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Abstract: This paper presents an extensive and practical study of the estimation of stable channel 
bank shape and dimensions using the maximum entropy principle. The transverse slope ( tS ) 
distribution of threshold channel bank cross-sections satisfies the properties of the probability space. 
The entropy of tS  is subject to two constraint conditions, and the principle of maximum entropy 
must be applied to find the least biased probability distribution. Accordingly, the Lagrange 
multiplier (λ) as a critical parameter in the entropy equation is calculated numerically based on the 
maximum entropy principle. The main goal of the present paper is the investigation of the hydraulic 
parameters influence governing the mean transverse slope ( tS ) value comprehensively using a 
Gene Expression Programming (GEP) by knowing the initial information (discharge (Q) and mean 
sediment size (d50)) related to the intended problem. An explicit and simple equation of the tS  of 
banks and the geometric and hydraulic parameters of flow is introduced based on the GEP in 
combination with the previous shape profile equation related to previous researchers. Therefore, a 
reliable numerical hybrid model is designed, namely Entropy-based Design Model of Threshold 
Channels (EDMTC) based on entropy theory combined with the evolutionary algorithm of the GEP 
model, for estimating the bank profile shape and also dimensions of threshold channels. A wide 
range of laboratory and field data are utilized to verify the proposed EDMTC. The results 
demonstrate that the used Shannon entropy model is accurate with a lower average value of Mean 
Absolute Relative Error (MARE) equal to 0.317 than a previous model proposed by Cao and Knight 
(1997) (MARE = 0.98) in estimating the bank profile shape of threshold channels based on entropy 
for the first time. Furthermore, the EDMTC proposed in this paper has acceptable accuracy in 
predicting the shape profile and consequently, the dimensions of threshold channel banks with a 
wide range of laboratory and field data when only the channel hydraulic characteristics (e.g., Q and 
d50) are known. Thus, EDMTC can be used in threshold channel design and implementation 
applications in cases when the channel characteristics are unknown. Furthermore, the uncertainty 
analysis of the EDMTC supports the model’s high reliability with a Width of Uncertainty Bound 
(WUB) of ±0.03 and standard deviation ( dS ) of 0.24. 
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1. Introduction 

The sections and dimensions of rivers and alluvial channels change due to the constant 
interactions between water and sediments. River and channel plans and cross-sections undergo 
dimensional changes until equilibrium or stable state is attained. After equilibrium, the average 
dimensions of a stable cross-section do not change over time; in fact, the rate of sedimentation and 
erosion in a channel cross-section is theoretically in equilibrium [1–3]. In this case, the particles on 
the bed and at the channel banks are in dynamic balance. In channels with coarse particles, the 
movement of sediments at any location in the channel contradicts the term “channel stability” [4,5].  
In this type of channel, it is not possible for sediments to move without changing the channel 
dimensions and width [6]. Moreover, the channel dimensions and width of water surface are only 
preserved (channel stability) in a state when the sediment particles on the channel bed move slightly 
and at the banks are in the threshold of motion [7].  In such case, one problem related to river 
morphology is with predicting the erosion process of river banks and profile shape formation until 
stable sections are achieved [8,9]. 

The tS  is distributed between zero value on the channel bed and the maximum tS  value ( +
tS

) at the free water surface at the water margin. tS  distribution is related to the lateral distance (x) 
from the channel bed (x = 0) to the water margin. At the water margin, x is named L which is equal 
to the half-width of the free water surface (B/2) (L = B/2). Therefore, it is worth using the entropy 
concept in the study of the tS  of bank profiles because the entropy concept is based on the 

probability principle and its relation to a channel’s geometric parameters. Furthermore, since the +
tS  

value at the free water surface is equal to μ (submerged static coefficient of Coulomb friction), the tS  
of the banks is affected by the hydraulic parameters of the channel cross-sections too (including flow 
and sediment characteristics). The tS  value in channels is due to the homogeneity of +

tS  values as 

a result of these conditions. Because the tS  value is not specified for channels (and also there is no 
specified relation for computing it), a uniform distribution of the transverse bank slope is assumed 
to obtain the tS  value from the ratio of the maximum flow depth at the channel centerline (hc) to the 
corresponding lateral distance of this depth from the central channel axis (L). Therefore, if the channel 
dimension values are not specified, the tS  value cannot be obtained. Therefore, a novel relationship 

would have existed to estimated tS  values based on available datasets (not only channel 
dimensions). 

Furthermore, with the obtained entropy equation it is possible to accurately predict the tS  of 
the banks depending on the correct values of the Lagrange multipliers contained in the equation. 
Therefore, if the entropy equation can predict the transverse bank slope correctly, multiplier λ should 
be closely related to the hydraulic and geometric parameters of the banks, which has not been 
investigated so far except the recent study of authors. Gholami et al. [10] analyzed the sensitivity of 
λ multiplier to different hydraulic and geometric parameters. They referred to considerable impact 
of the maximum slope of the bank profile and the dimensionless lateral distance of the river banks 
on λ variations. Therefore, by investigating the relationship between the entropy parameters and the 
hydraulic and geometric parameters of a channel, it is possible to achieve a simpler equation for the 
transverse bank slope distribution and thus, the bank profile shape. Based on Gholami et al.’s [10] 
study results, a simple relation is presented based on the maximum entropy principle to compute 
entropy parameter using maximum and mean values of tS . In the Consequently, the fraction 

obtained with the tS  to +
tS  ratio (δ) is evaluated and a relationship between the δ ratio and the 
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entropy parameter (K =  λμ) is presented. Moreover, a regression model based on GEP is used to create 
a relationship between the tS  of the banks and the geometric and hydraulic parameters of the flow 
(when the channel dimensions are unknown and only the hydraulic characteristics (e.g., Q and d50) 
are available). This relationship is combined with Vigilar and Diplas’ [11] polynomial equation to 
present an equation for estimating the stable free surface width based on the relationship between δ 
and K. The EDMTC proposed in this paper is used together with the bank profile shape equation to 
obtain the channel bank dimensions. 

