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The quality of the camera image directly determines the accuracy of the defect identification of the transmission line equipment.
However, complex external factors such as haze can seriously affect the image quality of the aircraft. The traditional image
dehazing methods are difficult to meet the needs of enhanced image inspection in complex environments. In this paper, the
image enhancement technology in haze environment is studied, and an image dehazing method of transmission line based on
densely connection pyramid network is proposed. The method uses an improved pyramid network for transmittance map
calculation and uses an improved U-net network for atmospheric light value calculation. Then, the transmittance map,
atmospheric light value, and dehazed image are jointly optimized to obtain image dehazing model. The method proposed in this
paper can improve image brightness and contrast, increase image detail information, and can generate more realistic deblur

images than traditional methods.

1. Introduction

In recent years, with the breakthrough of key transmission
technologies such as intelligent autonomous operations and
maintenance systems, UAV inspection [1-7] has been rap-
idly promoted and applied. For the patrol pictures, videos
and other data generated during the patrol operation of the
transmission line UAV, pattern recognition and computer
vision technology [8-12] can be used to complete the dis-
crimination work with the help of computers. This technol-
ogy uses the deep learning network [13-18] to train and
learn the fault samples of transmission line equipment, to
obtain amature power vision target detection model, and
automatically realize the target detection and fault location
of the machine patrol image. The recognition accuracy and
positioning accuracy of the target detection algorithm are
positively correlated with the quality of the machine patrol
image. The higher the image quality, the more effective the

detection algorithm. However, drone inspections are mostly
carried out in the wild, and their complex weather conditions
play a crucial role in the quality of the photos taken. Due to
environmental pollution, in recent years, a large range of
haze weather has occurred in China, and the visibility of
the field of vision has declined sharply.

Particulate matter in the atmosphere will seriously scatter
the light coming into the camera, causing the brightness and
contrast of transmission line pictures taken during drone
patrols to decrease. The background image information is
blurred, which ultimately leads to a serious degradation of
image quality and the accuracy of image target detection.
Therefore, it is urgent to study the image enhancement tech-
nology which is more suitable for the smog environment.

Image dehazing has always been a hot issue in the field of
image enhancement. The research on image dehazing
method at home and abroad is mainly divided into two cate-
gories: nonphysical methods based on image enhancement
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and restoration methods based on imaging models [19-23].
The method of image enhancement is mainly to use the tra-
ditional image enhancement technology to directly filter the
low-quality foggy image to remove the influence of noise in
the image and restore the image clarity. The typical image
dehazing method based on image enhancement includes his-
togram equalization [24-28], wavelet transform method, and
Retinex algorithm [29-31]. The method based on image
physical repair is mainly to study the degradation model of
foggy image and inversely solve the optical imaging model
to obtain the dehazing image. This method can retain the
detailed information of the image and improve the authentic-
ity of the image. It is the mainstream direction of the current
research on dehazing algorithms, and its representative
method is based on the partial differential equation dehazing
method [32], defog method based on depth of field [33, 34],
defog method based on a priori theory, and defog method
based on deep learning [35-37]. In recent years, CNN net-
works have achieved great success in the fields of image seg-
mentation, target detection, object classification, etc. Affected
by this, more and more scholars have begun to introduce
CNN networks into image dehazing algorithms. Literature
[38-41] obtained the transmittance map of foggy images by
establishing a shallow neural network and then used the
image degradation model to achieve image dehazing. Litera-
ture [42, 43] combines convolutional neural networks and
guided filters to achieve the restoration of foggy images.
Image dehazing method based on convolutional neural net-
work achieves good dehazing results in some specific scenar-
ios, but the network depth is insufficient, and the network
architecture has defects that lead to unsatisfactory effects on
scenes with high fog density.

Through the study of the existing image dehazing
method, it is found that the traditional image dehazing
method relies heavily on prior knowledge [44]. The model
is seriously simplified, and the detail information of the
dehazing image is insufficiently restored. The image
enhancement method does not consider the physical imaging
model, but only improves the visual effect of the image by
changing the contrast and gray value of the image; image res-
toration is based on the imaging physical model, using dark
channel prior theory [45] to repair the haze image. Com-
pared with image enhancement, this method has better
dehazing effect, but there are some simplifications to the
image generation model during the implementation process,
and there is still a certain difference between the restored
image and the real image. In view of the shortcomings of
the traditional image dehazing method, this paper proposes
the image dehazing method of transmission line machine
patrol image based on densely connected pyramid network.
It directly embeds the atmospheric degradation model into
the deep learning framework and uses physical principles to
restore the image fog. The fog image obtained by this method
is closer to the real image in visual effect.

