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Abstract 
 

Hybrid fuzzing which combines fuzzing and concolic execution, has proved its ability to 
achieve higher code coverage and therefore find more bugs. However, current hybrid fuzzers 
usually suffer from inefficiency and poor scalability when applied to complex, real-world 
program testing. We observed that the performance bottleneck is the inefficient cooperation 
between the fuzzer and concolic executor and the slow symbolic emulation. In this paper, we 
propose a novel solution named EPfuzzer to improve hybrid fuzzing. EPfuzzer implements 
two key ideas: 1) only the hardest-to-reach branch will be prioritized for concolic execution to 
avoid generating uninteresting inputs; and 2) only input bytes relevant to the target branch to 
be flipped will be symbolized to reduce the overhead of the symbolic emulation. With these 
optimizations, EPfuzzer can be efficiently targeted to the hardest-to-reach branch. We 
evaluated EPfuzzer with three sets of programs: five real-world applications and two popular 
benchmarks (LAVA-M and the Google Fuzzer Test Suite). The evaluation results showed that 
EPfuzzer was much more efficient and scalable than the state-of-the-art concolic execution 
engine (QSYM). EPfuzzer was able to find more bugs and achieve better code coverage. In 
addition, we discovered seven previously unknown security bugs in five real-world programs 
and reported them to the vendors. 
 
 
Keywords: Bug detection, concolic execution, hybrid fuzzing, software security 
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1. Introduction 

Software vulnerabilities [1, 2, 3] are a main threat to program security. As a result, 
researchers from industry and academia have come up with many automatic methods to find 
vulnerabilities in programs. Fuzzing [4, 5, 6] and concolic execution [7, 8, 9] are two popular 
vulnerability detection techniques. On the one hand, fuzzing can quickly cover many branches 
with simple or loose constraint conditions (a large range of satisfying value space), such as the 
two types shown in Fig. 1a. However, due to the randomness of mutation, it is difficult for 
fuzzer to cover branches guarded by complex or tight constraints (very few range of satisfying 
value space), such as the three types shown in Fig. 1b. For example, it is hard for the 
state-of-the-art American Fuzzy Lop (AFL) [4] to generate inputs that meet these branch 
conditions and find bugs hidden behind them. Although some heuristic strategies [10, 11, 12, 
13] have been proposed to alleviate this limitation, they are only applicable for comparatively 
simple situation like direct multibyte check (e.g., ③ in Fig. 1b), but not for a more complex 
indirect multibyte check (e.g., ④ in Fig. 1b) and nested condition check (e.g., ⑤ in Fig. 1b). 
On the other hand, concolic execution is very good at solving these complex branch 
constraints, but it is not scalable to real-world applications due to high overhead (symbolic 
emulation and constraint solving are very time-consuming) and path explosion problems. 
 

①. if(x == 0x41)  // Single byte check
②. if(x > 1)  // Loose condition check

③. if(x == 0xdeadbeef)  // Direct multibyte check
④. if(2x+1 == 0xdeadbeef)  // Indirect multibyte check
⑤. if(x+y < 10)
         if(x > 5)  // Nested condition check

(a) Simple branch condition for fuzzer

(b) Complex  branch condition for fuzzer 
 

Fig. 1. Some common branch condition checks in real-world programs. 
 

To make full use of the strengths of fuzzing and concolic execution and mitigate their 
weaknesses, a new method named hybrid fuzzing [14, 15, 16, 17] was proposed with the aim 
of maximizing code coverage of the fuzzer. This method lets the high-speed fuzzing run as 
much as possible for path traversal, and the expensive concolic execution is only used to assist 
in solving some complex branch constraints to generate test cases that can cover specific 
branches, thereby helping fuzzing to further improve code coverage and find deeper code bugs. 
Driller [15] is a representative hybrid fuzzer and has proved that techniques combining 
fuzzing and concolic execution can find more bugs in the DARPA Cyber Grand Challenge 
(CGC) binaries than techniques using either method alone. DigFuzz [16] designs a novel 
Monte Carlo based probabilistic path prioritization model to quantify each path’s difficulty 
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and prioritize them for concolic execution, which further helps to improve the efficiency of 
hybrid fuzzing. Unfortunately, Driller and DigFuzz are both not scalable to nontrivial, 
real-world applications, because its symbolic execution engine, angr [9], is very slow and 
many external system calls cannot be supported. QSYM [17] is a recently proposed and more 
practical concolic execution engine tailored for hybrid fuzzing. It integrates symbolic 
emulation with native execution by dynamic binary translation instead of depending on slower 
intermediate representation. The concolic executor QSYM and fuzzer run in parallel. QSYM 
reruns the generated seed inputs from the fuzzer and then flips each condition branch in turn 
and solves the corresponding path constraint to generate a new input to the fuzzer. However, 
we found that this strategy has two problems: 1) QSYM flips all conditional branches in the 
execution path indiscriminately, resulting in most of the generated input being uninteresting to 
the fuzzer and discarded. Consequently, the concolic executor spends considerable time doing 
much useless work; 2) QSYM sees the all user input as symbolic bytes, thus increasing the 
burden of symbolic emulation and constraint solving. Consequently, a single concolic 
execution takes too much time. These two issues greatly reduce the overall performance of the 
hybrid fuzzer.  