2. Literature Review 

So far, many studies have been carried out to examine channel dimensions in dynamic 
equilibrium state [12–19]. However, few studies have examined the bank profile shape of threshold 
channels or the static equilibrium of channels. Parker [6] did extensive research in this field and 
justified the stable channel paradox with the nonuniform shear stress distribution on the channel bed 
and banks due to the longitudinal transformation of the lateral flow momentum. Parker’s model 
estimated the bank profile shape as a cosine curve. Later, Ikeda [20] conducted extensive laboratory 
studies to investigate the shape of stable channel banks. Ikeda then employed a mathematical model 
based on Parker’s idea and presented an exponential equation for bank profile shapes. Ikeda [20] 
pointed out that the most influential parameters in determining the shape of stable channels are the 
Q and d50. Diplas [21] used an analytical model with their experimental data and proposed a special 
case of Ikeda’s [20] equation as an exponential function for a bank profile shape. Pizzuto [22] 
examined the stability criterion using an analytical solution of the widening process at the free water 
surface. Pizzuto [22] considered the shear stress redistribution due to lateral diffusion and reported 
an exponential function for a bank profile after channel widening stops. Diplas and Vigilar [23] 
presented a numerical model to assess the difference between the shape of threshold channels and a 
previous conventional shape (cosine) for banks. They stated that with particles that do not move 
along the banks, the transverse slope of the banks should be milder, in which case a wider and deeper 
channel would form. Hence, they introduced a fifth-degree polynomial profile shape of stable 
channel banks. Vigilar and Diplas [11,24,25] provided graphs for use to predict the dimensions and 
profile shapes of stable channel banks with a third-degree polynomial equation. This equation can 
accurately predict the bank profile shape, because it is in accordance with the results obtained with 
the equations of several other researchers who have used various other methods [26,27]. Babaeyan 
[7] did an extensive laboratory study and according to their observational data introduced a 
hyperbolic bank profile shape. Cao and Knight [28] were the first to examine the shape of bank 
profiles using the entropy concept. By applying the shape equation obtained with the maximum 
entropy principle, they reported a parabolic equation. In solving their entropy equation, the Lagrange 
multiplier (λ) contained within were tested numerically. The equation was validated according to 
Chow’s [29] definition of natural rivers considering a value of zero for λ. Cao and Knight [28] 
emphasized the need to further consider the physical concept of multiplier λ. Following Cao and 
Knight’s [28] brief study, no other study has been based on the entropy concept to predict the tS  
and hence the bank profile shape of stable channels. Gholami et al. [30–34] assessed the ability of 
different artificial intelligence (AI) methods in the estimation of bank profile shapes of threshold 
channels. They referred to high efficiency in these methods in estimation and the necessity of further 
researches about on forming stable shape of bank profiles. 

Due to the significance of the entropy concept, many studies have addressed entropy in 
examining different variables [35–38]. In hydraulic science, Chiu [39] was the first to examine the 
flow velocity distribution using entropy. Later, other considerations were applied to evaluate the 
mean and maximum velocity ratio, shear stress and sediment concentration distributions in the cross 
sections of channels [40–53]. In the field of application of entropy concepts in determining tS  of 
stable channels, recently, Gholami et al. [54,55] assessed the ability of Tsallis and Shannon entropy 
concepts in estimation of tS  of stable channels banks. They extensively assessed the variation of 
different entropy parameters and their signs in obtained entropy-based equations. However, they 
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presented no reports about the significant effects of relations of maximum and mean values of tS  
with entropy parameters and the other hydraulic and geometric conditions. 

3. Materials and Methods 

3.1. Maximum Entropy Principle in Estimating the Transverse Slope of Stable Banks 

Cao and Knight [28] evaluated the tS  of banks in threshold state using the principle of 
maximum entropy for the first time. In the following, Gholami et al. [54,56] modified the application 
of maximum entropy principle used by Cao and Knight [28]. Cao and Knight [28] employed the 
Shannon entropy [56] in the form of Equation (1) and presented Equation (2) considering the tS  of 
stable banks as a random variable and the principle of maximum entropy [57,58] associated with the 
two constraint conditions of continuity and momentum in Equations (3) and (4) [59]. 

−= tttt dSSpSpSH )(ln)()( , (1) 

where )( tSp
 
is the Probability Density Function (PDF) of the tS  of the banks, and H is the amount 

of entropy. 





 −+=
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where x is the lateral distance of points on the banks from the channel centerline and λ is the Lagrange 
multiplier. Figure 1 represents a symmetrical bank cross section of stable alluvial channels. In stable 
channels, tS  of the banks changes monotonically from the centerline of the channel bed (x = 0 and y 

= 0) that is zero ( tS  = 0) to the +
tS  value at the free water surface at the water margin (x = L = B/2 

and y = hc), which is equal to μ (the submerged static coefficient of Coulomb friction). 
Cao and Knight [28] carried out numerical testing and considered a specified range for λ (1, 5, 

10, 50, 100). They stated that when λ tends toward zero, the cross-sectional bank shape is a parabolic 
curve. Consequently, this multiplier was deleted from their equation. The following equation was 
presented with numerical justification for bank profile shape estimation: 