2. Single Image Defog Model

2.1. Haze Image Optical Attenuation Model. In the field of
image processing, the model [46] shown in Equation (1) is
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often used to describe the image formation process in fog
and haze.

I(z) =] (2)t(z) + A(1 - t(2)). (1)

Among them, I represents the real image taken by the
camera in the case of fog and haze; ] represents the clear pic-
ture taken in the case of clear weather. A is the ambient light
intensity, which is usually assumed to be constant in the local
area of the image; t is the transmittance, which is used to
describe the proportion of light that enters the camera lens
through the haze; z represents the position of the pixel in
the image. Transmittance is a factor related to distance,
which represents the proportion of light transmitted by the
target object through the atmosphere and reaching the cam-
era lens. When the atmospheric light value A in the local area
of the image is constant, the transmittance can usually be
expressed as Equation (2).

t(z) =PI, (2)

It can be seen from Equation (1) that the image taken in
fog and haze is the superposition of the light passing through
the fog and the atmospheric light scattered by the fog and
haze in a clear background image. The process of image
dehazing is to find the global atmospheric light value A and
transmittance ¢ from the foggy image I, inversely calculate
Equation (1), and finally obtain the clear image J.

2.2. Model Architecture of Densely Connected Pyramid
Dehazing Network. This paper proposes a new deep
learning-based transmission line machine patrol image
dehazing network, called dense connection pyramid dehaz-
ing network (DCPDN). The network uses the method of
end-to-end learning to achieve the purpose of image dehaz-
ing. The essence of the DCPDN network is to use the physical
method of image restoration to solve the problem of image
degradation. The end-to-end image dehazing repair is
achieved by embedding the atmospheric degradation model
Equation (1) into the deep learning network. In the dehazing
network, the deep fusion between the transmittance map
estimation module, the atmospheric light value estimation
module, and the dehazing image is realized, and the informa-
tion exchange and restriction between the various modules
are achieved to achieve the purpose of common
optimization.

The architecture of the DCPDN network proposed in this
paper is shown in Figure 1. The network is composed of four
parts: (1) a transmission diagram estimation module with
densely connected pyramids, (2) atmospheric light value esti-
mation module, (3) dehazing module based on image degra-
dation equation, and (4) joint discriminator module. The
four modules are introduced in detail below:

2.2.1. Pyramid Densely Connected Transmission Graph
Estimation Network. Inspired by the previous method using
multilevel features to estimate the transmittance map [47-
51], this paper also attempts to use the multilevel features
of the image to estimate the transmittance map, as shown
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FIGURE 1: Densely connected pyramid dehazing network.

in Figure 2. A densely connected encoding-decoding struc-
ture is proposed. The encoder-decoder uses dense blocks as
the basic structural unit, and dense connections are made
between layers within the dense blocks. Dense blocks can
not only use CNN network to extract multilevel features of
the image, but also ensure better convergence of the entire
encoding-decoding network. In addition, the encoder-
decoder also uses a multilayer pyramid pooling module,
which uses the global transmission information of the image
to estimate the transmittance map, avoiding the problem that
the network pays too much attention to local details and
ignores the global information.

In the encoder, it is a first traditional convolution block
and then four dense blocks. The output of the encoder is
1/32 of the original input image. Corresponding to the
encoder is the decoder, whose structure is completely sym-
metrical with the encoder and contains four dense blocks
and one convolution block. The output of the decoder and
the original image have the same size, and the corresponding
modules of the two are directly connected. Although the
proposed densely connected encoding-decoding structure
combines different features within the network, the transmit-
tance graph output only through the encoder-decoder still
lacks global structural information with different scale fea-
tures. This is because the features extracted from the images
of different scales are not directly used to generate the feature
rate map, so after the codec, the network has added a multi-
level pyramid pooling module to use the feature information
obtained by each layer of the feature pyramid. The final
transmittance map is estimated. The pyramid pooling mod-
ule designed in this paper contains four levels of pooling
operations, and the output size is 1/4, 1/8, 1/16, and 1/32 of
the original image size. Then, all the four sizes of transmit-
tance maps are upsampled to the original image size, and
the original images are connected, respectively, and finally,
the fined transmittance map is obtained.

