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ABSTRACT The designers’ tendency to adhere to a specific mental set and heavy emotional investment in
their initial ideas often limit their ability to innovate during the design ideation process. The shrinking time-
to-market and the growing diversity of users’ needs further exacerbate this gap. Recent advances in deep
generative models have created new possibilities to overcome the cognitive obstacles of designers through
automated generation or editing of design concepts. This paper explores the capabilities of generative
adversarial networks (GAN) for automated, attribute-aware generative design of the visual attributes of
a product. Specifically, a design attribute GAN (DA-GAN) model is developed for automated generation of
fashion product images with the desired visual attributes. Experiments on a large fashion dataset signify the
potentials of GAN for attribute-aware generative design, verify the ability of editing attributes with relatively
higher accuracy and uncover several key challenges and research questions for future work.

INDEX TERMS Design automation; Generative modeling; Conceptual design and ideation

I. INTRODUCTION

The rapid development of artificial intelligence (AI) and
automation technologies in recent years has created unprece-
dented, transformative capabilities for product design. Al-
though human involvement is still an indispensable element
of the creative design process, the shrinking product life
cycles and the growing needs for massive design idea gen-
eration/exploration [1] and avoiding fixation on few ideas [2]
inevitably demand augmented human performance through
design automation. Technology-driven innovation using AI
and machine learning has become an essential success factor
for product design firms in the 21st century. In the fashion
industry, for example, McKinsey & Company reports that
over 140% of the global fashion industry profit is generated
by the leading 20% of the fashion brands [3]. As a result,
significant recent progress has been made in adopting AI and
machine learning techniques for augmented and personalized
design.

Deep generative models have been recently adopted for
design automation with the goal of improving the perfor-
mance of the design team through co-creation with AI [4].
In the fashion industry, deep generative design has recently
received significant attention in view of the rapidly grow-
ing global need for mass-personalization and “fast-fashion”.
Recent applications of AI for design automation range from
style matching [5]–[7] to trend forecasting [8], interactive

search [9], [10], style recommendation [11], [12], virtual
try-on apps [13], and clothing type and style classification
[14], [15]. The vision of AI and machine learning research
in the fashion industry is to directly influence and enhance
the purchasing behavior of customers, the garment design
thinking and ideation processes, the user-centered design
and mass-personalization knowledge, and the ability of the
fashion industry to adapt their product development strategies
accordingly [16].

This article investigates how generative adversarial net-
works (GAN) [17] can enable automated attribute-level edit-
ing of past successful designs to inform new product design
and development processes. Attribute editing with GAN in-
volves making translations/adjustments to images based on
the target attributes to generate a new sample with desired
attributes while preserving other details of the original image.
Current GAN-based attribute editing research is predomi-
nantly centered on human face images [18]–[20]. The facial
attribute editing task allows to edit a face image by manip-
ulating one or multiple attributes of interest such as hair
color, expression, mustache, and age [21], [22]. The attribute
editing can play significant role in the new product ideation
and design process. For fashion products, the analogous
visual attributes of interest may include style type, sleeve
length, color, and pattern, among others. The ability to ma-
nipulate the attributes of a prior design is particularly useful
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in situations where customers are not satisfied with certain
attributes or would like to explore various combinations of
them [15].

Conditional GAN (cGAN) [23] is an extension of the
original GAN formulation [17] which allows to generate
samples conditioned on user-defined attributes that control
the generative process. Among the variety of conditional
GAN models proposed to date [24]–[26], attribute GAN
(AttGAN) [27] has proven effective in generating realistic
edited images with desired attributes on human face data.
AttGAN can generate visually-appealing results with fine
facial details in comparison with the state-of-the-art GAN
models.

This article develops and tests a design-attribute GAN
(DA-GAN) model to enable attribute-level editing of past,
successful fashion product designs while preserving other
visual aspects and attributes. The motivation behind this work
is that although AttGAN has demonstrated great performance
in facial attribute editing, there is no proof or indication that
it can be directly applied for attribute-level editing of fashion
data such as garment images with acceptable performance.

This article contributes to the current knowledge of gener-
ative design with GAN in two ways, as follows:

1) Preliminary experiments are conducted on a large fash-
ion dataset consisting of 13,221 garment images along
with 22 attribute values, which show that the great
performance of AttGAN [27] on the human face editing
task cannot be achieved on the fashion editing task. This
finding indicates that AttGAN is not a “one-size-fits-
all” attribute editing GAN model and is indeed sensitive
to the task. This article hypothesizes the underlying
reason to stem from the relative size of editing which,
unlike human faces, corresponds to a large area of a
garment image (e.g., entire sleeve or collar), and thus
conducts an analytical assessment to investigate the poor
performance of AttGAN on the fashion datasets under
study.

