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Abstract: Recent development of computer technology may lead to the quantum image algorithms
becoming a hotspot. Quantum information and computation give some advantages to our quantum
image algorithms, which deal with the limited problems that cannot be solved by the original classical
image algorithm. Image processing cry out for applications of quantum image. Most works on
quantum images are theoretical or sometimes even unpolished, although real-world experiments
in quantum computer have begun and are multiplying. However, just as the development
of computer technology helped to drive the Technology Revolution, a new quantum image
algorithm on constrained least squares filtering computation was proposed from quantum mechanics,
quantum information, and extremely powerful computer. A quantum image representation model is
introduced to construct an image model, which is then used for image processing. Prior knowledge
is employed in order to reconstruct or estimate the point spread function, and a non-degenerate
estimate is obtained based on the opposite processing. The fuzzy function against noises is solved
using the optimal measure of smoothness. On the constraint condition, determine the minimum
criterion function and estimate the original image function. For some motion blurs and some kinds
of noise pollutions, such as Gaussian noises, the proposed algorithm is able to yield better recovery
results. Additionally, it should be noted that, when there is a noise attack with very low noise
intensity, the model based on the constrained least squares filtering can still deliver good recovery
results, with strong robustness. Subsequently, discuss the simulation analysis of the complexity of
implementing quantum circuits and image filtering, and demonstrate that the algorithm has a good
effect on fuzzy recovery, when the noise density is small.

Keywords: quanta image computation; quantum image algorithm; image restoration; algorithm
analysis

1. Introduction

Just as Feynman first discussed quantum computing in 1982 [1] and Bennett and Brassard,
who performed key distribution on the quantum channel, proposed BB84 protocol [2] with modern
technology. This is a new burgeoning branch of quantum physics is updating 19th-century image
processing algorithm for quantum information systems at present. Some quantum information
algorithms have been extensively studied in the past few decades. The quantum prime factorization
algorithm that was proposed by Shor [3] and the quantum search algorithm proposed by Grover [4]
have proved the computing power of quantum computers. In these case, increasing amounts of
researchers have began to explore the various applications of quantum computers [5–9]. In addition,
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interrelated disciplines are also emerging. Quantum image algorithm is an interdisciplinary field in
its infancy.

Physicists nowadays who work at the intersection of two fields—quantum information theory
and image processing—live it. The existing computing technology is inefficient for the demand
of image processing. The development of classic image processing is limited by image resolution.
Because of the properties of quantum superposition and entanglement, the efficiency of algorithm can
be greatly improved. It is possible to use quantum computer to solve the problem of time and space
consumption in this kind of complex image processing algorithm. At first, S. E. Venegas Andraca
proposed the concept of a quantum matrix shown here, exists as a thought experiment [10]. Since then,
other algorithms [11,12] have been constantly improved. In previous studies, researchers have
proposed many quantum image models, which play a good role in representing image information in
practice. These include qubit lattice [13], entangled image [14], real ket [15], flexible representation
of quantum images(FRQI) [16], and the novel enhanced quantum representation of digital images
(NEQR) cite12. The image processing function [18–21] in the classical field is very powerful, and the
development of quantum image is also following the direction of classical image processing. However,
due to the late start, most of the existing models can only be used for simple image processing.
Yuan et al. [22] proposed two kinds of improved quantum dilation and erosion operations in order
to reduce the time complexity of quantum morphology operations in 2016. In this algorithm,
all operations are done via quantum circuits. They constructed a system for using qubits to code and
process image information. In 2020, Ma et al. [23] improved the algorithm on the basis of Yuan et al. and
proposed a more consistent algorithm for quantum dilation and erosion as well as its implementation
in the IBM quantum simulator. This is a powerful step forward in quantum image processing. In many
digital image processing algorithms, noise cancellation is one of the basic procedures that must be
considered. However, not a lot of studies have considered the noise problem in the quantum image
processing mode. In 2017, Liu et al. studied restoration to remove noise in quantum images [24].
Although the filtering model of quantum image works well, the problem of blurring should also be
considered. In digital image processing, we should not only consider noise, but also the deblurring
problem caused by external factors. It can be said that the quality of digital images plays a crucial role
in the process of communication and visual perception. High quality images will bring richer content
and information, and even give the viewer a beautiful enjoyment, while poor quality images will not
only lose a lot of image information, but also sometimes bring uncomfortable feelings to the viewer.