2.2.2. Atmospheric Light Value Estimation Network. The cal-
culation of atmospheric light values in the traditional image

dehazing method is based on empirical formulas. The atmo-
spheric light map used for dehazing is also rough and not
precise, so it is difficult to obtain satisfactory dehazing
images. This network proposes an improved U-net network
when solving atmospheric light values, as shown in
Figure 3. The entire network includes two parts: upsampling
and downsampling. The upsampling process is to capture the
context information of the image, and the downsampling
process is to obtain the local precise information of the
image. In the downsampling process, every two 3 x 3 convo-
lutional layers will be followed by a 2 x 2 pooling layer. ReLU
is used as the activation function after each convolutional
layer. The upsampling process is symmetrical with the down-
sampling process. Each 2 x 2 pooling layer is followed by two
3 x 3 convolutional layers. The high-pixel atmospheric light
feature maps extracted during the downsampling process
are directly transmitted to the corresponding upsampling
process to guide the generation of new feature maps and
retain some of the important feature information obtained
during the previous downsampling process to the greatest
extent. The final output of the network is a refined atmo-
spheric light map. The value of each pixel in the picture is
as close as possible to the atmospheric light value in the case
of real haze.

2.2.3. Dehazing Module Based on Image Degradation
Equation. In order to realize image dehazing using physical
imaging principles, this network directly embeds the image
degradation model into the dehaze network. As shown in
the dehazing module in Figure 1, accurate transmittance
map and atmospheric light map can be obtained from the
first two modules, and the dehazing image can be easily
obtained by using the image degradation model.

2.2.4. Joint Optimization Discriminant Network. In order to
establish the relationship between transmittance map, atmo-
spheric light map, and dehazing image, this paper builds a
joint optimization discriminant network based on GAN
network [51]. The discrimination network uses the high
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FIGURE 3: Atmospheric light value estimation network.

correlation between the three to optimize the generated
transmittance map, atmospheric light map, and dehazing
image and finally obtain a clear and true dehazing image.
LetG.and G, denote the generation networks of clear images
and transmittance maps respectively. As shown in Equation
(3), the first part and the second part of the formula are the
games between the generator and the discriminator. Contin-
uously optimize the generation and discrimination network
and finally be able to generate the transmittance map and
dehazing image as realistic as possible. The third part of the
formula is to compare the actual clear image with the
defogged image to further optimize the dehazing image.

min maxEr,, (log (1~ Diow (Gi(D)]

+ EINPdm(z) [log (1 - DJOint(Gd (I)))] (3)
+ Et,]~pdamuy,) [log Dy (G (25 ]))] :

2.3. Defog Network Loss Function

2.3.1. Edge Protection Loss Function. For the training of deep
learning networks, the simplest loss function is the L2 loss
function, but after many experiments, it is found that only
the L2 loss function is used for network training, and the out-
put image is often blurred. Through in-depth analysis of the
image, it is found that the value of the edge pixel point of the
target object has a discontinuity. It can be characterized by
calculating the gradient of the pixel value. The edge and con-
tour features of the target object can be captured in the first
few layers of the CNN structure, so the first few layers of
the convolutional neural network can be used as the edge
detector for target feature extraction. So the first few layers
of the convolutional neural network can be used as the edge
detector for target feature extraction. Based on the above
analysis, this paper proposes an edge protection loss func-
tion, which adds a two-way gradient loss and feature edge
loss on the basis of the L2 loss function. The function expres-
sion is shown in Equation (4).

LE = AE,ZZLE,ZZ + AE,gLE,g + AE,fLE,f (4)
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FIGURE 4: Image dehazing result graph.

LE is the retention losses for the entire edge of the target
object, Lg is the loss for L2, Ly is for the horizontal and

vertical gradient loss, andLy is a characteristic loss. The
specific calculation formula of loss is shown in Equation (5).

Ly =Y [[(H(GiI))) o = (He() ]
wh (5)

+|| (G, 1) () .,
H, and H, calculate the image pixel gradient along the

horizontal and vertical, respectively, and w x h represents
the width and height of the output feature map. Feature loss
definition is shown in Equation (6).

Lys= ),

cwy,hy

DI (VACA0) I A0)

CyWy5h,

|V (G0, = (Vi)

2

(6)

2

V; is on behalf of the CNN structure, ¢;, w;, h;, V; are the
dimension of the corresponding low-level feature.Ag; , Ap g,

andAy; are the weight of the balance loss function.

2.3.2. Overall Loss Function. For the entire network training,
in addition to the edge protection loss function, the loss func-
tion of the atmospheric light map, the loss function of the
dehazing module, and the loss function of the joint optimiza-
tion discriminator are also required. The overall loss function
can be expressed as Equation (7).

