
entropy

Article

FASTENER Feature Selection for Inference from
Earth Observation Data

Filip Koprivec 1,2,3,† , Klemen Kenda 1,4,*,† and Beno Šircelj 1

1 Jožef Stefan Institute, 1000 Ljubljana, Slovenia; filip.koprivec@ijs.si (F.K.); beno.sircelj@ijs.si (B.S.)
2 Faculty of Mathemathics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
3 Institute of Mathematics, Physics, and Mechanics, 1000 Ljubljana, Slovenia
4 Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
* Correspondence: klemen.kenda@ijs.si
† These authors contributed equally to this work.

Received: 19 May 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: In this paper, a novel feature selection algorithm for inference from high-dimensional
data (FASTENER) is presented. With its multi-objective approach, the algorithm tries to maximize
the accuracy of a machine learning algorithm with as few features as possible. The algorithm
exploits entropy-based measures, such as mutual information in the crossover phase of the iterative
genetic approach. FASTENER converges to a (near) optimal subset of features faster than other
multi-objective wrapper methods, such as POSS, DT-forward and FS-SDS, and achieves better
classification accuracy than similarity and information theory-based methods currently utilized in
earth observation scenarios. The approach was primarily evaluated using the earth observation data
set for land-cover classification from ESA’s Sentinel-2 mission, the digital elevation model and the
ground truth data of the Land Parcel Identification System from Slovenia. For land cover classification,
the algorithm gives state-of-the-art results. Additionally, FASTENER was tested on open feature
selection data sets and compared to the state-of-the-art methods. With fewer model evaluations,
the algorithm yields comparable results to DT-forward and is superior to FS-SDS. FASTENER can be
used in any supervised machine learning scenario.

Keywords: feature selection; machine learning; earth observation; genetic algorithm;
information theory

1. Introduction

Land cover classification based on satellite imagery is one of the most common and
well-researched machine learning (ML) tasks in the Earth Observation (EO) community. In Europe, the
Copernicus Sentinel-2 missions provide large amounts of global coverage EO data. With 5-day revisit
times, Sentinel-2 generated a total of 9.4 PB of satellite imagery by April 2020 [1]. The total amount of
EO data available through the Copernicus services is estimated to exceed 150PB. The data represent an
opportunity for building solutions in various domains (agriculture, water management, biology or
law enforcement); however, computationally efficient methods that yield sufficient results are needed
to deal with this big data source. The most important issue when trying to maximize the accuracy
of statistical learning methods is effective feature engineering. With many features, the algorithms
become slower and consume more resources. In this paper, we present FASTENER (FeAture SelecTion
ENabled by EntRopy, https://github.com/JozefStefanInstitute/FASTENER) genetic algorithm for
efficient feature selection, especially in EO tasks.

EO data sets are characterized by a large number of instances (millions or even billions) and a
fair number of features (hundreds). These characteristics differ from the usual feature selection data
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sets that often contain up to several hundred instances and usually thousands of features. FASTENER
exploits entropy-based measures to converge to a (near) optimal set of features for statistical learning
faster than other algorithms. The algorithm can be used in many scenarios and can, for example,
complement multiple-source data fusion and extensive feature generation in the fields of natural
language processing, DNA microarray analysis or the Internet of Things [2]. FASTENER has been
tested on a land cover classification EO data set from Slovenia. Additionally, we have tested the
algorithm against 25 general feature selection data sets.

The main evaluation use case presented in this paper is based on our previous contributions [3,4]
regarding crop (land cover) classification using Sentinel-2 data from the European Space Agency (ESA).
The scientific contributions of our work are as follows:

1. A novel genetic algorithm for feature selection based on entropy (FASTENER). Such an algorithm
reduces the number of features while preserving (or even improving) the accuracy of the
classification. The algorithm is particularly useful for data sets containing a large number of
instances and hundreds of features. A reduced number of features reduces learning and inference
times of classification algorithms as well as the time needed to derive the features. By using
an entropy based approach, the algorithm converges to the (near) optimal subset faster than
competing methods.

2. Improvement of the state-of-the-art in feature selection in the field of Earth Observation.
FASTENER yields better result than current state-of-the-art algorithms in remote sensing.
The algorithm has been tested and compared to other methods within the scope of the land-cover
classification problem.

3. Usage of pre-trained models for information gain calculation for feature selection in Earth
Observation scenarios. Usually, it is computationally expensive to train a machine learning
model. The inference phase is much faster. FASTENER exploits the pre-trained models in order
to estimate the information gain of certain features by inferring from data sets with randomly
permuted values of the evaluated feature. This approach improves the convergence speed of
the algorithm.

The paper is structured as follows. In the next section, related work regarding feature selection
algorithms as well as state-of-the-art in feature selection in Earth Observation is described. Section 4
contains a thorough description of the data used in the experiments and describes our algorithm.
Section 5 describes while Section 6 discusses the experimental results and compares FASTENER to
other algorithms based on NSGA-II. Finally, our conclusions are presented in Section 7.

2. Related Work

When tackling problems related to EO, quite often the older and simpler algorithms (ReliefF)
have given the best results. This section presents the current state-of-the-art in feature selection and
particularly its applications within the EO community. It also describes supporting fields of the work
presented in this paper, such as the current status in land-cover classification and the multi-objective
optimization approach to feature selection.

2.1. Multi-objective Optimization and its Usage in Feature Selection

Data science often reduces its evaluation to a single score (or fitness function) that explains
the accuracy or efficiency of a particular methodology. There are other limitations that should be
considered. On the one hand, there are the available resources (e.g., memory, processors, space),
while on the other hand the response time should be considered (i.e., the preferred response time for a
particular methodology). Quite often, the most appropriate approach should minimize the need for
resources and response time while maintaining sufficient accuracy. The multi-objective optimization [5]
strives to find a set (or Pareto front) of solutions (in our case feature sets) that achieve the best possible
classification accuracy with a limited number of features.
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Multi-objective optimization methods have already been used for feature selection purposes,
although their usage in the field is limited due to their computational complexity [6]. The classical
NSGA-II algorithm [5] was used for feature subset optimization in [7]. NSGA-II uses fast
non-dominated sorting for selecting viable candidates for the next generation parent population.
The methodology has been improved by the usage of Reduced Pareto Set Genetic Algorithm
with Elitism (RPSGAe) [8] for achieving a more efficient directed search in the feature space [9].
The elite-preserving operator suppresses the deterioration of the population fitness along with the
successive generations. RPSGAe reduces the number of solutions on the efficient (Pareto) front while
maintaining its characteristics intact, similarly to the purge function in the FASTENER algorithm.
NSGA-II feature selection approach has also been extended in [10] with six different importance
measures, including representation entropy which is based on information theory. The research shows
that there is no preferred importance measure that would be a good fit for all feature selection problems.
FASTENER uses importance measures that are based on real model evaluations and are therefore more
reliable than estimates based on the features themselves.

Pareto-optimal subset selection (POSS) [11] is also a genetic algorithm, but it only uses
mutation techniques (while NSGA-II also uses cross-over methods). Other methods explore several
variants of directed searches within the feature space to converge to the sub-optimal data set faster
(e.g., FS-SDS [12] uses stochastic diffusion search and extreme learning machine [13] as an embedded
classifier). Other methods, such as forward selection and backward elimination use an exhaustive
step-by-step search to find the most optimal feature set [14]. These methods are much slower (and quite
often do not converge to a small-enough data set within a reasonable time) and could even converge
to a local minimum.