2) A novel DA-GAN formulation is then proposed which is
proven to address the identified limitations of AttGAN.
The DA-GAN model is tested on the same fashion
dataset, for editing the images with respect to five
desired attributes including “vest”, “polo”, “hoodie”,
“blouse” and “T-shirt” (e.g., selecting the attribute
“vest” is desired to turn any type of shirt into a vest). Nu-
merical experiments indicate significant improvement in
successful editing of different attributes such as sleeve
length, color, pattern and clothes type, while preserving
the remainder of the original garment image.

The remainder of this article is organized as follows.
Section II provides an overview of the related work, specif-
ically attribute-aware GAN. Section III presents the DA-
GAN methodology and propositions. Section IV presents the
experimental results and analyses. Section V discusses the
capabilities and limitations of GAN for attribute-aware gen-
erative design, and provides directions for future research.

II. RELATED WORK
This section provides a brief overview of GAN and its several
extensions for attribute-aware image generation.

A. GENERATIVE ADVERSARIAL NETWORKS
Since its introduction in 2014, GAN [17] continues to attract
growing interests in the deep learning community and has
been applied to various domains such as computer vision
[28]–[33], natural language processing [34], [35], time series
synthesis [36], [37], and semantic segmentation [38], [39].
Specifically, GAN has shown significant recent success in
the field of computer vision on a variety of tasks such as
image generation [28], [29], image to image translation [30],
[31], and image super-resolution [32], [33]. The standard
GAN structure comprises two neural networks: a generator
G and a discriminator D which are iteratively trained by
competing against each other in a minimax game, where
the generator attempts to produce realistic samples while
the discriminator attempts to distinguish the fake samples
from the real ones. The parameters of both networks are
updated through backpropagation with the following learning
objective:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

(1)
where z is a random or encoded vector, pdata is the empirical
distribution of training images, and pz is the prior distribution
of z (e.g., normal distribution).

In the standard GAN model, there is no control over the
modes of the data being generated. In cGAN [23], however,
the generative process is conditioned to generate images
based on a user-defined vector of features. The generator
learns to generate a fake sample with a specific condition or
characteristics rather than a generic sample from unknown
noise distribution. The learning objective of cGAN is as
follow:

min
G

max
D

Ex,y∼pdata [logD(x,b)]+

Ez∼pz,b∼pb
[log (1−D (G (z,b) ,b))] ,

(2)

where b is the extra information (e.g., class labels, attribute
information) for a given real sample x as input. cGAN allows
to generate samples to be controlled by using the constrained
variation b.

In cGAN, the generation of samples can be conditioned
on class information [40], text description [24], [41], audio
[42], [43], skeleton [44], [45], and attributes [46]. Using an
encoder-decoder architecture, the conditions can be applied
to conduct domain changes on images such as image editing
[47], image segmentation [48] and image inpainting [49].
In the context of fashion design applications, researchers
have applied GANs for a variety of applications such as:
(1) textures filling [50] which allows users to try texture
patches on a sketch to control the desired output texture, (2)
texture transferring [51] where given a basic clothing image
and a fashion style image, they generate a clothing image
with the certain style in real time, (3) virtual try-on [15]
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aimed at creating new clothing on a human body based on
textual descriptions, (4) interactive image editing [52] where
users can guide an agent to edit images via multi-turn via
conversational language, (5) fashion recommendation [53] in
which the model can be used for personalized design rec-
ommendation, and (6) clothes matching [54] where a multi-
discriminator cGAN generates collocations of clothing pairs
supervised by semantic attributes and implements clothing
image translation between the specific domains based on an
attribute-matching.

B. ATTRIBUTE-AWARE GAN
The introduction of GAN has created unprecedented capa-
bilities for automated image generation and editing tasks. In
the cGAN space, recent studies have focused on generating
images from images [55], from text (e.g., captions) [24],
[56], from long-paragraphs [57]), and from attributes [58].
Generating images from attributes, also known as attribute-
aware image generation, is an important learning task that can
automatically change various aspects of images with minimal
human intervention. In this case, visual attribute vectors are
regarded as the conditional information and embedded into
both the generator and discriminator, encouraging synthe-
sized images to be faithful to the visual attributes of the
corresponding inputs [59], [60].