L=L'+L*+L"+ L. (7)

L' consists of edge retention loss L¥x, and L is the loss
function of the atmospheric light calculation module that is

composed of the traditional L2 loss L%, which denotes defog
loss, which also consists of L2 loss only.L/ is for the joint
discriminator loss, andL’ is defined as Equation (8).

Lj == log (Djoint(Gt(I)) - IOg (Djoint(Gd(I))’ (8)
where j is a constant.

3. Model Training

3.1. Composition of the Dataset. In order to train the dense
connection pyramid dehazing network (DCPDN), this paper
constructs a training set containing 8000 images through
simulation. The training set contains a total of four data
types, namely, foggy images, clear images, transmittance
maps, and atmospheric light maps. In the process of obtain-
ing the training set through simulation, we randomly sample
as the atmospheric light value in the range of 0.5-1, And con-
struct of the corresponding atmospheric light map, we ran-
domly select the data as the scattering coefficient in the
range of 0.4-1.6 and generate the corresponding transmit-
tance map. We randomly selected 2000 transmission line
images captured by drone patrol under clear weather and
synthesized them according to the foggy image model Equa-
tion (1), obtaining a total of 8000 simulation images. Then,
the dataset is divided into training set, validation set, and test
set according to 7:2:1. In order to ensure that the trained
dehazing network has good generalization performance, the
training set in this paper does not contain any pictures in
the verification test set.

3.2. Training Details of the Dehazing Network. In the model
training process, we choose Ag; =1, A5, =0.5, and Ap; =
0.8 in the transmission graph as parameters of the loss func-
tion, /lj =0.25. As a parameter of the loss function, the joint
optimization discriminator is optimized. The entire network
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FIGURE 5: Contrast of image dehazing result.
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TaBLE 1: PSNR and SSIM of dehazing image.
Method PSNR SSIM
He image dehazing method 18.9613 0.7753
Li image dehazing method 18.7452 0.8374
DCPDN image dehazing method 19.6954 0.8478

uses Gaussian random variables to initialize the weight param-
eters, and the Adam optimization algorithm is used to opti-
mize the network. The initial learning rate of the generator
and the joint discriminator is set to 2 x 107>. The learning rate
is a key parameter that affects the model training.

The smaller the learning rate, the less likely to miss the
local minimum, but the smaller the learning rate, the slower
the model convergence. The number of samples in the train-
ing set of this network is not very large, so the full training set
is selected for the batch size. Each iteration of the network
can make full use of the feature information of the data in
the entire training set and can accelerate the network’s
approach to the extreme point. In addition, the size of the
image input from the network is uniformly adjusted to 512
x 512. In the end, the paper performed 40,000 iterations on
the network and determined all the parameters of the net-
work through cross-validation.

During the initial training of the model, we found that
starting to train the entire network directly, the convergence
speed of the network is very slow. The possible reason is that
the gradient descent direction of different modules in the net-
work in the initial training period is inconsistent, causing the
convergence speed of the entire network to decrease. In order
to solve this problem and accelerate training, this method
introduces a staged learning strategy, which has been used
in multimodel recognition [52] and feature learning [53]

The algorithm is applied. We input the information in the
training data to different modules in the network, and each
module is trained separately without affecting each other,
and we update the parameters independently. After each
module completes the “initialization” of parameters, we asso-
ciate different modules with each other to jointly optimize
the entire network.

4. Analysis of Experimental Results

4.1. Defog Image Rendering Comparison. We randomly select
a foggy image from the UAV inspection image sample library
and use the DCPDN dehazing algorithm for dehazing. The
results are shown in Figure 4.

Figures 4(a) and 4(c) are the original foggy images.
Figures 4(b) and 4(d) are the images after DCPDN method.
It can be seen from Figure 4 that the method in this paper
can effectively remove the haze in the image and restore the
image detail information.

We randomly select a foggy image from the UAV inspec-
tion image sample library and use the He dehazing algorithm
[37], Li dehazing algorithm [38], and DCPDN dehazing algo-
rithm for dehazing. The results are shown in Figure 5.