The photos taken by the camera may appear blurred due to some environmental influence factors
of distance and light intensity. Shaking during filming can cause this problem. Therefore, we need to
analyze this point spread function to solve the impact that is caused by the blur and restore the image.
Because of the increase of image resolution, the development of traditional digital image processing
have been restricted. The merge of quantum computation and traditional digital image processing
methods is considered to be a promising candidate to solve the problem. Because quantum image
processing will use the superposition and entanglement properties of quantum mechanics to calculate
all pixels of the image at the same time, it can achieve exponential acceleration compared to classical
algorithms. Accordingly, this paper proposes a quantum image restoration model that is based on
constrained least squares filtering. This model can not only solve the problem that the degradation
function is sensitive to noise, but also eliminate the influence of some noise.

The remaining paper are organized, as follows: Section 2 describes the NEQR model and
constrained least square filtering computation. The detailed quantum image process, including
NEQR construction process and basic quantum circuits, is described in Section 3. Sections 4 and 5
describe complexity analysis and simulation experiments. Finally, in Section 6, the conclusions and
prospects of future work are introduced.
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2. Preliminaries

2.1. NEQR Model

In the NEQR representation model, the position information and color information of grayscale
images can be represented by two entangled quantum sequences. Quantum entanglement is a quantum
mechanical phenomenon, in which entangled quantum sequences have a correlation. The model uses
q quantum bits to represent color information. q is the image color depth and it can represent all colors
in the grayscale range [0, 2q − 1]. An image compiled through the NEQR description model can be
expressed, as follows:

|I〉 = 1
2n

22n−1

∑
i=0
|ci〉 ⊗ |i〉 (1)

|ci〉 and |i〉 respectively represents the color image color Information and the position information of
the image:

|ci〉 =
∣∣∣cq−1

i · · · c1
i c0

i

〉
,
∣∣∣ck

i

〉
∈ {0, 1}, k = q− 1, · · · 1, 0. (2)

|i〉 = |y〉|x〉 = |yn−1yn−2 · · · y0〉 |xn−1xn−2 · · · x0〉 , |yi〉 |xi〉 ∈ {0, 1}. (3)

NEQR images can be measured in order to obtain images exactly the same as the original image
color information. Therefore, NEQR images are more flexible in color processing.

2.2. Constrained Least Square Filtering Computation

The input-output relationship of image acquisition, in Figure 1:

g(x, y) = H[ f (x, y)] + n(x, y) (4)

As a significant part of digital image processing, image restoration is helpful to eliminate
the distortion and deterioration in the process of image information transmission so as to obtain
high-quality image information. Image restoration is an inverse process of image degradation, where H
points to the diffusion function.

Figure 1. Image degradation process.

The constrained least square filtering model [25] only requires knowledge of the variance and
mean of the noise signal, and the noise parameters can be inferred from the known degraded image.
The key of constrained least square filtering is to overcome the relative sensitivity of noise to H.
H is the entire degradation process. Image degradation can be obtained after the original image is
convolved with the system. Therefore, the image restoration can achieve de-convolution operation
on the output result in order to obtain the original image estimation. To obtain the degenerate image
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g(x, y), one needs to superimpose the original image f (x, y) and noise n(x, y) under the degenerate
operator h(x, y). Accordingly, a constrained minimum criterion function C can be set up, as follows

C =
M−1

∑
0

N−1

∑
0

[
∇2 f (x, y)

]2
(5)

In the constrained minimum criterion function C, M and N, respectively, represent the value
range of pixels, ∇2 f (x, y) is the Laplace transform of the original image f (x, y).

The constraint is ‖G− HF̂‖2
2 = ‖N‖2

2. Here, in the frequency domain, G is the degraded image,
F̂ is the estimate of degraded image, N is additive noise, and Laplace operator ∇2 is smoothness.
To find the minimum value of the function, one needs to use the Lagrange multiplier method and
convert the constraint term into the Lagrange multiplier term.