2
2

*
4

* xy 



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


= μ , (5) 

where x* = x/hc is the dimensionless lateral distance from the channel centerline and y* = y/hc is the 
dimensionless vertical boundary level. The Lagrange multiplier is a key component of the maximum 
entropy principle. In the following, Gholami et al. [54] presented an equation based on the maximum 
entropy principle to caculate λ numerically [54] which is explained in summary in the following. 
Accordingly, by using the Lagrange Multiplier Method (LMM) and variable calculation technique 
[39,60,61], the equation below is obtained for )( tSp : 

)1exp()( 1 −+= tt SSp λλ . (6) 

Equation (6) is used with the first constraint (Equation (3)) to obtain the following equation: 
11 )1(1 −− −= λμλ λ ee , (7) 

where λ1 is Lagrange multipliuer and equal to: λ1 = ln[λ/(eλμ-1)]+1. 
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Furthermore, by replacing Equations (6) and (7) in the second constraint condition (Equation 
(4)), the following equation is obtained to calculate λ: 

λ
μ
λμ

λμ 1
)1(

−
−

=
e

eSt . (8) 

On the other hand, by dividing the sides of Equation (8) by μ, the following equation is obtained: 

Ke
eS

K

K
t 1

)1(
−

−
== δ

μ
 (9) 

where K is a dimensionless parameter known as the entropy parameter used to measure the 
uniformity of the probability and distribution of the tS , which is equal to K = λμ, and δ is the ratio 

of tS  to +
tS  (=μ). In the present study, when the values of hc, L, and +

tS  (=μ) are known, the tS  
value along the banks is obtained by assuming the uniform distribution of tS  as equal to the hc/L 
ratio. Therefore, λ is obtained by numerically solving Equation (8). Then, the tS  distribution of 
stable banks can be computed according to Equation (2). Moreover, physical justifications of λ 
multiplier and the effect of different hydraulic and geometric parameters on it is investigated in 
Gholami et al. [10]. On the other hand, the tS  at each point on the channel banks is formulated as 

dxdySt /= , where y is the vertical boundary level of the points. By integrating this, the bank profile 
shape equation for threshold channels becomes Equation (10), where the integral constant (C) is 
obtained by applying the boundary condition at the channel centerline (x and y = 0). 
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This is introduced as the bank profile shape equation based on developed entropy model which 
is extended in Gholami et al. [54] in details. If the channel dimensions (B and hc) are not specified, it 
is not possible to estimate λ and hence, the tS  and y values. Therefore, in this paper, the next section 
presents a numerical model for when the channel dimensions are not specified and only Q and d50 
are known from the problem condition. 

 

Figure 1. Symmetrical cross section of alluvial threshold channels and its characteristics. 

3.2. Calculating μ 

The μ value can be calculated as μ = tan φ, where φ is the angle of sediment reposition. 
Furthermore, since the value of μ changes with the sand size and roughness [5,62], the following 
relationship between the φ and sediment size (d50) can be utilized in the current study to compute φ 
in uniform sediments [10,27,54]: 

( ) ( ) ( )
( ) ( ) 





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ddd
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where φ is in degree and d50 should be inserted in centimeters. 

3.3. Entropy-Based Design Model of Threshold Channels (EDMTC) 

As stated in the previous section, by assuming a uniform distribution for tS  value, the tS  
value can be obtained by the hc/L when the values of hc, and L (=B/2) are known. Accordingly,

 
if the 

hc and B values are not known, it is not possible to calculate tS . In this section, an explicit relationship 

will be provided to calculate the tS  value for the cases that the channel dimensions (hc, B) are not 
available. 

In this way, using several series of available observational data with different hydraulic 
conditions, the Q, d50 and μ values are determined and a relationship for the tS  value based on these 

parameters is applied to calculate the tS  value for any other data where the channel dimensions are 

not specified. Accordingly, considering Q, d50 and μ parameters as input parameters and tS  as 
output parameter based on a numerical GEP model (Figure 2) [32,63,64] provide a relationship for 
predicting tS  in the form of Equation (12): 

tS  = G1 + G2 + G3, 

G1 = e^{−{[(μ2 − 2μ) +ln(μ + 4.433)] + [exp (−(Q + μ)2)] +exp [−((0.936 + d50)2)]2}}, 

G2 = e^{−{[(17.693 − 1.565Q) + (1/d50)] + [μ + 1.565 − μQ]}2}, 

G3 = e^{−{[(1.112Qd50 − ln (6.5Q))/μ] + μ}2}. 

(12) 

In fact, with input parameters Q, d50 and μ (= +
tS ) the value of tS  is calculated using Equation 

(12). Now by knowing the tS  value for any channel whose stability dimensions are not specified, in 
addition to bank profile shape, the width and depth of the channel after stability can be determined. 
To do this, tS  can be calculated by using the equations presented by former researchers who have 
applied analytical and theoretical frameworks to derive the relationships.  As stated, the polynomial 
shape proposed by some researchers is an acceptable shape than the previous classic cosine, 
parabolic, and exponential forms [23]. Therefore, in the present study, the polynomial function 
provided by Vigilar and Diplas [11] is used to estimate the bank profile shape of stable channels as 
follows [11]: 

01
2

2
3

3 ***1* axaxaxay −−−−= . (13) 

Coefficients a0, a1, a2 and a3 depend on the values of δ*cr and μ, which are obtained from Table 1 
for each given dataset [11]. δ*cr  is the dimensionless critical stress depth (δ*cr = δcr/hc) in critical 
condition of sediments in the bank profile. In this case, the shear stress depth (δ′) is δ′ = τ/ρgS, where 
τ is the shear stress along the channel and S is the longitudinal slope of the water surface. The value 
of δ*cr can be obtained according to the (μ − δ*cr) figures related to Vigilar and Diplas [11]. 