Figures 5(a)-5(d) are the original foggy image, the image
after He dehazing method, the image after Li dehazing
method, and the image after DCPDN method, respectively.
It can be seen from Figure 5(b) that the image processed by
the He image dehazing method is seriously distorted in the
sky area, and it is not good for dehazing images containing
large white areas. It can be clearly seen from Figure 5(c) that
the image dehazing is not thorough enough. The main reason
is that the CN method used in the Li method has fewer layers,
and the fog feature extraction is insufficient, resulting in the
presence of fog in the processed image. Figure 5(d) is the
result obtained by adopting the new dehazing network
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TaBLE 2: Target detection results.
Tower failure (AP) Small-size fittings (AP) Ground wire fault (AP) Insulator failure (AP) mAP
Foggy image 0.5746 0.4368 0.5128 0.5974 0.5304
He defog image 0.6417 0.4985 0.5847 0.6187 0.5859
Li defog image 0.6239 0.5018 0.6017 0.6245 0.5880
This article method 0.7828 0.5786 0.6451 0.7013 0.6770

proposed in this paper. From the visual effect, it is obviously
superior to the first two methods, and the image detail infor-
mation is restored while ensuring the image brightness and
contrast.

4.2. Comparison of Dehazing Image Indicators. Peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) are
often used as the basis for image quality evaluation. The peak
signal-to-noise ratio is defined by the ratio of the maximum
signal power to the signal noise power, usually expressed in
decibels. Structural similarity is to evaluate the image quality
from the image brightness, contrast, and structural proper-
ties of the target object. We calculate the PSNR and SSIM
values of Figure 5, and the results are shown in Table 1.

It can be seen from the comparison of the PSNR value and
SSIM value in Table 1 that the DCPDN image dehazing
method proposed in this paper is better than the image dehaz-
ing method of He and Li, and the PSNR value and SSIM value
are higher. It shows that the image dehazing method proposed
in this paper is good for image repair and can generate dehaz-
ing images with high similarity to clear images.

4.3. Target Detection Accuracy Comparison. In the field of
target detection, two indicators, average precision (AP) and
mean average precision (mAP), are usually used to evaluate
the pros and cons of the target detection algorithm. The aver-
age accuracy is used to measure the recognition accuracy of a
target detection algorithm for an object. The mean average
accuracy is used to measure the recognition accuracy of an
algorithm on all targets. Generally speaking, mAP is a simple
average of multitarget detection AP.

From the test set, 100 randomly selected images of
foggy transmission lines with pole tower failure, small-
size fitting failure, ground conductor failure, and insulator
failure were selected. The He image dehazing method, Li
image dehazing method, and DCPDN image dehazing
method were used for image dehazing, respectively. The
Faster Rcnn target detection algorithm [54] was used to
detect the equipment defect targets for foggy images, He
dehazing images, Li dehazing images, and DCPDN dehaz-
ing images. We calculate the AP values of the four faults
and the mAP values of each group of images separately.
The results are shown in Table 2.

It can be seen from the results in Table 2 that the AP
value and mAP value of the target detection algorithm after
image dehazing have been improved, and the effect of the
method proposed in this article is the most obvious, indicat-
ing that the preprocessing of image dehazing can improve the
accuracy of target detection. The AP value of the target detec-
tion algorithm for tower failure, ground conductor failure,

and insulator failure has been greatly improved. The AP
value of small-size metal fittings has a small increase, which
proves that the image dehazing process can improve the
overall image quality, and the effect of recovering the edge
information of large-size target objects is obvious.

5. Conclusion

This paper proposes an image dehazing method of transmis-
sion line machine patrol image based on densely connected
pyramid network. It embeds the atmospheric degradation
model directly into the deep learning framework and uses
physical principles to restore the image. For the calculation
of the transmittance graph, this paper proposes a new dense
connection encoding-decoding structure with multilevel
pooling modules and redesigns the edge retention loss func-
tion. This method introduces a joint discriminant optimizer
based on GAN network in the network, which can jointly
optimize the transmittance map and dehazing image with
high correlation. Then use the sample set designed in this
paper to train the network to obtain an image dehazing
model suitable for the transmission line background. Exper-
iments show that the dehazing image obtained by the method
proposed in this paper is closer to the real image in visual
effect. Using the dehazing algorithm proposed in this paper
for image enhancement can improve the accuracy of the tar-
get detection algorithm.

Although the proposed method indeed promotes the
quality of transmission line UAV inspection image, it is still
not a real-time solution. Considering the actual problem that
for the deep learning model proposed in this paper, the num-
ber of existing samples is still insufficient and future work can
further increase the number of training set samples through
data expansion method. In addition, the main work carried
out in this paper is to enhance the image containing haze,
but there are still some problems in the actual aircraft patrol
image including raindrop image and motion blur. Thus,
there is an important and meaningful need for work in the
future to explore more comprehensive image enhancement
method for unmanned aerial vehicle inspection in complex
environment.

