
  

Entropy 2020, 22, 1225; doi:10.3390/e22111225 www.mdpi.com/journal/entropy 

Article 

A Dynamic Anomaly Detection Approach Based  
on Permutation Entropy for Predicting  
Aging-Related Failures 
Shuguang Wang, Minyan Lu, Shiyi Kong and Jun Ai * 

School of Reliability and Systems Engineering, Beihang University, Beijing 100089, China; 
wsguang@buaa.edu.cn (S.W.); lmy@buaa.edu.cn (M.L.); buaaksy@buaa.edu.cn (S.K.) 
* Correspondence: aijun@buaa.edu.cn 

Received: 5 October 2020; Accepted: 26 October 2020; Published: 27 October 2020 

Abstract: Software aging is a phenomenon referring to the performance degradation of a long-
running software system. This phenomenon is an accumulative process during execution, which 
will gradually lead the system from a normal state to a failure-prone state. It is a crucial challenge 
for system reliability to predict the Aging-Related Failures (ARFs) accurately. In this paper, 
permutation entropy (PE) is modified to Multidimensional Multi-scale Permutation Entropy 
(MMPE) as a novel aging indicator to detect performance anomalies, since MMPE is sensitive to 
dynamic state changes. An experiment is set on the distributed database system Voldemort, and 
MMPE is calculated based on the collected performance metrics during execution. Finally, based on 
MMPE, a failure prediction model using the machine learning method to reveal the anomalies is 
presented, which can predict failures with high accuracy. 
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1. Introduction 

In modern society, the complexity of software is continuously increasing, which brings 
convenience but also increases challenges to maintain software reliability. Rapidly developing cloud 
software based on distributed systems is a typical example and has attracted a lot of attention. It has 
two characteristics of high complexity and being long-running. Due to the accumulation of errors 
and garbage, it usually suffers from performance degradation or an increase in failure rate. This 
phenomenon is also called software aging [1]. 

Software aging has caused tremendous damage to many complex long-running systems such as 
web servers [2], operating systems [3], and even safety-critical software [4]. In a complex software 
system, aging is usually a dynamic nonlinear change process affected by many factors such as 
software errors, workloads, resource consumption, etc., which gradually cause the system to an error 
state and eventually to fail [5]. Memory-related types of aging are the most concerned in the existing 
research [6]. For example, a system failure caused by memory exhaustion due to memory leaks and 
memory fragmentation is a typical software aging-related failure [7,8]. As pointed out in the literature 
[1], it is the accumulation of aging-related errors that causes the internal environment of the system 
to enter a state where the aging-related errors are propagated, thus leading to aging-related failures 
(ARFs). 

Software rejuvenation is an effective approach to delay or prevent the occurrence of ARFs [9]. 
Software rejuvenation can reconfigure the software by releasing resources, deleting garbage storage, 
etc., thereby significantly reducing performance degradation and failure rates caused by software 
aging [10]. The optimal schedule for software rejuvenation to perform is when it is close to the 
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occurrence of a software failure [11]. Therefore, predicting the occurrence of software aging-related 
failures is essential to decide the optimal schedule for triggering software rejuvenation. 

During the aging process, the system suffers from performance degradation before the failure 
occurrence. Thus, performance indicators can be used to predict ARFs. However, limited by the 
complexity of the system, effectively predicting failure is still a challenging task, especially because 
of the following three challenges: 

• Hidden failure-prone state: Software aging is a gradual accumulation process. There is no 
prominent feature indicating the system is in a failure-prone state before ARFs, which is not only 
related to the current performance but also the previous performance indicators. 

• Fluctuating noises: The system is in a dynamic and long-term running state, and it is inevitably 
interfered with by some fluctuating noises when collecting performance indicators. The presence 
of these noises may lead to misinterpretation of instantaneous anomalies as ARFs, leading to an 
increase in the predicted false alarm rate.  

• Multidimensional factors: ARFs are the result of the simultaneous impact of multidimensional 
factors from the internal environment and external environment. Single-dimensional 
performance indicators or linear models are challenging to predict the dynamic and nonlinear 
software aging process. 

Through the analysis of the challenges above, a novel approach for predicting the ARFs is 
proposed based on the combination of the dynamical time series analysis method and anomaly 
detection in machine learning. First, a new software aging indicator, Multidimensional Multi-scale 
Permutation Entropy (MMPE), is proposed, which is calculated on the time series of performance 
indicators. Permutation entropy (PE) is a complexity measure for time series analysis [12]. This 
method is used to extract nonlinear state information hidden in time series. It takes the advantages 
of simple calculation and can effectively detect dynamical changes in time-series [13]. Based on the 
analysis of the third challenge, PE is modified to an MMPE, which is appropriate for 
multidimensional and multi-scale time series. In this paper, MMPE is used to extract the dynamic 
changes of the system from the normal state to the failure-prone state with performance anomalies 
before the ARFs occur. Then the failure-prone anomalies are detected by the anomaly detection 
algorithm Isolates forest and One-class Support Vector Machine. 

To deal with software aging, quite a lot of research has been developed for predicting the ARFs. 
The approaches proposed in previous studies are classified into model-based approaches and 
measurement-based approaches. The basic idea of model-based approaches is to provide state-based 
models that represent the degradation level of the system. Okamura et al. [14] combine the 
continuous-time Markov chain (CTMC) with system attributes distributions to propose a continuous-
time Markov chain (CT-HMM) representing the degradation level of the system. 

The measurement-based approaches usually monitor system variables and analyze the data 
collected during the runtime statistically. Our approach can be regarded as a measurement-based 
approach. The measurement-based approaches in previous studies mainly include time-series 
analysis, thresholding, and machine learning. 

To predict the ARFs, the time-series analysis is used for analyzing the aging trend of software. 
The work [15] presents a stochastic time series decomposition algorithm based on robust locally 
weighted regression (Loess) to estimate the aging trend related to the exhaustion of system resources. 
J. Zhao et al. [16] introduce a method based on a non-stationary time series model to research the 
phenomenon of software aging. Araujo et al. [17] predict resource exhaustion time by combining 
time-series analysis with a threshold based on Memory Usage. J. Li et al. [18] adopt a hybrid approach 
including the heuristic-based threshold for predicting the ARFs. 

