
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, Sep. 2020 3885
Copyright ⓒ 2020 KSII

This work was supported by National Key R&D Program of China under Grant 2019QY0501 and Soft Science
Research Program of Henan Province under Grant 192102210128.

http://doi.org/10.3837/tiis.2020.09.018 ISSN : 1976-7277

EPfuzzer: Improving Hybrid Fuzzing with
Hardest-to-reach Branch Prioritization

Yunchao Wang, Zehui Wu, Qiang Wei*, and Qingxian Wang

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450000, China
[e-mail: 92wyunchao@gmail.com, wuzehui2010@foxmail.com, prof_weiqiang@163.com,

wangqingxian2015@163.com]
*Corresponding author: Qiang Wei

Received January 22, 2020; revised July 14, 2020; accepted August 23, 2020;

published September 30, 2020

Abstract

Hybrid fuzzing which combines fuzzing and concolic execution, has proved its ability to
achieve higher code coverage and therefore find more bugs. However, current hybrid fuzzers
usually suffer from inefficiency and poor scalability when applied to complex, real-world
program testing. We observed that the performance bottleneck is the inefficient cooperation
between the fuzzer and concolic executor and the slow symbolic emulation. In this paper, we
propose a novel solution named EPfuzzer to improve hybrid fuzzing. EPfuzzer implements
two key ideas: 1) only the hardest-to-reach branch will be prioritized for concolic execution to
avoid generating uninteresting inputs; and 2) only input bytes relevant to the target branch to
be flipped will be symbolized to reduce the overhead of the symbolic emulation. With these
optimizations, EPfuzzer can be efficiently targeted to the hardest-to-reach branch. We
evaluated EPfuzzer with three sets of programs: five real-world applications and two popular
benchmarks (LAVA-M and the Google Fuzzer Test Suite). The evaluation results showed that
EPfuzzer was much more efficient and scalable than the state-of-the-art concolic execution
engine (QSYM). EPfuzzer was able to find more bugs and achieve better code coverage. In
addition, we discovered seven previously unknown security bugs in five real-world programs
and reported them to the vendors.

Keywords: Bug detection, concolic execution, hybrid fuzzing, software security

3886 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

1. Introduction

Software vulnerabilities [1, 2, 3] are a main threat to program security. As a result,
researchers from industry and academia have come up with many automatic methods to find
vulnerabilities in programs. Fuzzing [4, 5, 6] and concolic execution [7, 8, 9] are two popular
vulnerability detection techniques. On the one hand, fuzzing can quickly cover many branches
with simple or loose constraint conditions (a large range of satisfying value space), such as the
two types shown in Fig. 1a. However, due to the randomness of mutation, it is difficult for
fuzzer to cover branches guarded by complex or tight constraints (very few range of satisfying
value space), such as the three types shown in Fig. 1b. For example, it is hard for the
state-of-the-art American Fuzzy Lop (AFL) [4] to generate inputs that meet these branch
conditions and find bugs hidden behind them. Although some heuristic strategies [10, 11, 12,
13] have been proposed to alleviate this limitation, they are only applicable for comparatively
simple situation like direct multibyte check (e.g., ③ in Fig. 1b), but not for a more complex
indirect multibyte check (e.g., ④ in Fig. 1b) and nested condition check (e.g., ⑤ in Fig. 1b).
On the other hand, concolic execution is very good at solving these complex branch
constraints, but it is not scalable to real-world applications due to high overhead (symbolic
emulation and constraint solving are very time-consuming) and path explosion problems.

①. if(x == 0x41) // Single byte check
②. if(x > 1) // Loose condition check

③. if(x == 0xdeadbeef) // Direct multibyte check
④. if(2x+1 == 0xdeadbeef) // Indirect multibyte check
⑤. if(x+y < 10)
 if(x > 5) // Nested condition check

(a) Simple branch condition for fuzzer

(b) Complex branch condition for fuzzer

Fig. 1. Some common branch condition checks in real-world programs.

To make full use of the strengths of fuzzing and concolic execution and mitigate their
weaknesses, a new method named hybrid fuzzing [14, 15, 16, 17] was proposed with the aim
of maximizing code coverage of the fuzzer. This method lets the high-speed fuzzing run as
much as possible for path traversal, and the expensive concolic execution is only used to assist
in solving some complex branch constraints to generate test cases that can cover specific
branches, thereby helping fuzzing to further improve code coverage and find deeper code bugs.
Driller [15] is a representative hybrid fuzzer and has proved that techniques combining
fuzzing and concolic execution can find more bugs in the DARPA Cyber Grand Challenge
(CGC) binaries than techniques using either method alone. DigFuzz [16] designs a novel
Monte Carlo based probabilistic path prioritization model to quantify each path’s difficulty

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3887

and prioritize them for concolic execution, which further helps to improve the efficiency of
hybrid fuzzing. Unfortunately, Driller and DigFuzz are both not scalable to nontrivial,
real-world applications, because its symbolic execution engine, angr [9], is very slow and
many external system calls cannot be supported. QSYM [17] is a recently proposed and more
practical concolic execution engine tailored for hybrid fuzzing. It integrates symbolic
emulation with native execution by dynamic binary translation instead of depending on slower
intermediate representation. The concolic executor QSYM and fuzzer run in parallel. QSYM
reruns the generated seed inputs from the fuzzer and then flips each condition branch in turn
and solves the corresponding path constraint to generate a new input to the fuzzer. However,
we found that this strategy has two problems: 1) QSYM flips all conditional branches in the
execution path indiscriminately, resulting in most of the generated input being uninteresting to
the fuzzer and discarded. Consequently, the concolic executor spends considerable time doing
much useless work; 2) QSYM sees the all user input as symbolic bytes, thus increasing the
burden of symbolic emulation and constraint solving. Consequently, a single concolic
execution takes too much time. These two issues greatly reduce the overall performance of the
hybrid fuzzer.

To overcome the above limitations and further improve the scalability of hybrid fuzzing, we
propose a hardest-to-reach branch prioritization strategy. First, instead of solving all branches
blindly, we only choose branches that are really hard to reach for the fuzzer for concolic
execution. Second, we only symbolize bytes that affect target branch to be flipped, thereby
reducing the number of symbolic instructions which need to be emulated. We implement a
prototype tool named EPfuzzer and evaluate it with three sets of programs: five real-world
applications and two benchmarks (LAVA-M [18] and Fuzzer Test Suite [19]). The
experimental results show that our method can achieve higher code coverage and discover
more bugs than QSYM. In summary, this paper makes the following contributions:

1) We propose a hardest-to-reach branch prioritization strategy to improve the performance
of hybrid fuzzing. Only the hardest-to-reach branches are solved using concolic execution to
generate new inputs to avoid generating many uninteresting inputs. Additionally, only specific
bytes are symbolized to reduce the overhead of symbolic emulation.