Our approach extends POSS and NSGA-II algorithms and suggests the usage of entropy-based
indices based on previously trained models to steer the iterative feature selection process.
The parameterized mutation strategy introduces additional features to the candidate feature sets
with respect to changes in the Pareto front. The Pareto front is periodically purged in order to eliminate
non-suitable candidates from the loop. With these improvements, FASTENER converges to a (nearly)
optimal solution faster than the compared methods.

2.2. Feature Selection and Dimensionality Reduction for EO Tasks

The automatic spectro-temporal feature selection (ASTFS) [15] workflow provides a search over
the feature space by incrementally extending the feature set with effective features (those that improve
classification scores) ordered by their global separability index [16]. A similar approach is implemented
in [17], where the authors use mutual information (MI) [18] and Fisher’s criterion to select the k
most important features. Mutual information based on entropy estimates from k-nearest neighbour
distances [18] is data-efficient and has a minimal bias. The problem of estimating MI between discrete
and continuous features has been solved in [19], which can be applied to classification tasks (discrete)
with continuous features. Although the separability index and mutual information provide good
heuristics for adding different features, the non-iterative (non-wrapping) algorithms do not necessarily
yield the optimal feature set. Our algorithm offers a more thorough search, which is controlled by the
genetic nature of the algorithm. The approach has been tested using timeless features for land cover
classification [20,21].

A revision and test of multiple feature selection algorithms (similarity-based, statistical, sparse
learning, information theoretical, and wrapper methods) [22] showed that ReliefF (a similarity-based
approach) [23], although not among the recent favourites, yielded the best results in a particular
scenario of parthenium weed infestation detection.

Our algorithm can be applied to any feature selection scenario as it is expected to converge to
the (near) optimal subset selection. FASTENER is expected to perform at least as good as any other
similarity-based approaches; however, several iterations would be required during the learning process
to find the (near) optimal subset of features.
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Genetic algorithms have been used in EO scenarios for feature selection of hyper-spectral EO
images [24]. In contrast to multi-spectral (as in our case), hyper-spectral images contain a significantly
larger number of bands. The approach in [24] does not use any entropy-based features to optimize the
search and is, in that respect, similar to POSS. The latter has been tested in land cover classification [4]
and yielded good results.

In an EO environment, where data indices are abundant, the calculation of some features is
computationally very intensive and external data are difficult to acquire (weather data, soil samples).
Reducing the number of features has a significant positive impact on the overall algorithm performance
in a real-world scenario. As the production of global EO products sometimes take thousands of
computing hours, efficient feature selection algorithms could reduce the costs by 50%-95%.

2.3. Land Cover Classification and Feature Engineering

There are essentially three approaches to land cover classification based on EO data [25]. The first
approach is object-based and focused on a single image, while the other two approaches are pixel-based.
From the latter, a simpler approach is based on single-image data, while the other is based on a
time-series of images. Single image approaches depend on the current situation (e.g., cloud cover),
whereas time series based approaches inherently overcome this shortcoming. Sentinel-2 mission
from the Copernicus programme is dedicated to agriculture and their satellites re-visit times are
5 days. It is possible to construct an interpolated time-series of different EO sensors throughout the
entire vegetation period [3]. A simple feature extraction involves taking particular sensor values and
derived features at pre-selected points in time and combining them into a feature vector. A more
intelligent approach involves the extraction of timeless features such as the maximum value of a
particular time series, length of the maximum interval, steepness of the steepest slope and others [20,21].
Our evaluation of the FASTENER algorithm is based on the latter approach [3].

The best accuracy scores in land cover classification were achieved with deep learning [26].
These approaches reduce the value of feature engineering that originates mostly from domain experts
and/or extensive experimental knowledge. Deep neural networks are able to derive the important
features exclusively from raw data. Of course, the data must be extensive, which is the case in EO.
However, this comes with a price; namely, extreme computational requirements reduce the usability of
these methods.

Our goal is to develop lean EO machine learning models that are capable of capturing most
of the information with limited resources. Intelligent feature selection, together with smart feature
engineering and a pragmatic choice of the learning models is one of the three pillars of smart EO.

3. FASTENER—A Genetic Algorithm for Feature Selection

The presented algorithm is based on the POSS genetic algorithm and the Pareto ensemble pruning
proposed in [27,28]. The main objective of the algorithm is to select an optimal subset of available
features from a large feature set (N > 100). The problem could be represented mathematically as
finding the optimal (or near-optimal) binary vector x of an indexed set {0, 1}N . Finding the optimal
subset is NP-complete. Each element in x corresponds to a particular feature that is included or
excluded in our decision model. The optimality of such a set is measured by a scoring function, which
we will denote by A(M; x) (accuracy measure of model M on a subset of features x). Some standard
examples of such measures in machine learning classification problems include precision, recall,
accuracy and F1 score. In our experiments, the F1 score was used. We also adopt the notation |x|
to denote the number of bits set in x that directly corresponds to the number of selected features.
Mathematically, for a fixed classification model M and the number of features k, we search for such an
x where the following maximum is reached:

max
x∈{0,1}N

|x|=k

A(M; x).
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As in POSS, the function x 7→ (|x|, A(M; x)) creates a two-dimensional Pareto front. In one
dimension, we evaluate k, the number of selected features, and in the other dimension, we present A
score, which represents the optimality (e.g., accuracy) of such a subset. In this space, the ordering of
instances is defined as follows. The pair (k1, s1) dominates the pair (k2, s2) if and only if k1 ≤ k2 and
s1 ≥ s2. Intuitively, the smaller set (by cardinality) of features provides classification results, which
are at least as good as for the larger set. We denote such a relation by (k2, s2) � (k1, s1). The relation
is obviously transitive but does not induce linear ordering. Pairs that are not comparable through
such a relation are of particular interest, as they lie on the Pareto front. Feature subsets that lie on
the Pareto front (not strongly dominated by other subsets) are the desired subsets. They provide the
best classification power using the smallest number of features. The final result of a feature selection
algorithm is the final Pareto front. The final Pareto front can be seen as an accumulation of the best
results for a fixed k. The features with the best performance can then be selected from the front
automatically (with a certain cut-off threshold), manually or by using additional information (e.g., time
to calculate the features). The results clearly show that the Pareto front “plateaus” after the inclusion
of some features and this fact can easily be used to automatically select the best number of features.

Our modification of the POSS algorithm combines Pareto front searching with a genetic algorithm
to incorporate additional statistical information when recombining genes. The main ingredient in
the algorithm is the concept of an item; a subset of features and scored item, which is an item with
an assigned score corresponding to such a subset of features. The size of an item denoted by |ITEM|
corresponds to the number of features selected. The algorithm works by successively evaluating items,
combining them, and updating the Pareto front.

Each subset of features can be represented directly as a binary number, where set bits correspond
to the included (selected) features and unset bits correspond to excluded ones. This allows for a
natural representation of genes for such an item with a binary string or bit-set and also gives a natural
human-readable representation as an arbitrary sized integer. Apart from this, many later needed
operations can be quickly implemented as simple operations on a binary string. The size of an item
corresponds to the number of set bits, the bit-wise AND operation between two items corresponds to the
genes that are common to both of them, while the bit-wise XOR returns all different selected features.

In our implementation, the integer representation of item genes is treated in a little-endian way,
as this allows easier extension of feature sets and keeps integer representations valid even when adding
new features. For example, in a set of six features with 32 possible feature combinations, binary string
11010 represents a subset containing features with indices 0, 1 and 3 and is represented by a decimal
number 11. Even if the number of features is increased, such a subset would still be represented by the
number 11, albeit its binary string representation would be extended by zeros on the right side.