Table 1. Coefficients in the bank profile shape equation related to Vigilar and Diplas [11] (Equation 
(13)) for different values of μ and δ*cr [11]. 

a0 a1 a2 a3 δ*cr 
μ = 0.4 

1.0001 −0.0135 −0.0411 0 0.93 
1.0004 −0.0236 −0.0412 0 0.935 
1.0008 −0.0307 −0.0412 0 0.94 
1.0009 −0.0342 −0.0413 0 0.945 

μ = 0.55 
1.0003 −0.018 −0.0503 −0.0029 0.9 
1.0006 −0.0299 −0.0527 −0.0027 0.905 
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1.0008 −0.0366 −0.0547 −0.0025 0.91 
1.001 −0.0416 −0.0565 −0.0022 0.915 
1.0011 −0.0463 −0.0586 −0.0019 0.921 

μ= 0.65 
1.0006 −0.0278 −0.0543 −0.006 0.885 
1.001 −0.0444 −0.06 −0.0054 0.895 
1.0013 −0.0529 −0.0647 −0.0048 0.905 
1.0041 −0.0556 −0.0665 −0.0045 0.909 

μ= 0.76 
1.0009 −0.0365 −0.0544 −0.0105 0.87 
1.0014 −0.0531 -0.061 −0.0101 0.88 
1.0017 −0.0621 −0.0662 −0.0095 0.89 
1.0018 −0.0662 −0.0701 −0.009 0.897 

μ= 0.84 
1.0011 −0.0418 −0.0516 −0.0146 0.86 
1.0016 −0.0594 −0.059 −0.0143 0.87 
1.002 −0.0697 −0.0634 −0.0141 0.88 
1.0021 −0.0742 −0.0708 −0.013 0.89 

μ= 1.0 
1.0016 −0.0571 −0.0466 −0.0233 0.845 
1.0022 −0.0738 −0.0531 −0.0237 0.855 
1.0025 −0.0828 −0.0589 −0.0236 0.865 
1.0028 −0.0884 −0.0656 −0.023 0.875 
1.0028 −0.0892 −0.0683 −0.0226 0.878 

Now, the derivative of the above function (Equation (13)) versus dx* yields the transverse slope 
function at different points in the channel as follows: 

12
2

3 *2*3
*
*

axaxa
dx
dy

St −−−== . (14) 

Now, according to the mean value theorem in integral, the mean slope value of the bank profiles 
( tS ) is computed based on the mean value theorem for definite integrals for y* distribution (Equation 
(13)) along the transverse interval in range of ( *5.0*0 Bx ≤≤ ) according to the following Equations 
(15a), (15b) and (15c): 

=
*5.0

0
)(*

*5.0
1 B

t dxxy
B

S , (15a)


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)1(
*

2
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*
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*

012

2

3 −−−−−= a
B

aBaBaSt . (15c)

Therefore, by obtaining tS  value using Equation (12), B* value of the free water surface of bank 

profile is obtained with Equation (15b). In fact, with input parameters Q, d50 and μ (= +
tS ) the value 

of tS  is calculated using Equation (12). Then, Equation (15c) is used to obtain the value of B* based 

on obtained tS  values according to Equation (12). Accordingly, in this study, the EDMTC (Figure 2) 
is presented to predict the dimensions and shape of bank profiles using the entropy principle. The 
value of x* (lateral distance from the channel axis) is selected for a specific range of arbitrary x* values 
at a distance of )(*5.0*0 LBx i =≤≤ . The values of y* obtained by the entropy facilitate plotting the 
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bank shape profiles against different xi. Figure 2 shows the flowchart of the GEP model and model 
developed in the present study (EDMTC) to predict the shape and dimensions of threshold channels. 

 
Figure 2. Flowchart of the proposed Entropy-based Design Model of Threshold Channels (EDMTC) 
computational procedure for designing the dimensions and shape of threshold channels in the present 
study. 

3.4. Experimental Data 

The observational data series used in the present study were collected in previous investigations 
by Mikhailova et al. [65], Ikeda [20], Diplas [19], Babaeyan [7], Macky [66], Hassanzadeh et al. [67], 
and Khodashenas [68]. The hydraulic and geometric conditions of the data vary, with different ranges 
of Q and d50 values in the channel as well as geometric conditions of the laboratory flumes used with 
each data series. Furthermore, several tests were carried out for different discharge rates with each 
data series, and the channels had different conditions until reaching equilibrium state. In each 
observational data series, in addition to the channel dimensions (B and hc) the coordinate data of the 
points in stable bank profiles (x, y) were extracted for some discharge values as well. Moreover, all 
experiments were done in laboratory flumes with different aspect ratios (B/hc = α) in the range (4–30). 
In each test, the sediment sizes selected  were somewhat course, so the corresponding proportional 
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discharge in the channels would cause no movement of sediment particles in the channels. Hence, 
the stresses on the walls and channel bed were respectively less and more than the critical stress until 
threshold channel conditions would govern. Table 2 summarizes the hydraulic and geometric 
conditions for the data used. 

Table 2. Summary of experimental characteristics for the data used in the present study. 

Researchers 
Runs. 
No. 