2) We implement EPfuzzer and evaluate it with state-of-the-art fuzzers (e.g., QSYM and
AFL) on two benchmarks and five real-world applications. EPfuzzer outperforms in terms of
both code coverage and bug discovery.

3) We found seven previously unknown security bugs and reported them to the vendor.

2. Background and Motivation
This section illustrates the related research background and the motivation of our study.

2.1 Background
Greybox fuzzing and concolic execution are two well-known vulnerability discovery methods
and in the meantime they are aslo two key componets of a hybrid fuzzing system. Therefore,
we first make a brief introduction to them before illustrating our motivation.

(1) Greybox fuzzing
The greybox fuzzers such as AFL have achieved a great success and found a large number

of security vulnerabilities. It leverages lightweight instrumentation and genetic algorithms to
discover test cases that likely trigger new branch in the target program. To further improve the

3888 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

code coverage, current greybox fuzzers adopt many heuristic strategies. AFLFast [20] and
FairFuzz [21] prioritize seeds that trigger the low-frequency paths or rare parts of the program.
Collafl [22] proposes three new seed selection policies to drive the fuzzer directly toward
non-explored paths. These fuzzers can achieve higher code coverage to some extent, but they
cannot solve complex constraints. For example, it is hard for fuzzers mentioned above to
generate an input which can satisfy the constraint in a conditional branch such as
“if(x==0xdeadbeef)”, because it has to guess a single value out of a large space (232).

(2) Concolic execution
Concolic execution (also known as dynamic symbolic execution) such as s2e [8], angr [9] is

a popular path-exploring technology. It treats the user input as symbolic values along a
concrete execution path. Whenever the engine encounters a conditional branch where the
branch predicate is symbolic, the branch will be flipped and a constraint solver is used to
create a new input by solving collected path constraints. Take the code shown in Fig. 2 as an
example, suppose that the initial input is x=0x00000000, then the false branch will be explored.
To explore the true branch, the concolic executor will flip the false branch, that is, obtain new
path constraints by negating the current branch constraint and then ask the solver to generate a
new input (i.e., x=0xdeadbeef). Concolic execution can keep exploring new paths by this way,
thereby covering more code. However, due to the problem of path explosion and the
complexity of path constraints, it is not scalable in real-world programs.

1 void func(int x) {
2 if (x == 0xdeadbeef)
3 bug()
4 else
5 bar()
6 }

if

func bug

False True
x≠0xdeadbeef ¬ (x≠0xdeadbeef)

Flip point

Fig. 2. Example of concolic execution.

2.2 Motivation
Hybrid fuzzing, combining fuzzing and concolic execution, can complement the
aforementioned limitations of each approach. In this section, we elaborate our research
motivation by thoroughly analyzing the performance of three popular hybrid fuzzers, i.e.,
Driller, QSYM, and DigFuzz. We found that there are three problems to consider to
implement an efficient and practical hybrid fuzzer.

(1) When should the concolic executor be launched?
Driller launches the concolic executor only when the fuzzer barely makes any progress for a

certain period, i.e., when the fuzzer is stuck. More specifically, Driller runs AFL as the fuzzing
component and invokes the concolic executor once the pending_favs attribute in AFL
decreases to 0. However, this conservative strategy is problematic because the stuck state of a
fuzzer is not a good indicator for launching concolic execution, as mentioned in [16]. The
problem becomes more obvious for real-world programs, because the pending_favs attribute

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3889

may not become 0 even after several hours’ testing. In this case, the concolic executor has not
been invoked throughout the fuzzing period, and thus the hybrid fuzzer degenerates into a pure
fuzzer.

Different from Driller, QSYM and DigFuzz are unconcerned with the state of the fuzzer,
that is, they do not check whether the current fuzzer is stuck or not. The concolic executor
continuously synchronizes seed inputs from the fuzzer. Obviously, this strategy can benefit
from concolic execution, thus we also adopt this strategy.

(2) What paths should be solved by concolic execution?

Fig. 3. Proportion of the interesting and uninteresting inputs for each binary. The numbers above the

bars are the total number of inputs generated by QSYM.

When the concolic executor is launched, Driller and QSYM continuously feed all inputs
generated by the fuzzer to the concolic executor, then the concolic executor flips all symbolic
branches in the execution path triggered by each input in turn and generates new inputs. This
radical strategy is also problematic, because many new inputs generated by concolic execution
are uninteresting to the fuzzer and thus discarded. In fact, many branches with loose
conditional constraints (e.g. ① and ② in Fig. 1b) can be quickly covered by a fuzzer, such as
AFL. Fig. 3 shows the proportion of interesting and uninteresting inputs generated by QSYM
while testing 5 programs for 24 hours. On average only 24.8% of the inputs are considered
interesting, that is, they are imported by AFL due to new branch coverage. The remaining
75.2% of the inputs are uninteresting and discarded, because they can be easily generated by
lightweight fuzzing. In this case, concolic execution wastes considerable time for some useless
works.

DigFuzz uses a relatively neutral strategy. It prioritizes paths that are most difficult for
fuzzing to break through. Compared with Driller, DigFuzz is able to identify in time specific
paths that block the fuzzer, thus achieving higher code coverage. However, according to our
analysis, DigFuzz is only suitable for small programs (e.g., CGC binaries) that have fewer and
shorter execution paths. Additionally, DigFuzz is difficult to apply to real-world programs, the

3890 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

reasons are as followings: 1) to quantify each path’s difficulty, DigFuzz builds an execution
tree, which will introduce a large runtime and memory overhead, especially for real programs.
This limitation was also mentioned in [16]. 2) DigFuzz focuses on missed paths instead of
branches, which may need a large amout of calulation. In fact, there are more missed paths
than branches because the same uncovered branch may appear in multiple paths. As shown in
Fig. 4, the uncovered branch b6 → b9 appears in three different paths (i.e., P1, P2, P3), and the
uncovered branch b2 → b5 appears in one path (i.e., P4). To prioritize the hardest path (i.e.,
P3), DigFuzz has to traverse the execution tree and calculate the probability of these four paths.
This is just a toy example to explain the problem. As the complexity of the program increases,
there will be more and longer paths. The path quantification of DigFuzz will introduce
considerable time overhead. Considering the above analysis, we borrow the idea of branch
coverage of AFL to alleviate this problem. Only hardest-to-reach branch instead of path is
prioritized, thus we do not have to build the execution tree. Section 3.2 will explain the design
in detail. Note that this strategy may result in the loss of some paths with different contexts, but
given the importance of time in fuzzing, we choose this less precise but lightweight approach.

