 

scenarios, Lev performs the worst compared with other 

algorithms. This is because there is no mechanism in Lev to 

deal with class imbalanced issue, thus it performs poorly. 

TSCS is ranked the second directly next to the best. For 

TSCS, cost-sensitive feature selection strategy is 

implemented by deleting irrelevant and redundant features 

from the original feature set, and then classification is 

performed based on this feature set, which further affects the 

overall classification performance.  

Time Analysis. As shown in Table Ⅳ, we observe that 

OSB and ACOG are the most time-consuming methods. The 

better performance of our algorithm might be partially 

because our algorithm benefits from the adaptive window 

change detection strategy to capture drift in a timely manner. 

In most datasets, TSCS adapts to concept changes faster than 

most of the competitive techniques. 

In conclusion, TSCS achieves better average performance 

with respect to G-mean, time and F-measure on different types 

of concept drift scenarios compared to other ensemble 

approaches that use the same base learner. This is principally 

for the following reasons: (1) The two-stage cost-sensitive 

learning schema injected the information of cost into the 

procedures of feature selection and classification, which can 

effectively deal with class imbalance issue. (2) The 

management of the change detection mechanism improves 

the generalization of classification in different situations, 

particularly in non-stationary environments. 

Figure 3-5 shows the changes of the G-mean of the 

algorithms as the number of instances processed increases. 

Such graphical plots can display the algorithms’ adaptability 

to different kinds of drifts intuitively. 

The scenario of LED data stream simulates a complex 

change by joining two gradually evolving streams. As shown 

in Figure 3, all the algorithms show relatively smooth curves 

at the beginning up to 60, 000 instances processed. When 

concept drift occurs, all the G-mean curves suffer from 

instantaneous accuracy rates fluctuation, including that of 

TSCS. Since TSCS can track the sudden change immediately 

using the change detector, it can update the ensemble 

classifier to adapt to gradual changes in a timely manner. 

These results confirm that our algorithm provide a certain 

guarantee for the stability of different kinds of concept drift. 
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Conceptual changes in real-world stream environments has 

the characteristics of uncertainty, so it can verify the 

adaptability of data stream algorithms. Figure 4 shows G-

mean of the algorithms on the Poker dataset. The curves of 

all methods suffer a sudden drop, which indicates that there 

may exist concept drift. Since this is a real dataset with class 

imbalance, the AWE and ARF do not have the ability to deal 

with class imbalance, so the performance is poor. In contrast, 

the curves of TSCS and Learn++.NIE are relatively stable. 

Our method adapts the classification model to non-stationary 

environments passively, incorporates two-stage cost-sensitive 

mechanisms to address class imbalance issue. 

 

TABLE Ⅱ 

G-MEAN COMPARISON OF 10 ALGORITHMS 

 ARF AWE Oza Lev  AUE2 KUE OSB NIE ACOG TSCS 

Agrawal 0.53 (1) 0.45 (7) 0.47 (6) 0.48 (5) 0.43 (8) 0.38 (10) 0.49 (4) 0.52 (3) 0.41 (9) 0.52 (2) 

STAGGER 0.74 (9) 0.73 (10) 0.76 (7) 0.75 (8) 0.89 (1) 0.86 (3) 0.79 (6) 0.83 (5) 0.88 (2) 0.85 (4) 

HyperPlane 0.83 (7) 0.79 (10) 0.85 (4) 0.84 (5) 0.82 (8) 0.93 (1) 0.82 (8) 0.89 (2) 0.86 (3) 0.84 (5) 
LED 0.63 (8) 0.67 (3) 0.67 (3) 0.68 (2) 0.63 (8) 0.66 (6) 0.61 (10) 0.67 (3) 0.66 (6) 0.69 (1) 

Rotating spiral 0.62 (10) 0.66 (9) 0.80 (6) 0.84 (3) 0.69 (8) 0.81 (5) 0.86 (1) 0.74 (7) 0.85 (2) 0.83 (4) 

SEA 0.76 (3) 0.64 (6) 0.65 (5) 0.63 (8) 0.66 (4) 0.78 (2) 0.60 (10) 0.64 (6) 0.62 (9) 0.79 (1) 