No. of 
Series d50 [mm] 

Discharge (Q) 
[L/s] 

Water Surface 
Half-Width 
(B/2) [cm] 

Central 
Water 

Depth (hc) 
[cm] 

Mikhailova et al. 
[65] 2 

S1 0.2 65 112 10.4 
S2 0.2 69 132.5 14.4 

Ikeda [20] 1 S3 1.3 16.28 24.8 3.54 
Diplas [21] 1 S4 1.9 12.526 33 3.85 

Babaeyan [7] 1 S5 1 2.5 52.6 2.63 
Macky [66] 
(Field data) 1 S6 3.42 64.3 127 3.7 

Hassanzadeh et 
al. [67] 2 

S7 1.2 11.09 32 8.6 
S8 1.6 20.07 40.6 10.9 

Khodashenas 
[68] 

4 

S9 0.53 6.2 21.7 8 
S10 0.53 2.57 16 6.3 
S11 0.53 2.18 17 6.12 
S12 0.53 1.157 9.5 3.7 

3.5. Used Data in Modeling 

As stated in the previous section, in this paper, 12 numbers of observed runs (S1–S12) (according 
to Table 1) with different hydraulic and geometry characteristics are selected for training and testing 
the EDMTC model. The hydraulic and geometric conditions of the data series are varied, so that the 
range of Q and d50 values in the channel, as well as the geometric conditions of the laboratory flumes 
used in each data series, are different. Furthermore, in each seven available observational data series 
(Mikhailova et al. 1980; Ikeda 1981; Diplas 1990; Babaeyan 1996; Macky 1999; Hassanzadeh et al. 2014; 
and Khodashenas 2016), there are several runs related to them according below with different 
discharges, therefore, the stable channel shape formed on banks in each observed run is different. 

• Ikeda (1981) → one run as S3 (8 samples) 
• Diplas (1990) → one run as S4 (25 samples) 
• Babaeyan (1996) → one run as S5 (8 samples) 
• Macky (1999) → one run as S6 (101 samples) 
• Hassanzadeh et al. (2014) → two runs as S7 (33 samples) and S8 (38 samples) 
• and Khodashenas (2016) → four runs as S9 (44 samples), S10 (33 samples), S11 (57 samples) and 

S12 (20 samples) 

In fact, in this paper, external-validation is performed. External validation means that among 12 
numbers of data series (totally 367 sample numbers), some data series are used for training and some 
data series are selected for testing the models. Accordingly, in this paper, 10 data series of S1, S2, S3, 
S7, S8, S9, S10, S11, and S12 (65% of all samples: 233 samples) are used for training the EDMTC model 
and three data series of S4, S5, and S6 (35% of all samples: 134 samples) related to Diplas’ (1990), 
Babaeyan’s (1996) and Macky’s (1999) data series are selected for testing the EDMTC model. This 
kind of validation is acceptable, because the proposed EDMTC model is trained and tested based on 
data series with different hydraulic and geometry characteristics. 

3.6. Evaluation of Model Efficiency 
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In order to evaluate the methods presented in this study, several statistical indices are used: The 
determination coefficient (R2), Root Mean Squared Error (RMSE), Mean Absolute Relative Error 
(MARE), Mean Absolute Error (MAE), and Bias. These evaluation criteria are defined by Equations 
(16)–(20): 
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where yi and xi denote the  estimated and observed values, y  represents the mean modeled values 
and n is the sample size. The closer the R2 coefficient is to the unit value (1), the higher the agreement 
there is between the observed and predicted values. The closer the results of MARE, RMSE, Bias, and 
MAE indices are to zero, the higher the estimation accuracy is as well. Positive and negative Bias 
values imply model over and underestimation, respectively [69–71]. Therefore, computing several 
evaluation criteria can better reveal the model performance [72,73]. 

4. Results 

In the first section, the ability of entropy model is evaluated to predict bank profile shapes. In 
the second section, the EDMTC proposed in this study is examined in detail. At the end, the 
uncertainty of the proposed EDMTC is examined using different uncertainty indexes. 

4.1. Entropy Model in Predicting Bank Profile Shapes 

In Figure 3, the vertical boundary level of stable channel banks is estimated by the developed 
entropy model based on the maximum entropy principle which is proposed in Gholami et al. [54] for 
the first time. The λ value is obtained by numerical solution of Equation (8). Accordingly, for each 
data series (each bank profile shape), one λ value is obtained by numerically solving Equation (8). In 
Equation (8), tS  value is calculated by assuming uniform distribution of tS , according to ratio of 
hc/L. Using obtained λ value, the y value is computed based on entropy method by solving Equation 
(10). The y* distribution obtained by Equation (10) corresponding each x* value is drawn for each 
data series in Figure 3. Moreover, the results of Cao and Knight’s [28] model (CKM) (according to 
Equation (5)) are extracted and their proposed bank profile shape is drawn in Figure 3 to evaluate 
the entropy model performance. Table 3 contains the different error indices for entropy model and 
CKM. Figure 3 indicates that entropy model exhibits acceptable conformity with the corresponding 
observational data series in predicting the vertical boundary level and hence, estimates the bank 
profile shape with low error values. According to all data series, entropy model is able to estimate 
the governing bank profile shape trend with lower MARE and RMSE values equal to 0.317 and 0.08 
better than CKM with 0.981 and 0.363 values respectively. Figure 3 also shows that for two data series, 
i.e., S1 and S2 (Mikhailova et al.’s [65] data), CKM has high error values in y* estimation and high 
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accuracy in the area near the free water surface, where high MARE values in the 2–4 range are 
observed for these data series. However, the proposed entropy model is able to detect the bank profile 
shape trend with lower error values (MARE = 0.2 and 0.8 for S1 and S2 datasets respectively) than 
CKM with 1.95 and 3.95 MARE values, which represents the significant superiority of entropy model. 
This process is repeated for the S2 and S3 data series. Although CKM exhibits acceptable 
performance, entropy model is more accurate with lower error values and coincides closely with the 
observed values (especially in the area near the surface). For the S6 field data series, although both 
models do not perform well (with close Bias values of −0.31 and 0.45 for entropy model and CKM 
respectively), entropy model again performs with lower error (MARE = 0.58) than CKM (MARE = 
1.03). Furthermore, the high MARE index value for CKM is representative of its inability to estimate 
low y* values (in the vicinity of channel bed), a problem that is solved by entropy model significantly. 
Furthermore, the RMSE values of CKM and entropy model which is equal to 0.5 and 0.38 respectively 
approved the inefficiency of CKM in estimating low y* levels. With data series S7, the improvement 
of entropy model over CKM by about 60% and 85% in the MARE and RMSE values respectively is 
observed clearly in Figure 3, as entropy model highly conforms to the observational data with R2 