An example of the incremental Pareto front update is shown in Figure 1. Each subsequent
generation of the FASTENER algorithm produces a Pareto front that dominates the Pareto fronts
from previous generations (in rare cases, where no improvement is made, the Pareto fronts of two
subsequent generations may be the same). The main objective of the algorithm is to converge as
quickly as possible to a theoretically limiting front (in terms of fitness function evaluations).
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Figure 1. Iterative improvements of Pareto front from the first generation. Each next generation’s
Pareto front achieves better F1 score.

3.1. Algorithm

The algorithm stores the current Pareto-optimal items and progresses in generations. For each
k ≤ N it keeps an item with the best score A. If there is no such item this means either that it is
strictly dominated by another item or that the algorithm has not yet evaluated an item this size. In our
implementation, the Pareto front is implemented as a simple dictionary. Apart from the Pareto front,
the current population is kept in a separate set. The decoupling of the current population from the
Pareto front allows the algorithm to “explore” different combinations more easily, while the Pareto
front continues to be updated at each iteration.

As usual, in each generation, the current population of items is mated, a random genetic mutation
is introduced and newly acquired items are evaluated. For each evaluation, the Pareto front is updated.
If a new item is strictly better than an item on the front with the same size, the newly evaluated item is
placed on the Pareto front. After all new items have been evaluated, the front is purged by removing
items that are strictly dominated by other items. The pseudo-code for the basic algorithm is presented
in Algorithm 1. The algorithm’s flow diagram is depicted in Figure 2.

To prevent the search phase of the algorithm from diverging (the population as a whole is not
controlled by the scoring function), the population is periodically reset to the current Pareto optimal
items. In the presented algorithm, this decision is based only on the generation number; however,
our implementation also considers the rate with which the running Pareto front is being updated
between generations.
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Algorithm 1 Basic algorithm

Require:
Initial population POP

Evaluation function EVALF
Number of iterations K
Mating pool selection strategy SELECTPOOL

Crossover strategy CROSSOVER

Mutation strategy MUTATE

Predicate RESETTOFRONT

Predicate PURGEFRONTPREDICATE

Front purging procedure PURGEFRONT

1: function FEATURESUBSETSELECTION

2: front← pop
3: for gen = 1 to K do
4: pool← SELECTPOOL(pop)
5: pool← CROSSOVER(pool)
6: pop← MUTATE(pop ∪ pool)
7: pop← EVALUATE(pop, EVALF)
8: front← front ∪ pop . Add evaluated population to Pareto front
9: front← REMOVEDOMINATED(front) . Remove unoptimal items from Pareto front

10: if PURGEFRONTPREDICATE(gen) then
11: front← PURGEFRONT(front)
12: end if
13: if RESETTOFRONT(gen) then
14: pop← front
15: end if
16: end for
17: return front
18: end function
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Figure 2. The flow diagram of the FASTENER graphically represents Algorithm 1 and puts Algorithms 2
and 3 into context. In the figure, red/orange colour objects represent population-based operations,
while blue colour objects represent Pareto front related operations. The violet colour represents both, the
population and the Pareto front. Green boxes refer to technical details of the algorithm. The algorithm
includes the initialization phase and the main loop. In the initialization phase, the initial population is
prepared and evaluated and the technical prerequisites for the algorithm are created. In the main loop,
the population is first split into a mating pool and a (gene) carry-over elitist pool. The mating pool first
enters the crossover phase based on Algorithm 2 and is being mutated together with the elitist pool.
Then the new Pareto front is updated and purged (Algorithm 3). Finally, the main loop is closed by
registering the new population as the next generation Pareto front.

3.2. Mutation

An important part when considering gene manipulation and modification is to keep the overall
objective in mind. We want to find the optimal subset of features with good accuracy characteristics.
The ultimate goal is to obtain a subset with a size much smaller than N. In preliminary experiments,
the number of features with a sufficiently predictive power was around

√
N, which means a significant

reduction in both training time and in data preparation time (which is true especially for EO data sets).
Mutation and crossover methods should therefore be tailored to help maintain, reduce or only slightly
increase the size of items.

The most interesting parts of the algorithm are the CROSSOVER and MUTATE procedures.
The procedure for the mutation is adopted from the POSS algorithm and is a simple random bit
mutation. Each random bit in the gene is flipped independently with a probability 1

N . Thus a new
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item is generated from each of the items selected for mating and, most importantly, the expected value
of set bits is kept approximately the same. Formally, the expected value of the number of flips is 1,
and therefore the mutations gravitate slowly toward x-s where |x| = N

2 . Since the desired range of
features in which we can expect satisfactory score results is much lower than the asymptotic behaviour
of mutations, this type of mutation serves as a size increaser. Mutation procedures therefore slowly
increase and add new features to be considered. Furthermore, varying the probability of flipping is an
easy way to control the speed of the introduction of new features. Setting the mutation rate to a

N for
a > 1 and varying a with generation number and changes in the Pareto front updates can significantly
increase the search space. In addition, all further analyses are still valid even if the mutation is set
as an arbitrary function f : N+ → (0, 1] only dependent on N and heuristic data about mutations
(independent of bit-index and bit status), called mutation function.

3.3. Crossover

The crossover procedure is designed to reduce the size of the newly produced item. The mating
pool selection used for the algorithm is a simple random mating pool with a fixed size. Two different
items from the mating pool are combined using the CROSSOVERPAIR procedure. The CROSSOVERPAIR

procedure itself is presented in Algorithm 2 and requires 4 input parameters: two items to be mated, a
scaling function for the number of non-intersected genes, and a set of entropy information for each
individual feature. Without loss of generality, we may assume that |ITEM1| ≥ |ITEM2|.

Lemma 1. Let ITEM1 and ITEM2 be a random independent subset of {0, 1}N where the probability of each gene
being set is some positive function f : N+ → (0, 1]. The expected size of an intermediate gene conditional on the
sizes of its parent genes is

E [|ITEM1 ∩ ITEM2| | |ITEM1| = a, |ITEM2| = b] =
ab
N

=
|ITEM1||ITEM2|

N

We can similarly derive conditional expectation for size change.

Lemma 2. The probability of an ITEM having size k, assuming that each feature is selected independently with
probability f : N+ → (0, 1] is

P(|ITEM| = k) =
(N

k )(1− f (N))N−k f (N)k

N f (N)
.

Lemma 3. The probability of an intermediate item having size k conditional on sizes of its parents is similarly

P(|A ∩ B| = k| | |A| = a, |B| = b) =
(N

k )(
N−k
a−k )(

N−a
b−k )

(N
a )(

N
b )

.

Since all features are equally likely to be selected, conditional probability is independent of scaling function f .

Lemma 4. By linearity of expectation and assumption that |ITEM1| = a and |ITEM2| = b we can easily derive

E [max{|ITEM1|, |ITEM2|} − |ITEM1 ∩ ITEM2| | |ITEM1| = a, |ITEM2| = b] = |ITEM1|
(

1− |ITEM2|
N

)
.