Among various attribute-aware image generation tasks,
facial attribute editing has been widely studied due to the de-
tailed description of human faces. IcGAN [25] introduces an
encoder to cGANs forming an invertible conditional GANs
(IcGAN) for facial attribute editing. IcGAN can modify
real images of faces conditioned on arbitrary attributes by
mapping a real image into a latent representation and an
attribute vector. ResGAN [46] learns the corresponding resid-
ual image defined as the difference between images before
and after the manipulation. The residual images are then
added to the input images as the final outputs. In this way,
the manipulation can be operated efficiently with modest
pixel modification. SaGAN [61] introduces a spatial attention
mechanism which ensures the manipulation of attributes only
within attribute-specific regions while keeping the rest of
irrelevant regions unchanged.

A major limitation of conventional cGAN is that the user-
defined attributes/labels affect the editing of the entire image
including the parts unrelated to the desired attributes/labels.
Attribute GAN (AttGAN) [27] proposes an effective frame-
work comprising an attribute classification loss, a reconstruc-
tion learning loss, and an adversarial learning loss, which is
capable of editing specific facial attributes while preserving
other “attribute-excluding” details of the original image. Eq.
3 presents the learning objective of the AttGAN generator
and Eq. 4 presents the learning objective of the AttGAN
discriminator and classifier:

min
Genc,Gdec

Lenc,dec = λ1Lrec + λ2Lclsg + Ladvg , (3)

min
D,C
Ldis,cls = λ3Lclsc + Ladvd , (4)

where Lrec is the reconstruction loss for satisfactory preser-
vation of attribute-excluding details, Lcls is the classification
constraint to guarantee the correct editing of the desired
attributes, and Ladv is the adversarial learning employed for
visually realistic editing. λ1, λ2 and λ3 are hyperparameters
that control the importance of different terms and are tuned
experimentally.

The majority of the attribute-aware image generation
methods summarized above have been designed around facial
attribute editing without any indication or proof of their
applicability to other domains such as fashion product de-
sign. Fashion-AttGAN [62] introduces an attribute-aware
fashion editing model based on AttGAN model. However,
their attributes are limited to the color and sleeve length. To
express the practicability and wide applicability of generative
model on product design domain, the proposed DA-GAN
(Design-Attribute GAN) builds upon AttGAN [27] with a
new loss function formulation and by utilizing a different
discriminator loss based on DCGAN [63]. The development
of the DA-GAN is motivated by preliminary experiments
that show AttGAN is not directly applicable for attribute-
aware editing of garment images. The following section first
conducts an analytical assessment of the AttGAN model to
mathematically illustrate and prove the underlying reasons
behind its poor performance on fashion datasets in the form
of two propositions. A new formulation, DA-GAN, is then
proposed to address those limitations accordingly.

III. METHODOLOGY
This section proposes a new model, DA-GAN, informed by
an analytical assessment of the poor performance of AttGAN
on fashion product images. AttGAN has shown great perfor-
mance on facial image editing with binary attributes (e.g.,
{mustache, no-mustache}) and is used as our baseline model.
A schematic of the proposed DA-GAN model is shown in
Figure 1. Inspired by AttGAN’s success in human facial
attribute editing, the authors first attempted to utilize the
original AttGAN model for attribute-level editing of fashion
product images. The preliminary observations showed that
AttGAN model does not perform as expected on fashion
data such as garment images. Specifically, the observation
was that although AttGAN can reconstruct original fashion
images, it is unable to generate new clear images with the
desired attributes modified. The underlying reasons behind
such poor performance on fashion data are elaborated and
addressed next.

A. CLASSIFICATION-RECONSTRUCTION CONFLICT
To understand the reasons behind the poor performance of
AttGAN of fashion data, an analytical assessment of the
algorithmic aspects of AttGAN is conducted in this section.
In Eq. (3), Lclsg is the attribute classification loss, employed
to guide the generative process to learn and edit the desired
attributes. The reconstruction loss Lrec, on the other hand,
is intended to enable the decoder to reconstruct the original
input images so that the generated samples can preserve the
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Figure 1: Overview of the proposed DA-GAN model for attribute-aware generative design (adapted from [27]).

attributes-excluding details. In the original AttGAN model,
these two loss functions are both trained on the generator
function. The problem associated with the poor performance
of AttGAN on fashion data stems from an inherent conflict
between these two loss functions.

