
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 1

Brain-Inspired Computing: Models and Architectures

Invited Paper

Keshab K. Parhi, Fellow, IEEE; and Nanda K. Unnikrishnan, Student Member, IEEE
With an exponential increase in the amount of data collected per day, the fields of artificial intelligence and machine learning

continue to progress at a rapid pace with respect to algorithms, models, applications, and hardware. In particular, deep neural
networks have revolutionized these fields by providing unprecedented human-like performance in solving many real-world problems
such as image or speech recognition. There is also significant research aimed at unraveling the principles of computation in large
biological neural networks and, in particular, biologically plausible spiking neural networks. This paper presents an overview
of the brain-inspired computing models starting with the development of the perceptron and multi-layer perceptron followed by
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The paper also briefly reviews other neural network
models such as Hopfield neural networks and Boltzmann machines. Other models such as spiking neural networks (SNNs) and
hyperdimensional computing are then briefly reviewed. Recent advances in these neural networks and graph related neural networks
are then described.

Index Terms—Perceptron, Multi-Layer Perceptron, Convolutional Neural Network, Recurrent Neural Network, Hopfield Neural
Network, Boltzmann Machines, Hyperdimensional Computing, Spiking Neural Networks, Graph Neural Networks

I. INTRODUCTION

MACHINE learning and data analytics continue to ex-
pand the fourth industrial revolution and affect many

aspects of our daily lives. At the heart of this drive is the
quest for artificial intelligence (AI) and for design of machines
that can learn. This quest has advanced speech processing
to an extent that voice assistants have become ubiquitous in
our households [1]. Computer vision based application are
now capable of reaching super human levels at tasks such
as image classification [2], [3], [4]. Even games that were
once thought unwinnable like Go or starcraft, machines have
learned to outplay even the best humans [5], [6]. Machines
that can learn also have had the significant impact in the field
of medical diagnostics where deep learning has been used to
identify diseases like diabetic retinopathy [7], gastrointestinal
bleeding [8], and cardiovascular diseases [9].

Looking back at the last decade, deep learning has pushed
the limits of machine capabilities for inference in edge
devices. This advance can be attributed to the availability
of abundant high-quality data [10], [11] and availability of
accelerators and GPUs that enable faster training times. With
further advancement in systems for deep learning, frameworks
like TensorFlow or PyTorch have been developed [12], [13]
to enable ready access. These tools have greatly facilitated
transfer learning where pre-trained models learned from one
dataset can be refined to learn models of another dataset.
This reduces training time and improves accuracy. Due to the
democratization of the tools and their availability, and transfer
learning, deep learning as a research tool is now available to
everyone and consumers can reap the benefits by using their
edge devices.

This work has been supported in part by the National Science Foundation
under Grants CCF-1814759 and CCF-1954749.

K. K Parhi and N. K. Unnikrishnan are with the department of Electrical
and Computer engineering at the University of Minnesota, Minneapolis, MN
55455 USA (e-mail: parhi@umn.edu, unnik005@umn.edu).

2009
ImageNet
Deng et. al.
[10]

1943
Artificial
Nueron
McCulloch
Pitt
[14]

1958
Perceptron
Rosenblatt
[17]

1969
XOR
problem
Minsky,
Papert
[20]

1974
Back
Propagation
Werbos
et. al. [2]

1980
NeoCognitron
Fukushima [33]

1982
Hopfield
Network
Hopfield
[46]

1985
Boltzmann
Machine
Hilton
Sejnowski
[48]

1986
Restricted
Boltzman
Machine
Smolensky
[50]

1986
Multilayer
Perceptron
Rumelhart,
Hilton and
Williams [29]

1990
RNNs
Jordan
[36]

1989
LeNet
Lecun
[34]

1997
Bidirectional
RNN
Schuster
Paliwal [38]

1997
LSTMs
Hochreiter
Schmidhuber [41]

2014
Dropout
Hinton[66]
VGG
Zisserman
et al. [70]
GoogLeNet
Rabinovich
et al. [63]

2012
AlexNet
Krizhevsky
et. al. [62]

2015
ResNet
Sun et al.

2005
GNN
Gori
et. al.
[82]

2018
GAT
Velickovic
et al. [96]

1988
Hyperdimensional
Computing
Kanerva. [59]

2015
FCN
Long et al.
[73]
U-Net
Ronneberger
et al. [74]

2018
GCN
Kipf et.al.
[88]

Fig. 1. Evolution of neural network models.

Though deep learning and AI appear new and revolutionary,
these have a storied and evolutionary past. These models
evolved over many decades and were inspired by the human
brain. The reader is referred to [14] for a zoo of neural
networks. The human brain has about 100 billion neurons and
1000 trillion synapses. Therefore, the brain can be described
by a sparse network. The spiking operations in the human
brain consume about 10 Watts and achieve an energy efficiency
of 10 Top/s/W with an average output spiking rate of 1
Hz [15]. The human brain consumes significantly less energy
compared to computers and is highly energy-efficient. Thus,
there is a desire to create models that mimic the brain. This
paper describes the various brain-inspired models and the
historical context in which these models were developed. This
historical context lends a new perspective about what the
limitations of the existing models were and how these were
overcome by the new models.

To provide this historical context, this paper starts with how
understanding the neurons in the brain led to the development
of one of the first neural network models, the McCulloch-Pitts
neuron, and its ability to represent a basic logic reasoning.
The subsequent perceptron model was inspired by Hebbian
learning; this model introduced the concept of learning and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 2

adaptation. Various limitations of the perceptron led to a
pause in AI research; however, this also led to the multilayer
prerceptrons (MLPs) that overcame the limitations. It was
shown that the MLPs can act as universal approximators. One
of the most consequential advance was the development of
efficient backpropagation algorithms that are used to learn the
parameters in most neural network models today. Similarly,
better understanding of vision led to the development of one
of the first vision based models, the Neocognitron. This first
generation Neocognitron model served as the baseline for
the development of the convolutional neural network (CNN)
architecture. The recurrent neural networks (RNN) and long
short-term memory (LSTM) were developed to exploit the
temporal properties of time-series data and are used for
speech and language processing. Finally, biologically plausible
spiking neural network (SNN) can be seen as the third wave
of neural networks that are inspired by the brain and and try
to replicate the extreme energy-efficiency of the brain.

This paper is organized as follows. Section II describes the
evolution of the various early brain-inspired computing models
ranging from perceptron and MLP to Neocognitron. This sec-
tion also describes the Hopfield neural network and Boltzmann
machines, followed by biologically inspired neurons and the
hyperdimensional computing model. The evolution of different
models is illustrated in the chronological chart shown in Fig. 1.
Section III introduces deep neural network models such as
CNN, RNN and SNN. Section IV describes recent advances
including deep convolutional neural networks (DNNs) and
graph neural networks.

II. EVOLUTION OF EARLY MODELS

A. The First Mathematical Neuron Model

McCulloch, a neuropsychologist, and Pitts, a logician, to-
gether developed the first known mathematical model of a
biological neuron in 1943 [16]. The McCulloch-Pitts Neuron
(MPN), as it came to be known, is shown in Fig. 2. The model
was defined with the following assumptions of acyclic nets.
• The activity of the neuron is an “all-or-none” process.
• A certain fixed number of synapses must be excited

within the period of latent addition in order to excite a
neuron at any time, and this number is independent of
previous activity and position on the neuron.

• The only significant delay within the nervous system is
the synaptic delay.

• The activity of any inhibitory synapse absolutely prevents
the excitation of the neuron at that time.

• The structure of the net does not change with time.

Input

OutputInhibitory
input

Input

Synapse

Threshold

Fig. 2. Representation of a McCulloch-Pitts neuron as seen in [16].

𝐵

𝐴

c) 𝐴 ∧ !𝐵

a) 𝐴 ∧ B

𝐴

𝐵 𝐵

𝐴

b) 𝐴 ∨ 𝐵

𝐵

𝐴

d) ! 𝐶 ∧ (𝐴 ∨ 𝐵)

𝐶

𝐵

𝐴

e) 𝐴 ∨ 𝐵 ∨ 𝐶

𝐶

𝐵

𝐴

f) 𝐴 ∧ 𝐵 ∧ 𝐶

𝐶

Fig. 3. Implementation of different Boolean logic gates with a McCulloch-
Pitts neuron as seen in [16]. The neurons marked with bubbles are inhibitory
neurons.

The MPN model is mathematically equivalent to a linear
threshold unit. The MPN is based on binary logic, and its
operation can be described using two phases. In the first phase,
the neuron sums the excitations from all upstream neurons.
In the second phase, the neuron fires only if a predefined
threshold, θ, is met, and no inhibitory neuron has fired. This
simple thresholding logic was quite compelling and could be
used to simulate a variety of Boolean functions, as shown in
Fig. 3, designed in the original style as described by [16].

The functionality of the network can be easily understood
by examining each gate individually. For example, Fig. 3(a)
shows the functionality of an AND logic gate. The inputs A
and B are connected to the neuron via synapses. When an
input is excited, i.e., when the neuron driving it fires, it is
represented by the Boolean logic value of 1; otherwise its
logic value is 0. For this neuron to fire, a minimum number
of input synapses, as defined by the threshold variable θ, must
be excited. In the AND gate as θ = 2, both inputs must be
excited for the neuron to fire. This logic can be extended to
the Boolean OR operation seen in Fig. 3(b). For the threshold
θ = 2, to implement the OR Boolean logic, each input has
at least θ connections to the neuron, although that need not
be the case. Thus far, only the use of non-inhibitory inputs
was shown; however, one of the main characteristics of the
MPN was the introduction of inhibitory inputs. An inhibitory
input is defined such that if it is excited, then the neuron
will not fire irrespective of the state of all other inputs. This
logic is illustrated in Fig. 3(c), where the input B acts as
an inhibitory input. If B is excited, then the neuron will not
fire even if A is excited. If B is inactive, the output of the
neuron depends on the state of A. Thus, the inhibitory input
allows for the construction of Boolean inversion logic; in this
case, the neuron implements the function A

∧
!B, where !

represents the logical inversion function. Fig. 4 shows the
graphical representation for 2 and 3 input AND and OR gates
with the decision separation boundary.

Thus we see that the MPN can be adapted to represent a
variety of Boolean functions. Revolutionary as this model was,
it did suffer from a set of shortcomings as listed below:
• Representations limited to logical inputs.
• Functions need to be created and defined manually.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 3

𝐴 ∧ B

𝐴

𝐵

AB

𝐴 ത𝐵

ҧ𝐴𝐵

ҧ𝐴 ത𝐵

𝜃 = 2

AB

𝐴 ത𝐵

ҧ𝐴𝐵

ҧ𝐴 ത𝐵

1

𝐴 ∨ B

𝐴

𝐵

3

𝐵

𝐴

𝐴 ∧ 𝐵 ∧ 𝐶

𝐶

𝐵

𝐴

𝐴 ∨ 𝐵 ∨ 𝐶

𝐶

𝐴

𝐵

𝐶

a) b)

𝜃 = 1

𝜃 = 1

𝜃 = 3

Fig. 4. Graphical representation of MPN for AND gate and OR gate. a)
2-input neurons. b) 3-input neurons.