Spam 0.66 (8) 0.64 (9) 0.62 (10) 0.73 (6) 0.68 (7) 0.76 (3) 0.75 (4) 0.74 (5) 0.83 (1) 0.81 (2) 

German 0.76 (6) 0.74 (8) 0.83 (3) 0.81 (4) 0.76 (6) 0.86 (1) 0.62 (10) 0.66 (9) 0.80 (5) 0.85 (2) 

Poker 0.84 (4) 0.65 (10) 0.67 (8) 0.68 (7) 0.81 (6) 0.83 (5) 0.86 (3) 0.66 (9) 0.87 (2) 0.89 (1) 
Electricity 0.73 (8) 0.83 (3) 0.84 (2) 0.80 (4) 0.69 (10) 0.73 (8) 0.85 (1) 0.80 (4) 0.79 (6) 0.76 (7) 

Airlines 0.58 (10) 0.63 (7) 0.66 (3) 0.67 (2) 0.62 (9) 0.63 (7) 0.64 (5) 0.65 (4) 0.68 (1) 0.64 (5) 

IJCNN1 0.79 (1) 0.72 (5) 0.70 (7) 0.69 (8) 0.62 (10) 0.76 (2) 0.63 (9) 0.72 (5) 0.73 (4) 0.74 (3) 
Sensor 0.84 (3) 0.78 (6) 0.76 (8) 0.75 (9) 0.83 (4) 0.86 (2) 0.71 (10) 0.77 (7) 0.82 (5) 0.87 (1) 

Weather 0.41 (8) 0.40 (9) 0.47 (4) 0.42 (5) 0.36 (10) 0.42 (5) 0.49 (3) 0.42 (5) 0.53 (2) 0.55 (1) 

Average 0.69 (6) 0.67(10) 0.70 (4) 0.70 (4) 0.68 (9) 0.73 (3) 0.69 (6) 0.69 (6) 0.74 (2) 0.76 (1) 

 

TABLE Ⅲ 

F-MEASURE COMPARISON OF 10 ALGORITHMS 

 ARF AWE Oza Lev  AUE2 KUE OSB NIE ACOG TSCS 

Agrawal 0.057 (9) 0.099 (5)  0.068 (8)  0.039(10)  0.086 (6)  0.194 (1) 0.157 (2)  0.137 (3) 0.078 (7) 0.135 (4) 

STAGGER 0.118 (1) 0.106 (4) 0.080 (6) 0.062 (7) 0.045 (9) 0.035(10) 0.110 (3) 0.056 (8) 0.089 (5) 0.112 (2) 

HyperPlane 0.451 (4) 0.345 (5) 0.221 (7) 0.207(10) 0.477 (2) 0.479 (1) 0.454 (3) 0.345 (5) 0.221 (7) 0.217 (9) 
LED 0.097 (8)  0.187 (5)  0.141 (6) 0.189 (4) 0.247 (2) 0.235 (3) 0.089 (9) 0.129 (7) 0.268 (1) 0.086(10) 

Rotating spiral 0.098 (5) 0.036(10) 0.069 (8) 0.058 (9) 0.156 (4)  0.224 (2) 0.098 (5) 0.075 (7) 0.210 (3) 0.262 (1) 

SEA 0.027 (9) 0.110 (7) 0.169 (4) 0.029 (8) 0.248 (2)  0.216 (3) 0.027 (9) 0.113 (6) 0.169 (4) 0.273 (1) 

Spam 0.039 (9) 0.049 (6) 0.078 (4) 0.047 (7) 0.057 (5) 0.043 (8) 0.239 (1) 0.033(10) 0.178 (3)  0.181 (2) 

German 0.120 (9) 0.135 (6) 0.136 (5) 0.073(10) 0.147 (3) 0.169 (2) 0.121 (8) 0.127 (7) 0.146 (4) 0.186 (1) 

Poker 0.046 (6) 0.034(10) 0.055 (4) 0.045 (8) 0.047 (5) 0.059 (3) 0.046 (6) 0.037 (9) 0.068 (1) 0.067 (2) 
Electricity 0.156 (2) 0.097 (3) 0.078 (7) 0.052(10) 0.086 (6) 0.094 (4) 0.157 (1) 0.093 (5)  0.078 (7)  0.066 (9) 