P. Chen et al. [19] present an ARF-Predictor using entropy. They extend sample entropy to 
Multidimensional Multi-scale sample entropy as an aging indicator and develop ARF-Predictor 
containing threshold-based approaches namely FT and FT-X. Our approach differs from P. Chen et 
al.’s approach in terms of entropy and analysis. (1) We introduce the permutation entropy which 
calculates the permutation of the reconstructed sequence. P. Chen et al. introduce the sample entropy 
which measures the complexity of a time series via calculating the self-similarity of the sequence. (2) 
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In our approach, the unsupervised anomaly algorithms are utilized to detect the failure-prone 
anomalies based on the aging indicators. P. Chen et al. use the monotonicity of the aging indicator 
MMSE to determine the threshold via threshold-based approaches. 

Machine learning approaches infer a system state as normal or failure and identify failure-prone 
anomalies from algorithms such as classifiers and regressors. In the paper [20], K. Do et al. propose 
an energy-based model computed with an RBM to detect failure-prone anomalies. Y. Qiao et al. [21] 
apply the Long Short-Term Memory Neural Network(LSTM NN) to predict the software aging 
indicators including the system’s free physical memory and application’s heap memory. 

The paper is organized as follows. The details of the proposed software aging indicator are 
elaborated in Section 2. Section 2 also demonstrates the procedures of the ARFs prediction approach, 
including the parameter selection for MMPE and the design of the signature window for the failure-
prone anomalies. The experimental setup is described in Section 3 and the experimental results are 
analyzed in Section 4. Our work is concluded in Section 5. 

2. ARFs Prediction Approach 

The procedure of the ARFs prediction approach is presented in Figure 1. The ARFs prediction 
approach contains four modules: the data collection module, the feature selection module, the MMPE 
calculation module, and the failure prediction module. The performance indicators during the 
execution are monitored from different levels in the data collection module. Then, the principal 
component analysis (PCA) is applied to reduce the dimensionality of the performance indicators in 
the feature selection module. The MMPE values of the time series composed of the reduced 
performance indicators are calculated in the MMPE calculation module for the next step. The failure 
prediction module consists of the signature window and anomaly detection. The signature window 
is designed to label the failure-prone anomalies in the time series before the failure. Then the 
approach predicts the ARFs through detecting the persistent failure-prone anomalies before the ARFs 
occur. 

Software 
system
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indicators

workload
executions

(PCA)Feature 
selection 

MMPE 
calculation

Aging  

1) failure-prone anomalies 
labeling 

2) anomaly 
detection

 

 Failure
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Figure 1. The process of the Aging-Related Failures (ARFs) prediction approach. 

The details of the ARFs prediction approach are introduced in this section, except for the data 
collection module, which will be presented in the experiment setup. 
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2.1. Software Aging Indicator based on MMPE 

In complex software systems, the performance degradation exhibits nonlinear and dynamic 
manner during the software aging. Thus, the complexity measure of analyzing time series is 
introduced as a novel software aging indicator to detect dynamical changes in the software system. 
The concept of entropy has been an essential measure of the complexity of time series generated from 
nonlinear dynamical systems. Bandt and Pompe introduced PE as an appropriate method that maps 
the continuous time-series to a symbolic sequence [12]. PE uses the phase space reconstruction 
method to delay the coordinate state space, analyzes a one-dimensional time series in a nonlinear 
system, and mines the hidden characteristics existing in the system [13]. 

The specific details of modifying PE to the software aging indicator MMPE can be divided into 
three parts. The basic principle of permutation entropy is introduced in the first part. In the second 
part, the coarse-grained process is applied to modify PE to MPE for multi-scale time series. In the 
third part, MPE is modified to MMPE, which is appropriate for multidimensional and multi-scale 
time series. Then MMPE is used as a software aging indicator to reveal the dynamic transition of the 
system from a normal state to a failure-prone state. 

2.1.1. Permutation Entropy Algorithm 

The initial object of the permutation entropy (PE) algorithm is a one-dimensional time series {𝑥(𝑖), 𝑖 = 1,2, . . .𝑁}. To extract more useful information from a one-dimensional time series, the first 
step is to partition it into a matrix of overlapping vectors by the phase space reconstruction method 
according to the Takens theorem [22]. This step contains two hyperparameters: the embedding 
dimension 𝑚  and the embedding time delay 𝐿 . In the obtained reconstructed 𝑚 -dimensional 
matrix:𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝐿), . . . 𝑥(𝑖 + (𝑚 − 1)𝐿] , 𝑚  controls the length of the new vectors. The 𝐿 
controls the interval between elements of each of the vectors, where 1 ≤ 𝑖 ≤ 𝑁 − (𝑚 − 1)𝐿. 

After the phase space reconstruction, the 𝑚-dimensional matrix is uniquely mapped into the 
permutations according to the ordinal rankings. The given 𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝐿), . . . 𝑥(𝑖 + (𝑚 − 1)𝐿] 
are rearranged in ascending order as 𝑋(𝑖) = [𝑥(𝑖 + (𝑗 − 1)𝐿) ≤ 𝑥(𝑖 + (𝑗 − 1)𝐿) ≤. . .≤ 𝑥(𝑖 + (𝑗 −1)𝐿)]. In the rearranged sequence, 𝑗 , 𝑗 , . . . , 𝑗  denote the location of the elements in 𝑋(𝑖). It is worth 
noting that when an equivalence such as 𝑥(𝑖 + (𝑗 − 1)𝐿) = 𝑥(𝑖 + (𝑗 − 1)𝐿) appears, the order is 
arranged according to the value of the subscribe j. If 𝑗 < 𝑗 , then 𝑥 is sorted as 𝑥(𝑖 + (𝑗 − 1)𝐿) ≤𝑥(𝑖 + (𝑗 − 1)𝐿).  Therefore, any vector 𝑋(𝑖)  can be uniquely mapped into a group of subscript 
sequences as {𝑗 , 𝑗 , . . . , 𝑗 }. If each symbol indexed by i is different, the m-dimensional embedding 
matrix has at most 𝑚! permutations. Then the probability of each permutation (𝑃 ,𝑃 . . .𝑃 , where 𝑘 ≤𝑚! ) can be calculated by counting the times of the permutation in the total sequences. Finally, the PE 
is defined in the form of Shannon entropy as: 