• It does not support any notion of learning.
• Functions need to be linearly separable.
• Equal weight for all the inputs.

These limitations prevent its use in real-world applications
where the values are continuous and the data are often not lin-
early separable. The equal weight constraint limits the number
of functions that can be represented and necessitates the need
for more complicated models where different inputs can be
assigned different weights. This model cannot accommodate
negative or fractional weights. Finally, the model cannot learn
an optimal weight function like a biological neuron.

B. The Perceptron and the Ability to Learn

The key drawback of the MPN is that the neurons cannot
be trained to learn the weights of the model from the input
data. Thus further developments in the field were inspired by
how biological neurons learn the underlying functions. Hebb
hypothesized in 1949 how neurons are connected in the brain:
“When an axon of cell A is near enough to excite a cell
B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is
increased.” [17].

This was one of the most iconic statements that summarized
the development of the Hebb Synapse [18]. A significant
takeaway was the concept of the growth process of neu-
rons to increase the efficiency of the cells. This idea was
instrumental in understanding how neurons learned, and it
inspired Rosenblatt’s development of the perceptron in 1958.
The perceptron was designed to be a more generalized neuron
and is a foundation of modern deep learning systems.

Fig. 5 describes the structure of a single-layer perceptron.
The structure consists of three types of cells; the first type is
the sensory or reception cells (Sj) that capture the input. The
second type of cells correspond to the association cells (Aj)
that weigh the input features before passing them to the third
type of cells, the response cells (Rj). The association cells
are connected to the sensory inputs via localized/focalized or
random connections. An association cell’s inputs are referred
to as origin points, and these connections may be excitatory or
inhibitory such that an association cell fires or is active when

Sensory or
reception cells

Association
cells

Response
cells

Localized/ Random
connections

R1

R2

Excitory
Inhibitory

Fig. 5. Visualization of the perceptron model, taken from Fig. 2A of [19].

the algebraic sum of all its inputs is greater than the threshold
θ. Response cells are similar to the association cells and often
have a large set of cells as origin points called its source set.
The connections between the sensory cells and the association
cells are feedforward and fixed. However, the connections
from the association cells to the response cells have feedback
paths allowing to alter the intensity of the specific connections.

These connections between the association cells and re-
sponse cells in the perceptron can have excitatory feedback
paths to synapses from its source set that reinforce the con-
nections in its source set that led to the required response.
Thereby this serves as a mechanism to make the same re-
sponse occurring more likely if presented with the same input.
Similarly, it can have inhibitory feedback paths to cells that
complement its source set, or to other responses, to hinder
the occurrence of a complementary response as shown by the
red arrows in Fig. 5. Thus, the development of perceptron
was targeted to overcome some of the shortcomings of the
MPN. One of the fundamental changes was the abolition of
the uniform weighting of all input synapses. While the inputs
in the MPN were restricted to logical values, the perceptron
has no such limitation. Thus, the inputs in the perceptron can
be associated with weights where these weights can be trained.
This also allows for the implicit definition of inhibitory inputs
rather than a dedicated input. These can all be put together to
define the training algorithm for the perceptron as shown in
Algorithm 1.

A perceptron can be trained by providing a stimulus or
learning series and recording its responses. If the response
matches the system’s desired response, there is a positive
reinforcement of the weights when the response is correct
and negative reinforcement when it is incorrect. The learning
series can consist of thousands of individual stimuli. Once
the learning phase completes, the weights are fixed, and
the perceptron can either be evaluated by the same learning
series or by a new unseen series. In the first case, the same
learning series is fed to the perceptron, where the learning
phase would have biased the output to the correct response.
In the second case, a completely new and previously unseen
stimulus from the same distribution is fed to the perceptron
to gauge its performance. In both cases, when operating on
differentiating models as the size of the stimuli increases, the
probability that the evaluation set predicts the correct response
increases and converges to 1 for completely separable data.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 4

Algorithm 1 Perceptron training algorithm for a simple rein-
forcement based γ system [20].

Input: Training set: Sensory inputs Si, Responses Ri

Network Variables: Association Cells: Aj

while not converged do
for i in training set, i ∈ {1, . . . , N} do

Drive Sensory inputs Si

Measure Response Ri

for Ri
k , k ∈ {1, . . . , K} do

if Ri
k matches desired Response R̂i

k then
for All Aj in source-set do

Reinforce Aj

Positive ∆V is added to active Aj

Negative ∆V is added to inactive Aj

end for
else

for All incident Aj in source-set do
Inhibit Aj

Negative ∆V is added to active Aj

Positive ∆V is added to inactive Aj

end for
end if

end for
end for

end while

Fig. 6. Original Mark I perceptron as seen in its operator’s manual [20].

Thus the perceptron training algorithm can learn patterns and
associations from the statistical nature of the data.

The original Mark-I perceptron, as shown in Fig. 61, was
the first hardware implementation of Fig. 5. The sensory input
either was obtained from the camera or could be set by the
sensory switch panel. Finally, the response of the system could
be seen in the response panel. It made use of potentiometers
to tune the different weights or association cells of the device.
This machine was revolutionary at the time, leading to very
high expectations from the press2:

“Stories about the creation of machines having hu-
man qualities have long been a fascinating province
in the realm of science fiction,” Rosenblatt wrote
in 1958.“Yet we are about to witness the birth of
such a machine – a machine capable of perceiving,
recognizing, and identifying its surroundings without
any human training or control.” “The embryo of an

1A high-resolution image is available in the digital archives [21]
2”Electronic ’Brain’ Teaches Itself.” The New York Times, 13 July 1958.

𝑥1

𝑥2 ∑

𝑥𝑁

𝑤1
𝑤2

𝑤𝑁
𝑤0 = 𝑏

y
x

Fig. 7. Mathematical model of a perceptron.

𝑏/| 𝒘 |

𝑋

𝑋 𝑋

𝑋

𝑋

𝑊0

0 0

0
0

𝑓 𝑥 = 𝑤, 𝑥 + 𝑏
ℎ 𝑥 = sign (𝑓 𝑥)

𝑥1

𝑥2

Fig. 8. Linear separation of classes with perceptron.

electronic computer that [the Navy] expects will be
able to walk, talk, see, write, reproduce itself and be
conscious of its existence.”

C. Limitation of a Single Perceptron

The perceptron model described thus far can be represented
using a simpler mathematical model, as shown in Fig. 7.
Mathematically, a perceptron can be modeled as Eq. (1)

y = σ(
N∑
k=1

wkxk + b) (1)

where xk represents the input from synapse k, Wk represents
the weight of the synapse k and b represents the bias and
can be interpreted as the negative of the threshold for firing
θ defined earlier. σ represents a non linear activation function
and y is the output of the neuron.

𝑥𝑦

ҧ𝑥𝑦

ҧ𝑥𝑦

ҧ𝑥 ത𝑦

𝑦

𝑥

𝐹 𝑥, 𝑦 | f = max 0, 𝐹(.)

G 𝑥, 𝑦 | g = max 0, 𝐺(.)

H 𝑓, 𝑔 |max 0,𝐻(.)

Fig. 9. The XOR problem, no linear separation boundary of single layer
perceptron can separate the classes. The XOR problem can be solved by a
multi-layer perceptron as shown on the left.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 5

This single perceptron is quite capable of performing any
type of linear discrimination task, as illustrated in Fig. 8.
However, the same advantage is one of the weaknesses of the
model that a single-layer perceptron is unable to distinguish
classes that are not linearly separable accurately. This was
particularly highlighted by Minsky and Papert, mathematicians
and computer scientists, in their 1969 book [22] characterizing
the capabilities and limitations of loop-free learning and
pattern recognition machines.

The perceptrons suffer from two limitations: the problems
of parity and connectedness. To understand these limitations,
we provide a simplistic definition of the terms provided in
[22]. A predicate is a function that computes a Boolean result
from a set of inputs. A family of predicates are chosen based
on a linearly weighted threshold function taking a set of
predicates as inputs. In Eq. (1), x represents the predicates
and b represents the threshold. The perceptron model is
defined as one that can represent any such predicate from this
family. The order of the predicates is defined as the minimum
number of input elements that any of internal predicate, x,
depends on in order to compute the overall functionality [23].
These definitions can be used to examine the parity problem,
deciphering whether a given set of data has an odd or even
number of points. The parity predicate theorem postulates that
the order of the predicate must be at least |R|, which is the
size of the set R, a finite set of points that represent the entire
input space or retina. An example to explain this concept is
that of the XOR problem. Fig. 9 shows a visual representation
of this problem where the first layer of 2 neurons represents the
input predicates, and the final output layer represents a linearly
weighted threshold predicate such as the perceptron. To fully
represent the XOR problem, at least one of the input predicates
must look at the entire input space. At least one association
unit has to receive connections from the entire input space in
the context of the perceptron. This example illustrates that the
capability of the perceptron is limited.

The second limitation related to connectedness. Connected-
ness is defined as the set, where between two points in the
set, there exists a connected path between them through any
of the points in the set. Two points are considered connected
if they are adjacent. Like the parity problem, the order of the
predicate to solve this problem is proportional to the entire
input space. Thus the main argument of the perceptron is that
any algorithm for the perceptron is dependent on the size of the
input space and changing the input size amounts to designing
a new algorithm.

While the parity and connectedness showed the limits of
the usefulness of the perceptron, it was argued that too much
focus was on the limitation without sufficient merit given to
its benefits [23], [24]. Also, the emphasis is made on the fact
that the models studied are a severely limited class of model
compared to the original intention of the design.

D. Multilayer Perceptrons

Multilayer perceptrons (MLPs) are a class of models that
try to overcome some of the limitations by stacking layers
of perceptrons one after another. Stacking of these nonlinear

Inputs
neurons

Bias

Outputs
neurons

Hidden
neurons

𝑏 1

𝑎1
1

𝑎2
1

𝑎1
2

𝑎2
2

𝑎3
2

𝑎3
1 𝑦1

𝑦2𝑎4
1

𝑎5
1

𝑥1

𝑥2

𝑥3

𝑏 0
𝑏 2

Fig. 10. Architecture of a simple 3-layer multilayer perceptron, with 3 input
features and two output features.

layers together allows for the network to learn complex
relationships between the inputs and output. As MLPs were
very good at approximating functions, it could be considered
as a universal approximator [25]. The universal approximation
theorem states that a feedforward network with a single hidden
layer containing a finite number of neurons can approximate
continuous functions on compact subsets of the real space,
under certain assumptions on the activation function. The first
mathematical proof of the universal approximation theorem
applied to neural networks was shown with the sigmoid
activation function [26].

The structure of an MLP is shown in Fig. 10, where the
output of layer l is represented as a(l). Special cases of the
general layer are the input layer a(0) = X and output layer
Y = a(L) for an L layer network. The inner operation of a
multilayer perceptron is described in Eqs. (2) and (3)

z(l) = W (l)a(l−1) + b(l) (2)

a(l) = σ(z(l)) (3)

where W (l), and b(l) represent the learnable weights and
bias for layer l, z(l) is the matrix-vector multiplication
of weights and the input activations, and al is the d(l)-
dimensional output of the non-linear activation function σ(.)
(e.g., sigmoid, tanh, ReLU). Here d(l) is the number of neurons
in layer l. This can be extended as a matrix-matrix multipli-
cation when working with mini-batches with the additional
dimension N for the size of the mini-batch.