To overcome the above limitations and further improve the scalability of hybrid fuzzing, we 
propose a hardest-to-reach branch prioritization strategy. First, instead of solving all branches 
blindly, we only choose branches that are really hard to reach for the fuzzer for concolic 
execution. Second, we only symbolize bytes that affect target branch to be flipped, thereby 
reducing the number of symbolic instructions which need to be emulated. We implement a 
prototype tool named EPfuzzer and evaluate it with three sets of programs: five real-world 
applications and two benchmarks (LAVA-M [18] and Fuzzer Test Suite [19]). The 
experimental results show that our method can achieve higher code coverage and discover 
more bugs than QSYM. In summary, this paper makes the following contributions: 

1) We propose a hardest-to-reach branch prioritization strategy to improve the performance 
of hybrid fuzzing. Only the hardest-to-reach branches are solved using concolic execution to 
generate new inputs to avoid generating many uninteresting inputs. Additionally, only specific 
bytes are symbolized to reduce the overhead of symbolic emulation.  

2) We implement EPfuzzer and evaluate it with state-of-the-art fuzzers (e.g., QSYM and 
AFL) on two benchmarks and five real-world applications. EPfuzzer outperforms in terms of 
both code coverage and bug discovery. 

3) We found seven previously unknown security bugs and reported them to the vendor. 

2. Background and Motivation 
This section illustrates the related research background and the motivation of our study. 

2.1 Background 
Greybox fuzzing and concolic execution are two well-known vulnerability discovery methods 
and in the meantime they are aslo two key componets of a hybrid fuzzing system. Therefore, 
we first make a brief introduction to them before illustrating our motivation. 

(1) Greybox fuzzing 
The greybox fuzzers such as AFL have achieved a great success and found a large number 

of security vulnerabilities. It leverages lightweight instrumentation and genetic algorithms to 
discover test cases that likely trigger new branch in the target program. To further improve the 
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code coverage, current greybox fuzzers adopt many heuristic strategies. AFLFast [20] and 
FairFuzz [21] prioritize seeds that trigger the low-frequency paths or rare parts of the program. 
Collafl [22] proposes three new seed selection policies to drive the fuzzer directly toward 
non-explored paths. These fuzzers can achieve higher code coverage to some extent, but they 
cannot solve complex constraints. For example, it is hard for fuzzers mentioned above to 
generate an input which can satisfy the constraint in a conditional branch such as 
“if(x==0xdeadbeef)”, because it has to guess a single value out of a large space (232). 

 
(2) Concolic execution 
Concolic execution (also known as dynamic symbolic execution) such as s2e [8], angr [9] is 

a popular path-exploring technology. It treats the user input as symbolic values along a 
concrete execution path. Whenever the engine encounters a conditional branch where the 
branch predicate is symbolic, the branch will be flipped and a constraint solver is used to 
create a new input by solving collected path constraints. Take the code shown in Fig. 2 as an 
example, suppose that the initial input is x=0x00000000, then the false branch will be explored. 
To explore the true branch, the concolic executor will flip the false branch, that is, obtain new 
path constraints by negating the current branch constraint and then ask the solver to generate a 
new input (i.e., x=0xdeadbeef). Concolic execution can keep exploring new paths by this way, 
thereby covering more code. However, due to the problem of path explosion and the 
complexity of path constraints, it is not scalable in real-world programs. 

 

1 void func(int x) {
2    if (x == 0xdeadbeef)
3        bug()
4    else
5        bar()
6 }

if

func bug

False True
x≠0xdeadbeef ¬ (x≠0xdeadbeef)

Flip point

 
Fig. 2. Example of concolic execution. 

 

2.2 Motivation 
Hybrid fuzzing, combining fuzzing and concolic execution, can complement the 
aforementioned limitations of each approach. In this section, we elaborate our research 
motivation by thoroughly analyzing the performance of three popular hybrid fuzzers, i.e., 
Driller, QSYM, and DigFuzz. We found that there are three problems to consider to 
implement an efficient and practical hybrid fuzzer. 
 

(1) When should the concolic executor be launched? 
Driller launches the concolic executor only when the fuzzer barely makes any progress for a 

certain period, i.e., when the fuzzer is stuck. More specifically, Driller runs AFL as the fuzzing 
component and invokes the concolic executor once the pending_favs attribute in AFL 
decreases to 0. However, this conservative strategy is problematic because the stuck state of a 
fuzzer is not a good indicator for launching concolic execution, as mentioned in [16]. The 
problem becomes more obvious for real-world programs, because the pending_favs attribute 
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may not become 0 even after several hours’ testing. In this case, the concolic executor has not 
been invoked throughout the fuzzing period, and thus the hybrid fuzzer degenerates into a pure 
fuzzer. 

Different from Driller, QSYM and DigFuzz are unconcerned with the state of the fuzzer, 
that is, they do not check whether the current fuzzer is stuck or not. The concolic executor 
continuously synchronizes seed inputs from the fuzzer. Obviously, this strategy can benefit 
from concolic execution, thus we also adopt this strategy. 

 
(2) What paths should be solved by concolic execution? 

 

 
Fig. 3. Proportion of the interesting and uninteresting inputs for each binary. The numbers above the 

bars are the total number of inputs generated by QSYM. 
 

When the concolic executor is launched, Driller and QSYM continuously feed all inputs 
generated by the fuzzer to the concolic executor, then the concolic executor flips all symbolic 
branches in the execution path triggered by each input in turn and generates new inputs. This 
radical strategy is also problematic, because many new inputs generated by concolic execution 
are uninteresting to the fuzzer and thus discarded. In fact, many branches with loose 
conditional constraints (e.g. ① and ② in Fig. 1b) can be quickly covered by a fuzzer, such as 
AFL. Fig. 3 shows the proportion of interesting and uninteresting inputs generated by QSYM 
while testing 5 programs for 24 hours. On average only 24.8% of the inputs are considered 
interesting, that is, they are imported by AFL due to new branch coverage. The remaining 
75.2% of the inputs are uninteresting and discarded, because they can be easily generated by 
lightweight fuzzing. In this case, concolic execution wastes considerable time for some useless 
works. 