𝐻 (𝑚, 𝐿,𝑁)  =  − 𝑃 𝑙𝑛 𝑃       (1) 

when 𝑃  =  1/𝑚!, then 𝐻 (𝑚, 𝐿,𝑁) attains the maximum value 𝑙𝑛(𝑚!). For convenience, 𝐻 (𝑚, 𝐿,𝑁) 
is normalized by 𝑙𝑛(𝑚!) as in the following: 0 ≤ 𝐻 (𝑚, 𝐿,𝑁) =  𝐻 (𝑚, 𝐿,𝑁)/ 𝑙𝑛(𝑚!) ≤ 1 (2) 

From the derivation process of 𝐻 (𝑚, 𝐿,𝑁), it can be seen that PE is defined to measure the 
complexity and randomness of the time series. The lower the values of 𝐻 (𝑚, 𝐿,𝑁) are, the more 
steady the time series is. 

2.1.2. Multi-Scale Permutation Entropy Algorithm 

To express the structural complexity at different scales, PE is modified to Multi-scale 
Permutation Entropy (MPE) to contain more hidden characters. MPE is calculated by PE of the coarse-
grained time series over different scales [23]. For 𝑋 =  {𝑥(𝑖), 𝑖 =  1,2 …𝑁}, a coarse-grained sequence 𝑌( )  =  {𝑦( )|𝑗 =  1,2, . . . , [ ]} is constructed as the following steps: First, the original time series is 
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split into continuous and non-overlapping windows of the size 𝜏. Second, the data are averaged 
inside each window. Finally, the formula of 𝑦( )is defined as: 

𝑦( )  =  1𝜏 𝑥     ( )   1 ≤ 𝑗 ≤ 𝑁𝜏  (3) 

The 𝜏 is the scale factor and [ ] denotes the rounding integer digit of . An example of the coarse-
grained process with the scale factor 𝜏 =  2 is shown in Figure 2. 

1x 2x 3x 4x 5x 6x 2( 1) 2ix − +2( 1) 1ix − +

( )
1y
τ ( )

2y
τ ( )

3y
τ ( )

iy
τ

 
Figure 2. The coarse-grained process of Multi-scale Permutation Entropy (MPE) with the scale factor 𝜏 =  2. 

The process of the coarse-grained sequence corresponding to each scale in the range of [1,τ] is 
calculated separately. After that, we get a set of permutation entropy 
{𝐻( )(𝑚, 𝐿,𝑌),𝐻( )(𝑚, 𝐿,𝑌), …𝐻( )(𝑚, 𝐿,𝑌)}, and each element corresponds to the PE of a scale. The 
mean value of τ permutation entropy is used to represent the multi-scale entropy (MPE) with scale 
factor τ. 

2.1.3. Multidimensional Multi-Scale Permutation Entropy Algorithm 

The MPE introduced in the previous section is appropriate for single dimensional time series. 
However, the performance indicators collected during the execution contains multidimensional 
variables; MPE cannot be directly used as an aging indicator for multidimensional time series. Thus, 
the MPE is extended to MMPE through the following steps. 

The first step is the normalization of performance metrics. The multidimensional performance 
metrics have multiple ranges and units. The significant changes in the numerical fields between 
performance indicators with different units (such as CPU utilization and the total memory utilization) 
may affect the accuracy of MMPE. To remove the unit limits for performance indicators, the 
performance indicators are normalized and converted to dimensionless values. For the given 𝑑-
dimensional matrix: 𝑋 =  [𝑋 ,𝑋 , …𝑋 ], each column denotes the time series of a particular 
performance indicator, and the length of each time series is N. Then 𝑋  is normalized as in the 
subsequent step: 𝑋  =  𝑋 −𝑚𝑖𝑛(𝑋 )𝑚𝑎𝑥(𝑋 ) −𝑚𝑖𝑛(𝑋 ) , 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑁 (4) 

The MPE of the 𝑖 − 𝑡ℎ column is MPE(𝑚 , 𝐿,𝑌), where the im  denotes the embedded dimension 
of the 𝑖 − 𝑡ℎ  column. For the normalized matrix 𝑋 , a vector of MPE is obtained as 𝑴𝑷𝑬 = [𝑀𝑃𝐸(1),𝑀𝑃𝐸(𝑖), . . .𝑀𝑃𝐸(𝑑)]. To get an integrated entropy as a system indicator, the 2-Norm is 
introduced in our approach for calculating the MMPE as the following step: 

𝑀𝑀𝑃𝐸  =   𝑀𝑃𝐸(𝑖)   (5) 
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The 2-Norm (also known as the Euclidean norm) is often used to calculate the length of the 
vector [24]. MPE values of an ideal system state without any changes is a zero vector, and MMPE can 
represent the Euclidean distance from an MPE vector to the zero vector. Consequently, MMPE can 
be used as a software aging indicator to measure the deviation of the system state dynamically. The 
pseudo-code of MMPE is presented in Algorithm 1 to clearly describe the whole process. 

Algorithm 1 The algorithm of the Multidimensional Multi-scale Permutation Entropy (MMPE) 
Calculation Procedure. 