Supervised training of these MLP models is performed
with the gradient descent algorithm minimizing the error in a
complex parameter space that defines the neural network. The
backpropagation algorithm was developed as an efficient way
to propagate the gradients of the errors to the previous layers;
a simplified version of this algorithm is based entirely on the
chain rule [27], [28]. An efficient form of the backpropagation
algorithm in neural network like objects is attributed to [29]
and its first demonstrated use with neural networks is attributed
to [30]. The backpropagation in its current form to optimize a
neural network is based on and popularized by Rumelhart [31].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 6

E. Evolution of the Vision Model

Thus far, the early efforts had attempted to model and
replicate biological networks. One of the earliest applications
of these models was image processing. However, these earlier
models did not explicitly exploit the spatial aspect of the visual
processing in the brain. One of the first studies of these aspects
was conducted by Hubel and Wiesel, two neurophysiologists,
in 1959. Their study was based on the fact that vision is
a behavioral judgment in response to visual stimulation—it
discusses how the brain organizes disconnected bits of in-
formation to whole objects by processing the images. The
observations are based on experiments conducted on twenty-
four cats by beaming lights on the eyes and recording the
brain’s response [32]. While projecting patterns of light and
dark on a screen in front of the cat, they observed that specific
neurons fired rapidly when presented with lines at one angle,
while others neurons responded best to another. These studies
elaborated on the visual system’s capabilities to build an image
from simple stimuli into more complex representations.

The restricted retina area was called a receptive field, and
these were divided into excitatory or inhibitory fields. The
observation was that any light stimulus covering the entire
retina was ineffective. To obtain a clear pattern, light must fall
on the excitatory fields and not on the inhibitory fields. The
orientation of these receptive fields could be in any manner,
including horizontal, vertical, and oblique orientations. A spot
of light gave better response in some directions than others.
The conclusion was that the oriented slits of light were the
most effective method for activating the neurons in the brain.

Furthermore, in 1962, it was found that processing is
done by two types of cells, simple S cells, and complex C
cells [33]. Complex cells were developed, aggregating the
information from multiple simple cells. The complex cell can
be understood as a function that responded to the output from a
bank of simple cells robust to distortion. With the progression
of research, they were able to define more complex responses
in their later papers. However, though this model was able
to explain a lot of the vision’s fundamental characteristics,
it had its pitfalls. Most notably, these models did not ad-
dress many essential features like color and spatial frequency.
Nevertheless, artificial neural networks (ANNs), fundamental
components of modern deep learning, owe their origin to the
concept of cascading models of cell types inspired by Hubel
and Wiesel’s observations. In 1981, Hubel and Wiesel received
the Nobel Prize for Physiology or Medicine, recognizing them
for their research on the development and understanding of the
visual system [34].

Fukushima, a computer scientist, observing some of the
shortcomings in the Hubel and Wiesel model, subsequently
developed the NeoCognitron model in 1980 [35]. The structure
of the network has its inspiration from the visual system
described by Hubel and Wiesel earlier. It consists of an input
layer followed by several connections of modular structures,
each of which consists of two layers of cells. The first layer
of the module consists of simple cells or S cells, and the
second layer, of complex cells or C cells. This was an early
attempt at designing a neural network model with the same

𝑈0

𝑈𝑆1 𝑈𝐶1 𝑈𝑆2 𝑈𝐶2 𝑈𝑆3
𝑈𝐶3

Fig. 11. Model of NeoCognitron illustrating the interconnections between
layers [35].

advanced capability for pattern recognition as humans. The S
plane consists entirely of S cells and similarly the C plane of
C cells.

Fig. 11 shows the NeoCognitron model highlighting the
different types of layers and the interconnections between
layers. Each tetragon drawn with heavy lines represents an S-
plane or a C-plane, and each vertical tetragon drawn with thin
lines, in which S-planes or C-planes are enclosed, represents
an S-layer or a C-layer.

The S cells are more specialized and are designed to respond
only to particular features. Each S cell in an S-plane has
an identical response to its receptive field, thereby allowing
adjacent cells to process slightly shifted version of the image.
C cells are designed to complement S cells and handle the
positional errors in the network. To enable this, every C
cell has connections from a group of S cells at different
positions. Thus this interleaving of S layers and C layers
form the network of the system. After the learning phase, the
NeoCognitron can recognize input patterns and is robust to
changes in shape, size, or position.

There are two types of connections present in NeoCogni-
tron. The first set of connections are learnable connections
that connect the C layer to the next S layer. The goal of
these connections is to learn the patterns from the previous
layer. The second set of connections are fixed connections that
connect the S layer to the next C layer. These connections do
not learn and are designed to refine and confirm the learnings
of the S layer. One of the consequences of the layered design
is the ability of NeoCognitron to capture local and global
features from the image adequately. The active area of the
original image that a cell looks at increases with the depth of
the network. This is referred to as the receptive field of the cell,
and as the receptive field increases, it allows the network to
develop more complex visual concepts. The effect of receptive
fields is illustrated in Fig. 12.

NeoCognitron uses a Hebbian-based unsupervised learning
approach where the updates to the learnable parameters are
proportional to the inputs and outputs of the design. Within the
S layer, only the S-plane with the maximum value is reinforced
with the update, thereby allowing different planes to learn

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 7

𝑈0 𝑈𝑆1
𝑈𝐶1

𝑈𝑆2
𝑈𝐶2

𝑈𝑆3
𝑈𝐶3

Fig. 12. Receptive field of each layer in NeoCognitron [35].

different attributes of features. This unsupervised approach can
be interpreted as a form of clustering of the target application.

F. Revisiting Hebbian Learning and Hopfield Networks
Hebbian learning theorized that repeated and persistent

firing causes metabolic changes that reinforce the connection
between neurons: “Neurons that fire together wire together.”
This stipulates that repeated patterns of synaptic activity create
either a persistent increase or decrease in the synaptic efficacy
of neurons. This, referred to as long-term potentiation (LTP)
and long-term depression (LTD), underlines the concept of
neuron synaptic plasticity. This is an explicit form of learning
where a group of firing neurons sculpts an event in the
hippocampus. An analogy of this can be understood with the
following example adapted from [36]. Let the presence of dark
clouds cause the firing of one set of neurons and the occurrence
of rain cause the firing of a different set of neurons. When
both events co-occur, both sets of neurons fire concurrently,
thereby strengthening the synapses between them. Thus this
implicitly defines memory in an associative manner that can
retrieve elements by forming associations between its different
characteristics.

Hopfield networks are a special kind of artificial neural
networks, introduced by Hopfield in 1982 [37], that train,
store and retrieve memory in a similar associative manner.
This associative memory assumes the state of the brain is
defined by neurons that fired recently [38]. The network can be
trained such that it stores specific patterns or memories within
the system. As it is an associative memory, it can retrieve its
stored patterns even when provided with partial or corrupted
inputs.

A Hopfield network is a type of fully connected recurrent
neural network. It is composed of a simple neuron and has
a high degree of similarity to the MPN and perceptron. Each
neuron i can be in one of two possible states: the not-firing
state or si = 0 or the firing state or si = 1. The weight of the
connection from neuron i to neuron j is wij , which defines
the synaptic strength of the connection. A neuron i will enter
a firing state if the weighted sum of all of its inputs exceeds
a predefined fixed threshold, θi, else it will remain in a not-
firing state. Neurons evaluate their state asynchronously and

1

2

3

𝑤11

𝑤21

𝑤31
𝑤12

𝑤22

𝑤32

𝑤13

𝑤23

𝑤33

𝑥1

𝑥2

𝑥3

𝑠2

𝑠3

𝑠1

Fig. 13. Schematic representation of a Hopfield network adapted from [36].

randomly to check if they exceed the threshold, only ensuring
that they maintain an average rate of evaluations (R). The
structure of the Hopfield network is shown in Fig. 13. Hopfield
networks were constrained so that the synaptic weight of
self connections (wii) were set to zero, and all connections
were symmetric (wij = wji), though the latter was not
mandatory. The update mechanism for a neuron can be defined
mathematically, as shown in Eq. (4).

si(k + 1) =

{
1, if

∑N
j=0 wijsj(k) ≥ θi

0, otherwise
(4)

E = −1

2

∑∑
i6=j

wijsisj (5)

where si(k) represents the current state of neuron i at time
step k and N is the total number of neurons in the system.
The total energy (E) of a given state is defined by Eq. (5).
When the synaptic weights (wij) of the network have been
trained with a particular state vector, the network will be in a
stable equilibrium state that will define that state as a minimum
energy point. Given a new input state, it can be observed
that the system is set in a way that the system’s energy is
a monotonically decreasing function with respect to a change
in si. Thus once the network has stable low energy points or
local minima when given a particular input, it will move in a
direction that minimizes its energy before finally stopping at a
local minimum. Thus this is what gives Hopfield network the
ability to accept partial or even corrupted inputs and move in
the direction towards a local energy minimum.

Hopfield network model has three distinct differences with
the prior models, such as MPN and perceptron. First, prior
models such as the perceptrons were almost exclusively feed-
forward. This meant that the flow of information was only
in the forward direction with no feedback or backward cou-
plings. Hopfield networks, however, rely heavily on backward
couplings to form associative memories. Second, prior models
work in an inference like manner interpreting data directly
recognizing patterns without attempting to find out more
abstract understanding of the patterns. Lastly, prior models
were designed in a synchronous manner, which is not observed
in biological processes and would also be very difficult to
achieve in such processes.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 8

G. Boltzmann Machines

Boltzmann machines are a variation of Hopfield networks
proposed by Hinton and Sejnowski in 1985 [39]. The critical
difference is that rather than defining a fixed threshold, it
defines a probabilistic model on the likelihood of the neuron
to fire with a given set of inputs. The probability of a neuron
firing is the sigmoid of the weighted sum of the inputs and its
corresponding synaptic strengths.

P (si = 1) = σ(
N∑
j

wijsj) (6)

where σ represents the sigmoid function and P (x) represents
the probability of an event x occurring.

If the update order of processing the neurons follows any
order but the total number of inputs, the network will follow a
Boltzmann distribution where the probability of a given state
vector, defined by each neuron’s state, depends only on the
energy of the state. The energy of a state vector follows the
same definition, as seen in Hopfield networks in Eq. (5).

Therefore these systems are a class of non-deterministic or
stochastic generative neural network models. Like the Hop-
field network, Boltzmann machines are symmetric and fully
connected without any self neuron loops. However, unlike
Hopfield networks, it defines two types of neurons: visible
neurons and hidden neurons.

Boltzmann machines can be used to solve two distinct
problems [40]. First, it can be used to find the optimization
of a cost function where the network’s synaptic weights are
fixed, and the network’s energy is a representation of the cost
function. Second, it can solve the converse problem for a given
set of inputs; it finds the weight for which the inputs represent
an excellent solution to its optimization problem.

For the learning problem, to train the network, the weights
are adjusted to increase the probability, P (s), that the state
vector s is the optimal result, by performing a gradient ascent
operation. The derivative of the log probability function is
described by Eq. (7).