b0

b1 b2

b3 b4 b5

b6 b7

b8 b9

1000 500

300

300

700

500

200 300

1200

Missed paths (DigFuzz):
P1: <b0, b1, b3, b6, b9>, P(P1)=0.0005
P2: <b0, b1, b6, b9>, P(P2)=0.00117
P3: <b0, b2, b4, b6, b9>, P(P3)=0.00033
P4: <b0, b2, b5>, P(P4)=0.002

Uncovered branches (EPfuzzer):
B1: b2 -> b5, hitcnt(N(B1))=500
B2: b6 -> b9, hitcnt(N(B2))=1200

Fig. 4. Program execution tree in DigFuzz. The number on the arrow indicates the hit count of the

current branch, and the red arrow indicates the uncovered branch.

Our approach. Instead of flipping all conditional branches in the execution path blindly, we
prioritize the uncovered branch that is really hardest to reach for the fuzzer based on the
runtime coverage information and assign it to concolic execution.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3891

(3) How to perform symbolic emulation and constraint solving efficiently?

It is well known that the main overhead of the concolic execution comes from the slow
symbolic emulation and expensive constraint solving. QSYM’s instruction-level symbolic
emulation demonstrated its performance on real-world programs, but the concolic execution is
still very slow during our testing. Table 1 compares the time for symbolic emulation and
constraint solving spent by QSYM, with the time for native execution and dynamic taint
analysis (DTA) required for a single execution of five programs. We can see that the emulation
time is still significantly slower. In particular, the emulation time for both djpeg and tiffcp
exceeds 25 minutes (1500 s), thus many conditional branches may not be traversable in a
limited time budget by concolic execution. The reason is that symbolic emulation needs to
manage symbolic expressions whenever a tainted instruction is executed, resulting in a high
overhead. Therefore, it is always desirable to further reduce the emulation time. In contrast,
DTA takes less time, because it needs to tag only the memory addresses and registers affected
by the input data propagated by running instructions instead of maintaining complex symbolic
expressions.

Table 1. Time for Native Execution, DTA, Qsym’s Symbolic Emulation and Constraint Solving for a
Single Execution.

Program Native(s) DTA(s)
QSYM

Emulation(s) Solving(s)
djpeg+libjpeg 0.021 30.1 1568.3 726.7
tiffcp+libtiff 0.007 9.2 1643.8 175.2
pngtest+libpng 0.003 5.8 21.9 3.6
bsdtar+libarchive 0.006 13.9 59.1 12.4
sfconvert+audiofile 0.009 10.5 162.5 40.8

We noticed that when the current hybrid fuzzers invoke the concolic executor to generate

new test cases, the concolic executor will mark all the input bytes as symbolic values and then
build the symbolic expressions during the emulation execution. Actually, the number of
symbolic instructions to be analyzed is positively related to the number of symbolic bytes.
However, each conditional branch usually only depends on very few bytes and therefore we
have no need to mark all the input bytes.

3892 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

01 void bar(unsigned x, unsigned y, unsigned z) {
02 if(x < 2)
03 if(x + y < 3)
04 if(x+z != 0)
05 if(y > 1) /*complex condition check 2*/
06 y=1/(y-2);
07 }
08 void foo(char* buf) { /*many operations on buf here*/}
09 int main(int argc, char **argv) {
10 char buf[100];
11 FILE *fp = fopen(argv[1], "rb");
12 fread(buf, 1, 100, fp);
13 foo(buf[0:83])
14 unsigned int magic = 0;
15 memcpy(&magic, buf+84, 4);
16 if(magic != 0xdeadbeef) /*complex condition check 1*/
17 return -1;
18 unsigned int x = 0;
19 memcpy(&x, buf + 88, 4);
20 unsigned int y = 0;
21 memcpy(&y, buf + 92, 4);
22 unsigned int z = 0;
23 memcpy(&z, buf + 96, 4);
24 bar(x, y, z);
25 return 0;
26 }

10-16

17 18-26

true

false

10-16

18-24

02

03

04

05

0607

flase

true

(a) A motivating example containing hard-to-read branches

(b) The path followed the true branch of check 1

(c) The path followed the false branch of check 2
Fig. 5. A motivating example. The numbers in boxes indicate the line numbers of the source code, and

the red arrow indicates the uncovered branches.

To illustrate this problem more clearly, we take the code shown in the Fig. 5a as an example.
The source code contains two conditional branches that are difficult for the fuzzer to break
through (i.e., line 16 and 5). Assume that the initial input with 100 bytes triggers a path as
shown in Fig. 5b. When the concolic executor is invoked, system calls related to IO operations
(e.g., the read function) will be hooked, thereby marking the 100 bytes in the destination
buffer buf as symbolic bytes. When the concolic execution reaches line 13, the foo function is
called to perform some operations on the input byte offsets from 0 to 83. Since they are
symbolic bytes, QSYM will spend considerable time emulating all instructions using symbolic
bytes. When the execution reaches line 16, QSYM attempts to flip the branch by negating the
current branch constraint and query the constraint solver to obtain an input (i.e., 0xdeadbeef)
that can trigger the false branch. However, we can find that only four bytes (offsets 84-87) can
affect the target branch at line 16, thus we do not need to symbolize byte offsets from 0 to 83.
Similarly, for the path shown in Fig. 5c, to explore the true branch at line 5, we only need pay
attention to the symbolic bytes corresponding to the variables x, y, and z. We will introduce
the identification of relevant bytes in detail in section 3.3. It should be noted that Driller and
DigFuzz, which use angr as the concolic executor, have the same problem with QSYM.

Our approach. Instead of marking the all input bytes as a symbolic values, we identify

bytes relevant to the target branch to be flipped with DTA and symbolize these bytes to further
reduce the overhead of symbolic emulation.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3893

3. Design
In this section, we explain our decisions concerning the design of EPfuzzer.

3.1 Overview

Fuzzer
（e.g., AFL）

Seed
queue

 Coordinator Concolic executor

Input
offsets
branch

seeds

New inputs covering new branches

< />

Target program

Initial inputs

—
—
—

Hardest-to-reach branch
prioritization (§3.2)

Relevant input bytes
identification (§3.3)

Target branch

Symbolize specified input
bytes (§3.4)

Target guided concolic
execution (§3.4)

Fig. 6. Overview of EPfuzzer.