Algorithm 1. MMPE Calculation Procedure 

Input: 𝑚: the embedded dimension; L: the delay time; N: the length of time series; 𝜏: the scale factor; 𝑿: the 

N𝑋  data matrix where 𝑑 denotes the number of performance indicators and the  𝑋  where 1 ≤ 𝑖 ≤ 𝑑 denotes 

the times series of a particular performance indicator with the length of N 

Output: The aging indicator MMPE 

1: Normalize the original time series into the range [0,1] 

2: Preset the embedded dimension vector 𝑚 

3: // the Coarse-gaining procedure for the Multiscale permutation Entropy with the scale factor  𝜏 = 𝑇 

4: for 𝜏 = 1;𝜏 = 𝑇; 𝜏++ do 

5:         for 𝑗 = 1; 𝑗 = [ ]; 𝑗 + + do 

6:           𝑦( ) = ∑ 𝑥   ( )  

7:         end for 

8:          𝐻( )(𝑚, 𝐿, Y) = −∑ 𝑃( ) 𝑙𝑛 𝑃( )     
9: end for 

10  𝑀𝑃𝐸 = ∑ 𝐻( )(𝑚, 𝐿,𝑌)   
12: 𝑀𝑀𝑃𝐸 = ∑ 𝑀𝑃𝐸(𝑖)  

2.2. MMPE Calculation 

During the software aging process, the multiple time-varying performance indicators are 
monitored as a multivariate time series. Multivariate time series provide rich information for 
detecting performance anomalies, but also increase the workload of calculation to a certain extent. 
More importantly, there may be correlations between these performance indicators, thereby 
increasing the complexity of feature analysis. If each indicator is analyzed in isolation, the 
information in the data cannot be fully utilized. Therefore, the principal component analysis (PCA) 
method is used to reconstruct a set of linearly uncorrelated subsets based on the original high-
dimensional performance indicators [25]. The high-dimensional performance metrics are reduced to 
10-dimensional performance metrics through principal component analysis, and the information loss 
is negligible. Then the MMPE values of the time series constructed by reduced performance 
indicators are calculated for anomaly detection. 

Our method for detecting performance anomalies is based on the MMPE algorithm combined 
with the sliding window. A window of length N is designed to slide on the time series and divide 
the long time series composed of performance indicators into overlapping blocks. Each overlapping 
block corresponds to a data subset of length N, and MMPE of each data subset is calculated for 
detecting performance anomalies, as shown in Figure 3 the time step of the sliding window is set to 
1. 
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time

                                  Performance indicators

 sliding window

N

step tΔ

MMPE time series

 
Figure 3. The calculation process of MMPE. 

The changes in the MMPE values with time are excepted to accurately indicate the dynamic 
transformation of the system state during the software aging process. Therefore, before figuring 
MMPE, it is necessary to consider how to choose the appropriate embedding dimension 𝑚, the delay 
time 𝐿, the data length (window size) 𝑁 , and the scale factor 𝜏. 

In the coarse-grained process for different time series scales, the window size N and the scale 
factor 𝜏 need to be considered together. The principle of the value of the data length N and the scale 
factor 𝜏 is that the coarse-grained sequence cannot affect the calculation of MMPE. Our purpose is to 
accurately detect the performance anomalies of the system before the ARFs occurring, so the sliding 
window should not be set too large [26]. However, the window size should not be too small; 
otherwise, MMPE will have a significant deviation. By setting N = 500, 1000, and 2000 to compute PE, 
it is can be found that the results are similar. Therefore, combined with the actual data set length, N 
is taken as 1000 in our approach. After fixing the size of the time window, the range of scale factor 𝜏 
is determined as 1~10. 

When reconstructing the phase space, if the embedding dimension 𝑚  is too small, the 
reconstructed time series contains fewer features than the original series, which will cause 
information loss. If the value of 𝑚 is too large, the sensitivity of the algorithm to detect performance 
changes will decrease, and it will also increase the complexity of the calculation. Bandt and Pompe 
suggested in their paper that m takes a value between three and seven [12]; To compare the influence 
of parameters on MMPE, we take 20 sets of different subsequences from the collated data set to 
calculate MMPE. The data length is 1000, the delay time 𝐿 is 1 and the scale factor increases from 1 to 
10. The embedding dimension 𝑚 is taken in {3,4,5,6,7}. The average values of those MMPEs are shown 
in Figure 4a. The error bars corresponding to the standard deviations are also shown in Figure 4a. As 
shown in Figure 4a when 𝑚 is small (for  =  3, 4 ), the values of MMPE have no significant changes in 
overall scale factors. If 𝑚 is too large, minor changes in time series will be ignored. Moreover, the 
values of MMPE are calculated 100 times separately and record the total consumption times for each 
embedding dimension. Figure 4b shows that the larger the embedding dimension, the longer the 
calculation time. When 𝑚 =  7, calculating one hundred MMPEs consumes a total of 8.82 s. To 
predict ARFs in time, the calculation is expected to consume as little time as possible. Thus, 𝑚 is set 
as 5 according to the above analysis. Additionally, the delay time 𝐿 is set to 1 as Bandt and Pompe 
have done in their original work [12]. 

  



Entropy 2020, 22, 1225 8 of 18 

  
(a) (b) 

Figure 4. The comparative analysis of MMPE under different embedding dimensions: (a) The 
Comparison of MMPE values under different embedding dimensions (b) The consumption time of 
MMPE for different embedding dimensions. 

2.3. Failure-Prone Anomalies Detection 

Basing on the aging indicator MMPE, the failure-prone anomalies are detected to predict 
upcoming ARFs in time. Thus, the signature window and anomaly detection techniques are 
combined to achieve failure prediction. In anomaly detection algorithms, anomalies are also 
considered outliers and deviations to be detected [27]. This concept is consistent with the proposed 
software aging indicator MMPE, which indicates the deviation of the system from the normal state 
[28]. Several anomaly detection techniques have been proposed in the literature, such as density-
based techniques, and cluster analysis-based outlier detection [29,30]. The most popular anomaly 
detection algorithms, Isolated Forest [31] and One-Class Support Vector Machine (OC-SVM) are 
selected as two different anomaly detection models in our approach. 