Edata

[
∂ log P (s)

∂wij

]
= Edata[sisj]− Emodel[sisj] (7)

where Edata[x] represents the expected value of x in a data
distribution, and Emodel[x] represents expected value of the
model when sampling values in its equilibrium state. The
learning rule follows a gradient ascent optimization, where the
derivative is multiplied by some learning rate and added to the
weight wij . Thus, given time, the weights of the Boltzmann
machine will stabilize so that the input state vector reaches an
equilibrium.

Restricted Boltzmann machines (RBMs) are a special class
of Boltzmann machines that are restricted in terms of the
types of connections that are allowed. As with the case of
Boltzmann machines, RBMs have two types of neurons: visi-
ble and hidden. Unlike Boltzmann machines which are fully-
connected, RBMs do not allow for connections between two
hidden neurons or connections between two visible neurons.
The main advantage of these restrictions is that it allows

𝑎 𝑏

ℎ1 ℎ2

𝑉1 𝑉2 𝑉3 𝑉4 𝑉5 𝑉6

𝑊26

𝑊11

𝑊25𝑊24𝑊23𝑊22𝑊21

𝑊12 𝑊13 𝑊14
𝑊15 𝑊16

Input neurons

Bias

Output neurons

Hidden neurons

Fig. 14. Restricted Boltzmann machine with connection only between the
hidden neurons and the visible neurons (input and output neurons).

Fig. 15. Electrical response characteristic of the Hodgkin-Huxley model3.

for an easier implementation when compared to Boltzmann
machines [41].

H. Biologically Plausible Neurons

Though artificial neural networks models described thus far
have proven to be resilient and versatile, they are not very bio-
logically plausible. These models fail to account that spikes are
the tokens of information processing in the brain. Furthermore,
they do not account for that the strength of communication is
encoded in the synapses. One of the most important works
was the development of a conductance-based model of the
neuron by Hodgkin and Huxley in 1952 [42]. This was a
mathematical model describing the electrical characteristics of
neurons through a set of nonlinear differential equations. They
received the 1963 Nobel Prize in Physiology or Medicine for
their work describing the initiation and propagation of action
potentials.

The electrical characteristics of the Hodgkin-Huxley model
are shown in Fig. 15. Every neuron has a resting state which
defines the membrane potential (MP) of the neuron in the
absence of stimuli. An external stimulus to the neuron will
increase its MP by a certain amount. When this increase is
insufficient to make the MP exceed the threshold it is referred
to as a failed initialization and the MP decays back to the

3https://commons.wikimedia.org/w/index.php?curid=2241513

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 9

𝑥1

𝑥2
∑

𝑥𝑁

𝑤1

𝑤2

𝑤𝑁

𝑤0 = 𝑏

y
x ∑(𝑡)

𝑤1

𝑤2

𝑤𝑁

𝑠1 𝑡 = 0, 1, 0, 0, 1, 1, 1, 1

𝑠2 𝑡

𝑠𝑁 𝑡

s 𝑡 = 0, 0, 0, 0, 1, 0, 0, 1

Spike train till 𝑡 − 1

Pre-synaptic
neurons

synaptic weights

Post-synaptic
neuron

𝑤𝑓𝑏

a) b)

feedback path

Fig. 16. Differences between an artificial neural network and a spiking neural
network.

resting state. When the stimulus causes the MP to exceed the
threshold, there is a rapid depolarization that cause an increase
in the voltage. This is referred to as the action potential and
can be interpreted as the firing of the neuron. Post the action
potential the neurons re-polarize back to a negative potential
with a refractory period that actively suppresses further firing
due to external stimuli.

I. Hyperdimensional Computing

Hyperdimensional (HD) computing is a new computing
paradigm based on the cognitive model [43] to define the
binding problem of connectionist models. HD computing relies
on the high dimensionality, randomness, and the abundance
of nearly orthogonal vectors [44]. Traditional computing ap-
proaches rely on bits to encode data, and all operations are
deterministic and require much hardware compute resources.
However, HD computing uses a hypervector representation
where the dimensionality is in the order of thousands. These
ultra-wide words introduce redundancy against noise, and
are, therefore, inherently robust [45]. HD computing supports
three types of primary data transformation operations. Firstly,
addition operation or bundling of hypervectors involves the
point-wise addition of all hypervectors, and the result is
binarized based on a majority rule threshold. Secondly, the
multiplication operation or bundling forms associations be-
tween two related hypervectors with the bitwise XOR function.
The result of this operation is a new hypervector that is
nearly orthogonal to both input vectors. Finally, the unary
permutation operation shuffles the hypervector resulting in
a new permuted hypervector that is quasi-orthogonal to the
original input. A detailed review of HD computing can be
found in [44].

III. INTRODUCTION OF DEEP NEURAL NETWORK MODELS

A. Convolutional Neural Networks (CNNs)

In the NeoCognitron model, all the S cells of a plane
would have an identical response to a fixed input. This is
mathematically equivalent to performing a convolution oper-
ation with a fixed filter across the input image. Similarly, the
operation of the C cells is very similar to a ReLU followed
by a pooling operation. Also, NeoCognitron and other early
models were primarily unsupervised; however, these could be

Max pool Max poolConvolution

6@28x28
6@14x14

16@10x10 16@5x5 120
84

10

Convolution

Max pool

Fully connected

Fig. 17. Structure of LeNet-5 [47].

0 1 1

0 1 1

1 0 1

1 1 1 0 0

0 1 1 1 1

1 0 1 1 1

0 1 1 0 0

1 1 1 0 0

6 4 4

4 5 5

5 4 3

0

x0 x1 x1

x1x1x0

x1 x0 x1
Filter

Data

Applying
convolution

Output

Convolution Operation with a 3x3 filter Max pooling with 2x2 filters and stride 2

1 4 5 2

2 6 3 1

5 7 1 3

0 8 1 9

6 5

8 9

a) b)

Fig. 18. Fundamental layers in a CNN. a) Convolutional layer. b) Pooling
layer.

efficiently converted into a supervised problem with the inser-
tion of additional decision-making neurons for the different
classes. These simple extensions allow for the use of external
supervision and backpropagation to train the neural network
for a classification task. This was the principle behind the
development of one of the first convolutional neural networks
(CNNs) for the handwritten digit recognition task [46]. The
development of the LeNet-5 model serves as a baseline for
most modern CNN applications [47].

A convolutional neural network comprises of convolutional
and downsampling or pooling layers. These are usually in
sequence and can occur in any order. These layers are usually
followed by one or more fully-connected (FC) layers or linear
layers to perform the classification or regression task.

The essential operation of a convolutional layer is shown
in Fig. 18(a), where the operands are the input data and the
filter. The convolutional layer is a misnomer as it performs a
correlation operation between the filter and the input and is
summarized by Eq. (8).

Y (x, y) = σ(
k−1∑
i=0

k−1∑
j=0

C−1∑
c=0

W (i, j, c)X(x+i, y+j, c)+b) (8)

where W represents the filter of size k× k×C, b is the bias
term, X is the input data, C represents the number of inputs
channels and is also referred to as feature maps, and Y (x, y)
represents the output of the convolution operation at location x
and y. Here σ represents a non-linear activation function such
as sigmoid, tanh, or ReLU. The convolution layer scans the
regions of the two-dimensional space, multiplying the filters’
coefficients with each region’s data. After the convolution

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 10

operation is completed, the resultant output is passed through
a nonlinear activation layer.

A convolution operation often creates much redundancy
on the output; therefore, it is beneficial to subsample the
output by aggregating the information of a region into a
single pixel. A pooling or downsampling layer is designed
to achieve that goal and can be interpreted as scanning the
input feature and performing a fixed operation on a localized
region, most commonly the max or average operation. This
layer performs subsampling as the stride of the operation is of
the same order as its region size. Its function is to progressively
reduce the spatial size of the representation to reduce the
number of parameters and computation in the network. For
the convolutional layers and any MLP layers, the filter or
connection parameters have to be learned from the training
data for the targeted classification or regression task. However,
pooling layers are often fixed and cannot be learned.

ℎ 𝑊ℎℎ

𝑊ℎ𝑥

𝑊𝑦ℎ

𝑦

Unfold

ℎ𝑡−1

𝑊ℎ𝑥

𝑊𝑦ℎ

𝑦𝑡−1

𝑥 𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1

𝑊ℎℎ 𝑊ℎℎ

𝑊ℎ𝑥 𝑊ℎ𝑥

𝑊𝑦ℎ 𝑊𝑦ℎ

𝑦𝑡 𝑦𝑡+1

ℎ𝑡 ℎ𝑡+1

(a)

𝑓, 𝑔ℎ𝑡−1 ℎ𝑡

𝑥𝑡

𝑦𝑡

ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 +𝑊ℎ𝑥𝑥𝑡 + 𝑏ℎ)

𝑦𝑡 = 𝑔(𝑊𝑦ℎℎ𝑡 + 𝑏𝑦)

(b)

Fig. 19. Direct implementation of recurrent neural network (RNN): a)
Unrolling a RNN in time. b) Single RNN unit operation.

B. Recurrent Neural Networks (RNNs)

Modern applications such as speech recognition and lan-
guage translation require machine learning models to learn and
predict patterns from signals, text and images. The input data x
consists of a sequence of correlated data points xt. A recurrent
neural network (RNN) is a generalization of a feedforward
neural network with internal memory stored in the form of
learnable weights [48], [49] . RNN inherently computes output
yt from the input datapoint xt and its past output. Unlike
feedforward neural networks, RNNs can use their internal
state (memory) to process sequences of inputs. The ability of
the RNN to remember information through its state makes it
extremely suitable for sequence-to-sequence translation tasks
such as speech recognition and language translation. Fig. 19(a)
shows the typical structure of an RNN unfolded in time with
input sequence xt and output sequence yt. The hidden state,
ht, is the memory of the network and is given by Eq. (9) and
the output, yt, is defined by Eq. (10).

ht = f(W hxxt + W hhht−1 + bh) (9)
yt = g(W yhht + by) (10)

where f and g are non-linear functions such as tanh,
sigmoid or ReLU, W hh, W hx, W yh, by and bh represent the
learnable weights and biases for the network. The computation
of the hidden state ht and output sequence yt is depicted in
Fig. 19(b). A popular variant of RNNs is the bidirectional
RNN [50].

RNNs have two significant drawbacks. First, as the gradient
is back-propagated to earlier time step, this repeated prop-
agation may significantly reduce the scale of the gradients.
As the time depth increases, the gradient vanishes, and the
parameters stop learning. As a result of this vanishing gradient
problem, as the network goes further back, its performance
gets saturated. Second, RNNs are good at understanding the
short-term dependencies in the data; however, they suffer
considerably trying to capture long-term dependencies [51],
[52].

C. Spiking Neural Networks
Spiking neural networks (SNNs) [53] bridge the gap be-

tween ANNs and more biologically plausible models. The dif-
ferences between ANNs and SNNs are highlighted in Fig. 16.
ANNs operate on real numbers and process all the inputs at
a time. SNNs, however, work on time-dependent data with
the information encoded into the spike train. The membrane
potential of a neuron is modeled to define the amount of
electric charge stored in the neuron. The membrane potential
accumulates the charge from the pre-synaptic neurons to
determine whether the neuron should fire.