Fig. 6 shows the main components of the system and the overall workflow. Here, we
summarize these components, the details will be covered in the following section.

Fuzzer: EPfuzzer can use any greybox fuzzing tools, such as AFL, honggfuzz [5], etc. It
takes the initial inputs and the target program as inputs, generates new inputs through multiple
mutation strategies (bit/byte flip, etc.) and stores them in the seed queue. Of course, our
approach is orthogonal to other methods to improve coverage, thus fuzzers such as AFLFast
and FairFuzz can also be feasible here.

Coordinator: As a bridge between the fuzzer and the concolic executor, coordinator is the
core component of the system. It takes the seeds from the fuzzer as inputs, prioritizes the
hardest-to-reach branch for the fuzzer by analyzing the coverage information (§3.2), and then
uses DTA to identify the relevant bytes that affect the target branch to be flipped (§3.3).
Finally, it outputs a triple, that is, the input that triggers the target branch, the byte offsets that
affect the target branch, and the target branch to be flipped.

Concolic executor: It will symbolize the specified byte offsets according to the output of
the coordinator, and then perform target guided concolic execution including symbolic
emulation, target branch flipping, constraints collecting and solving, and finally terminate the
execution (§3.4). Our concolic execution engine is implemented on the basis of QSYM, as it
has been proven to work in real-world programs.

3.2 Hardest-to-reach Branch Prioritization
The purpose of this step is to prioritize the hardest-to-reach branch for the fuzzer and then
assign it to the concolic execution. It can help to reduce the number of uninteresting inputs
generated by Driller or QSYM. Additionally, it should be as lightweight as possible to avoid
introducing much overhead like DigFuzz. Therefore, we prefer to choose the hardest-to-reach
branch instead of the path.

3894 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

b0

b1 b2

B1 B2

hitcont(B1)=n (n>0) Candidate branch
hitcount(B2)=0

Sanity check

Fig. 7. Example of candidate branch.

The santity checks in the program are compiled into conditional jump instructions (e.g., jnz,

jz, etc.) in the assembly code, and it is represented as a source basic block with two outgoing
edges (true branch and false branch) in the control flow graph (CFG) as shown in Fig.7. To
facilitate discussion, we introduce the following definitions.

Definition 1: Candidate branch. If a branch B1 in the execution path has been explored
many times, while its neighbor branch B2 has never been explored, then the branch B2 is
considered a candidate branch that is hard for fuzzer to explore. The candidate branch can be
formalized as all uncovered branches Bi satisfying the following conditions:

(() 0) ((()) (0))hitcnt Bi hitcnt N Bi n n= ∧ = >
hitcnt(Bi) denotes the number of generated inputs which have exercised the branch Bi, and

N(Bi) denotes the neighbor branch of Bi. In this case, we can obtain a set containing many
candidate branches, denoted as SC = {B1, B2, …, Bn}. Next, we need to determine the priority
of each branch in SC and assign the hardest-to-reach branch to concolic execution.

Definition 2: Hardest-to-reach branch. For a candidate branch Bi in SC, the intutition is
that the greater the hitcnt(N(Bi)) is, the harder it is for the fuzzer to explore branch Bi, so the
branch Bi is a hardest-to-reach branch, if and only if:

, (()) (())Bj SC Bj Bi hitcnt N Bi hitcnt N Bj∀ ∈ ∧ ≠ ≥
 Definition 3: Target branch to be flipped. If a branch Bi is a hardest-to-reach
branch, then its neighbor branch N(Bi) is the target branch to be flipped. In other words,
we can use concolic execution to flip the N(Bi) to trigger the uncovered branch Bi.

As shown in Fig. 4, there are two uncovered branches B1(b2 → b5) and B2(b6 → b9). Since
hitcnt(N(B1)) is less than hitcnt(N(B2)), thus the branch B2(b6 → b9) is deemed more difficult
to explore and will be assigned to concolic execution first. We can find that our approach is
more efficient and practical compared to DigFuzz. On one hand, we do not need to construct
an execution tree, which is very expensive. On the other hand, we only calculate the hit count
of only two branches (i.e., B1 and B2), while DigFuzz has to calculate the probability of four
paths (i.e., P1, P2, P3 and P4).

Our implementation of hardest-to-reach branch prioritization is shown in Algorithm 1. This
algorithm accepts two inputs and produces target branches to be flipped with the
corresponding hit count. The two inputs are the target program to be analyzed and seed inputs
retained by the fuzzer. First, we iterate all inputs from fuzzer to obtain hit count for each
branch and store them in HashMap (lines 4-11). Then we analyze each conditional branch Bi
in each trace t and obtain its neighbor branch Bj by CFG analysis (line 14). If the neighbor
branch Bj is not covered, the current branch Bi will be added to the target branch set ST (line

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3895

12-21). Finally, we can prioritize the branch with the most hit count to flip based on ST
information and generate an input to explore the uncovered branch.

Algorithm 1: Hardest-to-reach branch prioritization
Input: program: The binary to be analyzed
Input: inputs: The seed inputs retained by fuzzer
Output: ST: Target branch set with hit count corresponding to each branch

1 HashMap ← ∅
2 Trace ← ∅
3 ST ← ∅
4 for i ∈ inputs do
5 t ← GetTrace(program, i)
6 Trace ← Trace ∪ t
7 for branch ∈ t do
8 index ← Hash(branch)
9 HashMap[index]++

10 end for
11 end for
12 for t ∈ Trace do
13 for Bi ∈ t do
14 Bj ← GetNeighbor(Bi, CFG)
15 indexBi, indexBj ← Hash(Bi), Hash(Bj)
16 if HashMap[indexBj] == 0 then
17 HitCount ← HashMap[indexBi]
18 ST ← ST ∪ (t, Bi, HitCount)
19 end if
20 end for
21 end for

It should be noted that the branches in SC may contain some branches that we deem unlikely

to help find bugs, thus we need to filter the undesired branches. For example, we are only
interested in bugs in the target binary or library, so branches in other modules (e.g., libc) will
not be tracked. QSYM tries to flip symbolic branches in all modules, thus possibly wasting
much time. In addition, we also ignore some error-handling code. Take the code shown in Fig.
8 as an example, the error-handling branch cannot be explored by the fuzzer quickly, but this
branch is obviously undesired and exploring this branch does not contribute to bug finding.
Therefore, we use a heuristic strategy similar to T-Fuzz [23] to tackle this. The error-handling
branch is usually very short, because its logic returns or exits immediately after a detecting an
error. We use the number of basic blocks following the conditional check as the length of the
code paths and define a threshold value to tell an error-handling code path. This process is
performed offline by static analysis, so it does not affect the overall performance of fuzzing.

if (tif->tif_diroff > (uint64)TIFF_INT64_MAX)
 {
 TIFFErrorExt(tif->tif_clientdata,module,"Can not read TIFF directory count");
 return(0);
 }

Fig. 8. Error-handling branch in libtiff.