DigFuzz uses a relatively neutral strategy. It prioritizes paths that are most difficult for 
fuzzing to break through. Compared with Driller, DigFuzz is able to identify in time specific 
paths that block the fuzzer, thus achieving higher code coverage. However, according to our 
analysis, DigFuzz is only suitable for small programs (e.g., CGC binaries) that have fewer and 
shorter execution paths. Additionally, DigFuzz is difficult to apply to real-world programs, the 



3890                                            Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization 

reasons are as followings: 1) to quantify each path’s difficulty, DigFuzz builds an execution 
tree, which will introduce a large runtime and memory overhead, especially for real programs. 
This limitation was also mentioned in [16]. 2) DigFuzz focuses on missed paths instead of 
branches, which may need a large amout of calulation. In fact, there are more missed paths 
than branches because the same uncovered branch may appear in multiple paths. As shown in 
Fig. 4, the uncovered branch b6 → b9 appears in three different paths (i.e., P1, P2, P3), and the 
uncovered branch b2 → b5 appears in one path (i.e., P4). To prioritize the hardest path (i.e., 
P3), DigFuzz has to traverse the execution tree and calculate the probability of these four paths. 
This is just a toy example to explain the problem. As the complexity of the program increases, 
there will be more and longer paths. The path quantification of DigFuzz will introduce 
considerable time overhead. Considering the above analysis, we borrow the idea of  branch 
coverage of AFL to alleviate this problem. Only hardest-to-reach branch instead of path is 
prioritized, thus we do not have to build the execution tree. Section 3.2 will explain the design 
in detail. Note that this strategy may result in the loss of some paths with different contexts, but 
given the importance of time in fuzzing, we choose this less precise but lightweight approach. 

 

b0

b1 b2

b3 b4 b5

b6 b7

b8 b9

1000 500

300

300

700

500

200 300

1200

Missed paths (DigFuzz):
P1: <b0, b1, b3, b6, b9>, P(P1)=0.0005
P2: <b0, b1, b6, b9>, P(P2)=0.00117
P3: <b0, b2, b4, b6, b9>, P(P3)=0.00033
P4: <b0, b2, b5>, P(P4)=0.002

Uncovered branches (EPfuzzer):
B1: b2 -> b5, hitcnt(N(B1))=500
B2: b6 -> b9, hitcnt(N(B2))=1200

 
Fig. 4. Program execution tree in DigFuzz. The number on the arrow indicates the hit count of the 

current branch, and the red arrow indicates the uncovered branch. 
 

Our approach. Instead of flipping all conditional branches in the execution path blindly, we 
prioritize the uncovered branch that is really hardest to reach for the fuzzer based on the 
runtime coverage information and assign it to concolic execution. 
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(3) How to perform symbolic emulation and constraint solving efficiently? 

It is well known that the main overhead of the concolic execution comes from the slow 
symbolic emulation and expensive constraint solving. QSYM’s instruction-level symbolic 
emulation demonstrated its performance on real-world programs, but the concolic execution is 
still very slow during our testing. Table 1 compares the time for symbolic emulation and 
constraint solving spent by QSYM, with the time for native execution and dynamic taint 
analysis (DTA) required for a single execution of five programs. We can see that the emulation 
time is still significantly slower. In particular, the emulation time for both djpeg and tiffcp 
exceeds 25 minutes (1500 s), thus many conditional branches may not be traversable in a 
limited time budget by concolic execution. The reason is that symbolic emulation needs to 
manage symbolic expressions whenever a tainted instruction is executed, resulting in a high 
overhead. Therefore, it is always desirable to further reduce the emulation time. In contrast, 
DTA takes less time, because it needs to tag only the memory addresses and registers affected 
by the input data propagated by running instructions instead of maintaining complex symbolic 
expressions.  

 
 

Table 1. Time for Native Execution, DTA, Qsym’s Symbolic Emulation and Constraint Solving for a 
Single Execution. 

 

Program Native(s) DTA(s) 
QSYM 

Emulation(s) Solving(s) 
djpeg+libjpeg 0.021 30.1 1568.3 726.7 
tiffcp+libtiff 0.007 9.2 1643.8 175.2 
pngtest+libpng 0.003 5.8 21.9 3.6 
bsdtar+libarchive 0.006 13.9 59.1 12.4 
sfconvert+audiofile 0.009 10.5 162.5 40.8 

 
We noticed that when the current hybrid fuzzers invoke the concolic executor to generate 

new test cases, the concolic executor will mark all the input bytes as symbolic values and then 
build the symbolic expressions during the emulation execution. Actually, the number of 
symbolic instructions to be analyzed is positively related to the number of symbolic bytes. 
However, each conditional branch usually only depends on very few bytes and therefore we 
have no need to mark all the input bytes. 
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01 void bar( unsigned x, unsigned y, unsigned z) {
02     if(x < 2)
03          if(x + y < 3)
04              if(x+z != 0)
05     if(y > 1) /*complex condition check 2*/
06                      y=1/(y-2); 
07 }
08 void foo(char* buf) { /*many operations on buf here*/}
09 int main(int argc, char **argv) {
10     char buf[100];
11     FILE *fp = fopen(argv[1], "rb");
12     fread(buf, 1, 100, fp);
13     foo(buf[0:83]) 
14     unsigned int magic = 0;
15     memcpy(&magic, buf+84, 4);
16     if(magic != 0xdeadbeef)  /*complex condition check 1*/
17         return -1;
18     unsigned int x = 0;
19     memcpy(&x, buf + 88, 4);
20     unsigned int y = 0;
21     memcpy(&y, buf + 92, 4);
22     unsigned int z = 0;
23     memcpy(&z, buf + 96, 4);
24     bar(x, y, z);
25     return 0;
26 }

10-16

17 18-26

true

false

10-16

18-24

02

03

04

05

0607

flase

true

(a) A motivating example containing hard-to-read branches

(b) The path followed the true branch of check 1

(c) The path followed the false branch of check 2  
Fig. 5. A motivating example. The numbers in boxes indicate the line numbers of the source code, and 

the red arrow indicates the uncovered branches. 
 