As the focus is on more biological models, there also needs
to be a good understanding of how these neurons can learn.
However, backpropagation, though an excellent optimization
procedure, does not correlate to the brain and does not
mimic actual learning. Revisiting Hebbian theory, an important
consideration for synaptic strength is not just the synchronicity
of neuron firing but also the temporal relationship between the
firing of different neurons. Synaptic time-dependent plasticity
(STDP) quantifies the strengthening or weakening of the
conductivity of the synapse based on the relative order of firing
between the pre-synaptic neurons and post-synaptic neurons
shown in Fig. 16(b).

The characteristics of STDP for an excitatory to excitatory
neuron connection [54] are shown in Fig. 20. ∆t defines
the relative time between the firing of the the post and pre-
synaptic neurons (∆t = tpost − tpre). Simultaneous firing of
the neurons, where the pre-synaptic neuron precedes the post-
synaptic neuron (∆t > 0), called a causal firing, leads to
the long term potentiation (LTP) of the neurons. This causal
relationship between input and output increases the synapse’s
conductance and furthers the connection between the two
neurons. An anti-causal relationship is established when the
pre-synaptic firing succeeds the post-synaptic firing (∆t < 0).
This relationship causes a decrease in synapse’s conductivity
and leads to long-term depression (LTD) of the neurons.
For either of the effects, the switching must occur in close
proximity as the effects decrease with an increase in the time
difference [55].

One of the simplest models to simulate the membrane
potential is the integrate and fire model [56], [53]. The model
can be assumed to have infinite memory where the membrane
potential contains the weighted history of all inputs as shown
in Eq. (11)

uj(t) =
∑
i∈Pi

t∑
τ=1

wijsi,τ (11)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 11

LTP

Causal interactions

Anti-causal
interactions

LTD

Fig. 20. Excitatory postsynaptic potential change with the causality of the
presyapctic stimulus highlighting the synaptic time dependent plasticity, long
term potentiation and depression, behavior of neurons. Adapted from [55].

where τ is the time step upto the current time t in the
spike train of neuron si,τ . si,τ denotes the input neuron Pi
from the pre-synaptic set P at time τ . uj(t) is the membrane
potential of post-synaptic neuron j and wij is the weight of the
synapse from neuron i to neuron j. The neuron j will fire if
the membrane potential exceeds a certain threshold uj(t) > θj ,
where θj is the threshold of neuron j. The dynamic behaviour
of this model is shown in Fig. 21(a).

This simple model caters well to approximate the basic
characteristic of the neuron; however, it fails to capture the
time dependency on the output. In particular, the likelihood
of a post-synaptic neuron to fire decreases with time from
the incident pre-synaptic fire. This general forgetfulness of the
neurons [53] is captured in the membrane potential as shown in
Eq. (12) representing a spike response model (SRM)[57], [58]
in the discreet time-space. The leaky integrate and fire (LIF)
model is a special case of the SRM without time-dependent
weight functions [57].

uj(t) =
∑
i∈P〉

(K)i∑
k=1

wij,k(α(t)∗si,t)(k)+wj(β(t)∗sj,t)(k)+bj

(12)
where wij,k represents the time-dependent kernel weight

function that has trainable weights up to (K)i time units,
α(t) and β(t) are the exponential decay functions for the
feedforward and feedback paths, respectively, bj represents the
bias of the function and ∗ represents the convolution operation.
The dynamic behavior of this model is shown in Fig. 21(b).

SNNs have higher information representational capacity
due to their temporal dimension, and it is believed that this
gives them an advantage over the traditional methods [60].
Thus, SNNs are well suited for processing spatio-temporal
event-based information. This makes them successful in fields
like event based cameras and vision [61]. As these neurons’
activations are sparse and event-driven, SNNs can be more
energy efficient compared to CNNs. Furthermore, due to the
their event-driven nature, the latency of computation in SNNs
is less. In an SNN, although the accuracy of the output
is degraded initially, the accuracy improves as more inputs
are processed. Even when more data are not available, the

Response

Stimulus

(a) (b)

V
o

lt
ag

e

V threshold

Neuron Firing

V
o

lt
ag

e

V threshold

Neuron Firing

Time Time

Fig. 21. Response characteristic of SNN models. a) Integrate and fire model.
b) Leaky integrate and fire model. [59]

accuracy can be improved by retraining the weights [62].
In terms of training, STDP has served as a basis for

many training algorithms [63], [64]. These algorithms are
trained based on the relative timing of spikes. However, there
has also been research into non Hebbian-based leaning [65].
Other training algorithms also exist based on evolutionary
techniques [66]. Another general approach is to train tradi-
tional networks using backpropagation and then convert these
networks to SNNs to utilize them as efficient inference en-
gines [67]. Finally, training algorithms can use approximations
of the gradient descent by formulating the training task as an
optimization problem [68] that can be used to train spiking-
based CNN architectures [60].

The major shortcoming with SNNs is that they typically
do not attain the same accuracy as traditional neural network
approaches. While there are numerous large training datasets
and benchmarks available for CNNs, very few benchmarks are
available for SNNs. Accuracy of SNNs could improve with
increase in the data available for applications that can benefit
from these networks. Furthermore, a careful trade-off analysis
is needed between their advantages versus the accuracy of the
output. Furthermore, to best utilize the advantages of SNNs,
it should be run on neuromorphic hardware creating a barrier
to entry due to lack of availability, compared to traditional
approaches.

IV. ADVANCED DEEP NEURAL NETWORKS

A. Image Classification

The re-emergence and popularity in deep learning have, in
large part, to do with its success in the image classification
task. A lot of this credit goes to two major driving points:
the availability of large data sets and the availability and
adoption of new computing resources. In particular, image
classification was a very daunting task that had only received
marginal gains with time. To overcome these shortcomings,
Li, a computer science professor, curated and created a large
dataset of labeled images ImageNet [10]. This tackled the
fundamental limitation of existing algorithm-based approaches
where algorithms would not work as well if the data were
not representative of the real world. Thus ImageNet acted
as a bridge to classify and categorize a sizable hierarchical
database. The ImageNet database also evolved into a competi-
tion for image classification, the ImageNet Large-Scale Visual

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 12

55x55x48
27x27x128 2048 2048

1000

Convolution + ReLU

Max pool

Fully connected

Soft max

224x224x3

55x55x48
27x27x128 13x13x192 13x13x192

13x13x192 13x13x192 13x13x128

13x13x128

2048 2048

Fig. 22. Neural network architecture of AlexNet [69].

Fig. 23. Neural network architecture of an inception module in GoogLeNet.
Taken from [70].

Recognition Challenge (ILSVRC). The goal of the completion
was for researchers to obtain the lowest top-1 and top-5 error
rates. This catalyzed the boom in interest and research into AI
as it gave a stable foundation for developing more advanced
models and approaches.

1) AlexNet
The AlexNet [69] neural network architecture emerged as

part of the ILSVRC classification task. With the abundance
of data in the training set, it was a challenge to design and
develop a model that would be large enough to tackle the
task at hand and fast enough to peruse the dataset. It was
one of the first deep neural networks with five convolutional
layers and three fully-connected layers. The model consisted
of more than 60 million parameters and 650,000 neurons,
taking five to six days to train on two graphics processing
units (GPUs). It is important to point out that the convolutional
layers in AlexNet contribute to about 6% of the parameters but
95% of the computations. Thus, the convolutional layers are
computationally intensive while the fully-connected layers are
memory-intensive.

Some of the characteristics that made AlexNet viable were
the use of non-saturating units, ReLU [71], reducing overfitting
with dropout, and the use of GPUs to accelerate the training
process. The new activation unit ReLU can reach a 25% train-
ing error rate six times faster on the CIFAR-10 [72] dataset
over conventional tanh activation. A traditional approach to
overfitting involved regularization and the use of multiple

4096

1000

Convolution + ReLU

Max pool

Fully connected

Soft max

224

224

64
112

112

128

56

56

128

51228

28

256

256

12

12

512 512

7
7

512

4096

1000

64

Fig. 24. Neural network architecture of VGG-16 [77].

models to predict the outcome. However, with significant run
times for training large models, dropout [73] was the preferred
approach. Dropout determines the probability that a given
neuron should include or dropout a neuron for that training
input. This ensures that neurons do not become overly reliant
on other neurons and learn more robust features. Finally, It
was one of the early papers to use GPUs [74], [75], [76], and
to adopt the use of multiple GPUs to fit larger models that
would not fit in a single GPU.

The model stood out at its time, winning the 2012 ILSVRC
with a top-5 accuracy of 15.3% with the nearest competitor
at 26.2%, cementing CNNs as the premier model for image
classification.

2) VGG
VGG [77] was a neural network architecture that was

the runner-up in the 2014 ILSVRC classification task. The
innovation in the approach was using smaller convolutional
filters that significantly increased the network’s depth. Fig. 24
shows the network corresponding to architecture D of the
paper, with 16 layers. There are 13 convolutional layers, where
each layer uses a small 3×3 filter with a stride of 1. There are
five max-pooling layers, performing a spatial pooling over a
2×2 pixel window, with stride 2. Finally, there are three fully-
connected layers, the first two with 4096 channels each, and
the third with a 1000 outputs for the ILSVRC classification
task. This 16 layer design has close to 140 million parameters,
and it was able to achieve a 6.8% top-5 error rate.

3) GoogLeNet
GoogLeNet [70], the winning entry in the 2014 ILSVRC

classification task, was a very deep network with 22 layers.
The model’s essential premise was that the salient features
of an image could have extreme size variations. Therefore,
deciding an appropriate kernel size for the model is a chal-
lenging task. A large kernel is useful to capture more global
attributes, whereas a small kernel is ideal for picking up local
attributes of the image. To overcome these issues, the network
makes use of inception modules. An inception mode primarily
contains multiple filters of different sizes (1× 1, 3× 3, 5× 5)
that perform their computations at the same level. Additional
1 × 1 filters are used to perform dimensionality reduction to
reduce the computational complexity of the network.

Fig. 23 shows the structure of an inception module in the
inception-v1 architecture of GoogLeNet. GoogLeNet consists
of three initial convolutional layers that work on the input
image, followed by nine inception modules stacked linearly.
Finally, it has a single, fully-connected layer to perform the

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 13

Weight layer

Weight layer

ReLU

ReLU

𝑥

𝑥

𝐹 𝑥 + 𝑥

𝐹(𝑥)

Fig. 25. Architecture of the residual layer in ResNet [2].

classification task. As it is an extremely deep classifier, it
has issues with vanishing gradients. Thus, auxiliary classifiers
were introduced at intermediate layers during the training
phase. These auxiliary classifiers contribute to the loss of the
systems, and the total loss function is a weighted sum of the
auxiliary loss and the real loss. With approximately 6.8 million
parameters, 12× fewer parameters than AlexNet, it achieves
a top-5 error rate of 6.8%.