3896 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

3.3 Relevant Input Bytes Identification

16 if(magic != 0xdeadbeef)
 …
02 if(x < 2)
03 if(x + y < 3)
04 if(x+z != 0)
05 if(y > 1)
 …

0x40086a {84,85,86,87}
…
0x400677 {88,89,90,91}
0x40068f {88,89,90,91,92,93,94,95}
0x400694 {88,89,90,91,96,97,98,99}
0x4006ae {92,93,94,95}
…

Branch statements Taint offsets

Fig. 9. Taint offsets flow into branch statements.

As mentioned above, marking all the input bytes as symbolic values may introduce significant
overhead. Since we already have the target branch from the last step, we need to symbolize
only the bytes relevant to the target branch and treat the other bytes as concrete values thus
effectively reduce the number of symbolic instructions. To this end, we use DTA to determine
which input bytes affect the target branch. From Table 1 we can see that the overhead of DTA
is much lower than that of symbolic emulation. Therefore, we can improve overall
performance especially in the following two cases: First, our approach works better for larger
inputs. For example, AFL can accept an input less than 1 MB, but actually only several bytes
may affect a certain branch. Second, our approach performs better for deeper branches,
because it helps reduce many symbolic instructions before these branches.

We use the code in Fig. 5a to illustrate our method. First, we can obtain two hard-to-reach
branches guarded by complex conditional check 1 and 2 by algorithm 1. Then, we need to
identify bytes that affect these branches. Fig. 9 shows the taint mapping between input bytes
and the branch statements. The conditional check in line 16 is simple, and we just make
variable magic (offsets 84~87) symbolic values. However, for the conditional check in line 5,
we cannot make only variable y (offsets 92~95) as symbolic values, because it is a nested
branch. If only variable y is mutated, the prior branch conditions (lines 2, 3, and 4) may be
violated, thus resulting in the current branch being unreachable. We need to make all bytes that
have data dependency on variable y as symbolic values, such as variable x and z. That is, to flip
the branch of line 5, the 12 bytes (offsets 88~99) should be marked as symbolic values.

We present Algorithm 2 to achieve relevant input bytes identification, which relies on the
following principle: if target branch s shares the same bytes directly or indirectly with its prior
branch r, then s depends on bytes that affect r. This algorithm accepts three inputs and
produces a set of byte offsets relevant to the target branch. The three inputs are the target
program to be analyzed, the target branch to be flipped and the input that covers the target
branch. First, we use DTA to obtain the taint mapping information TaintMap (line 3). Then,
we get byte offsets TO directly used in target branch Bt (line 4). Finally, we query TaintMap
backwards from Bt in a loop and add offsets that have data dependency on TO to the set SO
(lines 7-16).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3897

Algorithm 2: Relevant input bytes identification
Input: program: The binary to be analyzed
Input: Bt: The target branch aimed to flip
Input: input: The seed input that covers the target branch
Output: SO: input byte offsets which affect target branch
1 SO ← ∅
2 Queue ← ∅
3 TaintMap ← DTA(input, program)
4 TO ← GetOffsets(TaintMap, Bt)
5 SO ← SO ∪ TO
6 add TO to Queue
7 while Queue not empty do
8 TO ← Pop(Queue)
9 for branch ∈ TaintMap do //Query TaintMap backwards from Bt

10 CO ← GetOffsets(TaintMap, branch)
11 if TO ∈ CO then
12 SO ← SO ∪ CO
13 Add CO to Queue
14 end if
15 end for
16 end while

3.4 Target Guided Concolic Execution
After the steps in section 3.2 and 3.3, we can obtain a triple, that is, the target branch that needs
to be flipped, the input that covers the target branch, and the relevant byte offsets that affect the
target branch. When the concolic executor is launched, we make the specified bytes symbolic
values and then perform symbolic emulation. When meeting a symbolic branch, we check
whether it is the target branch to be flipped. If so, we flip the branch and generate an input that
covers a new branch by solving collected path constraints. Thus, it can be guaranteed that we
perform symbolic emulation only on less tainted instructions and solve the single target branch,
thereby reducing the overhead of symbolic emulation. As the code shown in Fig. 5, assume
magic = 0xdeadbeef, x = 1, y = 1, and z = 0, then the path in Fig. 5b will be covered. In this
case, we mark the byte offsets from 88 to 99 as symbolic bytes and set the target branch 5→7.
The concolic executor will flip the target branch, and replace the corresponding byte offsets of
the original input with the solved value (x = 0, y = 2, z = 10) to generate a new input that can
cover a new branch as shown in Fig. 10.

In addition, we observe that QSYM collects branch constraints in shared libraries such as
libc, which can increase the complexity of path constraints and cause the constraint solver to
fail. For example, QSYM cannot solve the path constraints of the conditional branch in line 5
of Fig. 5a. To this end, we ignore the branch constraints not in the target binary or library,
because these constraints have no effect on path reachability. Additionally, to prevent the
over-constraint problem as mentioned in [17], we keep optimistic solving which is a key
feature of QSYM when the normal solving fails.

3898 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

Symboic bytes

…… deadbeef 00000001 00000001 00000000

0 83 84 87 88 91 92 95 96 99

magic x y z

…… deadbeef 00000000 00000002 0000000a

83 84 87 88 91 92 96 99

magic x y z

0

Constraint solver

Fig. 10. Test case generation.

4. Evaluation
We implemented a prototype tool, EPfuzzer, in C++ and Python. The fuzzer module is based on
AFL. Branch coverage information analysis and DTA are implemented based on Intel’s
instrument tool PIN [24], and CFG extraction is implemented based on IDAPython [25].
Target-guided concolic execution is based on the concolic execution engine QSYM.