Remark 1. The assumption that each feature is selected independently with probability f (N) should not be
confused with each subset of features selected with equal probability. In our case, this is beneficial because smaller
sets are intrinsically better, which are easily controlled by the mutation function f .
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Algorithm 2 Randomized crossover with information gain weighting

Require:
First item ITEM1
Second item ITEM2
Scaling function for number of genes ONGENESCALING

Individual feature entropy INFORMATIONENTROPY

1: function CROSSOOVERPAIR

2: if |ITEM1| < |ITEM2| then
3: SWAP(ITEM1, ITEM2)
4: end if
5: intermediate← ITEM1 & ITEM2 . Intersection of genes
6: rest← ITEM1 ⊕ ITEM2 . Bitwise XOR, features present in exactly one item
7: addNum← ONGENESCALING(ABS(|ITEM1| - |ITEM2|))
8: . Scale the number of new features according to provided function
9: additional← RSELECT(addNum, informationEntropy, rest)

10: . Randomly select addNum features, weighted by precalculated entropy
11: mated← intermediate | additional . Add selected features
12: return mated
13: end function

After crossover, the resulting genes initially contain features that were selected in both parents.
The intersection of features is a good starting point, as it seems to produce good results during the
running of the algorithm. Since the implementation of the genes is a simple bit string, the intermediate
result is simply bitwise logical AND of its parents’ genes. Another way to combine the parents would
be to produce offspring with the union of genes. The latter approach produces offspring that is too
large (contains too many selected features) and is thus unsuitable for our objective, where we want to
select a sufficiently small feature set. The size of the intermediate result obtained by the intersection
(line 5) is smaller than or equal to the size of ITEM2 (smallest of the parents), but can be much smaller,
depending on the input sets (see Lemma 3). With the intersection, the number of genes decreases too
rapidly (see Lemma 4) and disposes of useful information. We therefore use additional genes presented
in exactly one of the parents (generated by element-wise exclusive OR) to construct an additional set of
features with good information gain. The visualization for the first part of CROSSOVERPAIR procedure
on an example case is shown in Figure 3. The genes of two items to be mated are split into two indexed
sets: an intermediate set containing genes from both parents and a set called rest containing genes to
be used for the enrichment of intersected genes.

1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 MATE 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1
BITWISE AND

1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0

INTERMEDIATE
1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

REST FEATURES
0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1

Figure 3. Schema of mating of 2 genes. With bit-wise AND operation we produce the intermediate set
and with bit-wise exclusive or XOR we produce the rest (features) set.

Enrichment of the intermediate set of genes is done as follows. First, the number of enrichment
genes is calculated using the ONGENESCALING function. This function is used to control the size of the
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final offspring. From Lemma 4, it follows that the expected size of the rest (features) set, with the size
of the largest parent being constant, is linear to the size of the smaller parent (ITEM2). Adding all genes
from the rest set will result in an offspring too large (and diverge toward the whole feature space being
selected), selecting none of the genes will diverge towards very small sets. In our experiments, we used
the function x 7→

⌊ x
2
⌋
+ 1 (for ONGENESCALING) that scaled the amount of features appropriately for

our data set. For a larger number of features, the functions
√

x and loga x with a sufficiently small base
a are a good choice. As with most parameters, ONGENESCALING can be swapped during the run-time
and made dependent on the conditions of front updates and statistics.

The second part of the mating algorithm selects the best performing features using heuristics
based on information gain. From all features in the rest set, addNum are randomly selected (using a
weighted random selection, where the weight of each feature is its individual precalculated information
gain). The final result is an item with genes from the intersection set and selected genes from rest
set. In the implementation, the results are simply combined with element-wise OR. The heuristics
for the information gain in our algorithm is based on mutual information gain. The scikit-learn
implementation [29] of mutual information gain is used for each feature in the train set.

Figure 4a shows the continuation of the example mating algorithm from the previous figure.
Each of the initial features is represented with its information gain, which is shown by the height
and intensity of the shade of the column above it. Columns for features in the rest set are shown
in red (and the corresponding genes are green in the bottom row). Of the eight features in the rest
features row, five are selected using weighted random function. Figure 4b shows the visualization of
the result (offspring) of the mating procedure. The genes selected by intersection are marked with
dark green shading, while the genes selected by information enrichment are shown in light green.
The corresponding information gain statistics in shown with column color intensity. In this example,
two genes of size 14 and 6 were combined and they produced a result with size 10, which may be
further increased by the mutation strategy. The resulting item contains genes that are present in both
parents and were therefore rated as good in the previous evaluation. It is enriched with a limited
number of genes that are present in either parent, weighted according to their information gain.

0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1

(a) Rest genes with feature importances

1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1

(b) Final crossover results

Figure 4. Visualization of the rest set and final mating result. Information gain of a particular feature is
depicted by the height of the column above a particular feature.

3.4. Purging Features from Pareto Front Using Information Gain

An initial version of the algorithm presented in Algorithm 1 has been further improved to exploit
pre-trained models for the calculation of the information gain and to purge non-relevant features from
items on the Pareto front. For each item added to the front, a model trained on its genes is stored.
Since the number of elements is small compared to the learning data, storing the models results in
virtually no additional effort in run-time and is a useful tool for evaluating the optimization over time.
In the same way as when the population is reset to the Pareto front, another predicate is introduced to
indicate when the Pareto front should be purged using the information criterion. The gene purging
procedure is presented in Algorithm 3.
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Algorithm 3 Gene purging algorithm

Require:
Current Pareto front FRONT

Evaluation function with ability to randomly shuffle features EVALF
1: function PURGEPARETOFRONT

2: newFront =← Dict.empty . Empty dictionary representing new Pareto Front
3: for item in front do
4: if |ITEM| == 1 then
5: continue . Items with only one feature cannot be reduced
6: end if
7: baseResult← item.result . Score acquired by using all features from item
8: scoreDecrease← [] . Score decrease for each feature
9: for geneInd in item.genes WHERE ISSET(item.genes[geneInd]) do . Check only set genes

10: newScore← EVALF(item.model, item.genes, geneInd)
. Evaluate existing trained model on test data set, where values of feature geneInd are randomly

shuffled
11: scoreDecrease[geneInd]← baseResult - newScore
12: end for
13: bestInd← ARGMIN(scoreDecrease)

. Take the gene which showed smallest score decrease when shuffled
14: newItem← ITEM(genes=UNSETBIT(item.genes, bestInd))

. Create new item where the gene with the smallest score decrease is unset
15: newFront[|newItem|]← EVALUATE(newItem, EVALF)

. Evaluate newly created item (train and test model)
16: end for
17: front← front ∪ newFront . Update current front with newly calculated items
18: front← REMOVEDOMINATED(front) . Remove unoptimal items from Pareto front
19: return front
20: end function

The main idea of purging the items on the Pareto front with information criterion is to discard
unneeded features from items that already perform well. For each item on the Pareto front, we try
to discard a feature that makes the least contribution to the item’s score. The obvious way to do this
would be to transverse through all the features used in the prediction model, remove superfluous
features one by one, and train and re-evaluate such a model. For each item, a new model must be
trained and re-evaluated. This is time-consuming and offers only minor improvements. Our proposal
is to use a heuristic approach to select a feature to be removed. For each such feature, an existing
model corresponding to the item is used (saving time by avoiding the training of a new model) and
evaluated according to the previously used test data set. For each selected feature, its values are
randomly shuffled across the test data set. The motivation for such heuristics is that the shuffling
values of a feature with strong predictive power has a much stronger effect on the resulting score than
shuffling values of a feature with only low predictive power. In this way, we can provide heuristics for
estimating the predictive power of features in a model-agnostic way using only a linear number of
model calls. Such heuristics provide a noticeable acceleration and can be used for any type of model.
The approach targets black box models with a high ratio between training and inference time/resource
consumption—e.g., gradient boosting or complex neural networks. For each newly shuffled feature
in an item, a change in the base score is recorded (line 11). Interestingly, sometimes the change can
even be negative if the included features are detrimental to the overall prediction procedure. This is
proving to be an effective method for quickly sorting out bad features introduced by mutations at the
end of simulations when the exploration is limited to the feature space previously explored.
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The feature whose shuffling has the most detrimental effect is taken and a new item is constructed
whose genes are the same as those of the original element, except that the resulting feature is omitted
(lines 13 and 14). This procedure can be further generalized. For example, first scoreDecrease could be
scaled with some function (for example, x3) and then the feature to be removed could be sampled by
these new scoreDecrease weights from the set. Special care should be taken that the scaling function is
monotonous (and preferably a bijection) since negative values can occur and should not be bundled
with positive ones. If a random selection is used, the final probabilities must also be re-scaled correctly
due to possible negative weights. After the feature to be removed is selected, the new item is evaluated
and all new items are brought to the front. The front should also be purged to take into account
possible new features on the front.