The matrix form of the Laplace operator can be expressed as:

∇2 =

 0 −1 0
−1 4 −1
0 −1 0

 (6)

The Laplace transform of a continuous function f (x, y) at x and y is defined as:

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 (7)

For digital images, it can be obtained by difference calculation

∂2 f
∂x2 =

∂( f (i + 1, j)− f (i, j))
∂x

= f (i + 1, j)− 2 f (i, j) + f (i− 1, j)

Similarly,
∂2 f
∂y2 = f (i, j + 1)− 2 f (i, j) + f (i, j− 1) (8)

Therefore, combining the second order difference of the horizontal and vertical directions of the
image, the Laplace calculation method is as follows:

∇2 f = f (i + 1, j) + f (i− 1, j) + f (i, j + 1) + f (i, j− 1)− 4 f (i, j) (9)

Additionally likewise, use the Laplace convolution model and convert the constraint term to the
Lagrange multiplier term, so the Lagrangian function L(F̂, λ) is:

L(F̂, λ) = ‖PF̂‖2
2 − λ

(
‖G− HF̂‖2

2 − ‖N‖2
2

)
(10)

where H represents the fuzzy matrix and P is the Fourier transform of the Laplace operator.
Different point spread function are used to restore the image.

When one take the derivative of the function L(F̂, λ) with respect to F̂, one obtains

∂L(F̂, λ)

∂F̂
=

2
[
‖PF̂‖2

2 + λ
(
114− HÊ

∥∥2
2−
∥∥N‖2

2
)]

2F̂
= 2p∗pF̂ + λ

(
−2H∗G + 2H∗HF̂

) (11)
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when ∂L(F̂,λ)
∂F̂

= 0 , one get the minimum F̂:

F̂(u, v) =
[

H∗(u, v)
|H(u, v)|2 + γ|P(u, v)|2

]
G(u, v) (12)

where γ = 1
λ , H∗ is the complex conjugate of H.

3. Quantum Image Algorithm

3.1. Initialization

For a 2n × 2n classic image, NEQR requires a total of 2n + q qubits to save information.
According to the initialization state, the quantum image can be constructed in two steps:

(1) The initial quantum state is converted to an equal weight superposition of all pixels in the
image. U1 = I⊗q ⊗ H⊗2n. Hence, when U1 applied to an initial quantum state |ψ〉, the quantum state
is converted to an intermediate quantum state. This quantum evolution process can be expressed as:

U1 = (I|0〉)⊗q ⊗ (H|0〉)⊗2n =
1
2n |0〉

⊗q ⊗
22m−1

∑
i=0
|i〉 = |ψ1〉 (13)

(2) Each pixel on the intermediate state is assigned a color bit. Since in the new quantum image,
the pixels of the image are still processed in the superposition state, the operation in this step still
needs to be divided into 2n × 2n sub-operations in order to assign color bits to each pixel of the image.
Suppose that the sub operation of each pixel is ΩYX , so the sub operation of each pixel of the image
can be expressed as:

UYX =

(
I ⊗

2n−1

∑
j=0,j 6=Y

2n−1

∑
i=0,i 6=X

|ji〉〈ji|
)
+ ΩYX ⊗ |YX〉〈YX| (14)

Subsequently, when the operation UYX is applied to the intermediate state |ψ1〉, the quantum
evolution process of the whole system is:

UYX |ψ1〉 = UYX

(
1
2n

2n−1

∑
j=0

2n−1

∑
i=0
|0〉⊗q〈ji|

)

=
1
2n

(
2n−1

∑
j=0

2n−1

∑
i=0,ji 6=YX

|0〉⊗q〈ji|+ | f (Y, X)〉|YX〉
) (15)

In the classical digital image, the quantum image NEQR model is quantified and the translated
data set is obtained through cyclic shift operation.