The classification loss requires the generator to distinguish
the desired attributes b from the original images xa, by
minimizing the summation of the binary cross entropy of the
desired attributes and input images as follows:

min
Genc,Gdec

Lclsg = Exa∼pdata,b∼pattr
[`g (x

a,b)] , (5)

`g (x
a,b) =

∑n
i=1 − bi logCi(x

b̂)− (1− bi) log(1− Ci(x
b̂)),
(6)

where xb̂ is the edited image expected to change the at-
tributes of xa with respect to attributes b. This is achieved
by decoding latent representation z conditioned on attributes
b: xb̂ = Gdec(z,b), where z is encoded from image
xa with n binary attributes a and is calculated as z =

Genc (x
a). The generated image is thus formulated as xb̂ =

Gdec(Genc (x
a) ,b).

The reconstruction loss, on the other hand, requires the
generator to preserve original images as much as possible.
This is accomplished by minimizing the Manhattan distance
of the original attributes and the original images, as follows:

min
Genc,Gdec

Lrec = Exa∼pdata

[∥∥xa − xâ
∥∥
1

]
, (7)

where xâ = Gdec(Genc (x
a) ,a). The reconstruction loss

enables the decoder to restore the original images condi-
tioned on its own attributes a from z. Hence, the generator
receives two tasks with exact opposite requirements during
the training process, and the difficulty of achieving proper
balance between these two conflicting tasks leads to poor per-
formance in certain occasions, as elaborated in the following
proposition.

Proposition 1. The classification loss Lclsg and the recon-
struction loss Lrec are two conflicting objective functions
assigned to the generator: Lclsg = −αLrec, where α is a
positive constant.

Proof. The conflict stems from the assignment of both the
classification loss and the reconstruction loss to the generator.
The former requires the generator to generate new images
with the maximum possible “distinction” from the original
images while the latter requires the generator to generate
new images with the maximum possible “similarity” to the
original images. That is, for each input image xâ, the recon-
struction loss (the first term in Eq. 3) attempts to reconstruct
the image by decoding xâ = Gdec(Genc (x

a) ,a) from xa

with respect to binary attributes a. The classification loss (the
second term in Eq. 3), on the other hand, attempts to decode
a sample xb̂ = Gdec(Genc (x

a) ,b) from xa with respect to
binary attributes b. Yet, due to the binary nature of attribute
vectors, certain elements of a and b are exactly the opposite
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of each other. This, in turn, leads to a conflict between the
the classification loss and the reconstruction loss in the form
of Lclsg = −αLrec. For example, a may contain an attribute
of “short sleeve” while b may contain an attribute of “long
sleeve” (e.g., a = [0, 1, ..., 0, ...], b = [0, 1, ..., 1, ...]). In
this case, the decoder (generator) faces a conflicting task
of generating an image which simultaneously satisfies the
requirements for both “long sleeve” and “short sleeve”. �

B. ATTRIBUTE-SIZE TO IMAGE-SIZE RATIO
The classification loss (Eq. 5) requires the generator to
guarantee the correct transformation of the desired attributes
in the generated image by minimizing the cross entropy
of the original image xa and the desired attributes b. Our
observation was that the relative sizes of attributes in b to
the image size vary significantly. For example, the sizes of
facial attributes attributes (e.g., {eyeglasses, no eyeglasses},
{mouth open, mouth closed}) are usually small, relative to
the size of facial images, and the generated images with
desired attributes have a high degree of similarity to the
original ones. Smaller attribute-size to image-size ratios help
the reconstruction loss achieve more desirable performance
with less conflict with the classification loss. As the ratio of
attribute size to image size increases (e.g., turn a “hoodie”
into a “vest”), however, the fake image generated by the
generator would require more significant distinction from
the original image. In this case, the generator would need
more flexibility to edit the image and the reconstruction
loss would be more difficult to minimize for attribute-aware
image generation tasks with relatively higher attribute-size to
image-size ratios. This property is elaborated in the following
proposition.

Proposition 2. The reconstruction loss Lrec is directly pro-
portional to the attribute-size to image-size ratio.

Proof. The proof is based on the idea of “image masking”
from computer graphics. A masked image is simply an image
where some of the pixel values are zeroed. The pixels with
zero values are set to the background while the remaining,
non-zero pixels are considered as the new actual image. Let
s be a binary image masking vector, where each element
corresponds to one pixel in the image. Let also the non-zero
values of s represent the desired attribute to be edited in any
arbitrary attribute-aware image generation task. An original
image xa can be represented as:

xa = s ◦ xa + (1− s) ◦ xa. (8)

The reconstruction loss function (Eq. 7) can therefore be
reformulated as:

Lrec =
∑

(s ◦ ‖xa − xâ‖1). (9)

Assuming the dataset to be sufficiently large, ‖xa−xâ‖1 can
be estimated by the mean distance between the pixel values
of original images and new samples m. Thus, Eq. 9 can be
recast as follows:

Lrec = 1>s ◦m. (10)

Accordingly, it can be argued that Lrec ∝ 1>s, where 1>s
is an indicator of the attribute-size to image-size ratio. �

Algorithm 1 DA-GAN.