2.3.1. Signature Window for Failure-Prone Anomalies 

The software aging process is a process in which performance gradually decreases with time. 
The system is in a failure-prone state with performance anomalies before the ARFs occur [28]. 
Therefore, a signature window with the size of 𝑙 is designed to label the soft aging indicators caught 
in the window as failure-prone anomalies. As shown in Figure 5, the right border of the signature 
window is the point of failure occurring, and the timestamps within the window correspond to the 
failure-prone anomalies. The first occurrence of anomalies in the signature window is accompanied 
by the system beginning to exhibit anomalous conditions, which continue to appear in the window 
until the ARFs occur [32]. This approach can avoid false positives. For example, some performance 
anomalies are related to high pressure in a short time but will not cause software aging-related 
failures. Failure signatures for anomalies can distinguish between failure-prone behavior and normal 
state, so it is particularly effective in predicting failures [33]. When the signature window includes 
only a small portion of failure-prone anomalies, the prediction results may be inaccurate. In the 
subsequent experiments, the signature windows with different sizes will be set to compare the impact 
of window size on the prediction results and identify a suitable window size. 
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Figure 5. The signature window for failure-prone anomalies. 

2.3.2. Anomaly Detection Method 

To avoid false positives and improve the accuracy of failure prediction, an approach which 
combines the MMPE algorithm and the anomaly detection algorithm is proposed. First, the 
monitored performance indicators during execution are used as the input of the MMPE algorithm 
and obtain MMPE that measures the complexity of the system as a novel software aging indicator. 
The signature window of length 𝑙 is designed to label the failure-prone anomalies before ARF occurs. 
Due to the ARFs occurring after the software system has been running for a long time, the normal 
state lasts much longer than the failure-prone state. Correspondingly, the samples collected in the 
normal state are far larger than the anomaly samples which are collected in the failure-prone state. 
Thus, the ARFs dataset has a serious class imbalance problem. This condition will negatively affect 
the standard classifier applied to the class balance situation, and also affect the efficiency of 
classification. Therefore, to reduce the impact of the serious imbalance between the two types of 
samples, the anomaly detection algorithms are selected from the classification models as the 
prediction model. 

In this section, the Isolation Forest and OC-SVM as two different anomaly algorithms are used 
to choose the appropriate window size in the dataset collected through the experiment. At the same 
time, they have further verified the applicability of our method on the public data set. Isolation Forest 
and OC-SVM are the unsupervised algorithms used to detect anomalies. Unsupervised anomaly 
detection technology assumes that most of the samples are normal, and detects anomalies in the 
unlabeled test data set by finding the most outlier instances [34,35]. 

1. Isolated Forest anomaly detection method 

The principle of Isolated Forest is to isolate anomalies instead of the most commonly used 
technique for analyzing regular points [36]. Due to anomalies accounting for a small percentage of 
the data set and deviating greatly from normal, they are more likely to be “isolated” from normal 
values. The isolated Forest algorithm builds a binary search tree as an isolation tree by using multiple 
iterations without the need to define a parameter model. The anomalies are the points on the isolation 
tree that have shorter average path lengths. The abnormal point detection process can be described 
as three steps: 

• X samples of the train set are randomly selected from the training set to construct an “iTree”. 
Then the steps are iteratively repeated one according to the sample data capacity to create the 
“iTrees” to construct a binary tree forest. 

• The isolated Forest algorithm uses the expected average length of the binary search tree to 
estimate the average of “iTrees” length. For the given set of samples of size 𝑛, the expected length 
is: 
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𝑐(𝑛) =  𝑙𝑛(𝑛 − 1) − 2(𝑛 − 1)𝑛 + 𝑐  (6) 𝑐  is a constant and 𝑐(𝑛) is the expected value of the path length which is used to normalize each path 
length. 
• The binary search tree is recursively traversed and the path length ℎ(𝑥) is recorded from the root 

node to the leaf node. The expected value 𝐸(ℎ(𝑥))  of all data samples is calculated by using 
statistical methods and then evaluate the abnormal points that deviate from the normal range. 
The abnormal score 𝑆 is calculated as the following 𝑠(𝑥,𝑛)  =  2 ( ( ))( )  (7) 

2. OC-SVM anomaly detection method 

The OC-SVM is an unsupervised outlier detection introduced by B. Schölkopf [37], which 
estimates the support for high-dimensional distribution. For the given training dataset 𝐷 = {𝑥 , i = 1, 2 ...N}, where 𝑥  is a 𝑛 -dimensional vector. The samples in the training data that are far 
away from other samples are considered as outliers. Therefore, the outlier detection estimator focuses 
on fitting the most concentrated areas in the training dataset and can be used as the anomaly detection 
for the abnormal samples. The margin of the OC-SVM corresponds to the probability of finding a 
new but regular observation outside the boundary defined by the kernel and scalar parameter. The 
OC-SVM uses the kernel function to map the original low-dimensional feature space 𝑅  to the high-
dimensional space 𝜒, the corresponding nonlinear mapping is 𝜙(𝑥 ). Then a hyperplane represented 
by the support vector is obtained through the sample training, which can separate the abnormal 
sample from the origin as much as possible. The hyperplane of the high space is defined as: 𝑤 ∙  𝜙(𝑥 ) − 𝜌 = 0 (8) 

where 𝑤 is the normal vector of the hyperplane and ρ is the intercept of it. In the case of correctly 
distinguishing as many target samples as possible, the distance from the origin to the hyperplane is 
maximized. The optimization of the OC-SVM is the following: 

𝑚𝑖𝑛, , (12 ‖𝑤‖ + 1𝑣𝑛 𝜉 − 𝜌  ) (9) 

𝑠. 𝑡. (𝑤 ⋅ 𝜙(𝑥 )) ≥ 𝜌 − 𝜉  and 𝜉 ≥ 0∀𝑖 (10) 

where 𝜉 ≥ 0 is a slack variable and 𝑣 ϵ (0,1] is a predefined parameter, which means the lower bound 
percentage of the support vector. To solve the above optimization problem, the Lagrange function is 
constructed and then the classification decision function is obtained as the following: 

𝑓(𝑥)  = 𝑠𝑔𝑛( 𝛼 𝛫(𝑥 , 𝑥) − 𝜌  ) (11) 

𝛫(𝑥 , 𝑥) is the kernel function and 𝛼  is the Lagrange factor; 𝑠𝑔𝑛( 𝑥) presents the symbolic function, if 𝑥>0, the test sample is determined to be an abnormal sample, otherwise it is determined to be a 
normal sample. 