3.2. Quantum Circuit Implementation

We can obtain the gradient value of all pixels by quantum image cyclic shift operation. The original
image Ixy, and |I〉 = 1

2n ∑2n−1
Y=0 ∑2n−1

X=0 |CYX〉 |Y〉|X〉, then Cy−, Shift Ixy one-unit downwards,

Ixy−1 = Cy− Ixy =
1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CY−1X〉 |Y〉|X〉 (16)

The output Ixy−1, then Cx+, shift Ixy one-unit rightwards,

Ix+1y = Cx+ Ixy =
1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CYX+1〉 |Y〉|X〉 (17)

The output Ix+1y, then Cy+, shift Ixy one-unit upwards,
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Ixy+1 = Cy+ Ixy =
1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CY+1X〉 |Y〉|X〉 (18)

The output Ixy+1, then Cx−, shift Ixy one-unit leftwards ,

Ix−1y = Cx− Ixy =
1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CYX−1〉 |Y〉|X〉 (19)

At last, the output Ix−1y. One obtains the pixel value of the neighborhood by cycle shift operation,
and then calculate the gradient according to Laplace’s template, where a quantum black box UL is
designed to compute the gradient of the Laplace operator, in Figure 2.

Figure 2. Realization of quantum circuits UL. On the shifted image set, the gradient is calculated by
addition, subtraction, and doubling.

3.3. Cycle Shift, Addition Subtraction and Double Operation

Cyclic shift transform can move the whole image at the same time, and each image will get the
pixel information of its field, as in Figure 3.

C(x±)|I〉 = 1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CYX′〉 |Y〉|X〉 (20)

C(y±)|I〉 = 1
2n

2n−1

∑
Y=0

2n−1

∑
X=0
|CY′X〉 |Y〉|X〉 (21)

Figure 3. Quantum circuits of C(x+) and C(y−) for n-qubit sequence length.

For the image IA and IB, the sum of the images is IC

|IC〉 =
1
2n

22n−1

∑
YX=0

|CYX〉 |YX〉 = 1
2n

22n−1

∑
YX=0

|AYX + BYX〉 |YX〉 (22)
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The following is the addition operation of the quantum image, and the expression of the addition
operation is:

|Ic〉 = ADD(IA, IB) (23)

The realization process of the quantum circuit of adder is shown in the Figure 4.

Figure 4. Realization of quantum circuit of adder and simplified model. (a) The concrete quantum
circuit of adder; (b) Simplified model of adder.

Add the pixel value to the corresponding complement in order to obtain the difference of pixel
subtraction between two quantum images |CYX〉 = |AYX〉 − |BYX〉.

The subtraction operation of the quantum image is deduced, as follows:

|IC〉 = SUB (|IA〉 , |IB〉) (24)

The realization process of the quantum circuit of the subtracter is shown in the Figure 5.

Figure 5. Realization of quantum circuit of subtracter and simplified model. (a) The concrete quantum
circuit of the subtracter; (b) A simplified model of a subtracter.

If one wants to shift the binary sequence to the right by this, one obtains |2 · C〉 =∣∣cq−1cq−2 · · · c1c00
〉
. In order to form a sequence of qubits,add an auxiliary qubit |0〉, then obtain

|0〉 ⊗ |C〉 =
∣∣0cq−1cq−2 · · · c1c0

〉
. The realization process of the quantum circuit of double operation is

shown in the Figure 6.
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Figure 6. Double operation of the quantum circuit implementation and simplified model. (a) The
concrete quantum circuit of doubling operations; (b) A simplified model of doubling operations.

3.4. Restoration for Deblurring of Quantum Image

If the premise of prior knowledge of noise signal n is lacking, then the process of image restoration
is an estimation f̂ of trying to find undegraded image f . This needs to make H f̂ and g mean square
error as small as possible. In other words, in the sense of the least mean square error, H f̂ is closest to g.
In order to solve this problem, Laplace operator is introduced, according to the previous discussion.
The sensitivity to noise is reduced by means of smoothing measures.

If space domain recovery method is needed, then we need to solve the problem of estimating the
least square of the original image f .