1: Input: images X, attributes A, number of steps N
2: for step← 0 to N do
3: Sample batch xa ∈ X, a ∈ A; randomly generate b
4: for inner step← 0 to 5 do
5: Minimize Eq. 4
6: end for
7: Minimize Eq. 11
8: Minimize Eq. 12
9: end for

10: Output: Genc and Gdec

C. REFORMULATION OF LOSS FUNCTIONS
The aforementioned limitations of the original AttGAN
model associated with the conflict between the classifica-
tion and reconstruction loss functions (Section III-A) and
sensitivity to the attribute-size to image-size ratio (Section
III-B) are addressed by the proposed DA-GAN formulation.
The proposed new formulation is primarily centered on the
loss functions to enable more flexibility for the generator to
generate images with larger attribute-size to image-size ratios
while alleviating the conflict between the classification loss
and the reconstruction loss. Accordingly, Eq. 3 is reformu-
lated as follows:

min
Genc,Gdec

Lenc,dec = λ1Lrec + Ladvg , (11)

min
Genc,Gdec

Lenc,dec = λ2Lclsg . (12)

The training procedure for the DA-GAN model is elabo-
rated in Algorithm 1. It is worth noting that this new for-
mulation is partially achieved through experimenting on the
loss function formulations, where the reconstruction loss, the
classification loss, and the adversarial loss were trained on
the same function or independently. Our empirical analyses
concluded that that breaking the classification loss out of the
generator function leads to significant improvements in the
quality of the generated images, notwithstanding the afore-
mentioned challenges. Nevertheless, the DA-GAN model is
still in at a preliminary stage and requires further develop-
ment, as discussed next.

IV. EXPERIMENTS
This section presents the numerical experiments conducted
on two large datasets to assess and validate the performance
of DA-GAN against AttGAN as baseline.

A. DATASETS AND IMPLEMENTATION DETAILS
Two datasets that are rich in terms of both the number of
images and the variety of attributes are used for conducting
the experiments:
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1) Fashion dataset. The AttGAN and DA-GAN model
are tested on a fashion dataset, which contains 13221
images with the annotation of 22 binary attributes (i.e.,
with/without). Attributes with high frequency are cho-
sen in all our experiments, including “vest”, “polo”,
“stripe”, “short sleeve”, “long sleeve”, “red”, “yellow”,
“blue”, “purple”, “black”, and “white”.

2) Human face dataset. CelebA [64] is a large dataset
containing more than two hundred thousand images
and 40 binary binary attributes for each image (i.e.,
with/without). Eight attributes are chosen for our ex-
periments, including “bald”, “bangs”, “black hair”,
“blond hair”, “brown hair”, “bushy eyebrows”, and
“eyeglasses”.

The datasets are separated into training, test, and validation
subsets. The experiments are conducted on TensorFlow, built
upon an open-source code by [27]. The model is trained by
Adam optimizer with the batch size of 32 and the learning
rate of 0.0002.

B. RESULTS AND ANALYSES
In this section, AttGAN and DA-GAN are implemented on
both datasets, and their performances are compared in terms
of loss and quality of the generated images. Sensitivity anal-
yses are also conducted on the parameters of both models.

a: AttGAN on Face and Fashion Images
The AttGAN model is implemented on the CelebA dataset
and the fashion dataset for attribute-aware image generation
with binary attributes, as shown in Figure 3. In spite of its
great performance on all facial attribute editing tasks, our
experiments show that AttGAN performs very poorly on
garment images. The model does not preserve any garment
patterns and is not even able to properly edit the images.
The reason behind such poor performance by AttGAN on
the fashion dataset is that the classification learning task is
negatively influenced by the reconstruction learning task in
the original AttGAN formulation. The encoder forces the
reconstruction loss to be as small as possible, which in turn
significantly limits the ability of the generator network to
generate images with the desirable attributes edited. This is
in part due to the inherent conflict between the classifica-
tion loss and the reconstruction loss, and also because the
attribute-size to image-size ratios are higher in the fashion
images relative to the face images.

b: DA-GAN on Face and Fashion Images
To address the issues above, DA-GAN is implemented, where
the classification loss is trained as an independent objective
function to enhance the ability of the generator for attribute
editing. As shown in Figure 2, DA-GAN significantly out-
performs AttGAN on the fashion dataset in learning multiple
attributes and changing the type of garment to “vest” or
“polo”. However, it demonstrates worse performance than
AttGAN on the face dataset—although attributes such as

Losses CelebA Dataset Fashion Dataset
AttGAN DA-GAN AttGAN DA-GAN

Reconstruction loss 0.039 0.182 0.050 0.135
Classification loss 0.070 0.182 0.218 0.042

Table 1: The reconstruction and classification losses of DA-
GAN and AttGAN.