4.1 Experiment Setup
To prove the effectiveness of our approach, we evaluate EPfuzzer and answer the following
research questions:

RQ1: Can EPfuzzer achieve more code coverage?
RQ2: Can EPfuzzer find more bugs?
RQ3: How effective is EPfuzzer's new feature?
Baseline techniques to compare. We compare EPfuzzer (+1 master + 1 slave) with the

original AFL (1 master + 1 slave) and QSYM (+1 master + 1 slave). Because Driller does not
support real-world programs and DigFuzz is not publicly available now, we ignore these two
tools. All the fuzzers run on a machine with Ubuntu 16.04 operating system, 128 G memory and
16 cores.

Target programs to test. We choose two existing benchmark datasets: LAVA-M and
Google Fuzzer Test Suite (FTS). LAVA-M contains 4 GNU coreutils programs, each of which
contains multiple known artificially injected bugs. FTS contains more complex programs than
LAVA-M, and each program contains hard-to-reach lines of code or bugs. In addition, we also
choose 5 real-world programs (xpdf, audiofile, nasm, libav, libtiff) which handle multiple file
formats such as pictures, audios, videos, and asm files and have been tested in many previous
works [10, 21, etc.]. For LAVA-M and FTS, we use the seeds they provide for initial inputs. For
real-world programs, we choose 10 different seeds with an initial size of 1 KB.

4.2 Evaluation Results
(1) RQ1: Code Coverage Effectiveness

To answer RQ1, we evaluate the code coverage ability of fuzzers on FTS and real-word
programs. Higher code coverage means a higher probability of finding bugs.

FTS. The purpose of this benchmark is to check whether a certain fuzzer can reach some
specific code or bug locations. We can demonstrate the coverage ability of the fuzzer by
observing the time it takes to reach these locations. The testing results is shown in Table 2. The

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3899

second column displays the code location, and the third column shows the time required for each
fuzzer to reach the location. The time-out is set to 24 hours. Except for the program lcms,
EPfuzzer can reach the target location faster than QSYM and AFL. We analyze and find the
main reason is the specified location of lcms is behind a branch that can be easily solved through
fuzzer’s random mutation, but EPfuzzer will prioritize the hard branch and ignore this one.
However, for other code locations behind more complex branch conditions, EPfuzzer performs
better than the other two fuzzers.

Table 2. Reaching time of EPfuzzer, QSYM and AFL to known bugs/code location

Program Location Reaching time (hours)
EPfuzzer QSYM AFL

guetzli output_image.cc:398 2.55 3.16 3.82
lcms cmsintrp.c:642 3.20 4.54 5.65
libarchive archive_..._warc.c:537 6.15 6.82 8.14
Json fuzzer-..._json.cpp:50 0.04 0.02 0.03
Libjpeg jdmarker.c:659 8.75 15.18 T/O
Libpng png.c:1035 5.46 5.81 7.28
vorbis codebook.c:479 4.63 10.32 12.50

Table 3. Code coverage comparison with different fuzzers. x% in parentheses indicates the

increased percentage compared to qsym
Program Project LOC Line coverage Branch coverage

AFL QSYM EPfuzzer AFL QSYM EPfuzzer
pdftohtml xpdf-4.02 60766 8179 8503 8922(+4.93%) 5398 5527 5762(+4.25%)
sfconvert audiofile-0.3.6 9721 2323 2966 3295(+11.09%) 1059 1341 1710(+27.52%)
nasm nasm-2.14.02 20357 904 1823 2836(+55.57%) 228 596 1332(+123.49%)
avconv libav-12.3 205634 12385 14109 16754(+18.75%) 6218 6737 7396(+9.78%)
tiffcp libtiff-4.0.10 30151 4951 5458 6315(+15.70%) 2874 3210 3905(+21.65%)
Average
increase - - - - 21.21% - - 37.34%

3900 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

Fig. 11. Cumulative branch coverage on sfconvert and tiffcp.

Real-world programs. We test 5 real-world programs for 24 hours and use the afl-cov [26]

tool to automatically record the results of the line and branch coverage. As shown in Table 3,
EPfuzzer can cover more lines and branches than QSYM and AFL. In particular, compared to
QSYM, the line coverage and branch coverage increased on average 21.21% and 37.34%
respectively. It demonstrates that the hardest-to-reach branch prioritization strategy of EPfuzzer
improves the efficiency of concolic execution. In addition, Fig. 11 compares the branch
coverage of sfconvert and tiffcp over time. It shows that EPfuzzer can cover branches faster than
QSYM and AFL. It should be noted that we have similar results for the other three programs, but
we do not list them all due to limited space.
(2) RQ2: Bug Finding Capability

To answer RQ2, we evaluate the bug-finding capability of fuzzers on LAVA-M and 5
real-word programs.

LAVA-M. We run each fuzzer for 5 hours on each program. Given the nature of the injected
bugs, we equipped AFL with a dictionary (i.e., constants extracted from the binary). Table 4
compares the the number of bugs found by each fuzzer. AFL performed the worst, which found
a total of 8 bugs in all the programs. AFL(+Dict) performs better than AFL, because many bugs
in LAVA-M are guarded by branches with magic bytes such as type ③ in Fig. 1b. However,
AFL(+Dict) is not good at solving magic bytes that are not directly copied from the input but
rather computed from the input such as type ④ in Fig. 1b, but it is easy for QSYM and EPfuzer
to solve such constraints. EPfuzzer outperformed all the other tools and found 829 more bugs
than QSYM in the program who, because it can quickly find branches that are hard for the fuzzer
and solve these branches first. Fig. 10 shows the cumulative number of bugs in md5sum and
who found by QSYM and EPfuzzer over time. The bug discovery rate of QSYM becomes
slower especially after 120 minutes, but EPfuzzer kept finding more bugs faster.

Table 4. LAVA-M Bugs Found by different fuzzers

Program Listed
bugs EPfuzzer QSYM AFL AFL (+Dict)

uniq 28 28(100%) 28(100%) 6(21%) 16(57%)
base64 44 44(100%) 44(100%) 1(2%) 15(34%)
md5sum 57 57(100%) 53(93%) 0(0%) 20(35%)
who 2136 2045(96%) 1216(57%) 0(0%) 58(3%)
Total 2265 2174 1345 8 109

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3901

Fig. 12. The cumulative number of bugs detected in LAVA-M’s md5sum and who over time.

Table 5. Number of bugs found by different fuzzers. Number in parentheses indicates number of crashes.