Abbreviations

CNN: Convolutional neural network

UAV: Unmanned aerial vehicle

DCPDN: Densely connection pyramid network
PSNR:  Peak signal-to-noise ratio

SSIM: Structural similarity

AP: Average precision.



Data Availability

The authors do not share the data, due to the requirements of
the foundations.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their helpful insights and suggestions which have sub-
stantially improved the content and presentation of this
paper. This work was supported by the National Natural Sci-
ence Foundation of China (No. 51777142, No. 71371127, No.
91846301, No. 71790615, No. 51779206, and No. 71431006),
the Key Project for Philosophy and Social Sciences Research
of Shenzhen City (No. 135A004), Key Project of Natural Sci-
ence Basic Research Plan in Shaanxi Province of China
(Grant No. 2019ZDLGY18-03), and the Fundamental
Research Funds for the Central Universities (Program No.
2722019PY052).

References

[1] A. Lytos, T. Lagkas, P. Sarigiannidis, M. Zervakis, and
G. Livanos, “Towards smart farming: systems, frameworks
and exploitation of multiple sources,” Computer Networks,
vol. 172, article 107147, 2020.

[2] E.J. Chen Miyun, Exploration of the application of drones in
the inspection of transmission lines, Electrical Technology,
2019.

[3] C. Chen, C. Wang, T. Qiu, M. Atiquzzaman, and D. O. Wu,
“Caching in vehicular named data networking: architecture,
schemes and future directions,” IEEE Communications Surveys
& Tutorials, 2020.

[4] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and
L. Moscholios, “A compilation of uav applications for precision
agriculture,” Computer Networks, vol. 172, article 107148,
2020.

[5] C. Chen, J. Hu, T. Qiu, M. Atiquzzaman, and Z. Ren, “Cvcg:
cooperative v2v-aided transmission scheme based on coali-
tional game for popular content distribution in vehicular ad-
hoc networks,” IEEE Transactions on Mobile Computing,
vol. 18, no. 12, pp. 2811-2828, 2019.

[6] J.Hu, C. Chen, T. Qiu, and Q. Pei, “Regional-Centralized Con-
tent Dissemination for Ev2x Services in 55 Mmwave-Enabled
IoV,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7234-
7249, 2020.

[7] H. Chen, X. Wang, Z. Li, W. Chen, and Y. Cai, “Distributed
sensing and cooperative estimation/detection of ubiquitous
power internet of things,” Protection and Control of Modern
Power Systems, vol. 4, no. 1, 2019.

[8] S. Wan, Y. Xia, L. Qi, Y.-H. Yang, and M. Atiquzzaman,
“Automated Colorization of a Grayscale Image with Seed
Points Propagation,” IEEE Transactions on Multimedia,
vol. 22, no. 7, pp- 1756-1768, 2020.

[9] L. Yuling, Computer vision technology and its application in
power system automation, China New Technology New Prod-
ucts, 2012.

Wireless Communications and Mobile Computing

[10] L. Li, T.-T. Goh, and D. Jin, “How textual quality of online
reviews affect classification performance: a case of deep learn-
ing sentiment analysis,” Neural Computing and Applications,
vol. 32, no. 9, pp. 4387-4415, 2020.

[11] Y. Zhao, H. Li, S. Wan et al., “Knowledge-aided convolutional
neural network for small organ segmentation,” IEEE Journal of
Biomedical and Health Informatics, vol. 23, no. 4, pp. 1363-
1373, 2019.

[12] D.Jin, S. Shi, Y. Zhang, H. Abbas, and T.-T. Goh, “A complex
event processing framework for an adaptive language learning
system,” Future Generation Computer Systems, vol. 92,
pp. 857-867, 2019.

[13] Z. D. W. Shuai and X. Yong, “A survey of target detection
based on deep convolutional networks,” Pattern Recognition
and Artificial Intelligence, vol. 31, no. 4, pp. 335-346, 2018.

[14] T.-T. Goh, Z. Xin, and D. Jin, “Habit formation in social media
consumption: a case of political engagement,” Behaviour &
Information Technology, vol. 38, no. 3, pp. 273-288, 2019.

[15] S. Ding, S. Qu, Y. Xi, and S. Wan, “Stimulus-driven and
concept-driven analysis for image caption generation,” Neuro-
computing, vol. 398, pp. 520-530, 2020.

[16] Z. Gao, H. Z. Xuan, H. Zhang, S. Wan, and K. K. R. Choo,
“Adaptive fusion and category-level dictionary learning model
for multiview human action recognition,” IEEE Internet of
Things Journal, vol. 6, no. 6, pp. 9280-9293, 2019.