Airlines 0.118 (9) 0.156 (8) 0.280 (3) 0.262 (5) 0.245 (6) 0.236 (7) 0.118 (9) 0.356 (1) 0.281 (2) 0.274 (4) 

IJCNN1 0.450 (3) 0.345 (6) 0.220(10) 0.232 (8) 0.407 (4) 0.489 (1) 0.451 (2) 0.345 (6) 0.221 (9) 0.364 (5) 

Sensor 0.089(10) 0.127 (9) 0.140 (8) 0.189 (5) 0.237 (2) 0.235 (3) 0.149 (6) 0.197 (4) 0.141 (7) 0.274 (1) 

Weather 0.081 (7) 0.160 (5) 0.061(10)  0.112 (6) 0.076 (8) 0.062 (9) 0.173 (1) 0.167 (2) 0.162 (4) 0.165 (3) 

Average 0.139 (8) 0.142 (7) 0.128 (9) 0.114(10) 0.183 (3) 0.198 (1) 0.171 (4) 0.158 (6) 0.165 (5) 0.190 (2) 

 

TABLE Ⅳ 

TIMES COMPARISON OF 10 ALGORITHMS (SECONDS) 

 ARF AWE Oza Lev  AUE2 KUE OSB NIE ACOG TSCS 

Agrawal 35.54 (5) 5.33(1)  65.03 (8) 48.11 (7) 45.54 (6) 25.33 (3) 765.03(10) 115.47(9) 14.56 (2) 27.45 (4) 
STAGGER 18.64 (3) 52.03 (5) 82.29 (7) 14.60 (2) 11.64 (1) 52.23 (6) 82.29 (7) 40.24 (4) 84.41 (9) 96.89(10) 

HyperPlane 39.67 (2) 76.13 (8) 30.29 (1) 74.69 (6) 69.67 (5) 76.03 (7) 82.29 (9) 156.41(10) 47.36 (3) 51.23 (4) 

LED 12.11 (2)  36.01 (5) 43.35 (7) 31.34 (4) 18.71 (3) 36.01 (5) 43.35 (7) 52.23 (9) 68.29 (10) 7.89 (1) 

Rotatingspiral 24.31 (4) 25.47(6) 44.56 (8) 37.45 (7) 17.46 (3) 15.47 (2) 14.56 (1) 25.33 (5) 765.03(10) 48.11 (9) 

SEA 50.47 (5) 40.24 (1) 84.41 (9) 76.89 (8) 46.29 (4) 41.23 (2) 84.41 (9) 55.47 (6) 44.56 (3) 67.45 (7) 

Spam 58.69 (6) 56.41 (4) 247.75(10) 51.34 (3) 59.60 (7) 56.41 (4) 47.58 (2) 140.24 (9) 84.41 (8) 36.89 (1) 

German 58.05 (8) 46.27(3) 50.29 (5) 67.89(10) 55.05 (6) 42.23 (1) 59.29 (9) 56.41 (7) 47.40 (4) 44.75 (2) 

Poker 45.54 (4) 52.33 (7) 75.03 (10) 48.11 (5) 45.03 (2) 45.33 (3) 65.03 (8) 52.23 (6) 39.29 (1) 67.89 (9) 

Electricity 21.64 (4) 52.23 (9) 29.29 (6) 14.60 (3) 11.64 (1) 12.23 (2) 37.29 (8) 25.33 (5) 75.03 (10) 35.02 (7) 
Airlines 68.13 (1) 76.03 (4) 86.29 (10) 74.69 (3) 69.67 (2) 76.03 (4) 80.29 (7) 85.47 (9) 84.56 (8) 77.45 (6) 

IJCNN1 52.11 (4) 56.01 (7) 63.35 (8) 71.34 (9) 52.39 (5) 46.01 (2) 53.35 (6) 50.24 (3) 84.41 (10) 45.89 (1) 

Sensor 45.54 (1) 55.33 (3) 165.03 (9) 148.11(7) 47.54 (2) 59.33 (4) 65.03 (6) 156.41 (8) 247.37(10) 61.73 (5) 
Weather 41.23 (3) 84.41 (9) 55.76 (6) 43.54 (5) 67.45 (8) 14.56 (1) 43.35 (4) 63.34 (7) 118.71(10) 31.69 (2) 

Average 40.83 (1) 51.02 (5) 80.19 (8) 57.34 (6) 44.12 (3) 42.75 (2) 108.80 (9) 76.77 (7) 128.96(10) 50.02 (4) 
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FIGURE 3.  G-mean of algorithms on the LED dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.  G-mean of algorithms on Poker dataset. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.  G-mean of algorithms on Sensor dataset. 
 