The most important heuristic optimization used by the front purging functions is based on the fact
that only a new model is built with the features with the most promising importance score (as inferred
by a model when feature values are shuffled). The time required for this operation is linear in the
number of features. For each feature, the model requires one evaluation (inference) on the training
set. The implementation of the gene purging can be further optimized so that each feature is selected
only once. Under the reasonable assumption of sufficiently deterministic training and evaluation, it is
easy to see that evaluating an item and (potential) addition of a feature to the front is an idempotent
operation. Removing the same feature from the same item on the front several times is not a reasonable
change and therefore another feature could be considered for removal. An appropriate threshold
for reducing the score may also be introduced so that features with very high predictive power are
never removed.

4. Data

FASTENER is focused on improving the state-of-the-art in EO land-cover classification.
The description of the EO data set is given in Sections 4.1 and 4.2. Apart from that, the algorithm was
tested on 25 additional feature selection benchmark data sets with a varying number of features, label
classes and instances, in order to be compared against the existing state-of-the-art methods.

4.1. EO Data

Earth Observation data were provided by the EU Copernicus program’s Sentinel-2 mission, whose
main objectives are land observation, land use and change detection, support for generating land
cover, disaster relief support and climate change monitoring [30]. The data comprise 13 multi-spectral
channels in the visible/near-infrared (VNIR) and short wave infrared (SWIR) spectral range with a
temporal resolution of 5 days and spatial resolutions of 10 m, 20 m and 60 m (the latter is used for
diagnostics only) [3]. Sentinel’s Level-2A products (surface reflectances in cartographic geometry)
were retrieved via the SentinelHub (https://www.sentinel-hub.com/) services and processed using
the eo-learn (https://github.com/sentinel-hub/eo-learn) library. In addition, a digital elevation
model for Slovenia (EU-DEM) with 30 m resolution was used.

The ground truth data in our experiments were collected from the Slovenian land parcel
identification system (LPIS). The original LPIS data consist of 177 different vegetation classes.
These classes were grouped into 23 more general classes proposed by domain experts. The final
data set includes 23 separate classes describing the type of farmland and one class describing all
non-agricultural surfaces. Data have been collected for the year 2017.

A classification scenario is depicted in Figure 5. The figure shows a subset (true colour) of input
EO data, the manually acquired ground truth data and the final automatic classification result of our
algorithm. Based on the (easily obtainable EO data), the classification algorithm predicts ground-truth
label (which is difficult to obtain and often contains incorrect data). When comparing Figure 5b,c, we
observe the similarity between ground truth and the classification result.

https://www.sentinel-hub.com/
https://github.com/sentinel-hub/eo-learn
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(a) EO true color (b) Ground truth—LPIS data (c) Classification result

Figure 5. Partial input data, ground truth data and classification results.

4.2. Feature Engineering and Sampling

The EO data were collected for the entire year. Four raw band measurements (red, green,
blue—RGB and near-infrared —NIR) and six relevant vegetation-related derived indices (normalized
differential vegetation index—NDVI, normalized differential water index—NDWI, enhanced
vegetation index—EVI, soil-adjusted vegetation index—SAVI, structure intensive pigment index—SIPI
and atmospherically resistant vegetation index—ARVI) were considered. The derived indices are
based on extensive domain knowledge and are used for assessing vegetation properties. In Figure 6d,
an example of NDVI index is depicted, which is an indicator of vegetation health and biomass. Its value
changes during the growing season of the plants and differs significantly from other non-planted areas.
The NDVI is calculated as:

NDVI =
NIR− red
NIR + red

Timeless features were extracted based on Valero et al. [20]. These features can describe the
three most important crop stages: the beginning of greenness, the ripening period and the beginning
of senescence [20,21]. Annual time series have different shapes due to the phenological cycle of a
crop and characterize the evolution of a crop. With timeless features, they can be represented in a
condensed form.

For each pixel, 18 features per each of the 10 time-series were generated. The raw value and
maximum inclination for a given pixel were calculated from the elevation data as 2 additional features.
In total, 182 features were used in the experiments.

The examples of learning features are depicted in Figure 6: EVI minimal value (Figure 6e),
EVI standard deviation (Figure 6f), NDVI maximum mean value in a sliding temporal neighborhood
of size 2 (Figure 6g), SIPI mean value (Figure 6h) and SAVI mean value (Figure 6i).

Prior to the experiments, edge detection [31] was performed on EO data, excluding the pixels at
the borders of land plots. These pixels are potential mixed-class instances that can have a negative effect
on the learning process. An example of an edge detection mask is depicted in Figure 6a. A balanced
learning set was sampled from the entire data set with 20× 103 data points (pixels) representing each
class. The classes with the lowest frequency were oversampled in the vicinity of sampled instances.
The entire learning data set [32] consists of 480× 103 samples.
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(a) Mask of excluded area (b) Digital elevation model (c) Inclination

(d) NDVI at a single date (e) EVI minimal value (f) EVI standard deviation

(g) NDVI longest mean value (h) SIPI mean value (i) SAVI mean value

Figure 6. Examples of features derived from EO time series. Each feature represents a potentially
significant parameter for land cover classification [20].

4.3. Feature Selection Benchmark Data Sets

Benchmark data sets for feature selection were taken from [6]. The description of all the data
sets is given in Table 1. It is apparent from the table that our main data set, EOData [32] in the last
row, differs from other data sets with its very high number of instances and relatively low number
of features.
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Table 1. Description of the data sets used for testing the FASTENER with number of instances, features
and classes. IC↓ and IC↑ represent the percentage of instances representing the smallest and the largest
class, respectively.