To illustrate this problem more clearly, we take the code shown in the Fig. 5a as an example. 
The source code contains two conditional branches that are difficult for the fuzzer to break 
through (i.e., line 16 and 5). Assume that the initial input with 100 bytes triggers a path as 
shown in Fig. 5b. When the concolic executor is invoked, system calls related to IO operations 
(e.g., the read function) will be hooked, thereby marking the 100 bytes in the destination 
buffer buf as symbolic bytes. When the concolic execution reaches line 13, the foo function is 
called to perform some operations on the input byte offsets from 0 to 83. Since they are 
symbolic bytes, QSYM will spend considerable time emulating all instructions using symbolic 
bytes. When the execution reaches line 16, QSYM attempts to flip the branch by negating the 
current branch constraint and query the constraint solver to obtain an input (i.e., 0xdeadbeef) 
that can trigger the false branch. However, we can find that only four bytes (offsets 84-87) can 
affect the target branch at line 16, thus we do not need to symbolize byte offsets from 0 to 83. 
Similarly, for the path shown in Fig. 5c, to explore the true branch at line 5, we only need pay 
attention to the symbolic bytes corresponding to the variables x, y, and z. We will introduce 
the identification of relevant bytes in detail in section 3.3. It should be noted that Driller and 
DigFuzz, which use angr as the concolic executor, have the same problem with QSYM.  

 
Our approach. Instead of marking the all input bytes as a symbolic values, we identify 

bytes relevant to the target branch to be flipped with DTA and symbolize these bytes to further 
reduce the overhead of symbolic emulation. 
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3. Design 
In this section, we explain our decisions concerning the design of EPfuzzer. 

3.1 Overview 

Fuzzer
（e.g., AFL）

Seed 
queue

 Coordinator Concolic executor

Input
offsets
branch

seeds

New inputs covering new branches

< />

Target program

Initial inputs

—
—
—

Hardest-to-reach branch 
prioritization (§3.2)

Relevant input bytes 
identification (§3.3)

Target branch

Symbolize specified input 
bytes (§3.4)

Target guided concolic 
execution (§3.4)

 
Fig. 6. Overview of EPfuzzer. 

 
Fig. 6 shows the main components of the system and the overall workflow. Here, we 
summarize these components, the details will be covered in the following section. 

Fuzzer: EPfuzzer can use any greybox fuzzing tools, such as AFL, honggfuzz [5], etc. It 
takes the initial inputs and the target program as inputs, generates new inputs through multiple 
mutation strategies (bit/byte flip, etc.) and stores them in the seed queue. Of course, our 
approach is orthogonal to other methods to improve coverage, thus fuzzers such as AFLFast 
and FairFuzz can also be feasible here. 

Coordinator: As a bridge between the fuzzer and the concolic executor, coordinator is the 
core component of the system. It takes the seeds from the fuzzer as inputs, prioritizes the 
hardest-to-reach branch for the fuzzer by analyzing the coverage information (§3.2), and then 
uses DTA to identify the relevant bytes that affect the target branch to be flipped (§3.3). 
Finally, it outputs a triple, that is, the input that triggers the target branch, the byte offsets that 
affect the target branch, and the target branch to be flipped. 

Concolic executor: It will symbolize the specified byte offsets according to the output of 
the coordinator, and then perform target guided concolic execution including symbolic 
emulation, target branch flipping, constraints collecting and solving, and finally terminate the 
execution (§3.4). Our concolic execution engine is implemented on the basis of QSYM, as it 
has been proven to work in real-world programs. 

3.2 Hardest-to-reach Branch Prioritization 
The purpose of this step is to prioritize the hardest-to-reach branch for the fuzzer and then 
assign it to the concolic execution. It can help to reduce the number of uninteresting inputs 
generated by Driller or QSYM. Additionally, it should be as lightweight as possible to avoid 
introducing much overhead like DigFuzz. Therefore, we prefer to choose the hardest-to-reach 
branch instead of the path.  



3894                                            Wang et al.: EPfuzzer: Improving Hybrid Fuzzing with Hardest-to-reach Branch Prioritization 

b0

b1 b2

B1 B2

hitcont(B1)=n (n>0) Candidate branch
hitcount(B2)=0

Sanity check

 
Fig. 7. Example of candidate branch. 

 
The santity checks in the program are compiled into conditional jump instructions (e.g., jnz, 

jz, etc.) in the assembly code, and it is represented as a source basic block with two outgoing 
edges (true branch and false branch) in the control flow graph (CFG) as shown in Fig.7. To 
facilitate discussion, we introduce the following definitions. 

Definition 1: Candidate branch. If a branch B1 in the execution path has been explored 
many times, while its neighbor branch B2 has never been explored, then the branch B2 is 
considered a candidate branch that is hard for fuzzer to explore. The candidate branch can be 
formalized as all uncovered branches Bi satisfying the following conditions: 

( ( ) 0) ( ( ( )) ( 0))hitcnt Bi hitcnt N Bi n n= ∧ = >  
hitcnt(Bi) denotes the number of generated inputs which have exercised the branch Bi, and 

N(Bi) denotes the neighbor branch of Bi. In this case, we can obtain a set containing many 
candidate branches, denoted as SC = {B1, B2, …, Bn}. Next, we need to determine the priority 
of each branch in SC and assign the hardest-to-reach branch to concolic execution.  