[17] S. Wan and S. Goudos, “Faster R-CNN for multi-class fruit
detection using a robotic vision system,” Computer Networks,
vol. 168, p. 107036, 2020.

[18] Z.Hu, T. He, Y. Zeng et al., “Fast image recognition of trans-
mission tower based on big data,” Protection and Control of
Modern Power Systems, vol. 3, no. 1, article 15, 2018.

[19] Z. H. Chen Gong and T. Wang, “A new method for foggy
image restoration based on physical model,” Journal of Image
and Graphics, vol. 13, no. 5, pp. 888-893, 2008.

[20] S.Ding, S. Qu, Y. Xi, and S. Wan, “A long video caption gen-
eration algorithm for big video data retrieval,” Future Genera-
tion Computer Systems, vol. 93, pp. 583-595, 2019.

[21] C. Chen, T. Xiao, T. Qiu, N. Lv, and Q. Pei, “Smart-contract-
based economical platooning in blockchain-enabled urban
internet of vehicles,” IEEE Transactions on Industrial Infor-
matics, vol. 16, no. 6, pp- 4122-4133, 2020.

[22] C. Chen, X. Liu, T. Qiu, and A. K. Sangaiah, “A short-term
traffic prediction model in the vehicular cyber—physical sys-
tems,” Future Generation Computer Systems, vol. 105,
pp. 894-903, 2020.

[23] Z. Gao, Y. Li, and S. Wan, “Exploring deep learning for view-
based 3d model retrieval,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 16,
no. 1, pp. 1-21, 2020.

[24] F. Russo, “An image enhancement technique combining
sharpening and noise reduction,” IEEE Transactions on
Instrumentation and Measurement, vol. 51, no. 4, pp. 824-
828, 2002.

[25] Z. Lv, B. Hu, and H. Lv, “Infrastructure monitoring and
operation for smart cities based on iot system,” IEEE Trans-
actions on Industrial Informatics, vol. 16, no. 3, pp. 1957-
1962, 2020.

[26] Z.Lv, W. Kong, X. Zhang, D. Jiang, H. Lv, and X. Lu, “Intelli-
gent security planning for regional distributed energy inter-
net,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 5, pp. 3540-3547, 2020.



Wireless Communications and Mobile Computing

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

Z. Lv, X. Li, H. Lv, and W. Xiu, “Bim big data storage in
WebVRGIS,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 4, pp. 2566-2573, 2020.

J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast
enhancement using partially overlapped sub-block histogram
equalization,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 11, no. 4, pp. 475-484, 2001.

Z.-u. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex pro-
cessing for automatic image enhancement,” Journal of Elec-
tronic Imaging, vol. 13, no. 1, pp. 100-110, 2004.

D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale
retinex for bridging the gap between color images and the
human observation of scenes,” IEEE Transactions on Image
Processing, vol. 6, no. 7, pp. 965-976, 1997.

L. Meylan and S. Susstrunk, “High dynamic range image ren-
dering with a retinex-based adaptive filter,” IEEE Transac-
tionson Image Processing, vol. 15, no. 9, pp. 2820-2830,
2006.

Y. S. Zhai, X. M. Liu, and Y. Y. Tu, “Contrast enhancement
algorithm for fog-degraded image based on fuzzy logic,”
Journal of Computer Applications, vol. 28, no. 3, pp. 662—
664, 2008.

J. P. Oakley and B. L. Satherley, “Improving image quality in
poor visibility conditions using a physical model for contrast
degradation,” IEEE Transactions on Image Processing, vol. 7,
no. 2, pp. 167-179, 1998.

N. Hautiere, J. P. Tarel, and D. Aubert, “Towards fog-free in-
vehicle vision systems through contrast restoration,” in 2007
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1-8, Minneapolis, MN, USA, June 2007.

S. Wan, X. Xu, T. Wang, and Z. Gu, “An intelligent video
analysis method for abnormal event detection in intelligent
transportation systems,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1-9, 2020.

R. Fattal, “Single image dehazing,” ACM Transactions on
Graphics, vol. 27, no. 3, p. 72, 2008.

K. He, J. Sun, and X. Tang, “Single image haze removal using
dark channel prior,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1956-1963, Miami, FL,
USA, June 2009.

C. Li, J. Guo, F. Porikli, C. Guo, H. Fu, and X. Li, “Dr-Net:
transmission steered single image dehazing network with
weakly supervised refinement,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1-8,
Honolulu, HI, USA, 2017.