Data Set Instances Features Classes IC↓ IC↑

ALLAML 72 7129 2 35 65
arcene 200 10,000 2 44 56

BASEHOCK 1993 4862 2 50 50
CLL_SUB_111 111 11,340 3 10 46

COIL20 1440 1024 20 5 5
colon 62 2000 2 35 65
gisette 7000 5000 2 50 50

GLIOMA 50 4434 4 14 30
GLI_85 85 22,283 2 30 70
Isolet 1560 617 26 4 4

leukemia 72 7070 2 35 65
lung 203 3312 5 3 68

lung_discrete 73 325 7 7 29
lymphoma 96 4026 9 2 48

nci9 60 9712 9 3 15
ORL 400 1024 40 3 3

orlraws10P 100 10,304 10 10 10
PCMAC 1943 3289 2 50 50

Prostate_GE 102 5966 2 49 51
RELATHE 1427 4322 2 45 54
TOX_171 171 5748 4 23 26

USPS 9298 256 10 8 17
warpAR10P 130 2400 10 10 10
warpPIE10P 210 2420 10 10 10

Yale 165 1024 15 7 7
EOData 480,000 182 24 4 4

5. Results

5.1. Experimental Setup

To assess the quality of the selected feature subsets, a frontSurface metric was introduced to
measure the surface under the Pareto front produced by the resulting subsets. With the analogy
to the area under a curve (AUC), which is often used in the evaluation of classification methods, the
frontSurface measure can also be called the area under a front (AUF). The area under a front can be
interpreted as a measure of the efficiency of the feature selection algorithm. The surface is calculated
as a simple sum of the best scores for each number of features k. In order to simplify the presentation
and later evaluation, the surface is calculated only for a fixed maximum number of features K and
then normalized. This makes it easier to compare fronts of different sizes and keeps them resistant to
outliers with a large number of features. The measure is defined as

AUF :=
∑K

k=1 opt(k)
K

opt(k) := max
|ITEM|≤k

{item.result},

where opt(k) represents the item with the highest score on the Pareto front, with a size of, at most,
k (i.e., the best performing subset of features for a fixed number of features). In our case, the maximum
number of features K = 20 was selected because the selected feature subsets rarely have more than
20 features. Intuitively, the AUF measures the average of the best scoring items with a size of less
than K.

All experiments on benchmarking data sets were performed with the same setup. The data
for feature selection were first split into training and test subset (80:20) with stratified random split
(sklearn.model_selection.train_test_split with a random state 2020 was used). The selected
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algorithm was run on a training subset, where the accuracy score was calculated as the F1 score of
the resulting model on a test set. For the FS-SDS algorithm, which uses internal data set splitting, the
full data set was used. EO-data set was further split into two equal parts. The first part was used as
a test set in the evaluation phase. The second part was used in the later analysis of the algorithm’s
generalization in Section 6.2.

The resulting statistics were calculated using the best reported feature subset for a data set
and feature selection algorithm. To partially avoid possible feature selection bias [33] (test data set
is not separate from the data set used for feature selection), a set of 80:20 training/test balanced
splits were done using random seeds from 20 to 50. For wrapping algorithms (which typically use
a significant amount of time in the learning phase), it is often impossible to validate according the
nested cross-validation loop strategy.

The final results were obtained as the AUF of F1 score, produced by the models trained on training
data sets using the selected feature subset and evaluated on corresponding test subsets. The results are
used for comparative purposes between the different algorithms.

For FASTENER algorithm, the decision tree classifier provided by the scikit-learn library was
used as the base classification algorithm (using Gini index for measuring quality of a split and a
requirement of keeping, at a minimum, two examples in a split). A random mating pool of size 3
was selected and all item pairs were mated using information gain crossover. All items from the
Pareto front were also carried over onto the next generation and mutated along with the newly created
ones. For DT-forward, we used the same decision tree hyper parameters as with FASTENER. FS-SDS
uses Extreme Learning Machine (ELM) for classification. The latter was configured with 160 hidden
neurons and the sigmoid activation function.

5.2. Comparison with Similarity-Based Methods on EO Data

FASTENER results were compared with the results of the KBEST algorithm and the RELIEFF
algorithm. Although outdated, they are presented in the literature as the currently best-performing
methods in the field of land cover classification [22]. To no surprise, FASTENER achieves better results.
Similar to FASTENER, the best feature subset for a fixed number of features was represented as an
item in a Pareto front. The Pareto front visualization for reported optimal feature subsets is shown in
Figure 7. The optimal feature subsets reported by the FASTENER algorithm outperform KBEST and
RELIEFF. Since the tested implementation of RELIEFF uses Python’s native KD tree, only 20% of the
original training data was used to speed up the feature selection process in RELIEFF and compared
with the subset selected by FASTENER on the same reduced training data.
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Figure 7. Pareto front comparison.
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5.3. Detailed Comparison with Wrapper Methods for EO Validation

Due to the nature of the EO data set (high number of instances), the evaluation of DT-forward,
DT-backward, SVM-forward and SVM-backward [14] was not possible due to extremely long
computation times. Along with FASTENER and POSS, we were also able to test the EO data set
using FS-SDS [12]. The following evaluation presents a detailed comparison of POSS and FASTENER
algorithms, and FS-SDS results are given at the end of the subsection.

Figure 8 shows the progression of the Pareto front produced by POSS and FASTENER algorithms
with the same number of model evaluations. It can be clearly seen that the convergence speed of the
FASTENER algorithm outperforms the convergence speed of a comparable POSS implementation.
Further analysis shows that the FASTENER algorithm converges about three-times faster than the
POSS algorithm.
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(a) 100 model evaluations
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Figure 8. Comparison of the Pareto fronts produced by FASTENER and POSS algorithms after different
numbers of iterations.

Comparisons of Pareto AUF and AUF changes for POSS and FASTENER algorithms during the
first 800 iterations are shown in Figure 9. A quick visual comparison of the AUF graphs between
POSS and the FASTENER results shows that the surface with the FASTENER algorithm is on average
of 5% larger. The FASTENER AUF also exhibits much larger jumps. Larger jumps indicate a strong
improvement in the F1 score. This can either be a large improvement in the score for an existing k
number of features or a slightly smaller improvement in the score for many smaller feature sets that
dominate a large part of an existing Pareto front. Periodic larger jumps correspond to the invocation of
PURGEPARETOFRONT routine, which tries to improve the results with additional information gain.
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(a) Progression of AUF with FASTENER algorithm
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(b) Progression of AUF with POSS algorithm
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(c) AUF change with FASTENER algorithm
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(d) AUF change with POSS algorithm

Figure 9. The comparison of the Pareto fronts generated by FASTENER and POSS algorithms after
a different number of iterations. FASTENER exhibits better AUF scores and the discovery of several
jumps, indicating the discovery of a distinct new best combination of features.

Another useful tool in convergence analysis is to compare the change in AUF presented in
Figure 9c,d. The changes in the FASTENER algorithm are an indication of a higher convergence ratio.
The computational complexity of AUF is minimal (linear in the size of the front) and can be easily
computed while purging the Pareto front after each generation. The continuous calculation of the
AUF (and its change) can be used as a helpful marker to measure the course of convergence in several
of the above methods. In particular, the change in the area under a front can be used to modify the
probabilities in the crossover and mutate methods to control the feature space search.

Detailed analysis of wrapper methods tested on EO-data is presented in Table 2. All the tested
methods produce the area under a front with low variation, which can be attributed to a data set size.
It can clearly be seen that FASTENER outperforms both POSS and FS-SDS.

Table 2. Results of wrapper feature selection algorithms on EO data set. FASTENER yields the highest
average AUF and lowest number of model evaluations. Standard deviation of the AUF is small for all
methods. Best values accross different methods are bolded (in all tables).

Method avg. AUF sd eval_n

POSS 0.66 0.0008 1,000
FS-SDS 0.62 0.0008 120,000

FASTENER 0.71 0.0008 1,000
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5.4. Benchmark Data Set with Wrapper Methods

Along with FASTENER, forward decision tree selection method (DT-forward) [14] and FS-SDS
algorithm [12] were tested for comparison on an open feature selection data sets [6] used
for benchmarking.

Tables 3 and 4 present comparisons of the FS-SDS algorithm, FASTENER and forward selection
with decision tree (DT-forward). For each of the algorithms, 10 different data splits were used for
feature selection and each feature subset was tested on 30 different test/train data splits. FASTENER
was run with an exploration setting (larger generations) for 200 generations and the number of
evaluations is a lot higher than in the EO setting. Each resulting Pareto front was purged, since adding
more features might hurt performance on new data and the area under the Pareto front was calculated.
Tables 3 and 4 present mean, max, median and standard deviation of thus obtained surfaces under
Pareto fronts, along with the number of model evaluations.