Definition 2: Hardest-to-reach branch. For a candidate branch Bi in SC, the intutition is 
that the greater the hitcnt(N(Bi)) is, the harder it is for the fuzzer to explore branch Bi, so the 
branch Bi is a hardest-to-reach branch, if and only if: 

, ( ( )) ( ( ))Bj SC Bj Bi hitcnt N Bi hitcnt N Bj∀ ∈ ∧ ≠ ≥  
   Definition 3: Target branch to be flipped. If a branch Bi is a hardest-to-reach 
branch, then its neighbor branch N(Bi) is the target branch to be flipped. In other words, 
we can use concolic execution to flip the N(Bi) to trigger the uncovered branch Bi. 

As shown in Fig. 4, there are two uncovered branches B1(b2 → b5) and B2(b6 → b9). Since 
hitcnt(N(B1)) is less than hitcnt(N(B2)), thus the branch B2(b6 → b9) is deemed more difficult 
to explore and will be assigned to concolic execution first. We can find that our approach is 
more efficient and practical compared to DigFuzz. On one hand, we do not need to construct 
an execution tree, which is very expensive. On the other hand, we only calculate the hit count 
of only two branches (i.e., B1 and B2), while DigFuzz has to calculate the probability of four 
paths (i.e., P1, P2, P3 and P4). 

Our implementation of hardest-to-reach branch prioritization is shown in Algorithm 1. This 
algorithm accepts two inputs and produces target branches to be flipped with the 
corresponding hit count. The two inputs are the target program to be analyzed and seed inputs 
retained by the fuzzer. First, we iterate all inputs from fuzzer to obtain hit count for each 
branch and store them in HashMap (lines 4-11). Then we analyze each conditional branch Bi 
in each trace t and obtain its neighbor branch Bj by CFG analysis (line 14). If the neighbor 
branch Bj is not covered, the current branch Bi will be added to the target branch set ST (line 
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12-21). Finally, we can prioritize the branch with the most hit count to flip based on ST 
information and generate an input to explore the uncovered branch. 
 

Algorithm 1: Hardest-to-reach branch prioritization 
Input: program: The binary to be analyzed 
Input: inputs: The seed inputs retained by fuzzer 
Output: ST: Target branch set with hit count corresponding to each branch 

1 HashMap ← ∅ 
2 Trace ←  ∅ 
3 ST ← ∅ 
4 for i ∈ inputs do 
5     t ← GetTrace(program, i) 
6     Trace ← Trace ∪ t 
7     for branch ∈ t do 
8         index ← Hash(branch) 
9         HashMap[index]++ 

10     end for 
11 end for 
12 for t ∈ Trace do 
13     for Bi ∈ t do 
14         Bj ← GetNeighbor(Bi, CFG) 
15         indexBi, indexBj ← Hash(Bi), Hash(Bj) 
16         if HashMap[indexBj] == 0 then 
17             HitCount ← HashMap[indexBi] 
18             ST ← ST ∪ (t, Bi, HitCount) 
19         end if 
20      end for 
21 end for 

 
It should be noted that the branches in SC may contain some branches that we deem unlikely 

to help find bugs, thus we need to filter the undesired branches. For example, we are only 
interested in bugs in the target binary or library, so branches in other modules (e.g., libc) will 
not be tracked. QSYM tries to flip symbolic branches in all modules, thus possibly wasting 
much time. In addition, we also ignore some error-handling code. Take the code shown in Fig. 
8 as an example, the error-handling branch cannot be explored by the fuzzer quickly, but this 
branch is obviously undesired and exploring this branch does not contribute to bug finding. 
Therefore, we use a heuristic strategy similar to T-Fuzz [23] to tackle this. The error-handling 
branch is usually very short, because its logic returns or exits immediately after a detecting an 
error. We use the number of basic blocks following the conditional check as the length of the 
code paths and define a threshold value to tell an error-handling code path. This process is 
performed offline by static analysis, so it does not affect the overall performance of fuzzing. 
 

if (tif->tif_diroff > (uint64)TIFF_INT64_MAX)
    {
            TIFFErrorExt(tif->tif_clientdata,module,"Can not read TIFF directory count");
            return(0);
    }

 
Fig. 8. Error-handling branch in libtiff. 
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3.3 Relevant Input Bytes Identification 
 

16 if(magic != 0xdeadbeef)
      …
02 if(x < 2)
03   if(x + y < 3)
04     if(x+z != 0)
05       if(y > 1)
      …

0x40086a {84,85,86,87}
…
0x400677 {88,89,90,91}
0x40068f {88,89,90,91,92,93,94,95}
0x400694 {88,89,90,91,96,97,98,99}
0x4006ae {92,93,94,95}
…

Branch statements Taint offsets

 
Fig. 9. Taint offsets flow into branch statements. 

 
As mentioned above, marking all the input bytes as symbolic values may introduce significant 
overhead. Since we already have the target branch from the last step, we need to symbolize 
only the bytes relevant to the target branch and treat the other bytes as concrete values thus 
effectively reduce the number of symbolic instructions. To this end, we use DTA to determine 
which input bytes affect the target branch. From Table 1 we can see that the overhead of DTA 
is much lower than that of symbolic emulation. Therefore, we can improve overall 
performance especially in the following two cases: First, our approach works better for larger 
inputs. For example, AFL can accept an input less than 1 MB, but actually only several bytes 
may affect a certain branch. Second, our approach performs better for deeper branches, 
because it helps reduce many symbolic instructions before these branches. 