The anomalies detected by the above anomaly detection algorithms correspond to the abnormal 
state of the system. The ARFs are predicted by the detection of continuous failure-prone anomalies. 

3. Experimental Verification 

To verify the applicability of the prediction approach for the software aging-related failure 
problem in a real situation, the approach was tested via the case study based on Project Voldemort, 
which is used at LinkedIn. First of all, we introduce the experiment platform and the experiment 
setup for proving our ARFs prediction approach in this section. Then, different workloads are 
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designed to simulate the software aging process and monitor the key performance indicators during 
the running time for detecting the failure-prone anomalies. 

3.1. Case Studies 

To explore the effectiveness of our approach for predicting ARFs, we propose the following two 
research questions: 

RQ1: Does the size of the signature window impact on the effectiveness of the prediction 
approach? 

We set up a set of experiments with different window sizes on the same training set which 
contains the MMPE and original performance indicators. The suitable size of the signature window 
was determined by comparing the average effectiveness of the anomaly detection models. 

RQ2: Does the new software aging indicator MMPE effectively improve the accuracy of 
predicting failure? Is its effect universal? 

We set up two sets of experiments, using the original performance indicators and the 
performance indicators with MMPE as two different training sets. By comparing the average results 
of the prediction, the effectiveness of MMPE was analyzed. To verify its universality, we not only 
collected performance datasets through the designed experiment, but also selected public data sets 
for verification. The experiment designed for the ARFs prediction approach is introduced in the 
following section. 

To verify the above two problems experimentally, an open-source distributed key-value storage 
and serving system, Project Voldemort1 was deployed as our test platform. Project Voldemort is the 
not only SQL (NoSQL) system that provides flexible storage used at LinkedIn by abundant critical 
services powering a large portion of the site. We set up the database system Project Voldemort 1.10.26 
on a single node cluster with two data partitions. We used Yahoo! Cloud Serving Benchmark (YCSB2), 
an open-source framework for benchmarking cloud data serving [38], to generate the real-world 
workloads. All of the tests were run on a virtual machine VMware Workstation 15 Player configured 
with one vCPU, 3GB of RAM, and 20GB hard disk space, and runs the Ubuntu 18.04.3 LTS amd64 
operating system. 

3.2. Workloads Generation Module 

To collect the performance indicators during software aging, workloads should be generated to 
simulate real applications and accelerate the process of software aging-related failures. In our 
experiment, the YCSB was applied to generate the workloads corresponding to real-world 
application situations. The workload generated by the YCSB client consists of two parts: the data set 
of records to be loaded, and the transaction set that defines the operations performed on the data set. 
The YCSB client will try to perform as many operations as it can possibly perform in each execution. 
For example, if each operation takes an average of 10 milliseconds, the client will perform about 100 
operations per second per worker thread. Besides, these operations are subject to Zipfian distribution, 
which ensures that specific keys are accessed more frequently than other keys, thus simulating the 
general access mode of most websites. 

In this paper, we keep the same data set and change the workload parameters for the transaction 
set to design two types of workload patterns, such as the following: 

• Update-workload: This workload contains operations containing a mix of 50/50 reads and writes, 
the corresponding application example is a session store recording recent actions. In this 
workload pattern, the YCSB Client uses a single worker thread, and the Voldemort server is in 
a normal operational condition. 

• Write-workload: This workload contains operations containing a mix of 75/25 writes and reads. 
We change the write rate by changing the time interval (called sleep_time) between two 
consecutive requests generated by the same client. The corresponding application example is 
that users continually update their information. 
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The Update-workload is used to simulate the normal operation, and the Write-workload is used 
to accelerate the process of software aging-related failures through consuming the resources 
continuously. We first accelerate the process of software aging and then change the Write-workload 
pattern to the Update-workload pattern for the normal state after the failure. If the failure persists, it 
can be ruled out that it is a failure caused by the workload overload. It is worth noting that the 
maximum number of client threads for Voldemort is 100. The workloads of our application are within 
the configured range of the server. (1. Project Voldemort: http://www.project-
voldemort.com/voldemort/; 2. YCSB: https://github.com/brianfrankcooper/YCSB) 

3.3. Collection of Performance Indicators 

To be able to sensitively detect the abnormal state of the software before aging and failure, we 
monitor the key performance indicators during software execution. We use Linux’s system 
performance analysis tool SAR (System Activity Report) to collect system activity information from 
multiple aspects, including CPU utilization, memory usage, disk I/O, network traffic, etc. Since 
Project Voldemort is written in Java and runs on the JVM, we also use java memory monitoring tool 
Jmap to collect heap memory usage information. 

To avoid biases related to the workload patterns, we conduct a total of 20 groups of experiments 
by changing the parameters of the workloads. According to the workload patterns described in the 
previous section, we apply the Update-workload pattern for the normal operations to collect the 
performance metrics of the normal state, and the Write-workload is applied to accelerate the aging 
process for aging-related failures caused by the internal software errors (Aging-Related bugs). 
During the experiments, we collect performance indicators every five seconds, and the experiments 
will stop when the system crashes, or resources are exhausted. In our experiments, we observe two 
typical phenomena caused by aging-related failures: 

• Server process killed: When system memory exhaustion occurs, the server process of Voldemort 
will be killed by Out of Memory (OOM) killer. This situation causes the system to panic and 
stop; the server cannot be restarted unless a software rejuvenation strategy is initiated. Figure 6 
shows the trend of memory utilization before the ARFs occur; it can be observed that when the 
memory consumption exceeded nearly 95%, the failure occurred. 