Table 3. Mean, max, median value, standard deviation AUF and number of model evaluations.
FS-SDS uses 30,000 model evaluations per each k (whereas for FASTENER the number of iterations
produces the whole Pareto front) in the first iteration. Number of evaluations is reduced with the next
iterations and stays in the range between (10,000–30,000).

FS-SDS FASTENER
Data Set Mean Max Medi sd eval_n* Mean Max Medi sd eval_n

ALLAML 0.643 0.717 0.65 0.039 30,000 0.776 0.894 0.78 0.062 11,238
arcene 0.608 0.673 0.607 0.037 30,000 0.707 0.785 0.713 0.034 12,083

BASEHOCK 0.58 0.618 0.58 0.018 30,000 0.742 0.78 0.744 0.019 13,847
CLL_SUB_111 0.537 0.671 0.534 0.053 30,000 0.626 0.79 0.623 0.067 11,911

COIL20 0.655 0.673 0.657 0.01 30,000 0.687 0.714 0.687 0.012 14,214
colon 0.658 0.77 0.652 0.069 30,000 0.763 0.9 0.757 0.076 11,256
gisette 0.672 0.682 0.671 0.005 30,000 0.786 0.802 0.786 0.006 13,213

GLIOMA 0.549 0.687 0.561 0.067 30,000 0.618 0.827 0.617 0.095 11,674
GLI_85 0.659 0.746 0.665 0.063 30,000 0.755 0.894 0.77 0.065 11,238
Isolet 0.365 0.392 0.364 0.012 30,000 0.396 0.432 0.395 0.012 14,572

leukemia 0.62 0.77 0.618 0.06 30,000 0.824 0.9 0.833 0.057 11,248
lung 0.663 0.75 0.656 0.031 30,000 0.727 0.828 0.731 0.038 11,802

lung_discrete 0.533 0.666 0.532 0.068 30,000 0.511 0.716 0.516 0.086 11,753
lymphoma 0.539 0.619 0.548 0.058 30,000 0.59 0.757 0.58 0.07 11,719

nci9 0.331 0.513 0.311 0.097 30,000 0.405 0.61 0.406 0.088 12,081
ORL 0.347 0.395 0.351 0.029 30,000 0.39 0.488 0.389 0.04 13,540

orlraws10P 0.675 0.77 0.686 0.053 30,000 0.694 0.821 0.695 0.062 13,571
PCMAC 0.596 0.624 0.594 0.012 30,000 0.71 0.736 0.708 0.013 15,768

Prostate_GE 0.676 0.734 0.691 0.041 30,000 0.748 0.837 0.749 0.05 14,002
RELATHE 0.52 0.554 0.519 0.017 30,000 0.667 0.707 0.667 0.018 15,541
TOX_171 0.421 0.509 0.427 0.046 30,000 0.553 0.647 0.55 0.039 14,759

USPS 0.561 0.569 0.561 0.005 30,000 0.583 0.593 0.583 0.005 16,670
warpAR10P 0.502 0.588 0.525 0.052 30,000 0.523 0.672 0.518 0.065 13,840
warpPIE10P 0.582 0.646 0.589 0.037 30,000 0.633 0.741 0.634 0.041 13,630

Yale 0.38 0.454 0.376 0.035 30,000 0.436 0.594 0.438 0.052 15,307

Table 3 shows that FASTENER outperforms FS-SDS on almost all data sets, except on the
lung_discrete data set, where the mean and median AUF score are better with FS-SDS. Apart from
outperforming score-wise, FASTENER also produces results faster (with fewer model evaluations) due
to additional statistical data, while producing only marginal overhead due to initial entropy calculation.
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Table 4. Mean, max, median value, standard deviation of AUF and number of model evaluations.

DT Forward FASTENER
Data Set Mean Max Medi sd eval_n Mean Max Medi sd eval_n

ALLAML 0.826 0.893 0.833 0.044 106,830 0.776 0.894 0.78 0.062 11,238
arcene 0.659 0.76 0.665 0.054 149,895 0.707 0.785 0.713 0.034 12,083

BASEHOCK 0.753 0.781 0.751 0.015 72,825 0.742 0.78 0.744 0.019 13,847
CLL_SUB_111 0.54 0.655 0.54 0.049 169,995 0.626 0.79 0.623 0.067 11,911

COIL20 0.707 0.729 0.706 0.011 15,255 0.687 0.714 0.687 0.012 14,214
colon 0.751 0.888 0.745 0.066 29,895 0.763 0.9 0.757 0.076 11,256
gisette 0.8 0.815 0.799 0.007 74,895 0.786 0.802 0.786 0.006 13,213

GLIOMA 0.592 0.743 0.626 0.103 66,405 0.618 0.827 0.617 0.095 11,674
GLI_85 0.724 0.82 0.733 0.066 334,140 0.755 0.894 0.77 0.065 11,238
Isolet 0.409 0.445 0.408 0.014 9150 0.396 0.432 0.395 0.012 14,572

leukemia 0.866 0.9 0.873 0.03 105,945 0.824 0.9 0.833 0.057 11,248
lung 0.76 0.827 0.761 0.038 49,575 0.727 0.828 0.731 0.038 11,802

lung_discrete 0.526 0.689 0.532 0.08 4770 0.511 0.716 0.516 0.086 11,753
lymphoma 0.586 0.785 0.581 0.077 60,285 0.59 0.757 0.58 0.07 11,719

nci9 0.419 0.64 0.414 0.115 145,575 0.405 0.61 0.406 0.088 12,081
ORL 0.407 0.464 0.41 0.032 15,255 0.39 0.488 0.389 0.04 13,540

orlraws10P 0.76 0.835 0.765 0.055 154,455 0.694 0.821 0.695 0.062 13,571
PCMAC 0.722 0.75 0.721 0.013 49,230 0.71 0.736 0.708 0.013 15,768

Prostate_GE 0.787 0.851 0.793 0.041 89,385 0.748 0.837 0.749 0.05 14,002
RELATHE 0.684 0.724 0.681 0.016 64,725 0.667 0.707 0.667 0.018 15,541
TOX_171 0.469 0.536 0.466 0.035 86,115 0.553 0.647 0.55 0.039 14,759

USPS 0.564 0.574 0.565 0.005 3735 0.583 0.593 0.583 0.005 16,670
warpAR10P 0.533 0.659 0.527 0.06 35,895 0.523 0.672 0.518 0.065 13,840
warpPIE10P 0.669 0.753 0.676 0.033 36,195 0.633 0.741 0.634 0.041 13,630

Yale 0.407 0.505 0.406 0.048 15,255 0.436 0.594 0.438 0.052 15,307

Table 4 presents a comparison of features selected by FASTENER with features selected by
forward selection with decision tree (DT-forward). DT-forward works by successively adding the
best performing features, which can be suitable for small data sets, but the computational complexity
explodes, as the number of features increases. As can be seen from Table 4 that FASTENER outperforms
the DT-forward in a slightly less than half of the data sets. The difference between the maximum
in DT-forward selection and FASTENER data in most of other cases is a few percentage points.
The important improvement brought in by FASTENER is the efficiency of obtaining better (or
just marginally worse) AUF with a lot fewer evaluations in comparisons to the forward selection.
On average, the FASTENER uses between 2–5-times fewer model evaluations, depending on the
number of features in the data set, while obtaining comparable or sometimes even better results.
Additional insight presented by the experiment is the standard deviation when using different data
splits. Standard deviation in smaller data sets is larger than in EO-data set, and a bit larger than the
standard deviation using DT-forward since FASTENER includes additional random part during the
algorithm run, while forward feature selection is deterministic.