The quantum images can be obtained through the coordinate transformation. Through the
cyclic shift operation of the original image

∣∣Ixy
〉
, we can obtain a set of quantum

images:
∣∣Ixy−1

〉
,
∣∣Ix−1y

〉
,
∣∣Ixy

〉
|Ix+1y〉,

∣∣Ixy+1
〉
. Next, we calculate the gradient based on the

convolution template.
|µ1〉 = qADD(|Ixy−1〉+ |Ix−1y〉)
|µ2〉 = qADD(|Ix+1y〉+ |Ixy+1〉)
|µ3〉 = qADD(|µ1〉+ |µ2〉)
|ξ1〉 = qADD(|Ixy〉+ |Ixy〉)
|ξ2〉 = qADD(|ξ1〉+ |ξ1〉)
|v〉 = qSUB(|µ3〉 − |ξ2〉)

(25)

The processed image is stored in |v〉

|I f̂ 〉 =
1
2n

2n−1

∑
X=0

2n−1

∑
Y=0
| fv(Y, X)〉|YX〉 (26)

Because solving the minimum value of the function consumes too many resources, so, according to

Equations (11) and (12), we estimate the minimum of the function F̂ when the function ∂L(F̂,λ)
∂F̂

is equal
to 0 . According to the frequency domain filtering [26] , an estimated expression for an image:

|IF̂〉 =
[

H∗

H∗H + γ|P|2

]
|IG〉 (27)

|IF̂〉 is the Fourier transform of the estimation of degraded image. |IG〉 is the Fourier transform of
fuzzy image. Where γ is a parameter that can be adjusted. H∗ is the complex conjugate of H and it
represents the Fourier transform of fuzzy matrix. It is worth noting that, if γ = 0, the constrained least
square filtering can be reduced to inverse filtering.

4. Complexity Analysis

We discuss the simulation analysis of the complexity of implementing quantum circuits and
image filtering in this section. In quantum image processing, it is known that the complexity depends
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on the number of elementary gates in quantum image processing. Consider a digital image with a
size of 2n × 2n as an example. The complexity of the basic quantum gate includes NOT gates and
controlled NOT gates, which is considered to refer to a n-controlled NOT (n-CNOT) gate that equal to
2(n-1) Toffoli gates and one CNOT gate, and one Toffoli gate can be simulated by six CNOT gates.

From the introduction of Reference [17], we know that the computation complexity of this stage
does not exceed O(qn22n), because some operations will be performed for each pixel individually.
The quantum circuit will construct the NEQR quantum image |I〉.

When an image is filtered by Laplace operator, the circuit design mainly involves two parts:
shift transformation and gradient calculation of pixel points. In total, we use the 4 shift operations
to get the pixel values in other locations. In addition, each shift conversion will cost O(n2) the time
complexity by the article [12]. In the light of the Laplace operator template, the complexity of quantum
circuit mainly includes 5 addition operations and 1 subtraction operation, which are 8q− 4 and 3q2.
The cost of quantum black boxes UL module is 2q+3 − 2.

Therefore, the quantum cost of image filtering for a 2n × 2n digital image is:

qn22n + 4n2 + 5(8q− 4) + 3q2 + 2q+3 − 2

= qn22n + 4n2 + 3q2 + 40q + 2q+3 − 22

= O(qn22n + n2 + 2q+3)

(28)

Hence, if the quantum image has been constructed, our proposed scheme can restore the quantum
image that is based on NEQR, and its computational complexity of around O(n2 + 2q+3).

5. Simulation Experiment

In our simulation, the experiments were conducted on the classic computer with an Intel(R)
Core(TM) i5-7500 CPU processor. The environment for the Windows 7 operating system and
Matlab(2016a).

The peak signal-to-noise ratio (PSNR) is an objective criterion for evaluating images. It works by
using the mean square error (MSE) between the undegraded original image I and the processed image
G. In the Formula (30), MAXI is the maximum value in the pixel range.

MSE =
m−1

∑
j=0

n−1

∑
i=0

(
(I(i, j)− G(i, j))2

m ∗ n

)
(29)

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 20 · log10

(
MAXI√

MSE

)
(30)

The original input image is shown in the Figure 7. In motion blur functions, offset Angle is 11 and
the offset length is 21 (see Figure 8). Gaussian noise can be added to the fuzzy image, as well as the
noise density is 0.0001 (see Figure 9). We can calculate PSNR from the Formula (30). The PSNR of the
motion blur image and noise-added image are 23.1184 dB and 23.1112dB, respectively. After the model
processing ( Figure 10), the PSNR of the restored image is 31.6785dB. Different restoration effects can
be seen according to different parameters. When the noise density is small, the algorithm has a good
effect on fuzzy restoration, as shown in the Table 1.