values of 0.98. With Khodashenas’ [68] data (S9-S12), the higher efficiency of entropy model over 
CKM is evident with lower MARE and RMSE values in entropy model than CKM. Furthermore, 
entropy model is able to estimate the water surface widening with high y* values well with low values 
of RMSE and Bias values close to 0. The negative and positive Bias value represents the 
underestimation and overestimation of the models respectively. As it can be seen in the Bias values, 
the CKM in most of the datasets have positive Bias values and overestimates the y* values in 
comparison with the corresponding observed values. It can thus be said that the entropy model 
proposed in the present study based on the maximum entropy principle is more accurate in the 
estimating the bank profile shape of stable channels than CKM, which suggests a parabolic curve 
(Equation (5)) for channel banks. A notable point in this paper is the significant physical effect of λ 
values on the accurate estimation of the intended variables, which is negligible with CKM. The λ 
values obtained by entropy model in this study are gathered in Table 3, where it can be seen that this 
multiplier is in a specified range of −2 to 2 with almost all data series (except with 1–2 data series). 
Furthermore, the λ values are the same for different runs of one experiment. 
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Figure 3. Bank profile shape predicted by developed entropy model and Cao and Knight’s [28] model 
(CKM) for different observational data series (S1–S12). 

Table 3. Assessment of the efficiency of developed entropy model (DEM) and CKM compared with 
different observational data series according to different error indices and λ values related to DEM in 
this paper. 

 MARE RMSE Bias R2 λ  
Data Series DEM CKM DEM CKM DEM CKM DEM CKM DEM 

S1 0.254 1.95 0.103 1.31 −0.04 0.99 0.93 0.981 −5.56 
S2 0.86 3.95 0.057 0.7 −0.036 0.47 0.98 0.988 −4.26 
S3 0.228 0.47 0.037 0.141 0.022 0.116 0.99 0.981 −1.62 
S4 0.15 0.11 0.053 0.08 −0.05 0.064 0.99 0.997 −1.75 
S5 0.43 0.42 0.1 0.135 −0.08 0.114 0.99 0.988 2.11 
S6 0.58 1.03 0.38 0.5 −0.31 0.45 0.96 0.957 1.5 
S7 0.147 0.86 0.056 0.37 0.045 0.35 0.98 0.966 −2.46 
S8 0.315 0.99 0.109 0.34 0.098 0.32 0.97 0.95 −2.2 
S9 0.26 0.50 0.044 0.184 0.008 −0.148 0.98 0.989 1.72 
S10 0.18 0.56 0.028 0.24 −0.01 −0.192 0.99 0.987 2.2 
S11 0.23 0.46 0.05 0.14 0.03 −0.108 0.99 0.996 1.4 
S12 0.17 0.47 0.05 0.22 0.03 −0.16 0.985 0.996 2.4 

Averaged 0.317 0.981 0.08 0.363 −0.02 0.189 0.978 0.981 - 

4.2. Presenting the Entropy-Based Design Model of Threshold Channels (EDMTC) 
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In previous sections, the entropy model was evaluated for its prediction ability of bank profile 
shapes in case the depth and width of the free water surface in the channel are determined. In this 
study, EDMTC based on the relationship between the entropy parameter and the tS  of channel 
banks to predict the channel dimensions as well as the bank profile shape is presented and explained 
in detail in Section 3.2 and Figure 2. The proposed EDMTC is evaluated in the first subsequent section 
and the model’s uncertainty is examined in the second part. 