We use the code in Fig. 5a to illustrate our method. First, we can obtain two hard-to-reach 
branches guarded by complex conditional check 1 and 2 by algorithm 1. Then, we need to 
identify bytes that affect these branches. Fig. 9 shows the taint mapping between input bytes 
and the branch statements. The conditional check in line 16 is simple, and we just make 
variable magic (offsets 84~87) symbolic values. However, for the conditional check in line 5, 
we cannot make only variable y (offsets 92~95) as symbolic values, because it is a nested 
branch. If only variable y is mutated, the prior branch conditions (lines 2, 3, and 4) may be 
violated, thus resulting in the current branch being unreachable. We need to make all bytes that 
have data dependency on variable y as symbolic values, such as variable x and z. That is, to flip 
the branch of line 5, the 12 bytes (offsets 88~99) should be marked as symbolic values.  

We present Algorithm 2 to achieve relevant input bytes identification, which relies on the 
following principle: if target branch s shares the same bytes directly or indirectly with its prior 
branch r, then s depends on bytes that affect r. This algorithm accepts three inputs and 
produces a set of byte offsets relevant to the target branch. The three inputs are the target 
program to be analyzed, the target branch to be flipped and the input that covers the target 
branch. First, we use DTA to obtain the taint mapping information TaintMap (line 3). Then, 
we get byte offsets TO directly used in target branch Bt (line 4). Finally, we query TaintMap 
backwards from Bt in a loop and add offsets that have data dependency on TO to the set SO 
(lines 7-16).  
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Algorithm 2: Relevant input bytes identification 
Input: program: The binary to be analyzed 
Input: Bt: The target branch aimed to flip 
Input: input: The seed input that covers the target branch 
Output: SO: input byte offsets which affect target branch 
1 SO ← ∅ 
2 Queue ← ∅ 
3 TaintMap ← DTA(input, program) 
4 TO ← GetOffsets(TaintMap, Bt) 
5 SO ← SO ∪ TO 
6 add TO to Queue 
7 while Queue not empty do 
8  TO ← Pop(Queue) 
9  for branch ∈ TaintMap do  //Query TaintMap backwards from Bt  

10    CO ← GetOffsets(TaintMap, branch) 
11    if TO ∈ CO then 
12      SO ← SO ∪ CO 
13      Add CO to Queue 
14    end if 
15  end for 
16 end while 

3.4 Target Guided Concolic Execution 
After the steps in section 3.2 and 3.3, we can obtain a triple, that is, the target branch that needs 
to be flipped, the input that covers the target branch, and the relevant byte offsets that affect the 
target branch. When the concolic executor is launched, we make the specified bytes symbolic 
values and then perform symbolic emulation. When meeting a symbolic branch, we check 
whether it is the target branch to be flipped. If so, we flip the branch and generate an input that 
covers a new branch by solving collected path constraints. Thus, it can be guaranteed that we 
perform symbolic emulation only on less tainted instructions and solve the single target branch, 
thereby reducing the overhead of symbolic emulation. As the code shown in Fig. 5, assume 
magic = 0xdeadbeef, x = 1, y = 1, and z = 0, then the path in Fig. 5b will be covered. In this 
case, we mark the byte offsets from 88 to 99 as symbolic bytes and set the target branch 5→7. 
The concolic executor will flip the target branch, and replace the corresponding byte offsets of 
the original input with the solved value (x = 0, y = 2, z = 10) to generate a new input that can 
cover a new branch as shown in Fig. 10. 

In addition, we observe that QSYM collects branch constraints in shared libraries such as 
libc, which can increase the complexity of path constraints and cause the constraint solver to 
fail. For example, QSYM cannot solve the path constraints of the conditional branch in line 5 
of Fig. 5a. To this end, we ignore the branch constraints not in the target binary or library, 
because these constraints have no effect on path reachability. Additionally, to prevent the 
over-constraint problem as mentioned in [17], we keep optimistic solving which is a key 
feature of QSYM when the normal solving fails. 
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Symboic bytes

…… deadbeef 00000001 00000001 00000000

0 83 84 87 88 91 92 95 96 99

magic x y z

…… deadbeef 00000000 00000002 0000000a

83 84 87 88 91 92 96 99

magic x y z

0

Constraint solver

 
Fig. 10. Test case generation. 

4. Evaluation 
We implemented a prototype tool, EPfuzzer, in C++ and Python. The fuzzer module is based on 
AFL. Branch coverage information analysis and DTA are implemented based on Intel’s 
instrument tool PIN [24], and CFG extraction is implemented based on IDAPython [25]. 
Target-guided concolic execution is based on the concolic execution engine QSYM.  

4.1  Experiment Setup 
To prove the effectiveness of our approach, we evaluate EPfuzzer and answer the following 
research questions: 

RQ1: Can EPfuzzer achieve more code coverage? 
RQ2: Can EPfuzzer find more bugs? 
RQ3: How effective is EPfuzzer's new feature? 
Baseline techniques to compare. We compare EPfuzzer (+1 master + 1 slave) with the 

original AFL (1 master + 1 slave) and QSYM (+1 master + 1 slave). Because Driller does not 
support real-world programs and DigFuzz is not publicly available now, we ignore these two 
tools. All the fuzzers run on a machine with Ubuntu 16.04 operating system, 128 G memory and 
16 cores. 