“bold” or “eyeglasses” can be preserved by the DA-GAN
model, its generated face images are too fake. In DA-GAN,
the classification loss Lclsg is trained independently without
any restrictions from the reconstruction loss and adversarial
loss in the minimax game. This provides the model with
more flexibility to generate good-quality, “fake” samples.
This is necessary for the fashion attribute editing task because
unlike the facial attributes, the attributes of garment products
typically account for a relatively larger area of the image.
This way, the generative model would have to generate more
“wild” samples to incorporate the edited attributes in the
original images. Facial attributes (e.g., “eyeglasses”, “bang”),
on the other hand, have smaller attribute-size to image-size
ratios, and thus the model not only needs to generate a
new face with the desired attributes but also preserve more
attribute-excluding details compared to garment images. This
explains why AttGAN performs better than DA-GAN on the
face dataset but worse on the fashion dataset.

c: Quantitative Analysis

From the visual analysis of , it is evident that part of the
reason for the opposite performances of AttGAN and DA-
GAN is that the attribute-size to image-size ratios are higher
in the fashion images relative to the face images. This
section conducts a quantitative analysis of the loss values
to shed more light on this observation. The classification
and reconstruction loss values are presented in Table 1. The
losses are recorded after the convergence of the models. It is
observed that AttGAN can generate clear face samples with
the desired attributes successfully edited. The reconstruction
loss of AttGAN is smaller than its classification loss. DA-
GAN, on the other hand, show worse performance on the face
dataset with relatively larger reconstruction loss.

The authors propose that the generator of AttGAN merely
yields great performance in terms of reconstruction, and has
limited flexibility to generate good-quality fake images with
significant distinction from the original images. Experiments
on the fashion dataset show that the DA-GAN model with
better classification loss can generate good quality samples
that are considerably different from the original images.
On the fashion dataset, the reconstruction loss of AttGAN
becomes too large because of the relatively higher attribute-
size to image-size ratios, and thus it is unable to successfully
carry out the attribute-aware image generation task on the
garment images. The results tell us that GAN models are
not necessarily directly transferable across different domains,
and a state-of-the-art model such as AttGAN may perform
very poorly on a similar task from a different domain.
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Figure 2: DA-GAN for attribute-aware image generation: face (left) vs. fashion (right).

Figure 3: AttGAN for attribute-aware image generation: face (left) vs. fashion (right).

d: Sensitivity Analysis

Informed by the previous AttGAN work [27], λ2 is set to
10 in the experiments of implementing AttGAN on the face
dataset. The goal of our sensitivity analysis is to to observe
the model performance in terms of reconstruction loss and
classification loss with different value of λ1, because these
two terms show high fluctuations during the training process
and significantly impact the model performance. λ2 is set to 3
in the experiments of implementing DA-GAN on the fashion
dataset. The best empirical value of λ1 is 100, as shown in
Table 2. It is observed that the reconstruction loss decreases
as λ1 grows, and that the classification loss increases slightly.
However, the classification loss has tremendous increase
when the weight equal to 500. In order to keep the balance
between the two loss terms, the best empirical value for both
λ2 and λ3 is 100.

Models λ1 Reconstruction Loss Classification Loss

AttGAN
λ2 =10

500 0.027 0.275
100 0.039 0.071
50 0.116 0.032
10 0.237 0.017
5 0.506 0.011

DA-GAN
λ2 = 3

500 0.129 0.186
100 0.135 0.042
50 0.174 0.038
10 0.309 0.025
5 0.421 0.018

Table 2: The reconstruction loss and the classification loss
with different λ1 values.

e: Extended Attributes & Effects of Dataset Imbalance

Figure 4 shows the performance of the DA-GAN model
on the attribute-editing task with eleven distinct attributes,
including garment type (“vest”, “polo”), garment pattern
(“slim horizontal stripes”), length of sleeves (“short sleeves”,
“long sleeves”), and multiple colors (“red”, “yellow”, “blue”,
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“purple”, “black”, “white”). As shown, the model can suc-
cessfully generate new images with the desired colors and
patterns, and change the length of sleeves. However, it is not
able to learn the latent pattern associated with the attribute
“polo”.