Table 1. Average peak signal-to-noise ratio (PSNR) on 100 images by different parameters for
image restoration.

Fuzzy Factor (Angle:Length) PSNR (Fuzzy) Noise Density PSNR (Noise) PSNR (Recovery)

11:21 23.1184 0.0001 23.1112 31.6785
20:22 21.6673 0.008 18.3736 21.5656
10:20 21.8055 0.08 11.8724 21.4558
11:23 21.3195 0.1 11.1295 21.9005
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Figure 7. The original image.

Figure 8. Motion blurred image.
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Figure 9. Motion blur and noise images.

Figure 10. The restored image after filtering.

6. Conclusions and Prospects

In this paper, quantum image-deblurring algorithm for quantum image with size 2n × 2n that is
based on constrained least squares filtering is proposed and studied. The quantum circuit we designed
based on Laplace operator solves the problem of image blur very well. In terms of the computational
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complexity, for the NEQR quantum image of size 2n × 2n, the quantum circuit that we constructed can
recover the image whose computational complexity does not exceed O(n2 + 2q+3).

In fact, under the influence of the surrounding environment, image blurring is a problem that
needs to be studied. When compared with classical computers, quantum computers have great
advantages. This method can not only effectively remove the fuzzy problem, but also filter out a
variety of noise. Image deblurring is always an important research direction in image processing.
In the future, we will also study various deblurring problems .

Author Contributions: Conceptualization, S.W.; methodology, H.M. and S.W.; validation, P.X. and S.W.;
investigation, S.W. and R.S.; writing–original draft preparation, S.W. and H.M.; writing–review and editing, P.L.
and H.M.; visualization, R.S. and P.L. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by was supported by the Shandong Province Higher Educational Science
and Technology Program (Grant No. J18KZ012), and the National Natural Science Foundation of China
(Grant No.11975132,61772295), and the Shandong Provincial Natural Science Foundation, China (Grant No.
ZR2019YQ01).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982, 21, 467–488. [CrossRef]
2. Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings

of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India,
9–12 December 1984; pp. 175–179.

3. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994;
pp. 124–134.

4. Grover, L. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

5. Ma, H.; Teng, J.; Hu, T.; Shi, P.; Wang, S. Co-communication Protocol of Underwater Sensor Networks with
Quantum and Acoustic Communication Capabilities. Wirel. Pers. Commun. 2020, 113, 337–347. [CrossRef]

6. Ma, H.-Y.; Xu, P.-A.; Shao, C.-H.; Chen, L.; Li, J.-X.; Pan, Q. Quantum Private Query Based on Stable Error
Correcting Code in the Case of Noise. Int. J. Theor. Phys. 2019, 58, 4241–4248. [CrossRef]

7. Shi, P.; Li, N.; Wang, S.; Liu, Z.; Ren, M.; Ma, H. Quantum Multi-User Broadcast Protocol for the “Platform as
a Service” Model. Sensors 2019,19, 5257. [CrossRef]

8. Teng, J.; Ma, H. Dynamic asymmetric group key agreement protocol with traitor traceability. IET Inf. Secur.
2019, 13, 703–710. [CrossRef]

9. Ma, H.; Zhang, X.; Xu, P.; Liu, F. Quantum Secure Primary Communication Based on Quantum Information
Compression. Wirel. Pers. Commun. 2020, 113, 2203–2214. [CrossRef]

10. Venegas-Andraca, S.E.; Ball, J.L. Storing images in engtangled quantum. arXiv 2004, arXiv:quant-ph/0402085.
11. Venegas-Andraca, S.E.; Bose, S. Quantum Computation and Image Processing: New Trends in Artificial

Intelligence. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, 9–15 August 2003; pp. 1563–1564.

12. Le, P.Q.; Iliyasu, A.M.; Dong, F.; Hirota, K. Fast Geometric Transformations on Quantum Images. Int. J.
Appl. Math. 2010, 40, 113–123.