4) ResNet
Conventional wisdom states that additional layers in the

model should increase its accuracy if the problem is compli-
cated enough. However, it is seen that the deeper the networks
get, the more they suffer from the vanishing gradient problems.
Beyond a certain depth, the model training suffers and does
not recover. Prior approaches to solving this problem included
using auxiliary classifiers that were introduced at intermediate
layers, like the ones used in GoogleNet. For extremely deep
networks (>30 layers), the authors of [2] hypothesize that
it is easier for neural network layers to learn a residual
mapping function, F (X) + X , than a direct implementation.
The residual layer structure is shown in Fig. 25, where there
are shortcut connections across layers and an element-wise
addition. This can be taken as a special case of the highway
networks [78], [79], unrolled feedforward networks based on
LSTMs, where the input, X , is multiplied by an identity matrix
rather than an explicit gating parameter to be learned. These
differences significantly reduce the number of parameters to
be learned, and it is shown that this simpler residual mapping
helps achieve the state of art results. The innovations in these
residual nets or ResNets enabled these models to rank first
in the 2015 ILSVRC and COCO [11] competition in the
detection, localization, and segmentation tasks.

B. Image Segmentation

1) Fully convolutional networks
Unlike a classical image classification problem where the

output is a single label, image segmentation requires each
pixel in the input image to be assigned to a specific class. The
authors of [80] were the first to propose a fully convolutional
network for this application. The network consists purely
of convolutional and max pooling layers without any fully
connected layers. The fully convolutional nature provides two
advantages: (i) reusability of the model on an image of any
size since the trained model only stores convolution filter
weights and (ii) training and inference speedup compared to
networks with fully-connected layers. For example, as stated

in [80], although AlexNet takes 1.2 ms (on a typical GPU) to
produce the classification scores of a 227 × 227 image, the
fully convolutional network takes 22 ms to produce a 10 ×
10 grid of outputs from a 500 × 500 image, which is more
than five times faster than the naive approach.

The main idea in [80] is to cast the fully-connected layer
in the LeNet into a convolutional layer with a kernel that
covers the entire image. This converts the architecture into a
fully-convolutional network. However, due to the subsampling
nature convolution and max pooling, it results in a reduced
dimensionality output image when compared to the input. For
an image segmentation task, the input and output image dimen-
sions are identical since each pixel must be classified. The lost
dimensionality is recovered using deconvolutions/upsampling
(similar to the decoder networks in autoencoders). The de-
convolution filter weights are learned during training, similar
to the convolution filter weights, creating an end-to-end fully
convolutional structure for image segmentation.

Skip connections

Convolution/Deconvolution Max pooling Concatenation Upsampling Softmax

Contracting path Expanding path

Fig. 26. Architecture of U-Net [81].

2) U-Net
A popular extension of the architecture proposed in [80]

is U-Net [81], which is very successful in biomedical image
segmentation applications. The architecture of this network
is shown in Fig. 26. At the highest level, it is a fully
convolutional network comprised of two parts: (i) a contracting
path and (ii) a symmetric expanding path. Also, it consists
of skip connections [82], which concatenates higher-level
features from the contracting path into the expanding paths,
which enable faster convergence during training. An essential
modification from the work in [80] is that the U-Net has a large
number of feature channels during upsampling. This allows the
network to propagate context information to higher resolution
layers. U-Net architecture’s fully-convolutional nature allows
for easy segmentation of large-sized input images, which
would otherwise be limited by large dimensions of the fully-
connected layer. This U-Net architecture requires fewer data
points for training and results in more precise image segments
than the work in [80].

C. Language and Time-Series Processing

1) Long Short-Term Memory (LSTM)
Long short-term memory (LSTM) networks are special

types of networks capable of learning long-term dependencies

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 14

in time-series data. It was first introduced in [83] by Hochreiter
and Schmidhuber (1997), and further expanded in [84], [85],
[86]. However, these models did not gain traction until after
Graves’s Ph.D. Thesis [87].

Unlike the RNNs, which consist of a single neural network,
the LSTM cell consists of four neural networks interacting
uniquely. A standard LSTM cell is shown in Fig. 27 with the
four neural networks. The core idea is that the cell state, Ct,
is changed with minor linear interactions. The cell consists of
three regulator structures called gates responsible for altering
the cell state. Each gate consists of a sigmoid layer that outputs
a number between zero and one, describing how much of each
component should pass through the gate (zero is nothing, and
one is everything). The three gates are referred to as forget
gate, input gate, and output gate.

The forget gate is responsible for deciding what information
to let through to the cell state. The input gate has two layers:
a sigmoid layer and the tanh layer.

Together, the layers decide which values of the current state
to update and generate a vector of new candidate values to
be added to the current state. The equations representing the
operation of the LSTM cell are given in Eqs. (13) to (18).
Eq. (13) represents the forget gate operation. Eqs. (14) to (16)
together represent the input gate and update step, and Eqs. (17)
and (18) represent the operation of the output gate.

f t = σ(W f [ht−1,xt] + bf) (13)
it = σ(W i[ht−1,xt] + bi) (14)

C̃t = tanh(W c[ht−1,xt] + bc) (15)

Ct = f tCt−1 + itC̃t (16)
ot = σ(W i[ht−1,xt] + bo) (17)
ht = ottanh(Ct) (18)

where it is the output mask of the input gate, ot is the
output mask of the output gate, f t is the output mask of the
forget gate, ht is the output of the LSTM block, and xt is the
input data.

tanh

Hadamard product

Forget gate Input gate Output gate

σ σσℎ𝑡−1

𝐶𝑡−1

𝑥𝑡

𝐶𝑡

𝑓𝑡 𝑖𝑡 ሚ𝐶𝑡

𝑜𝑡

ℎ𝑡

𝑓𝑡 𝐶𝑡−1

𝑖𝑡 ሚ𝐶𝑡 sigmoidσ

Fig. 27. Implementation of an LSTM module.

2) Gated Recurrent Unit
The most commonly used recurrent network model has been

LSTM, which can learn long-term dependencies. We focus on
a popular LSTM variant, referred to as gated recurrent unit
(GRU). A gated recurrent unit (Fig. 28(b)) (GRU) was pro-
posed in [88] where each recurrent unit can adaptively capture
dependencies of different time scales. The GRU is similar to
the LSTM cell with gates modulating the flow of information

through the cell. Fig. 28 highlights the differences between a
standard LSTM cell and a GRU cell where Fig. 28(a) is a high-
level representation of the LSTM cell shown in Fig. 27. This
higher-level representation helps us understand the difference
between the GRU clearly. The main differences between the
GRU cells and LSTM cells are listed below:

1) In the LSTM unit, the output gate controls the amount
of the memory content that is seen or used by other units
in the network. On the other hand, the GRU exposes its
full content without any control.

2) The location of the input gate or the corresponding reset
gate is different between the two.

3) The LSTM unit computes the new memory content with-
out any separate control of the amount of information
flowing from the previous time step. Rather, the LSTM
unit controls the amount of the new memory content
being added to the memory cell independently from
the forget gate. On the other hand, the GRU controls
the information flow from the previous activation when
computing the new candidate activation but does not
independently control the amount of the candidate ac-
tivation being added (the control is tied via the update
gate).

Fig. 28. Differences between an LSTM cell and a GRU cell [88].

From these similarities and differences alone, it is difficult to
conclude which types of gating units would perform better in
general. Although [88] reported that these two units performed
comparably to each other according to their experiments on
certain tasks, it is unclear whether this applies as well to tasks
other than machine translation.

D. Latent Space Generative Models

Most common forms of generating a latent space generative
models are derived from a class of learning methodologies
referred to as autoencoders. Autoencoders [89] represent a
form of unsupervised learning where the goal is to predict the
input from itself. To ensure that the network does not directly
represent the input, autoencoders often have less complexity
than the input space to force the network to learn a more
optimized representation of the underlying data [90]. This
serves two purposes. First, it can perform a lossy compression
of the data with the encoder and reconstruct the data from
the compressed form with the decoder. Second, by reducing
dimensionality during encoding, the autoencoder learns the
data’s underlying characteristics and thereby creates a new
feature space that defines and captures the relationships be-
tween inputs for a given task. Some of the common variants

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 15

of autoencoders include sparse autoencoders [91], variational
autoencoders [92], and denoising autoencoders [93]. Autoen-
coders can potentially lead to non-conventional solutions to
conventional problems in communications such as coding for
data transmission [94].

E. Graph-Based Data Processing

Graph Neural Networks (GNNs) [95], [96] are similar to
RNNs but can be applied to more general class of graphs.
GNNs can operate on graphs that cannot be represented in a
grid-like structure and are appropriate for application domains
such as social networks and telecommunication networks. The
ultimate goal of a GNN is to derive an embedding matrix
that can be used to transform the input feature space into the
desired output label or attribute. The input features of the graph
contain the features of the node itself and its edges as well
as some function of the information about its neighborhood
as shown in Fig. 29. The operation on the GNN can be
summarized by Eqs. (19) to (22) and [96], [97]:

ℎ7

ℎ4

ℎ2

ℎ1

ℎ5

ℎ3

ℎ6

ℎ0 ℎ8

𝑥1
𝑥3

𝑥5

𝑥4

𝑥2

𝑥0

𝑥0,3
𝑥0,7

𝑥0,8

𝑥6,7

𝑥2,6

𝑥1,4

𝑥1,2
𝑥1,3

𝑥1,5

𝑥7

𝑥8

𝑥6

𝑥𝑒 1 = 𝑥1,2, 𝑥1,3, 𝑥1,4, 𝑥1,5
𝑥𝑛𝑒 1 = 𝑥2, 𝑥3, 𝑥4, 𝑥5
ℎ𝑛𝑒 1 = ℎ2, ℎ3, ℎ4, ℎ5

Fig. 29. Graph neural networks, adapted from [96]. Features of node x1

dependence on its neighborhood.

hv = f(xv,xe[v],hne[v],xne[v]) (19)
ov = g(hv,xv) (20)

H l = F (H l−1,X) (21)
O = G(H,Xn) (22)

Eq. (19) defines the shared local transition function f(.)
that processes the information from a node and its neighbors to
generate a D-dimensional state vector hv of the node v, where
xv denotes the features of the node; xe[v] are the features of
the edges of the node, e[v]; hne[v] represents the state vector of
the nodes in the neighborhood of the node, ne[v]; and xne[v]

represents the features of the nodes in the neighborhood of the
node. Eq. (20) defines the shared local output function g(.) that
processes the current node features, xv , and state vector, hv , to
generate an output vector ov that represents the label or value
we are interested in computing. The computations described
in f(.) and g(.) are equivalent to feedforward neural networks.
The training of GNNs involves training the weights of these
feedforward neural networks.

A compact form of Eq. (19) can be represented in terms of
iterative function of matrices as shown in Eq. (21), where H l

represents the embedding matrix or state matrix by stacking
embedding vectors hv at iteration l. F represents the global
transition function that performs f(.) node-wise, and X is
the set of all input features of all nodes and edges. Similarly,
Eq. (22) represents a compact form of Eq. (20) where G is the
global output function obtained from evaluating g node-wise
and Xn is the set of all input features of all nodes.