Project EPfuzzer QSYM AFL
xpdf 3 (507) 1 (274) 1 (97)
audiofile 5 (113) 3 (84) 2 (33)
nasm 3 (352) 2 (120) 1 (68)
libav 5 (395) 3 (308) 2 (156)
libitff 1 (21) 0 (0) 0 (0)
Total 17 (1388) 9 (786) 7 (354)

Real-world programs. As shown in Table 5, EPfuzzer found 1388 crashes, and there were

17 unique bugs after deduplication with AddressSanitizer [27]. Seven bugs of them as shown in
Table 6 have never been found before. The last column refers to the bug id assigned by the bug
report platform (e.g., Bugzilla, Github) of the corresponding vendor. QSYM and AFL found 9
and 7 bugs respectively, and all the bugs found by these two fuzzers can also be found by
EPfuzzer. The reason behind is that AFL has difficulty exploring branches guarded with many
complex branch constraints so that many bugs cannot be reached. Although QSYM can also

3902 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

solve some complex constraints, it wasted much time in flipping branches blindly and
performing expensive symbolic emulation, resulting in generating many uninteresting inputs.

Table 6. Unknown security bugs found in real-world programs

Project Type Bug ID
xpdf Stack overflow bug#41920
audiofile Heap overflow issue#56
nasm use after free bug#3392634

libav

Use after free bug#1151
Heap overflow bug#1152
Invalid memory access bug#1153
Use after free bug#1154

(3) RQ3: New Feature of EPfuzzer

Fig. 13. The number of inputs imported by AFL.

To answer RQ3, we further evaluate the effectiveness of generated samples of EPfuzzer’s

concolic execution engine to better understand the improvements of EPfuzzer. We compare the
number of interesting inputs (i.e., the inputs that contribute to branch coverage thus imported by
AFL) generated by EPfuzzer’s concolic execution engine with QSYM in the same time budget.
As shown in Fig. 13, the percentage of interesting inputs generated by QSYM are approximately
44.7% less on average less than that generated by EPfuzzer. Three reasons are summarized as
follows:
• EPfuzzer always prioritizes the hardest-to-reach branch for concolic execution, so inputs

generated by EPfuzzer’s concolic execution engine are most likely not generated by AFL’s
random mutation.

• EPfuzzer symbolizes only bytes affect the target branch, thus substantial emulation time is
saved for the concolic execution engine to solve more complex branch constraints.

• EPfuzzer is unconcerned with conditional branches not in the target module such as libc,
thus helping to save much solving time.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3903

4.3 Discussion
This section discusses some limitations of our approach and some future improvements.

First, concolic execution cannot handle nonlinear constraints and floating-point operations.
However, such constraints do not account for much of the program, so we do not consider them
now.

Second, the current error-handling branch identification uses a heuristic strategy based on the
number of basic blocks following the conditional check, which may incur a false positive. We
can use the deep neural network to achieve this and improve the accuracy as introduced in [28].

Third, we use DTA based on PIN instrumentation to determine which input bytes affect a
conditional branch. Although DTA is faster than symbolic emulation, it is still much slower than
native execution. For this reason, we can use the fuzzing-driven taint inference method, as
mentioned in [29], to further reduce the cost of DTA.

5. Related Work
A large body of related work has tried to improve the efficiency of fuzzing. In addition to
aforementioned approaches besed on heuristic strategy or concolic execution, many researchers
proposed tiant-guided fuzzing and learning-based fuzzing.

Taint-guided fuzzing. DTA can identify the dependencies between the program logic and
input and thus it is usually used to help fuzzing to achieve more intelligent mutation. TaintScope
[30] uses DTA to determine input bytes that flow into a security-sensitive function (e.g., malloc)
and then mutate them. VUzzer [10] uses DTA to determine the bytes used for compare
instructions and then replaces the bytes with the extracted constant values from binary to bypass
some magic bytes checks. Similar to VUzzer, Angroa [31] also uses DTA to determine the bytes
that affect the conditional branch and then uses gradient descent to solve the input that satisfies
the condition constraints. In this paper, EPfuzzer leverages DTA to identify input bytes relevant
to the target branch to be flipped thus reducing the number of symbolic instructions.

Learning-based fuzzing. Deep learning can learn a model automatically from many training
samples and then be used to guide fuzzing to generate more effective samples. Learn&Fuzz [32]
uses the sequence2sequence model to learn sample features from many pdf files. It can
automatically generate high-quality pdf samples with high pass rate and coverage.
Augmented-AFL [33] uses deep neural networks to learn which bytes in the input contribute to
the coverage and achieve guided mutation. Neuzz [34] proposed a new program smoothing
technique that uses neural networks to learn smooth estimates of complex branch behavior and
then combines gradient-guided input generation methods to improve the effectiveness of
fuzzing.

6. Conclusion
In this paper, we thoroughly investigate some state-of-the-art hybrid fuzzing systems and point
out several fundamental limitations to them. We further propose a hardest-to-reach branch
prioritization strategy. We adopt a more lightweight method to prioritize hardest-to-reach
branches and identify input bytes relevant to target branch. We implement a prototype tool,
EPfuzzer, based on the design and conduct comprehensive evaluation using three different
datasets. The evaluation results show that compared with the state-of-the-art hybrid fuzzing
system QSYM, the concolic execution in EPfuzzer contributes much more to the increased code
coverage and increased number of discovered vulnerabilities.

3904 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

Acknowledgments
This work was supported by National Key R&D Program of China under Grant 2019QY0501
and Soft Science Research Program of Henan Province under Grant 192102210128.

References

[1] The Heartbleed Bug. Accessed: Jan. 1, 2020. [Online]. Available: http://heartbleed.com/.
[2] WannaCry ransomware attack. Accessed: Jan. 1, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack.
[3] Dirty COW Accessed: Jan. 1, 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Dirty_COW.
[4] american fuzzy lop. Accessed: Jan. 1, 2020. [Online]. Available: http://lcamtuf.coredump.cx/afl/.
[5] Honggfuzz. Accessed: Jan. 1, 2020. [Online]. Available: https://github.com/google/honggfuzz.
[6] libFuzzer – a library for coverage-guided fuzz testing. Accessed: Jan. 1, 2020. [Online]. Available:

https://llvm.org/docs/LibFuzzer.html.
[7] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz testing,” in Proc. of the

15th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb.2008.