Evaluation of EDMTC Performance 

Figure 4 displays scatter plots of the EDMTC proposed in this study for several observational 
data series. The left side of the figure contains the regression plots of the y* values predicted by 
EDMTC compared to the corresponding observational values. The right side of the figure shows the 
cross-sectional profile shapes predicted by EDMTC compared with the profile shapes obtained with 
observational values. Table 4 lists the error indices of EDMTC compared to the corresponding 
observational values. The scatter plots indicate that EDMTC can very accurately predict the vertical 
elevation of stable channel banks, as most data is compressed around the trend line and slight 
scattering is observed for some of the datasets. In Figure 4, the trend line is mapped to the data and 
the resulting equation is y = ax + b. Closer a and b values to 1 and 0, respectively, represent acceptable 
model prediction performance. According to the trend line, for all datasets the predicted values are 
concentrated around this line and the values of a, b are close to 1, 0, respectively. This indicates the 
high efficiency of the proposed EDMTC in predicting the vertical elevation of channel banks. 
Moreover, the R2 index value in this figure is higher than 0.95 for all observational data series, 
indicating the high EDMTC prediction accuracy. The value of this index is very close to 1 for some of 
the observational data [20,21,68], signifying very high model conformity to the corresponding 
observational values. Furthermore, according to the diagrams on the right side of Figure 4, the 
EDMTC is able to accurately estimate the bank profile shape trend for all data series. Although some 
differences between the values y* predicted by the model and the observational values are seen, it is 
notable that EDMTC is able to model the vertical bank elevation (from the channel center on the bed 
to the free water surface margins) and the water surface widening near the water surface levels 
similar to the corresponding observational values. The error index values in Table 4 are also validated 
accordingly. This table shows that the MARE values for all datasets are 0.3–0.5, which is close to 0. 
This index indicates the accuracy of the proposed EDMTC in predicting the vertical elevation of 
banks as well as the free water surface width in stable channels. An important point is that the 
proposed EDMTC predicts the profile shape trend successfully and can therefore be used to design 
the width and depth (dimensions) of stable channels when only flow inputs such as Q, d50 and μ are 
known. The high accuracy of this model is confirmed, and achieving such a model with the least 
parameters to predict the dimensions and cross-sectional bank shapes formed in stable channels is of 
considerable importance. Also, EDMTC not only considers the geometric conditions of the channel 
cross sections but also involves the hydraulic conditions of the problem (by using Vigilar and Diplas’ 
[11] equation), which is one of the notable features of this model. Based on most observational data 
series, the estimated channel width is very similar to the observational values (in some cases it is 
slightly less). For example, for the EDMTC profile predictions based on the observational data from 
Diplas [21], Babaeyan [7], and Hassanzadeh et al. [67], the water surface width is estimated very close 
to the observed values. Furthermore, for most observational datasets, the proposed model estimates 
greater values for the vertical elevation of the water surface, although the estimated profile trend fits 
the observational values perfectly. The partial error values of EDMTC that are mostly seen in the 
areas near the channel bed and the free water surface with some of the datasets can be considered 
measurement errors of the observational data [74]. For some data, e.g., Hassanzadeh et al. [67] and 
Khodashenas [68] this error is seen at the channel bed. Additionally, Figure 4 shows that EDMTC 
based on Khodashenas’ [68] data estimates lower y* than the actual values, which results in a negative 
Bias and an absolute error increase of 14% in MAE value according Table 4 (MAE represents the 
absolute magnitude of the difference between observational values and the model). It is worth noting 
that the EDMTC can estimate a more logical shape than the profile derived from the corresponding 
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observational values, which has a uniform distribution from the bed to the water surface. With the 
rest of the data series, EDMTC estimates roughly higher partial values equal to the observational 
values for y*, as the RMSE error value is about 0.9–0.13, which is acceptable. Therefore, EDMTC with 
low average error values (MARE = 0.55 and MAE = 0.19) is generally highly accurate in predicting 
bank profiles and stable channel dimensions. 
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Figure 4. Comparison of values predicted for the vertical boundary level of stable channels by the 
EDMTC proposed in the present study using scatter plots (left side) and cross-sectional profile shapes 
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(right side) for different observational data: (a) Ikeda [20]-S3, (b) Babaeyan [7]-S5, (c) Diplas [21]-S4, 
(d) Hassanzadeh et al. [67]-S7, (e) Khodashenas [68]-S9, and (f) Khodashenas [68]-S12. 

Table 4. Evaluation of the EDMTC proposed in the present study in estimating the dimensions of 
stable channels in comparison with several available observational data series. 

Dataset R2 MARE RMSE MAE Bias 
Ikeda [20] (S3) 0.995 0.357 0.098 0.078 0.064 
Diplas [21] (S4) 0.991 0.186 0.132 0.097 0.094 

Babaeyan [7] (One set) (S5) 0.961 0.400 0.124 0.095 −0.095 
Macky [66] (S6) 0.942 0.568 0.556 0.381 0.380 

Hassanzadeh et al. [67] (S7) 0.986 1.164 0.456 0.436 0.436 
Hassanzadeh et al. [67] (S8) 0.981 1.146 0.380 0.364 0.364 

Khodashenas [68] (S9) 0.992 0.426 0.127 0.109 −0.109 
Khodashenas [68] (S10) 0.979 0.473 0.169 0.143 −0.143 
Khodashenas [68] (S11) 0.994 0.361 0.096 0.076 −0.076 
Khodashenas [68] (S12) 0.995 0.475 0.193 0.147 −0.147 

Average 0.9816 0.5556 0.2331 0.1926 0.0768 

4.3. Uncertainty Analysis of the Proposed EDMTC and GEP Model 

In this section, the uncertainty of EDMTC in predicting the bank profile shape based on entropy 
model ans also GEP model in predicting tS  of bank (according Equation (12)) is examined and the 
uncertainty indices are shown in Table 5. With the Uncertainty Wilson Score Method (UWSM) [10], 
[19,75–79], the error of the tS  predicted by the GEP model and the y* values predicted by EDMTC 
is calculated and compared with the corresponding observation values. The error between estimated 
and observed values ( ie ) and the corresponding the Mean Prediction Error (MPE or e ) and standard 
deviation ( dS ) for error values calculated for data is obtained as Equations (21)–(23): 
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where n is the sample size. With these indices, the WUB are calculated as Equation (24): 
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(24) 

where ltI  is the left-tailed inverse of the error distribution that represent the probability of error 
distrubution associated with the numebr of degree of freedom with which to characterize the 
distribution [76,80]. In the present paper, the probability of 0.05 error (95% Confidence Bound (CB)) 
with degree of freedom equals to n − 1 is considered in ltI -value calculation [80]. Moreover, CB is 
the 95% quantile of the ltI  distribution with 1 degree of freedom. In the following, CB can be 
defined. In this range, the WUB represents the upper and lower uncertainty bounds of CB 
respectively as Upper Bound (UB) and Lower Bound (LB). UB and LB can be calculated by WUBe ± . 
Moreover, the CB represents the mean value of error. Furthermore, xd  represents the average width 
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of CB which is calculated as Equation (25). The lower average width of the CB associated with the 
lower values of dS  and WUB provides the high certainty of model. 
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n

i
x ±=−= 

== 11

1)(1 , (25) 

The ideal certainty analysis is achieved when most of the estimated values are bracketed within 
the CB and also the narrowest width is achieved. 