To solve this problem, another experiment is conducted
on a narrowed dataset. The original dataset has over 12,000
images; however, unlike sleeve length and color that are
the indispensable attributes of any garment type, attributes
such as “polo” are relatively rare and thus cause the data
to be imbalanced. Hence, 5,782 images with attributes of
clothe type category (e.g., vest, polo, blouse, t-shirt, hoodie,
one-piece dress) are selected from the original dataset. The
DA-GAN model is then retrained on this narrowed dataset
to generate samples with the desired attributes “vest” and
“polo”. Results show that the DA-GAN model yields better
performance on the narrowed dataset (Figure 5, right) than
it does on the original dataset (Figure 5, left). With the
narrowed dataset where each image is guaranteed to contain
clothes type attributes, the model is more likely to capture
these attributes and edit accordingly. This is further proof to
the fact that training a cGAN model is highly sensitive to the
balance of different attributes in the dataset. The imbalanced
distribution of attributes hinders the ability of the model to
learn the attributes with low frequency in the dataset.

C. PERFORMANCE ASSESSMENT
Attribute-aware generative models must have ability to edit
the desired attributes with high accuracy and generate clear
images with attribute-excluding features preserved. This sec-
tion presents the results of a quantitative performance as-
sessment of DA-GAN compared to AttGAN and Fashion-
AttGAN as baseline models. An attribute classifier is trained
on fashion dataset for attributes classification with cross-
entropy loss. All three models are tested using this classifier,
which examines whether the model has accurately edited
the desired attributes and preserved the rest of them. The
accuracy of each model is calculated as the ratio of all
successful cases to all test samples.

The test dataset used for assessment contains 782 im-
ages. Eleven attributes are selected to be tested, including
“vest”,“polo”, “stripe”, “short sleeve”, “long Sleeve”, “red”,
“yellow”, “blue”, “purple”, “black”, and “white”. The clas-
sification accuracy results with respect to different attribute
types are illustrated in Figure 6. Results show that DA-GAN
achieves an accuracy of 63% on “vest”, 53% on “polo”, and
69% on “Stripe”, which are almost 2-5 times higher than the
accuracy of Fashion-AttGAN and 6 times higher than the ac-
curacy of AttGAN. Further, Fashion-AttGAN shows slightly
higher accuracy than DA-GAN on sleeve length editing; yet,
both significantly outperform AttGAN on this attribute type
with around 70% accuracy compared to AttGAN’s accuracy
of 22%-30%. In terms of color editing, all three models
are able to successfully perform various colors editing with
relatively high accuracy, ranging from 80% to 95%.

To sum up, DA-GAN is proven to have the ability to edit

all attributes with relatively higher accuracy on garment data.
Although DA-GAN and Fashion-AttGAN perform compa-
rably on short/long sleeve editing, DA-GAN yields higher
accuracy on attributes “vest”, “polo” and “slim horizontal
stripes”. AttGAN [27] is proven a successful model for
editing facial images with respect to attributes such as “bald”,
“eyeglass”, and “mustache”. Those attributes constitutes a
small area of the image and AttGAN has capability to
generate new edited images while preserving the attribute-
excluding parts of the image. Since the attributes of garment
images typically constitute a large area of the image, the
original AttGAN model loses the balance between generat-
ing new attributes and preserving other parts of the image,
leading to poor performance on garment dataset. The perfor-
mance assessment results verify the ability of DA-GAN in
editing attributes of images with high attribute-size to image-
size ratios.

V. CONCLUDING REMARKS AND FUTURE WORK
This paper proposes the DA-GAN model for attribute-aware
generative design of fashion products. The DA-GAN model
has the ability to automatically edit garment images condi-
tioned on certain user-defined, visual attributes. The perfor-
mance of the generative model is experimented and tested on
two large datasets, against the AttGAN model as a baseline.
Two propositions are presented to assess and alleviate the
limitations of the original AttGAN model associated with the
conflict between classification learning and reconstruction
learning, and the sensitivity of the model to the attribute-
size to image-size ratios. A new formulation is then pro-
posed, which is proven to be capable of addressing the
aforementioned limitations of AttGAN. The performance
assessment results verify the ability of the proposed DA-
GAN in accomplishing attribute-aware image editing tasks
with high accuracy, especially in tasks with high attribute-
size to image-size ratios.