Another FASTENER strength compared to the FS-SDS or DT-forward is the non-parametricity
concerning the number of features. Both FS-SDS and DT-forward are rigid when selecting the feature
subset size and increasing (in the case of forward selection) or changing (FS-SDS) subset size is
computationally expensive. FASTENER automatically explores available search space unconstrained
by the number of features, but they can be additionally constrained when reporting the results.

6. Discussion

6.1. Comparisons with other Methods

FASTENER builds on the idea of having multiple non-optimal items simultaneously considered
for selection. The front in the main loop of the algorithm is a list of items for a fixed number of selected
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features. The additional parameter controls the size of the buckets, but initial testing concluded that
increasing the bucket size to more than 2 decreased the performance and a more elitist parent selection
(bucket sizes 1 and 2) was used. The exploration phase, where the population is allowed to deviate
from the currently optimal front and only the items in the currently selected population are used as
possible parents for a few rounds can be seen as a generalization of multiple fronts used in NSGA-II.
The front purging after a selected number of rounds (controlled by a parameter) then returns the front
to the current best and maintains an elitist gene selection.

Due to a large number of features and data points in the EO domain, smaller population sizes are
more suitable for feature selection. In this case, the increase in bucket sizes (and non-optimal fronts)
greatly increases the population size, which produces slower convergence as the elitism part does not
kick in quickly enough.

Another specific thing about feature selection is the fact that the feature subset size dimension is
discrete and mostly fully dense. Since the optimal sizes of subsets quickly converge even for a small
number of selected features, the clustering optimization performed by NSGAA-II and RPSGAe does
not improve the efficiency of convergence.

6.2. Generalization

An important aspect of feature subset optimization is further generalization to unseen data.
As mentioned at the beginning of this section, an additional part of the data was kept unseen to the
FASTENER algorithm during the phase of selecting the optimal subset of features. This hidden data
set was used to analyze the overfitting of the FASTENER algorithm to the combination of training/test
data. For each generation of the FASTENER algorithm, the features from the optimal items were used
as features to train the model using the training data. However, this time the models were evaluated
using the 10% of data not seen during FASTENER iterations. The overfitting was minimal and ranged
from 0.5 to approximately 0.3 percentage points compared to the results on the test data set reported
by the FASTENER algorithm. An important piece of information obtained from additional testing on
the unseen data was the fact that some items from the reported optimal Pareto fronts were strictly
dominated by feature subsets with fewer features. This was not surprising for subsets with a larger
number of features, as the Pareto front “levels off” after a larger number of features. Results of the
generalization analysis are presented in Figure 10.

The generalization on unseen data is quite good, which is at least partly due to a large data
set compared to the number of algorithm iterations. The algorithm did not converge to some local
optimum imposed by training data. Another way to analyze training performance on unseen data is
to check the difference between AUF values on the reported front and unseen data. The plot of the
AUF difference is shown in Figure 11. The difference levels off after approximately 60 iterations of the
algorithm and appears to be constant with some variation.
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(d) Pareto front after 2100 model evaluations

Figure 10. The generalization of results on unseen data presents small performance discrepancies
between test data and previously unseen data.
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Figure 11. Low AUF difference between the test and unseen data shows good generalization abilities
of the FASTENER algorithm.

Apart from the generalization, it is interesting to observe the statistics for selected items
and the statistics of individual genes during the execution of the algorithm. Figure 12 visualizes
optimal selected features after the termination of the FASTENER algorithm. The yellow squares
represent selected optimal features as genes. With y axis progression, new features are added.
Interestingly, the algorithm does not simply extend the feature sets of k for the higher k’s, but rather
examines previously excluded feature combinations that, with additional features, perform better.



Entropy 2020, 22, 1198 24 of 27

Figure 12. Visualization of optimal features for different feature subset sizes. The x axis represents the
feature index, while the y axis depicts the number of features k (increasing with each row). FASTENER
does not simply add new features as k is increased, but rather finds the best possible combination of
features that gives the best possible classification result for a given k.

Apart from selecting the optimal subsets, one should also look at the density of the different
features, as they were involved during the iterations. The diagrams in Figure 13 show the number
of evaluations of features during the run time of the algorithm. If the feature subset [1, 5, 7, 100] was
evaluated, each of the features shown is considered to be evaluated once. Figure 13a shows the number
of feature evaluations indexed by feature indices. The most evaluated feature is 0, since this was the
only item in the starting Pareto front for the algorithm. Looking at other features, there are some areas
of higher activity, but interestingly, while features between indices 50 and 75 seem to be fairly highly
valued, they are very rarely included in the final optimal Pareto fronts. It seems that they are favored
by heuristics. On the contrary, towards the end, features are fairly highly valued and are often present
in optimal subsets.
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Figure 13. Number of feature evaluations. Although some features are not represented in Figure 12,
they have often been evaluated by the algorithm.

7. Conclusions and Future Work

With the FASTENER algorithm, we have combined a wrapping methodology with
information-theoretical measures based on entropy. The resulting feature selection method has proven
to be very promising (superior in EO scenario), with its fast convergence (less learning iterations
needed) and better accuracy (higher F1 score and surface under the Pareto front) than the currently
tested methods in the field. In the EO literature, feature selection methodologies have not been
thoroughly explored and thus very basic algorithms, such as ReliefF and POSS have been reported
to give the best results so far. We have also repeated experiments using FS-SDS, which FASTENER
consistently outperformed. FASTENER was compared to FS-SDS and DT-forward algorithms on 25
open feature selection data sets, which are significantly different from the EO data set (a few instances
and a lot of features). In terms of accuracy, FASTENER is comparable with DT-forward but generally



Entropy 2020, 22, 1198 25 of 27

achieves the same result with far fewer evaluations. Although the method was originally developed
for applications within the EO scenarios, its usage in other domains seems promising. Any supervised
machine learning problem (classification or regression) that requires optimization of the accuracy
measure (either F1 score or RMSE) with respect to the number of used features would benefit from the
implementation of FASTENER.

Several aspects will be addressed in future work. Better theoretical justification of the algorithm
is needed as well as the analysis of its convergence and other relevant properties. Possibilities
of parallelization of FASTENER (similar as in [34] for POSS) should be examined to speed up
the convergence.

Finally, for EO or similar problems, where the calculation of features themselves is computationally
challenging, optimization of the final time of the learning process (including feature engineering and
data acquisition) need to be performed.
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ARVI Atmoshperically adjusted vegetation index
ASTFS Automatic spectro-temporal feature selection
AUF Area Under (Pareto) Front
DT Decision Tree
EO Earth Observation
ESA European Space Agency
EVI Enhanced Vegetation Index
FASTENER Feature Selection Enabled by Entropy
LDA Latent Dirichlet Allocation
LPIS Land Parcel Identification System
NIR Near Infra Red
NDVI Normalized differential vegetation index
NDWI Normalized differential water index
NLPCA Non-linear Principal Components Analysis
PB Petabyte
PCA Principal Components Analysis
POSS Pareto Optimization for Subset Selection
PPOSS Parallel Pareto Optimization for Subset Selection
SAVI Soil-adjusted Vegetation Index
FS-SDS Feature Selection using Stohastic Diffucion Search
SIPI Structure Insensitive Pigment Index
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