 
Figure 6. The increase of Memory utilization of the Voldemort for ARFs. 

• Client connection timeout: Affected by software aging, the server cannot completely respond to 
the YCSB clients’ requests. The timeout error rate increases with the aging process. 

Significant performance degradation can also prove the existence of software aging. The 
performance of Voldemort as a NoSQL system is measured by the average latency of the requests 
and the throughput. The average latency refers to the delay from the time the user sends the request 
to the response from the server. This is an indicator that can directly measure whether the software 
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can meet user needs. As shown in Figure 7a, the average latency keeps increasing over time, which 
means that the performance of Voldemort is decreasing gradually. The throughput is the number of 
requests that the server can handle in a specific time unit. The larger the throughput, the greater the 
volume of business processed by the system per unit time, which directly reflects the business 
processing capacity and carrying capacity of the software. Figure 7b shows the decreasing trend of 
the throughput. Voldemort cannot recover performance after software aging failure occurs. 

  
(a) (b) 

Figure 7. Performance degradation of the Voldemort for ARFs (a) the average latency of the requests 
(b) the throughput. 

3.4. Data Processing 

Voldemort System Dataset: To eliminate the impact of different units, we normalized the 
performance indicators to obtain the dimensionless performance metrics. Then, we used the PCA 
method to convert the performance metrics that may be related to a new set of linearly uncorrelated 
synthesis through orthogonal transformation [39]. The performance indicators collected in each set 
of experiments are treated as a set of multidimensional time series. Thus, we first calculated the 
MMPE time series of each set of performance indicators time series separately and then aggregated 
them to a complete dataset. To verify the validity of the signature window, we took three different 
signature window lengths to label the failure-prone anomalies according to the index of timestamps 
before the ARFs occurred. 

Google Cloud trace Dataset (GCD): In addition to the datasets collected in the above experiment, 
we further applied our approach to the public dataset. However, few public datasets can be directly 
used for the ARFs prediction. This dataset was filtered from the Google Cloud trace Dataset (GCD) 
which is very representative in cloud computing. The GCD contains the CPU and memory utilization 
by summarizing their CPU and Memory utilization every five minutes for the tasks of each job. In 
this paper, four subsets were selected where the CPU utilization exhibited an increasing trend and 
the threshold exceeded 80%. Due to their performance being close to the software aging threshold, 
the corresponding failure reports in the data set are regarded as software aging failures for the ARFs 
prediction. A similar approach is verified in the references [40]. 

To standardize the number of groups in test sets and avoid overfitting, we apply the five-fold 
Stratified Shuffle Split to split the datasets. This cross-validation returns stratified randomized folds, 
which preserve the percentage of samples for each class [41]. The proportion of the test set is 30%, 
and the proportion of the train set is 70% in the dataset. 

The prediction of the ARFs is transformed into a binary classification problem in our approach. 
Since the failure-prone anomalies account for a small percentage of the total samples during software 
aging running, there is a class imbalance. Thus, the smote method was applied to increase the 
proportion of anomaly samples to 30%. The confusion matrix was used for representing the four 
prediction results of the model for the positive class. The positive classes correspond to the predicted 
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conditions that are failure-prone, where the True Positive (TP) presents the correct alarm, and the 
False Positive (FP) presents the false alarm. The negative classes correspond to the predicted 
conditions that are not prone to the ARFs, where the False Negative (FN) presents the missed alarm 
and the True Negative (TN) presents the correct normal alarm. 

We used three metrics to evaluate the validity of the ARFs prediction results for positive classes. 
The ratio TP/(TP + FP) represents the precision, where TP is the number of true positives and FP the 
number of false positives. Intuitively, the precision represents the ability of the predictor not to mark 
negative samples as positive. This measure can assess the rate of false alarms in which the ARFs 
predictor misjudges normal conditions as failures [42]. 

The recall is the ratio TP/(TP + FN). This measure is the ability of the predictor to find all the 
positive samples, and thus can assess the percentage of failures that can be predicted. 

The prediction models are expected to perform well in both precision and recall. However, it is 
hard to take care of the precision and recall in some conditions. For example, if the model expects to 
predict positive samples as much as possible, it will have a higher recall but a lower precision. If the 
model is conservative and only predicts positive samples with a high degree of confidence, then its 
precision will be relatively high, and the recall will be relatively low. Therefore, the f1-score is proposed 
as an indicator that comprehensively considers recall and precision. The f1-score is defined as the 
weighted average of precision and recall, and the relative contribution of them to the f1-score is equal. 
The f1-score reaches its best value at 1 and the worst score at 0. The formula for the f1-score is: 

f1-score = 2 * (precision * recall)/(precision + recall) (12) 

The f1-score aims to improve precision and recall as much as possible while training the model. 
The accuracy score is the ratio (TP + TN)/TP + TN + FP + FN, which presents the ratio of the 

number of correctly predicted samples to the total number of predicted samples. 

4. Discussion of the Experimental Results 

The effectiveness of our approach for predicting ARFs is verified in this section. First, the effect 
of different signature window sizes is analyzed by the comparison of prediction results. The most 
suitable signature window size is determined according to the best prediction results. Then the 
prediction results obtained by the ARFs prediction approach based on MMPE and original 
performance time series are compared to verify that MMSE can effectively improve the accuracy of 
predicting failure 

4.1. Verify the Effectiveness of the Signature Window for Failure-prone Anomalies 

To answer RQ1, the experiments are designed with three window sizes on the same training set. 
Because the time step of monitored indicators is 5 seconds, we set 𝑙= 15, 30, and 45 seconds as the 
lengths of signature windows. The anomaly detection models OC-SVM and Isolated Forest are 
trained on the Voldemort dataset. Then we compare the average effect of the three window sizes on 
the prediction results by the four metrics. 