Despite the high attributes editing accuracy, the DA-GAN
model yields a relatively high average preservation error of
other attributes; a key issue which must be addressed in
future research. Further development of the proposed DA-
GAN model is indeed needed to generate images with higher
resolution, improve the stability of the DA-GAN model,
and broaden the scope of the proposed methodology beyond
visual/image-based generative design. Evaluation of GAN’s
performance and human involvement in machine-based de-
sign procedure will also be important areas to explore. In
view of these research opportunities and the pressing need for
enabling efficient and scalable solutions for attribute-aware
generative design, the authors recommend the following crit-
ical research thrusts for future work.

a: Domain-Transferability of DA-GAN
An important observation through our experiments was that
GAN models are generally sensitive to the problem domains
and therefore need careful revision and hand-engineering
of the algorithms based on the dataset and the target task.
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Figure 4: DA-GAN on an extended set of fashion attributes.

Figure 5: DA-GAN trained on the entire dataset (left) and
narrowed dataset (right).

GAN is not a generic, domain-agnostic deep learning tech-
nique to be directly utilized in industrial applications such
as generative design. As illustrated in the experiments, al-
though AttGAN performs exceptionally well on the facial
attribute editing task, it fails to carry out the same task on

Figure 6: Attribute editing accuracy comparison among DA-
GAN, Fashion-AttGAN [62], and AttGAN [27].

a different dataset from the fashion domain. On the other
hand, the proposed DA-GAN model is capable of generating
good-quality fashion images with edited attributes, but acts
poorly on the face dataset. Further, the model parameters
of GAN need to be set up and tuned empirically, based on
the outcomes of the training process. Tuning the parameters
manually is a tedious way to improve model performance
and effectiveness, and increases the complexity and cost
of deployment and implementation in practical applications
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such as generative design. The “black box” nature of GAN
makes the process of discovering overfitting and other kinds
of network architecting and training failures even more cum-
bersome. Future research must address these challenges to
enable GAN-based generative design methods and tools that
are scalable and transferable across different domains with
minimal modeling and implementation efforts.

b: Sample Efficiency of DA-GAN
CelebA [64] is a large-scale face attributes dataset with more
than 200K celebrity images, each with 40 attribute annota-
tions. The images in this dataset cover large pose variations
and background clutters. Unlike the face dataset that contains
large diversities, large quantities, and rich annotations, it is
hard to collect a similar large dataset with high-resolution and
annotations in the fashion industry domain. In this work, only
13k images were used to train the GAN models. It is widely
known in the field of deep learning [65] that small training
data is likely to cause overfitting. Further, finding clean data
with large quantities and high quality is another challenge
in different generative design domains. Data imbalance is
yet another problem. In experiments of DA-GAN, images
with labels of garment types such as “polo” and “hoodie”
are remarkably less frequent than labels like “color” and
“sleeve length”. Thus, the model is likely to have limited
ability to capture type related attributes because the data is
insufficient and imbalanced. Those attributes would not be
identified, generalization would exacerbate, and the model
would keep learning the frequent, popular attributes and
ignore the less-frequent ones. Future research must address
these limitations by building novel, pretrained GANs that
minimize the dependency on “big data” and the need for
training from scratch.

c: Generative Design of Form and Function
Since the inception of generative models, from variational au-
toencoders and Boltzmann machines to GAN, there has been
an exponential growth in generative modeling research and
innovation. The majority of recent GAN literature, however,
is concerned with theoretical developments applied on “toy
problems” such as editing human faces, birds, and cats with
limited practical applications. Part of the reason is the that
such datasets are are clean, well-organized, freely-available,
and enormous. Nevertheless, Deep generative models have
been recently adopted for design automation [66]–[68] with
the goal of improving designers’ performance through co-
creation with AI. Specifically, GAN has shown tremendous
success in a variety of generative design tasks, from topol-
ogy optimization [69] to material design [70] and shape
parametrization [68]. In line with Osborn’s rules for brain-
storming [71], these generative models have proven effective
in increasing the quantity of ideas at the designer’s disposal
to inspire her exploration and avoid investing too heavily
in few ideas. Despite significant recent progress, two major
knowledge gaps limit the ability of state-of-the-art genera-
tive design models to effectively assist designers in early-

stage product development processes. First, current literature
merely focuses on the generative design of “form”, disregard-
ing other non-visual aspects associated with its “function”
(e.g., architecture, materials, performance). Second, there is
a lack of a standardized method of assessing the performance
of the generated design concepts [69]. Few recent studies
propose assessment mechanisms based on form-function re-
lationships [68] (e.g., physics-based simulators); however,
those mechanisms are domain-specific and applicable to a
limited set of functional attributes (e.g., aerodynamic perfor-
mance). Future research must build novel, verifiable GAN-
based generative design techniques capable of conditioning
the design concepts on both visual and functional attributes.
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