Specially, as shown in Figure 5, TSCS is superior to the 

other algorithms on the Sensor dataset. More importantly, we 

can observe that the curves of AUE2, ADOB and ARF 

decrease at the period of after learning 200K instances to 

learning 300K instances. Thus, we can infer that there may 

exist concept drift in this period. However, TSCS performs 

well in this period. The ensemble methods (TSCS, OSB, 

Lear++.NIE, ACOG) achieve better generalization 

performance than the other five algorithms. AUE2 and AWE 

are not designed for dynamic environments and therefore 

performs poorly on this dataset. TSCS gained the best 

performance, followed by KUE. The curve of TSCS is 

relatively stable compared to that of other algorithms. This is 

due to the fact that TSCS employs the hybrid ensemble 

algorithm uses an online manner to update the model. 

Sensitivity to Imbalance Ratio. To further verify the 

adaption of the five algorithms (KUE, OSB, NIE, ACOG and 

TSCS) are affected by the imbalance rate (IR). In the 

experiment, we vary the value of IR from 1 to 20 on the 

HyperPlane data stream. As the imbalance rate increases over 

time, the classification task becomes more and more difficult. 

As shown in Figure 6, the curves of all algorithms drop 

sharply as the imbalance ratio increase, except TSCS. This 

might be attributed to the combination of cost-sensitive 

feature selection and cost-sensitive weighting strategies that 

provides a good trade-off between improved robustness to 

class imbalance features and applicability to dynamic data 

streams scenario. The results indicate that TSCS has strong 

adaptability to dynamic environment of class imbalance rate. 
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FIGURE 6.  Sensitivity to Imbalance Ratio on HyperPlane dataset. 
 

 

FIGURE 7.  Critical-different diagram for all the algorithms. 
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Finally, we did a non-parametric Friedman test for all 

competing algorithms [69]. In the statistical test, we set the 

significance level α to 0.05. The test result rejects the null 

hypothesis, which indicates that there is no significant 

difference between the performances of all algorithms. Next, 

we adopt the Nemenyi post-hoc test [70] (p=0.05) to further 

verify the results. The results shown in Figure 7 reveal that 

our method is significantly better than AUE2 and AWE. 

In summary, all of the above experimental results confirm 

that TSCS is superior to the competitive existing methods 

mainly in the following aspects: (1) The cost-sensitive 

feature selection strategy is implemented by deleting 

irrelevant and redundant features from the original feature set, 

and then classification is performed based on this feature set, 

which further affects the overall classification performance; 

(2) TSCS can deal with concept drifts quickly and 

appropriately; and (3) TSCS provides a good performance in 

both static and dynamic class imbalance environments. 

V. CONCLUSION 

This study seeks to understand the capability and explain the 

role of cost-sensitive learning in dealing with the class 

imbalance issue under non-stationary data stream. This 

research introduced a novel and efficient learning approach 

to deal with the classification of data streams with class 

imbalance and concept drifts. It provides an effective way to 

tackle the learning challenge when concept drifts and class 

imbalance occurs simultaneously using a two-stage cost-

sensitive learning scheme. First, in feature selection process, 

CSPAC algorithm incorporates cost information into feature 

selection, which can not only delete redundant features but 

also be capable of handling class imbalance issue in data 

stream. Secondly, a cost-sensitive weighting ensemble 

scheme is devised. In addition, the ensemble is equipped with 

an adaptive window change detect mechanism to determine 

when to build a new candidate classifier to adapt drift quickly. 

Experimental results manifest that our proposed TSCS 

approach outperforms other methods and achieves the best 

performance assessed with measurement metrics commonly 

applied by researchers in the research area, especially for 

evolving data streams with class imbalance environments. 
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