H. Yang, J. Pan, Q. Yan, W. Sun, J. Ren, and Y. Tai, “Image
dehazing using bilinear composition loss function,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-9, Honolulu, HI, USA, 2017.

R. Liu, X. Fan, M. Hou, Z. Jiang, Z. Luo, and L. Zhang, “Learn-
ing aggregated transmission propagation networks for haze
removal and beyond,” IEEE Transactions on Neural Net-
works, vol. 30, no. 10, pp. 2973-2986, 2019.

H. Zhang, V. A. Sindagi, and V. M. Patel, “Joint transmission
map estimation and dehazing using deep networks,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1-11, Honolulu, HI, USA, 2017.

Y. Song, J. Li, X. Wang, and X. Chen, “Single image dehazing

using ranking convolutional neural network,” IEEE Transac-
tions on Multimedia, vol. 20, no. 6, pp. 1548-1560, 2018.

(43]

(44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

X. Zhao, K. Wang, Y. Li, and J. Li, “Deep fully convolutional
regression networks for single image haze removal,” in
2017 IEEE Visual Communications and Image Processing
(VCIP), pp. 1-4, St. Petersburg, FL, USA, December 2017.

X. Z. Dong Haoyuan, “Blind quantization noise estimation
algorithm based on prior knowledge of images,” Computer
Engineering, vol. 36, no. 11, pp. 195-197, 2010.

B. H. Yang Aiping, “Night image defogging algorithm based
on retinex theory and dark channel prior,” Progress in Laser
and Optoelectronics, vol. 54, no. 4, pp. 141-147, 2017.

S. G. Narasimhan and S. K. Nayar, “Chromatic framework for
vision in bad weather,” in Proceedings IEEE Conference on
Computer Vision and Pattern Recognition. CVPR 2000 (Cat.
No.PR00662), vol. 1, pp. 598-605, Hilton Head Island, SC,
USA, June 2000.

G. Tang, L. Zhao, R. Jiang, and X. Zhang, “Single Image
Dehazing via Lightweight Multi-scale Networks,” in 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles,
pp- 5062-5069, Honolulu, HI, USA, 2017.

B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: an end-
to-end system for single image haze removal,” IEEE Transac-
tions on Image Processing, vol. 25, no. 11, pp. 5187-5198, 2016.

K. Tang, J. Yang, and J. Wang, “Investigating haze-relevant
features in a learning framework for image dehazing,” in
2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2995-3002, Columbus, OH, USA, June 2014.

C. O. Ancuti and C. Ancuti, “Single image dehazing by multi-
scale fusion,” IEEE Transactions on Image Processing, vol. 22,
no. 8, pp. 3271-3282, 2013.

B.Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “An all-in-one net-
work for dehazing and beyond,” arXiv: Computer Vision and
Pattern Recognition, 2017.

A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and
W. Burgard, “Multimodal deep learning for robust RGB-D
object recognition,” in 2015 IEEE/RS] International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 681-687,
Hamburg, Germany, September 2015.

E. Barshan and P. Fieguth, “Stage-wise training: an improved
feature learning strategy for deep models,” in Proceedings of
the 1st International Workshop on Feature Extraction: Modern
Questions and Challenges, pp. 49-59, Montreal, Canada, 2015.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 39, no. 6, pp. 1137-1149, 2017.



	Image Dehazing Method of Transmission Line for Unmanned Aerial Vehicle Inspection Based on Densely Connection Pyramid Network
	1. Introduction
	2. Single Image Defog Model
	2.1. Haze Image Optical Attenuation Model
	2.2. Model Architecture of Densely Connected Pyramid Dehazing Network
	2.2.1. Pyramid Densely Connected Transmission Graph Estimation Network
	2.2.2. Atmospheric Light Value Estimation Network
	2.2.3. Dehazing Module Based on Image Degradation Equation
	2.2.4. Joint Optimization Discriminant Network

	2.3. Defog Network Loss Function
	2.3.1. Edge Protection Loss Function
	2.3.2. Overall Loss Function


	3. Model Training
	3.1. Composition of the Dataset
	3.2. Training Details of the Dehazing Network

	4. Analysis of Experimental Results
	4.1. Defog Image Rendering Comparison
	4.2. Comparison of Dehazing Image Indicators
	4.3. Target Detection Accuracy Comparison

	5. Conclusion
	Abbreviations
	Data Availability
	Conflicts of Interest
	Acknowledgments