1) Graph Convolution Networks
Graph Convolution Networks (GCNs) can be interpreted as

extensions of conventional CNNs into the graph domain. There
are two general classes of approaches to this problem: spectral
and non-spectral. In the spectral approach [98], the convolution
operation is defined in the Fourier domain to optimize the
number of computations. This is further enhanced by intro-
ducing the spectral filters with smooth coefficients [99]. Later
enhancements include the approximation of the filters employ-
ing a Chebyshev expansion of the graph Laplacian [100].

GCNs are a general class of networks that try to simplify the
existing spectral methods. Every node, v, is characterized by a
feature vector xv , that when stacked together, form the feature
matrix X . The network also processes information about the
graph’s structure, usually in the form of an adjacency matrix
A. The result is an output matrix, Z, that contains the output
labels or features. A layer in the network can be represented in
a general form as shown in Eq. (23), where H l represents the
feature matrix at layer l, H0 = X and Z = HL. A simplified
approach to the problem is to design filters that only look at
the immediate neighborhood of the current node [101]. With
this, a graph convolutional layer can be described by Eq. (24).

H l = F (H l−1,A) (23)

F (H,A) = σ(D̂
− 1

2 ÂD̂
− 1

2HW) (24)

where Â = A+ I is the adjacency matrix with an addition
of the identity matrix to create self-loops to account for the
current node being processed, D̂ represents the degree matrix
of the node and is used to normalize the adjacency matrix.
W is the weight matrix of the layer. This layer structure
is analogous to a spatial convolution layer, as multiplying
the adjacency matrix with the state matrix aggregates the
information from the neighboring nodes into the central node.

These examples have focused on a simplified spectral ap-
proach; however, there are multiple non-spectral approaches
[102], [103], [104] that define convolutions directly on the
graph, operating on spatially close neighbors. Different tech-
niques introduced include a specific weight matrix for each
node degree [102], weights for each input channel, and neigh-
borhood degree [103], normalizing neighborhoods containing
a fixed number of nodes [105]. Other notable approaches
include [106], [107]. A review of these approaches can be
found in [108].

2) Graph Attention Networks
Graph attention networks (GATs) were introduced in 2018

[109] as an attention-based architecture to perform node
classification of graph-structured data. This computes each
node’s hidden representations by attending over its neighbors,
following a self-attention strategy. This has advantages over

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 16

Dk

M

Dk

1

1

Dk

Dk

M

1

Fig. 30. MobileNet-v1 architecture, taken from [110]. A standard convolution
converted to a separable convolution operation. The new stack is highlighted
on the right

the GCNs. First, it is highly computationally efficient as
the self-attention layer’s operation is parallelized. Second,
unlike GCNs, it allows assigning different degrees to nodes
of the same neighborhood. Lastly, it is directly applicable to
inductive learning.

F. Resource-Constrained Models

There has been a significant interest in developing networks
designed explicitly for mapping to resource-constrained sys-
tems like microcontrollers. Examples of this type of network
include MobileNet [110] and its variants like ShuffleNet [111].
MobileNet adapts the concept of bottleneck layers introduced
in GoogleNet to minimize the total number of computations
in the network. It consists of a set of separable convolution
kernels that are depthwise convolution operations for spatial
domain and pointwise convolution operations in the channel
domain. This is illustrated in Fig. 30. MobileNet takes this a
step further by allowing a further trade-off between the accu-
racy of the model and the neural network size to create models
that can fit into various devices. Also pruning techniques,
such as the lottery ticket hypothesis [112], have enabled high
accuracies with very few parameters.

V. CONCLUSION AND SUMMARY

Machine leaning and AI have a come a long way since
its early days and brain-inspired computing has driven a lot
of these innovations. This evolution over decades has led to
each generation of models tackling the problems of the last
generation and improving on them. With vast explosion in the
amount and types of data collected, these brain inspired mod-
els have had and will continue to have major impacts in the
foreseeable future. The Association for Computing Machinery
(ACM) awarded the 2018 Turing Award to Bengio, Hinton
and LeCun for ”conceptual and engineering breakthroughs
that have made deep neural networks a critical component of
computing.”

This paper has presented an overview of the evolution of
these brain-inspired models with a historical context. The
paper presents a unique perspective with respect to the advan-
tages and limitations of each model. A proper understanding of
the limitations of each model is only complete by knowing the
limitations of the environment in which they were developed.

While this paper overviews brain-inspired models, signif-
icant research efforts have been directed towards design of

general-purpose energy-efficient hardware accelerators [113],
[114], [115]; this topic is beyond the scope of this paper.
There have also been significant strides in the develop-
ment of hardware accelerators for SNNs [116], [117], [118],
CNNs [119], [120], [121], GNNs [122], [123] and training
accelerators [124], [125], [126]. A comprehensive survey of
the topic can be found in [127], [121]. We also refer the
reader to recent research on attention networks [128] used
in image captioning applications, transformers [129] used
in natural language processing and on neural architecture
search [130] to design neural network configurations that
reduce the complexity of the network.

Despite significant progress in SNNs, more research should
be devoted to developing SNN models and biologically plau-
sible neural networks that achieve comparable accuracy to
CNNs. This would be possible if benchmarks with large
amount of data can be created for domains where SNNs can
perform similar to CNNs or for domains where CNNs are not
applicable.

Modern neural networks with many millions of parameters
have outperformed classical methods that are based on linear
system theory. Unfortunately, the linear systems cannot model
the nonlinearities in the data or non-stationarity of stochastic
data. The neural networks achieve superior performance due
to the use of nonlinear activation functions. However, what is
the least amount of nonlinearity that can be incorporated into
traditional linear approaches to achieve performance similar
to modern CNNs remains an open question. While this is a
hard problem, any progress in this direction will lead to neural
networks that are not as deep and contain far fewer parameters.

Deep learning has undergone a renaissance in the last
decade in a number of fields like image processing, language
processing, and graph processing to name a few. Advanced
CNNs have reached super human level accuracies in a number
of vision tasks like object detection, segmentation and clas-
sification. Recurrent networks and time based models have
greatly advanced the state of the art in speech and language
processing. Also, in an ever connected world graph neural
networks have advanced our knowledge and processing of how
different systems interact and how to interpret them.

The modern deep learning renaissance owes a lot to these
pioneering historical models, that predated the availability of
the resources needed to realize their true potential. These
models will be further expanded and refined in coming decades
as they find their applications in domains such as robotics and
smart cars, drones, medical diagnostics and healthcare, and
security.

REFERENCES

[1] K. Olmstead, “Nearly half of Americans use digital voice assistants,
mostly on their smartphones,” Pew Research Center, 2017.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society,
2016, pp. 770–778.

[3] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 17

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent
reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[7] V. Gulshan et al., “Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus pho-
tographs,” Journal of the American Medical Association, vol. 316,
no. 22, pp. 2402–2410, 12 2016.

[8] X. Jia and M. Q. Meng, “A deep convolutional neural network for
bleeding detection in wireless capsule endoscopy images,” in Pro-
ceedings of the International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2016, pp. 639–642.

[9] G. Litjens, F. Ciompi, J. M. Wolterink, B. D. de Vos, T. Leiner,
J. Teuwen, and I. Išgum, “State-of-the-art deep learning in cardiovas-
cular image analysis,” Journal of the American College of Cardiology:
Cardiovascular Imaging, vol. 12, no. 8, Part 1, pp. 1549 – 1565, 2019.

[10] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and F. F. Li, “ImageNet:
a large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2009, pp. 248–255.

[11] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” 2014.
[12] M. Abadi et al., “TensorFlow: A system for large-scale machine

learning,” in Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, 2016, pp. 265–283.

[13] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems (NIPS), 2019, pp. 8026–8037.

[14] F. Van Veen, “The neural network zoo,” Apr 2019. [Online]. Available:
https://www.asimovinstitute.org/neural-network-zoo/

[15] T. Delbruck and S. Liu, “Data-driven neuromorphic DRAM-based
CNN and RNN accelerators,” in Proceedings of the Asilomar Con-
ference on Signals, Systems, and Computers, 2019, pp. 500–506.

[16] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity,” The Bulletin of Mathematical Biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

[17] D. O. Hebb, The Organization of behavior. Wiley, New York, 1949.
[18] R. Morris, “D.O. Hebb: The organization of behavior, Wiley: New

York; 1949,” Brain Research Bulletin, vol. 50, no. 5, p. 437, 1999.
[19] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain.” Psychological Review, vol. 65,
no. 6, p. 386, 1958.

[20] J. C. Hay, B. E. Lynch, and D. R. Smith, “Mark I perceptron operators’
manual,” Cornell Aeronautical Laboratory Inc. Buffalo, NY, Tech. Rep.,
1960.

[21] Cornell Aeronautical Laboratory, “Mark I Perceptron,” Cornell Univer-
sity News Service records, #4-3-15. Division of Rare and Manuscript
Collections, Cornell University Library.

[22] M. Minsky and S. A. Papert, Perceptrons: An Introduction to Compu-
tational Geometry. The MIT Press, 2017.

[23] H. Block, “A review of p̈erceptrons: An introduction to computational
geometry,̈” Information and Control, vol. 17, no. 5, pp. 501 – 522,
1970.

[24] M. Olazaran, “A sociological study of the official history of the
perceptrons controversy,” Social Studies of Science, vol. 26, no. 3, pp.
611–659, 1996.

[25] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359 – 366, 1989.

[26] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of control, signals and systems, vol. 2, pp. 303–314,
1989.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[28] S. Dreyfus, “The numerical solution of variational problems,” Journal
of Mathematical Analysis and Applications, vol. 5, no. 1, pp. 30–45,
1962.

[29] S. Linnainmaa, “Taylor expansion of the accumulated rounding error,”
BIT Numerical Mathematics, vol. 16, no. 2, pp. 146–160, 1976.

[30] P. J. Werbos, “Applications of advances in nonlinear sensitivity anal-
ysis,” in System Modeling and Optimization. Berlin, Heidelberg:
Springer, 1982, pp. 762–770.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation. Cambridge, MA, USA: MIT
Press, 1986, p. 318–362.

[32] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” The Journal of physiology, vol. 148, no. 3, p.
574, 1959.

[33] ——, “Receptive fields, binocular interaction and functional architec-
ture in the cat’s visual cortex,” The Journal of physiology, vol. 160,
no. 1, p. 106, 1962.

[34] ——, “Receptive fields and functional architecture of monkey striate
cortex,” The Journal of Physiology, vol. 195, no. 1, pp. 215–243, 1968.

[35] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[36] A. Edalat. Neural networks and their applications. [Online]. Available:
https://www.doc.ic.ac.uk/∼ae/papers/Topics.pdf

[37] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” Proceedings of the National
Academy of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[38] W. Little, “The existence of persistent states in the brain,” Mathematical
Biosciences, vol. 19, no. 1, pp. 101 – 120, 1974.

[39] G. Hinton and T. Sejnowski, “Learning and relearning in Boltzmann
machines,” Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, vol. 1, 01 1986.

[40] G. E. Hinton, “Boltzmann machine,” Scholarpedia, vol. 2, no. 5, p.
1668, 2007, revision #91076.

[41] P. Smolensky, Information Processing in Dynamical Systems: Founda-
tions of Harmony Theory. Cambridge, MA, USA: MIT Press, 1986,
p. 194–281.