Target programs to test. We choose two existing benchmark datasets: LAVA-M and 
Google Fuzzer Test Suite (FTS). LAVA-M contains 4 GNU coreutils programs, each of which 
contains multiple known artificially injected bugs. FTS contains more complex programs than 
LAVA-M, and each program contains hard-to-reach lines of code or bugs. In addition, we also 
choose 5 real-world programs (xpdf, audiofile, nasm, libav, libtiff) which handle multiple file 
formats such as pictures, audios, videos, and asm files and have been tested in many previous 
works [10, 21, etc.]. For LAVA-M and FTS, we use the seeds they provide for initial inputs. For 
real-world programs, we choose 10 different seeds with an initial size of 1 KB. 

4.2 Evaluation Results 
(1) RQ1: Code Coverage Effectiveness 

To answer RQ1, we evaluate the code coverage ability of fuzzers on FTS and real-word 
programs. Higher code coverage means a higher probability of finding bugs. 

FTS. The purpose of this benchmark is to check whether a certain fuzzer can reach some 
specific code or bug locations. We can demonstrate the coverage ability of the fuzzer by 
observing the time it takes to reach these locations. The testing results is shown in Table 2. The 
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second column displays the code location, and the third column shows the time required for each 
fuzzer to reach the location. The time-out is set to 24 hours. Except for the program lcms, 
EPfuzzer can reach the target location faster than QSYM and AFL. We analyze and find the 
main reason is the specified location of lcms is behind a branch that can be easily solved through 
fuzzer’s random mutation, but EPfuzzer will prioritize the hard branch and ignore this one. 
However, for other code locations behind more complex branch conditions, EPfuzzer performs 
better than the other two fuzzers. 

 
Table 2. Reaching time of EPfuzzer, QSYM and AFL to known bugs/code location 

Program Location Reaching time (hours) 
EPfuzzer QSYM AFL 

guetzli output_image.cc:398 2.55 3.16 3.82 
lcms cmsintrp.c:642 3.20 4.54 5.65 
libarchive archive_..._warc.c:537 6.15 6.82 8.14 
Json fuzzer-..._json.cpp:50 0.04 0.02 0.03 
Libjpeg jdmarker.c:659 8.75 15.18 T/O 
Libpng png.c:1035 5.46 5.81 7.28 
vorbis codebook.c:479 4.63 10.32 12.50 

 
Table 3. Code coverage comparison with different fuzzers. x% in parentheses indicates the 

increased percentage compared to qsym 
Program Project LOC Line coverage Branch coverage 

AFL QSYM EPfuzzer AFL QSYM EPfuzzer 
pdftohtml xpdf-4.02 60766 8179 8503 8922(+4.93%) 5398 5527 5762(+4.25%) 
sfconvert audiofile-0.3.6 9721 2323 2966 3295(+11.09%) 1059 1341 1710(+27.52%) 
nasm nasm-2.14.02 20357 904 1823 2836(+55.57%) 228 596 1332(+123.49%) 
avconv libav-12.3 205634 12385 14109 16754(+18.75%) 6218 6737 7396(+9.78%) 
tiffcp libtiff-4.0.10 30151 4951 5458 6315(+15.70%) 2874 3210 3905(+21.65%) 
Average 
increase - - - - 21.21% - - 37.34% 
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Fig. 11. Cumulative branch coverage on sfconvert and tiffcp. 

 
Real-world programs. We test 5 real-world programs for 24 hours and use the afl-cov [26] 

tool to automatically record the results of the line and branch coverage. As shown in Table 3, 
EPfuzzer can cover more lines and branches than QSYM and AFL. In particular, compared to 
QSYM, the line coverage and branch coverage increased on average 21.21% and 37.34% 
respectively. It demonstrates that the hardest-to-reach branch prioritization strategy of EPfuzzer 
improves the efficiency of concolic execution. In addition, Fig. 11 compares the branch 
coverage of sfconvert and tiffcp over time. It shows that EPfuzzer can cover branches faster than 
QSYM and AFL. It should be noted that we have similar results for the other three programs, but 
we do not list them all due to limited space. 
(2) RQ2: Bug Finding Capability 

To answer RQ2, we evaluate the bug-finding capability of fuzzers on LAVA-M and 5 
real-word programs. 

LAVA-M. We run each fuzzer for 5 hours on each program. Given the nature of the injected 
bugs, we equipped AFL with a dictionary (i.e., constants extracted from the binary). Table 4 
compares the the number of bugs found by each fuzzer. AFL performed the worst, which found 
a total of 8 bugs in all the programs. AFL(+Dict) performs better than AFL, because many bugs 
in LAVA-M are guarded by branches with magic bytes such as type ③ in Fig. 1b. However, 
AFL(+Dict) is not good at solving magic bytes that are not directly copied from the input but 
rather computed from the input such as type ④ in Fig. 1b, but it is easy for QSYM and EPfuzer 
to solve such constraints. EPfuzzer outperformed all the other tools and  found 829 more bugs 
than QSYM in the program who, because it can quickly find branches that are hard for the fuzzer 
and solve these branches first. Fig. 10 shows the cumulative number of bugs in md5sum and 
who found by QSYM and EPfuzzer over time. The bug discovery rate of QSYM becomes 
slower especially after 120 minutes, but EPfuzzer kept finding more bugs faster. 

 
Table 4. LAVA-M Bugs Found by different fuzzers 

Program Listed 
bugs EPfuzzer QSYM AFL AFL (+Dict) 

uniq 28 28(100%) 28(100%) 6(21%) 16(57%) 
base64 44 44(100%) 44(100%) 1(2%) 15(34%) 
md5sum 57 57(100%) 53(93%) 0(0%) 20(35%) 
who 2136 2045(96%) 1216(57%) 0(0%) 58(3%) 
Total 2265 2174 1345 8 109 
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Fig. 12. The cumulative number of bugs detected in LAVA-M’s md5sum and who over time. 

 
Table 5. Number of bugs found by different fuzzers. Number in parentheses indicates number of crashes. 