Table 1 contains the comparison results of the prediction effectiveness of OC-SVM and Isolated 
Forest with different signature window sizes. The overall prediction effectiveness of Isolated Forest 
performs better than that of OC-SVM. It can be seen that the two models with the signature window 
size of 30 seconds (N30) both show the best predictive effect. The recall of the Isolated Forest is 94% 
and the f1-score is 91%. It can be further verified by comparing the average effectiveness of the two 
prediction models that N30 is the most suitable signature window size. (3. Google Cloud trace 
Dataset: http://github .com/google/cluster-data). 
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Table 1. The prediction results of the prediction approach with different anomaly detection 
algorithms and window sizes  

Anomaly Detection 
Algorithms 

Window 
Size 

Precision Recall f1-
Score 

Accuracy 

OC-SVM 
15 0.73 0.75 0.74 0.82 
30 0.86 0.86 0.86 0.82 
45 0.72 0.71 0.71 0.80 

Isolated Forest 
15 0.84 0.92 0.88 0.97 
30 0.90 0.94 0.91 0.97 
45 0.83 0.90 0.86 0.96 

It can be observed that the suitable window size has an obvious positive impact on the prediction 
results. When the window size is 45 seconds, it corresponds to the worst case. The precision of the 
OC-SVM is 0.72 and the f1-score is 0.71 in this case. The window size of 45 seconds is too large to 
reduce the sensitivity of the anomaly detection algorithm to the failure-prone anomalies. When the 
window size is 30 seconds, the prediction results of all aspects of the two anomaly detection 
algorithms are the best case. The recall of the Isolated Forest is 0.94 and the f1-score is 0.91 when the 
window size is 30 seconds. As for the OC-SVM, f1-score is 0.86. Therefore, the window size of 30 is 
chosen as the optimal choice for the next experiment. 

4.2 Verify the Effectiveness and Universality of MMPE 

Table 2 and Table 3 compare the prediction results of MMPE and Origin indicators on the 
Voldemort dataset and GCD dataset. The samples within 30 seconds before the ARFs are labeled as 
failure-prone anomalies and detected by the anomaly detection algorithm. MMPE presents the 
performance indicators including MMPE, and Origin presents the performance indicators without 
MMPE. The datasets that contain MMPE achieve better prediction effectiveness than the original 
performance indicators. It can be observed that the performance indicators including MMPE, 
significantly improve the efficiency of the prediction. As for the Voldemort dataset in Table 3, the f1-
score of the OC-SVM increases from 0.72 to 0.86. Meanwhile, the recall of the Isolated Forest 
algorithm has a 13.2% increase and the f1-score increases from 0.86 to 0.91, which means that the 
comprehensive performance of recall and precision has been improved with the addition of the 
MMPE. As for the GCD dataset in Table 3, the addition of the MMPE also improves the prediction 
efficiency of the OC-SVM and Isolated Forest. The f1-score of the OC-SVM increases from 0.73 to 0.85, 
and it increases from 0.84 to 0.93 for the Isolation Forest. It can also be observed that the Isolated 
Forest performs better than the OC-SVM on both Voldemort Dataset and GCD dataset. 

Table 2. The prediction results with MMPE and Origin indicators on the Voldemort dataset. 

Performance Indicators Anomaly Detection Algorithms Precision Recall f1-Score Accuracy 

Origin OC-SVM 0.72 0.72 0.72 0.80 
Isolated Forest 0.89 0.83 0.86 0.96 

MMPE OC-SVM 0.86 0.86 0.86 0.82 
Isolated Forest 0.90 0.94 0.91 0.97 

Table 3. The prediction results with MMPE and Origin indicators on the Google Cloud Trace (GCD) 
dataset. 

Performance Indicators Anomaly Detection Algorithms Precision Recall f1-Score Accuracy 

Origin 
OC-SVM 0.73 0.73 0.73 0.99 

Isolated Forest 0.88 0.83 0.84 0.99 

MMPE 
OC-SVM 0.73 1 0.85 0.99 

Isolated Forest 0.96 0.93 0.93 0.90 
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The increase in prediction efficiency is due to the that MMPE can reveal hidden system states. 
Compared with the original performance indicators, the MMPE algorithm reconstructs the time 
series, including the information in the time dimension. The system state revealed by MMPE not only 
corresponds to the current performance, but also to the previous values of the performance 
indicators. The outstanding performance of the ARF approach on the Project Voldemort and GCD 
dataset verifies its applicability for ARFs in complex software systems. 

5. Conclusions 

In this paper, an approach for predicting ARFs is proposed based on the dynamical anomaly 
detection method. We first propose a novel software aging indicator MMPE, calculated on the time 
series of performance indicators. To our knowledge, we are the first to apply the complexity measure 
permutation entropy (PE) of a dynamical system to predict the ARFs. Based on the aging indicators, 
a signature window is designed to label the failure-prone anomalies and use an unsupervised 
anomaly algorithm Isolation Forest to detect failure-prone anomalies. To verify the applicability of 
the prediction approach for the ARFs in a real situation, the software aging experiments run on 
Project Voldemort, a distributed key-value storage system that is used at LinkedIn by numerous 
critical services powering a large portion of the site. The experimental evaluation results in the 
distributed database verify that our approach for predicting the ARFs can achieve high accuracy. 
Compared to the original performance indicators, the addition of MMPE increases the f1-score of the 
Isolated Forest anomaly detection model from 0.86 to 0.91 on the Voldemort Dateset. Our approach 
provides a new effective way for the online prediction of the ARFs in complex software systems. 
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The following abbreviations are used in this manuscript: 

PE permutation entropy 
MPE Multi-scale Permutation Entropy 
MMPE Multidimensional Multi-scale Permutation Entropy 
ARFs Aging-Related Failures  
OC-SVM One-Class Support Vector Machine 
RQ Research Question 
NoSQL Not only Structured Query Language 
YCSB Yahoo! Cloud Serving Benchmark 
SAR System Activity Report 
OOM Out of Memory 
GCD Google Cloud trace Dataset 
TP True Positive 
TN True Negative 
FP False Positive 
FN False Negative 
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