[42] A. L. Hodgkin and A. F. Huxley, “A quantitative description of
membrane current and its application to conduction and excitation in
nerve,” The Journal of physiology, vol. 117, no. 4, p. 500, 1952.

[43] P. Kanerva, Sparse distributed memory. MIT press, 1988.
[44] L. Ge and K. K. Parhi, “Classification using hyperdimensional com-

puting: A review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2,
pp. 30–47, 2020.

[45] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva,
and J. M. Rabaey, “High-dimensional computing as a nanoscalable
paradigm,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 64, no. 9, pp. 2508–2521, 2017.

[46] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[48] M. I. Jordan, “Serial order: a parallel distributed processing approach,”
University of California, San Diego, Tech. Rep., 5 1986.

[49] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14,
no. 2, pp. 179–211, 1990.

[50] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[51] S. Hochreiter, “Investigations into dynamic neural networks,” Diploma,
Technical University ät München, vol. 91, no. 1, 1991.

[52] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[53] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Networks, vol. 10, no. 9, pp. 1659
– 1671, 1997.

[54] N. Caporale and Y. Dan, “Spike timing–dependent plasticity: A Heb-
bian learning rule,” Annual Review of Neuroscience, vol. 31, pp. 25–46,
2008.

[55] G.-Q. Bi and M.-M. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp.
10 464–10 472, 1998.

[56] L. Lapicque, “Recherches quantitatives sur léxcitation electrique des
nerfs traitee comme une polarization,” Journal de Physiologie et de
Pathologie Generalej, vol. 9, pp. 620–635, 1907.

[57] W. Gerstner, “Spike-response model,” Scholarpedia, vol. 3, no. 12, p.
1343, 2008, revision #91800.

[58] H. Jang, O. Simeone, B. Gardner, and A. Gruning, “An introduction
to probabilistic spiking neural networks: Probabilistic models, learning
rules, and applications,” IEEE Signal Processing Magazine, vol. 36,
no. 6, pp. 64–77, 2019.

https://www.asimovinstitute.org/neural-network-zoo/
https://www.doc.ic.ac.uk/~ae/papers/Topics.pdf

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 18

[59] G. Srinivasan, C. Lee, A. Sengupta, P. Panda, S. S. Sarwar, and
K. Roy, “Training deep spiking neural networks for energy-efficient
neuromorphic computing,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
2020, pp. 8549–8553.

[60] S. R. Kulkarni and B. Rajendran, “Spiking neural networks for hand-
written digit recognition - supervised learning and network optimiza-
tion,” Neural Networks, vol. 103, pp. 118 – 127, 2018.

[61] G. Gallego et al., “Event-based vision: A survey,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.

[62] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Oppor-
tunities and challenges,” Frontiers in Neuroscience, vol. 12, p. 774,
2018.

[63] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural
networks with ReSuMe: Sequence learning, classification, and spike
shifting,” Neural Computation, vol. 22, no. 2, pp. 467–510, 2010.

[64] A. Taherkhani, G. Cosma, and T. M. McGinnity, “Optimization
of output spike train encoding for a spiking neuron based on its
spatio–temporal input pattern,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 12, no. 3, pp. 427–438, 2020.

[65] Y. Liu, W. Zhang, and P. Li, “Enabling non-hebbian learning in
recurrent spiking neural processors with hardware-friendly on-chip
intrinsic plasticity,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 9, no. 3, pp. 465–474, 2019.

[66] N. K. Kasabov, “NeuCube: A spiking neural network architecture for
mapping, learning and understanding of spatio-temporal brain data,”
Neural Networks, vol. 52, pp. 62 – 76, 2014.

[67] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54–66, May 2015.

[68] N. Anwani and B. Rajendran, “NormAD - normalized approximate
descent based supervised learning rule for spiking neurons,” in Pro-
ceedings of the International Joint Conference on Neural Networks
(IJCNN), 2015, pp. 1–8.

[69] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[70] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, 2015, pp. 1–9.

[71] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the International Conference
on Machine Learning (ICML), ser. ICML’10. Madison, WI, USA:
Omnipress, 2010, p. 807–814.

[72] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep., 2009.

[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Representation, vol. 15,
no. 1, p. 1929–1958, Jan. 2014.

[74] D. Steinkraus, I. Buck, and P. Y. Simard, “Using GPUs for machine
learning algorithms,” in Proceedings of the International Conference
on Document Analysis and Recognition (ICDAR), 2005, pp. 1115–1120
Vol. 2.

[75] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the International
Conference on Machine Learning (ICML). New York, NY, USA:
Association for Computing Machinery, 2009, p. 873–880.

[76] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,”
Neural Computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[77] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[78] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[79] ——, “Training very deep networks,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2015, pp. 2377–2385.

[80] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–
3440.

[81] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention (MICCAI). Springer
International Publishing, 2015, pp. 234–241.

[82] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, “The
importance of skip connections in biomedical image segmentation,” in
Deep Learning and Data Labeling for Medical Applications. Cham:
Springer International Publishing, 2016, pp. 179–187.

[83] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[84] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in
Proceedings of the International Joint Conference on Neural Networks
(IJCNN), vol. 3, 2000, pp. 189–194 vol.3.

[85] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural Computing, vol. 12, no. 10,
p. 2451–2471, Oct. 2000.

[86] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained
handwriting recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.

[87] A. Graves, “Supervised sequence labelling,” in Supervised sequence
labelling with recurrent neural networks. Springer, 2012, pp. 5–13.

[88] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[89] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological Cybernetics, vol. 59, pp.
291–294, 1988.

[90] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[91] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun, “Efficient learning
of sparse representations with an energy-based model,” in Advances in
Neural Information Processing Systems (NIPS). MIT Press, 2007, pp.
1137–1144.

[92] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[93] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Pro-
ceedings of the International Conference on Machine Learning (ICML).
New York, NY, USA: Association for Computing Machinery, 2008, p.
1096–1103.

[94] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo autoencoder: Deep learning based channel codes for point-to-
point communication channels,” in Advances in Neural Information
Processing Systems (NIPS), 2019, pp. 2758–2768.

[95] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proceedings of the International Joint Conference
on Neural Networks (IJCNN), vol. 2, 2005, pp. 729–734 vol. 2.

[96] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[97] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

[98] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” arXiv preprint
arXiv:1312.6203, 2013.

[99] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[100] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Advances in Neural Information Processing Systems (NIPS), 2016, pp.
3844–3852.

[101] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2017.

[102] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 2224–2232.

[103] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems (NIPS), 2016,
pp. 1993–2001.

[104] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Engineering Bulletin,
vol. 40, no. 3, pp. 52–74, 2017.

[105] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the International
Conference on Machine Learning (ICML), vol. 48. JMLR.org, 2016,
pp. 2014–2023.

http://www.deeplearningbook.org

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCAS.2020.3032092, IEEE Open
Journal of Circuits and Systems

OJCAS-2020-0054 19

[106] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model CNNs,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5425–
5434.

[107] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Advances in Neural Information Processing
Systems (NIPS), 2017, pp. 1024–1034.

[108] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions, and
neural networks,” 2020.

[109] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proceedings of the Inter-
national Conference on Learning Representations (ICLR), 2018.

[110] A. G. Howard et al., “MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[111] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[112] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2019.

[113] N. P. Jouppi et al., “In-datacenter performance analysis of a Tensor
Processing Unit,” in Proceedings of the International Symposium on
Computer Architecture (ISCA). New York, NY, USA: Association for
Computing Machinery, 2017, p. 1–12.

[114] NVIDIA, “NVIDIA DGX-1 With Tesla V100 System Architecture
white paper,” Tech. Rep., 2017.

[115] Xilinx, “Accelerating DNNs with Xilinx Alveo accelerator cards,”
Tech. Rep., 2018.

[116] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, 2014.

[117] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[118] M. Davies et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[119] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan,
“PermDNN: Efficient compressed DNN architecture with permuted
diagonal matrices,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2018, pp. 189–202.

[120] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural
network,” in Proceedings of the International Symposium on Computer
Architecture (ISCA). IEEE Press, 2016, p. 243–254.

[121] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[122] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in Proceedings of the Design Automation Conference
(DAC), 2020.

[123] T. Geng et al., “AWB-GCN: A graph convolutional network accelerator
with runtime workload rebalancing,” in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2020.

[124] N. Unnikrishnan and K. K. Parhi, “A gradient-interleaved scheduler for
energy-efficient backpropagation for training neural networks,” arXiv
preprint arXiv:2002.05529, 2020.

[125] N. Gamboa, K. Kudrolli, A. Dhoot, and A. Pedram, “Campfire: Com-
pressible, regularization-free, structured sparse training for hardware
accelerators,” 2020.

[126] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network
training using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–
67, Jun 2018.

[127] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[128] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in Proceedings of the International Conference
on Machine Learning (ICML), F. Bach and D. Blei, Eds., vol. 37.
Lille, France: PMLR, Jul 2015, pp. 2048–2057.

[129] A. Vaswani et al., “Attention is all you need,” in Advances in Neural
Information Processing Systems (NIPS), 2017, pp. 5998–6008.

[130] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

Keshab K. Parhi (Fellow, IEEE) received the
B.Tech. Degree from the Indian Institute of Technol-
ogy (IIT), Kharagpur, in 1982, the M.S.E.E. degree
from the University of Pennsylvania, Philadelphia,
in 1984, and the Ph.D. degree from the University
of California, Berkeley, in 1988.

He has been with the University of Minnesota,
Minneapolis, since 1988, where he is currently
Distinguished McKnight University Professor and
Edgar F. Johnson Professor of Electronic Communi-
cation in the Department of Electrical and Computer

Engineering. He has published over 650 papers, is the inventor of 31 patents,
and has authored the textbook VLSI Digital Signal Processing Systems
(Wiley, 1999). His current research addresses VLSI architecture design of
machine learning systems, hardware security, data-driven neuroscience and
molecular/DNA computing.

Dr. Parhi is the recipient of numerous awards including the 2017 Mac Van
Valkenburg award and the 2012 Charles A. Desoer Technical Achievement
award from the IEEE Circuits and Systems Society, the 2003 IEEE Kiyo
Tomiyasu Technical Field Award, and a Golden Jubilee medal from the IEEE
Circuits and Systems Society in 2000. He served as the Editor-in-Chief of
the IEEE Trans. Circuits and Systems, Part-I during 2004 and 2005. He was
elected a Fellow of the American Association for the Advancement of Science
(AAAS) in 2017.

Nanda K. Unnikrishnan (Student member, IEEE)
is currently pursuing a Ph.D. degree in electrical
engineering at the University of Minnesota, Min-
neapolis, USA. He received his B.Tech in electron-
ics and communication from National Institute of
Technology, Karnataka (NITK), Suratkal, India in
2014, and his M.S. in electrical engineering from
the University of Minnesota in 2018.

He worked at SilabTech, India (now Synopsys)
from 2014 to 2016 as a design verification engineer
for mixed-signal designs. He has interned at Qual-

comm Technologies Inc, San Diego in Summer 2017 and with Intel Labs in
Summer 2018. His research interests lie in design of VLSI architectures for
machine learning systems.