13. Venegas-Andraca, S.E.; Bose, S. Storing, processing, and retrieving an image using quantum mechanics.
Int. Soc. Opt. Photonics 2003, 5105, 137–147.

14. Venegas-Andraca, S.E.; Ball, J.L. Processing images in entangled quantum systems. Quantum Inf. Process.
2010, 9, 1–11. [CrossRef]

15. Latorre, J.I. Image compression and entanglement. arXiv 2005, arXiv:quant-ph/0510031.
16. Le, P.Q.; Dong, F.; Hirota, K. A flexible representation of quantum images for polynomial preparation,

image compression, and processing operations. Quantum Inf. Process. 2011, 10, 63–84. [CrossRef]
17. Zhang, Y.; Lu, K.; Gao, Y.; Zhang, Y.; Lu, K.; Gao, Y.; Wang, M. NEQR: A novel enhanced quantum

representation of digital images. Quantum Inf. Process. 2013, 12, 2833–2860 [CrossRef]

http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1007/s11277-020-07192-7
http://dx.doi.org/10.1007/s10773-019-04295-1
http://dx.doi.org/10.3390/s19235257
http://dx.doi.org/10.1049/iet-ifs.2019.0177
http://dx.doi.org/10.1007/s11277-020-07319-w
http://dx.doi.org/10.1007/s11128-009-0123-z
http://dx.doi.org/10.1007/s11128-010-0177-y
http://dx.doi.org/10.1007/s11128-013-0567-z


Entropy 2020, 22, 1207 13 of 13

18. Le, P.Q.; Iliyasu, A.M.; Dong, F.; Hirota, K. Strategies for designing geometric transformations on quantum
images. Theor. Comput. Sci. 2011, 412, 1406–1418. [CrossRef]

19. Sang, J.; Wang, S.; Li, Q. A novel quantum representation of color digital images. Quantum Inf. Process. 2017,
16, 42. [CrossRef]

20. Li, P.; Liu, X.; Xiao, H. Quantum image median filtering in the spatial domain. Quantum Inf. Process. 2018,
17, 49. [CrossRef]

21. Zhang, Y.; Lu, K.; Xu, K.; Gao, Y.; Wilson, R. Local feature point extraction for quantum images.
Quantum Inf. Process. 2015, 14, 1573–1588. [CrossRef]

22. Yuan, S.; Mao, X.; Chen, L.; Wang, X. Improved quantum dilation and erosion operations.
Quantum Inf. Process. 2016, 14, 1650036. [CrossRef]

23. Ma, S.Y.; Khalil, A.; Hajjdiab, H.; Eleuch, H. Quantum Dilation and Erosion. Appl. Sci. 2020, 10, 4040.
[CrossRef]

24. Liu, K.; Zhang, Y.; Lu, K.; Wang, X. Restoration for noise removal in quantum images. Int. J. Theor. Phys.
2017, 56, 2867–2886. [CrossRef]

25. Song, Q.; Ma, L.; Cao, J.; Han, X. Image Denoising Based on Mean Filter and Wavelet Transform.
In Proceedings of the 2015 4th International Conference on Advanced Information Technology and Sensor
Application (AITS), Harbin, China, 21–23 August 2015.

26. Caraiman, S.; Manta, V.I. Quantum image filtering in the frequency domain. Adv. Electr. Comput. Eng. 2013,
13, 77–85. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2010.11.029
http://dx.doi.org/10.1007/s11128-016-1463-0
http://dx.doi.org/10.1007/s11128-018-1826-9
http://dx.doi.org/10.1007/s11128-014-0842-7
http://dx.doi.org/10.1142/S0219749916500362
http://dx.doi.org/10.3390/app10114040
http://dx.doi.org/10.1007/s10773-017-3455-y
http://dx.doi.org/10.4316/AECE.2013.03013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	NEQR Model
	Constrained Least Square Filtering Computation

	Quantum Image Algorithm
	 Initialization
	Quantum Circuit Implementation
	 Cycle Shift, Addition Subtraction and Double Operation
	Restoration for Deblurring of Quantum Image

	Complexity Analysis
	Simulation Experiment
	Conclusions and Prospects
	References