[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E:A platform for in-vivo multi-path analysis of
software systems,” in Proc. of the 16th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Newport Beach, CA, 265-278,
Mar. 2011. Article (CrossRef Link)

[9] Shoshitaishvili Y, Wang R, Salls C, et al., “Sok:(state of) the art of war: Offensive techniques in
binary analysis,” in Proc. of 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138-157,
2016. Article (CrossRef Link)

[10] Rawat S, Jain V, Kumar A, et al., “VUzzer: Application-aware Evolutionary Fuzzing,” in Proc. of
NDSS, 17, 1-14, 2017. Article (CrossRef Link)

[11] Li Y, Chen B, Chandramohan M, et al., “Steelix: program-state based binary fuzzing,” in Proc. of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 627-637, 2017.
Article (CrossRef Link)

[12] Circumventing fuzzing roadblocks with compiler transformations. Accessed: Jan. 1, 2020.
[Online].Available:
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-tran
sformations/.

[13] Aschermann C, Schumilo S, Blazytko T, et al., “REDQUEEN: Fuzzing with Input-to-State
Correspondence,” in Proc. of NDSS, 2019. Article (CrossRef Link)

[14] R. Majumdar and K. Sen, “Hybrid Concolic Testing,” in Proc. of the 29th International
Conference on Software Engineering (ICSE), Minneapolis, MN, May 2007.
Article (CrossRef Link)

[15] Stephens N, Grosen J, Salls C, et al., “Driller: Augmenting Fuzzing Through Selective Symbolic
Execution,” in Proc. of NDSS, 16(2016), 1-16, 2016. Article (CrossRef Link)

[16] Zhao L, Duan Y, Yin H, et al., “Send Hardest Problems My Way: Probabilistic Path Prioritization
for Hybrid Fuzzing,” in Proc. of NDSS, 2019. Article (CrossRef Link)

[17] Yun I, Lee S, Xu M, et al., “{QSYM}: A practical concolic execution engine tailored for hybrid
fuzzing,” in Proc. of 27th {USENIX} Security Symposium ({USENIX} Security 18), 745-761, 2018.

[18] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich, and R.
Whelan, “Lava: Large-scale automated vulnerability addition,” in Proc. of IEEE Symposium on
Security and Privacy (Oakland), 2016. Article (CrossRef Link)

[19] fuzzer-test-suite. Accessed: Jan. 1, 2020. [Online]. Available:
https://github.com/google/fuzzer-test-suite.

[20] Böhme M, Pham V T, Roychoudhury A., “Coverage-based greybox fuzzing as markov chain,”

https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.14722/ndss.2017.23404
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.14722/ndss.2019.23371
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.14722/ndss.2019.23504
https://doi.org/10.1109/SP.2016.15

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020 3905

IEEE Transactions on Software Engineering, 45(5), 489-506, 2019. Article (CrossRef Link)
[21] Lemieux C, Sen K., “Fairfuzz: Targeting rare branches to rapidly increase greybox fuzz testing

coverage,” in Proc. of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 475-785, 2018. Article (CrossRef Link)

[22] Gan S, Zhang C, Qin X, et al., “Collafl: Path sensitive fuzzing,” in Proc. of 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 679-696, 2018. Article (CrossRef Link)

[23] Peng H, Shoshitaishvili Y, Payer M., “T-Fuzz: fuzzing by program transformation,” in Proc. of
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 697-710, 2018.
Article (CrossRef Link)

[24] Pin - A Dynamic Binary Instrumentation Tool. Accessed: Jan. 1, 2020. [Online]. Available:
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[25] IDAPython project for Hex-Ray's IDA Pro. Accessed: Jan. 1, 2020. [Online]. Available:
https://github.com/idapython/src.

[26] afl-cov. Accessed: Jan. 1, 2020. [Online]. Available: https://github.com/mrash/afl-cov.
[27] ADDRESSSANITIZER. Accessed: Jan. 1, 2020. [Online]. Available:

https://clang.llvm.org/docs/AddressSanitizer.html.
[28] Song X, Wu Z, Cao Y, et al., “ER-Fuzz: Conditional Code Removed Fuzzing,” KSII Transactions

on Internet & Information Systems, 13(7), 2019. Article (CrossRef Link)
[29] Gan S, Zhang C, Chen P, et al., “GREYONE: Data Flow Sensitive Fuzzing,”.
[30] Wang T, Wei T, Gu G, et al., “TaintScope: A checksum-aware directed fuzzing tool for automatic

software vulnerability detection,” in Proc. of 2010 IEEE Symposium on Security and Privacy.
IEEE, 497-512, 2010. Article (CrossRef Link)

[31] Chen P, Chen H., “Angora: Efficient fuzzing by principled search,” in Proc. of 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 711-725, 2018. Article (CrossRef Link)

[32] Godefroid P, Peleg H, Singh R., “Learn&fuzz: Machine learning for input fuzzing,” in Proc. of the
32nd IEEE/ACM International Conference on Automated Software Engineering. IEEE Press,
50-59, 2017. Article (CrossRef Link)

[33] Rajpal M, Blum W, Singh R., “Not all bytes are equal: Neural byte sieve for fuzzing,” arXiv
preprint arXiv:1711.04596, 2017.

[34] She D, Pei K, Epstein D, et al., “Neuzz: Efficient fuzzing with neural program smoothing,” in Proc.
of 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 803-817, 2019.
Article (CrossRef Link)

https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.3837/tiis.2019.07.010
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/ASE.2017.8115618
https://doi.org/10.1109/SP.2019.00052

3906 Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization

YUNCHAO WANG received the M.S. degree in Computer Science and Technology from
State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou,
China, in 2016. He is currently pursuing the Ph.D. degree in Cyberspace Security with State
Key Laboratory of Mathematical Engineering and Advanced Computing. His research
interests include reverse engineering and vulnerability discovery.

ZEHUI WU received the Ph.D. degree in Software Engineering from State Key Laboratory
of Mathematical Engineering and Advanced Computing, Zhengzhou, China. He is currently a
lecturer with State Key Laboratory of Mathematical Engineering and Advanced Computing.
His research interests include program analysis, reverse engineering and SDN security.

QIANG WEI received the Ph.D. degree in Computer Science and Technology from State
Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China.
He is currently a professor with State Key Laboratory of Mathematical Engineering and
Advanced Computing. His research interests include network security, industrial internet
security and vulnerability discovery.

QINGXIAN WANG received the M.S. degree in the Department of Computer Science
and Technology from Peking University. He is currently a professor with State Key
Laboratory of Mathematical Engineering and Advanced Computing. His research interests
include network security, trusted computing and vulnerability discovery.