Table 5. Uncertainty analysis for the Gene Expression Programming (GEP) model in tS  prediction 

according to Equation (12) and EDMTC. 

Model Datasets Sample 
Number dS  MPE WUB xd  CB 

EDMTC 

Ikeda [20] (S3) 8 0.08 −0.064 ±0.07 0.065 −0.13 to 0.00 
Diplas [21] (S4) 25 0.09 −0.094 ±0.04 0.09 −0.13 to −0.05 

Babaeyan [7] (S5) 8 0.08 0.095 ±0.075 0.095 +0.02 to +0.17 
Khodashenas [68] 

(S9) 44 0.07 0.109 ±0.02 0.11 +0.09 to +0.13 

Khodashenas [68] 
(S10) 33 0.09 0.143 ±0.035 0.145 +0.11 to +0.18 

Khodashenas [68] 
(S12) 20 0.13 0.147 ±0.06 0.15 +0.09 to +0.21 

All datasets 266 0.33 −0.14 ±0.04 0.14 −0.18 to −0.10 
GEP, 

Equation 
(12) 

All datasets 20 0.02 -0.009 ±0.01 ±0.01 −0.02 to 0.00 

Table 5 shows the MPE, CB, xd , and WUB for predicting the −
tS  using the GEP model as well 

as the values of these indices for the EDMTC. Figure 5  displays the CB calculated using MPE for 
several observational data series (S3, S4, S5, S9, S10, and S12). In EDMTC, according Table 5, for all 
datasets, the low values of xd  (0.14), WUB (±0.04) and the low value of MPE (−0.14) represent the 
low uncertainty and high precision of proposed EDMTC in predicting y* values. It is clear that for 
almost each observational data series, 95% of predicted and observed values are within the CB range 
beside the narrow WUB. This represents the acceptable accuracy of the proposed models in predicting 
the vertical boundary elevation of stable channel profiles. According Table 5, in S3 [20] and S5 [7] 
data, almost all of the y* values predicted by EDMTC model are located within the one side of CB. 
Because, in these series of data, the more underestimation and overestimation performance of the 
EDMTC causes the almost high values of WUB. Morover, CB is calculated based on mean error 
values, therefore, the higher and lower predicted y* values than observed values are located in one 
side of CB. For the rest of the data, as more than 95% of the data are within this bound.  According 
Table 5, the WUB in all test is low for EDMTC and for GEP model the WUB is 0.01. The low WUB and 
associate with the low xd values provides a high certainty and precision of EDMTC for S3 [20] and S4 
[21], and S5 [7]. While in S12 [68] the low values of WUB is associated with high dS  values. The low 
values of dS  and WUB in GEP model represents the high precision (low MPE value) and certainty 
of model simultaneously. Therefore, according to the explanations and results presented, it can be 
said that the proposed EDMTC and GEP has great certainty and their ability to predict the 
dimensions and stable bank profiles with high accuracy is assured. Therefore, the models proposed 
in this study can be used to predict channel dimensions in cases when there is little channel 
information given. Besides, the proposed model is capable of predicting the profile shape of stable 
channel banks when observational data for the bank profile shape is not available. 
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Figure 5. CB (95%) ranges for the observational values and values predicted by EDMTC for the 
vertical boundary elevation of stable channels based on different datasets of (a) Ikeda [20] (S3), (b) 
Diplas [21] (S4), (c) Babaeyan [7]-S5, (d) Khodashenas [68]-S9, (e) Khodashenas [68]-S10, and (f) 
Khodashenas [68]-S11. 

Finally, the proposed EDMTC can be used to determine the maximum value of y* as the 
maximum dimensionless depth at the channel center and the predicted free surface width. In this 
case, the channel dimensions can be obtained using the proposed model. 

5. Conclusions 

In the present study, the maximum entropy principle was employed to provide an equation to 
calculate the Lagrange multipliers. Accordingly, an equation was developed to predict the bank 
profile shape of threshold channels. The relation between (δ) ratio with the entropy parameter (K) 
and the hydraulic and geometric characteristics of channels was evaluated. Next, the EDMTC 
computational model for estimating the shape of banks profiles and the channel dimensions (B and 
hc) was designed based on the maximum entropy principle in combination with the GEP regression 
model for cases when only the Q and d50 are known as problem conditions. The results indicate that 
the entropy model is capable of predicting the bank profile shape trend with acceptable error values 
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(MARE = 0.317, RMSE = 0.09) according to the experimental data in comparison with the Cao and 
Knight’s [28] model (MARE = 0.317, RMSE = 0.09). Therefore, the λ multiplier has a significant role 
in determining the transverse slope and consequently the vertical elevation of banks, and the physical 
meaning of λ is associated with the hydraulic parameters governing the problem. The EDMTC 
proposed in this study with R2 greater than 0.95 and MAE in the 0.076–0.436 range for different 
observational data series is able to predict the bank profile shape trend as well as the free water 
surface level in threshold channels. In addition, the uncertainty analysis of EDMTC demonstrated 
that more than 95% of predicted and observed data are within the CB with low WUB, and the model 
reliability is largely assured. The EDMTC computational model presented in this paper can be used 
widely to predict stable channel profiles when the given problem information only includes the Q 
and d50. This study was developed on Shannon entropy concept, it is suggested to improve the 
obtained results with other generalized entropies. It is further recommended that other equations 
provided by different researchers be used to estimate the free surface width of channels. Regression 
and AI models based on more field data also ought to be used to estimate the mean transverse slope 
of banks as well as other entropy model types to examine the accuracy of the model presented in this 
study. 
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