Project EPfuzzer QSYM AFL 
xpdf 3 (507) 1 (274) 1 (97) 
audiofile 5 (113) 3 (84) 2 (33) 
nasm 3 (352) 2 (120) 1 (68) 
libav 5 (395) 3 (308) 2 (156) 
libitff 1 (21) 0 (0) 0 (0) 
Total 17 (1388) 9 (786) 7 (354) 

 
Real-world programs. As shown in Table 5, EPfuzzer found 1388 crashes, and there were 

17 unique bugs after deduplication with AddressSanitizer [27]. Seven bugs of them as shown in 
Table 6 have never been found before. The last column refers to the bug id assigned by the bug 
report platform (e.g., Bugzilla, Github) of the corresponding vendor. QSYM and AFL found 9 
and 7 bugs respectively, and all the bugs found by these two fuzzers can also be found by 
EPfuzzer. The reason behind is that AFL has difficulty exploring branches guarded with many 
complex branch constraints so that many bugs cannot be reached. Although QSYM can also 
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solve some complex constraints, it wasted much time in flipping branches blindly and 
performing expensive symbolic emulation, resulting in generating many uninteresting inputs. 

 
Table 6. Unknown security bugs found in real-world programs 

Project Type Bug ID 
xpdf Stack overflow bug#41920 
audiofile Heap overflow issue#56 
nasm use after free bug#3392634 

libav 

Use after free bug#1151 
Heap overflow bug#1152 
Invalid memory access bug#1153 
Use after free bug#1154 

 
(3) RQ3: New Feature of EPfuzzer 

 

 
Fig. 13. The number of inputs imported by AFL. 

 
To answer RQ3, we further evaluate the effectiveness of generated samples of EPfuzzer’s 

concolic execution engine to better understand the improvements of EPfuzzer. We compare the 
number of interesting inputs (i.e., the inputs that contribute to branch coverage thus imported by 
AFL) generated by EPfuzzer’s concolic execution engine with QSYM in the same time budget. 
As shown in Fig. 13, the percentage of interesting inputs generated by QSYM are approximately 
44.7% less on average less than that generated by EPfuzzer. Three reasons are summarized as 
follows: 
• EPfuzzer always prioritizes the hardest-to-reach branch for concolic execution, so inputs 

generated by EPfuzzer’s concolic execution engine are most likely not generated by AFL’s 
random mutation.  

• EPfuzzer symbolizes only bytes affect the target branch, thus substantial emulation time is 
saved for the concolic execution engine to solve more complex branch constraints.  

• EPfuzzer is unconcerned with conditional branches not in the target module such as libc, 
thus helping to save much solving time. 
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4.3 Discussion 
This section discusses some limitations of our approach and some future improvements. 

First, concolic execution cannot handle nonlinear constraints and floating-point operations. 
However, such constraints do not account for much of the program, so we do not consider them 
now. 

Second, the current error-handling branch identification uses a heuristic strategy based on the 
number of basic blocks following the conditional check, which may incur a false positive. We 
can use the deep neural network to achieve this and improve the accuracy as introduced in [28]. 

Third, we use DTA based on PIN instrumentation to determine which input bytes affect a 
conditional branch. Although DTA is faster than symbolic emulation, it is still much slower than 
native execution. For this reason, we can use the fuzzing-driven taint inference method, as 
mentioned in [29], to further reduce the cost of DTA. 

5. Related Work 
A large body of related work has tried to improve the efficiency of fuzzing. In addition to 
aforementioned approaches besed on heuristic strategy or concolic execution, many researchers 
proposed tiant-guided fuzzing and learning-based fuzzing. 

Taint-guided fuzzing. DTA can identify the dependencies between the program logic and 
input and thus it is usually used to help fuzzing to achieve more intelligent mutation. TaintScope 
[30] uses DTA to determine input bytes that flow into a security-sensitive function (e.g., malloc) 
and then mutate them. VUzzer [10] uses DTA to determine the bytes used for compare 
instructions and then replaces the bytes with the extracted constant values from binary to bypass 
some magic bytes checks. Similar to VUzzer, Angroa [31] also uses DTA to determine the bytes 
that affect the conditional branch and then uses gradient descent to solve the input that satisfies 
the condition constraints. In this paper, EPfuzzer leverages DTA to identify input bytes relevant 
to the target branch to be flipped thus reducing the number of symbolic instructions. 

Learning-based fuzzing. Deep learning can learn a model automatically from many training 
samples and then be used to guide fuzzing to generate more effective samples. Learn&Fuzz [32] 
uses the sequence2sequence model to learn sample features from many pdf files. It can 
automatically generate high-quality pdf samples with high pass rate and coverage. 
Augmented-AFL [33] uses deep neural networks to learn which bytes in the input contribute to 
the coverage and achieve guided mutation. Neuzz [34] proposed a new program smoothing 
technique that uses neural networks to learn smooth estimates of complex branch behavior and 
then combines gradient-guided input generation methods to improve the effectiveness of 
fuzzing. 

6. Conclusion 
In this paper, we thoroughly investigate some state-of-the-art hybrid fuzzing systems and point 
out several fundamental limitations to them. We further propose a hardest-to-reach branch 
prioritization strategy. We adopt a more lightweight method to prioritize hardest-to-reach 
branches and identify input bytes relevant to target branch. We implement a prototype tool, 
EPfuzzer, based on the design and conduct comprehensive evaluation using three different 
datasets. The evaluation results show that compared with the state-of-the-art hybrid fuzzing 
system QSYM, the concolic execution in EPfuzzer contributes much more to the increased code 
coverage and increased number of discovered vulnerabilities. 
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