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Abstract: We develop an agent-based model to assess the cumulative number of deaths during
hypothetical Covid-19-like epidemics for various non-pharmaceutical intervention strategies. The model
simulates three interrelated stochastic processes: epidemic spreading, availability of respiratory
ventilators and changes in death statistics. We consider local and non-local modes of disease transmission.
The first simulates transmission through social contacts in the vicinity of the place of residence while the
second through social contacts in public places: schools, hospitals, airports, etc., where many people
meet, who live in remote geographic locations. Epidemic spreading is modelled as a discrete-time
stochastic process on random geometric networks. We use the Monte–Carlo method in the simulations.
The following assumptions are made. The basic reproduction number is R0 = 2.5 and the infectious
period lasts approximately ten days. Infections lead to severe acute respiratory syndrome in about one
percent of cases, which are likely to lead to respiratory default and death, unless the patient receives
an appropriate medical treatment. The healthcare system capacity is simulated by the availability of
respiratory ventilators or intensive care beds. Some parameters of the model, like mortality rates or
the number of respiratory ventilators per 100,000 inhabitants, are chosen to simulate the real values for
the USA and Poland. In the simulations we compare ‘do-nothing’ strategy with mitigation strategies
based on social distancing and reducing social mixing. We study epidemics in the pre-vacine era,
where immunity is obtained only by infection. The model applies only to epidemics for which
reinfections are rare and can be neglected. The results of the simulations show that strategies that
slow the development of an epidemic too much in the early stages do not significantly reduce the
overall number of deaths in the long term, but increase the duration of the epidemic. In particular,
a hybrid strategy where lockdown is held for some time and is then completely released, is inefficient.

Keywords: epidemic models; Monte–Carlo simulations; random geometric networks; agent-based
modelling

1. Introduction

Mathematical and computer modelling have proved to be very useful tools for controlling
existing infectious diseases [1–4] as well as for analysing and forecasting epidemics [5–7].
Modelling of infectious diseases and epidemics has a long history [8–11]. The foundations of the
contemporary theoretical epidemiology were laid by W.O. Kermack and A.G. McKendrick [12].
Today, theoretical epidemiology is a mature field of research [1–4].

In the last decades, the classical epidemic models have been reformulated in the framework
of complex networks science [13]. Complex networks [14–17] are very well-suited to encoding
heterogeneity of spatial distribution [18] and mobility of population [19–21]. New techniques, which go
beyond the classical mean-field approach, have been developed and successfully applied to modelling
of epidemic spreading in heterogeneous systems such as degree-based mean-field theory [22,23],
models of clustering [24], spatial and mobility networks [19–21] and meta-population approach [25,26]
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where one can superimpose hierarchical transportation network on the population distribution in
communities, cities, regions and countries, to differentiate between disease transmission modes in the
regional and global scales. The models are based on real-world data and are used to forecast real-world
epidemics [6,7,20,27–33].

In this article, we are developing a model of a hypothetical epidemic that leads to Severe Acute
Respiratory Syndrome (SARS) for a small fraction of infected people, causing respiratory failure and
death. The idea is to mimic some known features of the Covid-19 epidemic, qualitatively simulate
death statistics during the epidemic and discuss possible control strategies minimising excess deaths.
The model simulates the spread of epidemic, the availability of respiratory ventilators during epidemic,
as well as reference death statistics. When constructing the model, we make the following assumptions:

1. In the absence of a vaccine, immunity can only be obtained through infection.
2. People who get infected become infectious for about ten days.
3. People who recover are immune to reinfection.
4. About one percent of all infections lead to SARS.
5. The occurrence and course of SARS is correlated with the health conditions and age of the

infected person.
6. SARS is likely to lead to respiratory failure and death unless the person receives appropriate

medical attention.
7. Respiratory ventilation decreases the probability of death.
8. The death probability is correlated with general health conditions of the patient.
9. The healthcare system has a limited capacity. Especially, the number of doctors and the number

of trained medical personnel, and the number of intensive care beds and mechanical ventilators
is limited.

10. The mortality rate from non-Covid causes, like cancer, cardiovascular diseases, or other chronic
diseases, increases during epidemic because of epidemic restrictions in hospitals and health
clinics.

11. The epidemic may spread in two distinct modes: via local transmission or non-local (global)
transmission. The local transmission mode corresponds to geographic epidemic spreading
through person-to-person contacts near the place of residence. The non-local transmission mode,
in turn, corresponds to epidemic spreading through contacts in public places like: hospitals,
cinemas, sport arenas, schools, universities, churches, airports, means of communication,
workplaces and many others, where people, who live in different geographic locations, meet.

We are not attempting to develop a realistic model of Covid-19. Such a model would have to take
into account many detailed medical and demographic factors, as well as detailed information about
geographical population distribution, migration, social mixing, etc. Instead, we use Occam’s razor to
develop a model that is as simple as possible and that can be used to qualitatively estimate mortality
for a variety of strategies used to restrict epidemic spreading. The idea is to examine dominant factors
shaping the death statistics during epidemic whose spread is inhibited by large-scale restrictions on
social contacts. We are mainly interested in statistical effects.

Let us discuss how the above assumptions are implemented in the model. The numbering below
refers to the assumptions.

1. We are interested in outbreaks like Covid-19, for which there is initially no immunity or
vaccine, and vaccine development and validation takes several years. We model an epidemic
in the pre-vaccine era over a time span of 1, 000 days, when the only protection mechanism is
herd immunity.

2. The duration of the infection varies from person to person. The model assumes that it is a random
variable defined by the geometric law with the mean τ = 10 days. The value τ = 10 should
not be understood literally as ten but rather as the order of magnitude. The mean incubation
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period for Covid-19 was estimated to be 5.2± 1.8 days [34]. Based on existing literature, the
incubation period is 2 to 14 days [35]. We do not distinguish the incubation, latent and infectious
periods. This simplification does not significantly influence the epidemic dynamics in large scale,
which is simulated as a variant of MSIR dynamics [3]. The rate of epidemic is controlled by the
basic reproduction number R0. According to early estimates [34,36,37], the basic reproduction
number for Covid-19 ranged from 2.2 to 2.7, while according to an analysis of scientific literature
on Covid-19 [38], the mean value of R0 was found to range from 1.90 to 6.49. We set R0 = 2.5 as
the default value in the simulations.

3. The model assumes that a recovered person is immune to the disease or, alternatively,
that reinfections are rare or do not lead to SARS. For some diseases, reinfections are marginal
and may be neglected in the description of epidemic spreading. There is currently an ongoing
debate as to whether this is the case with Covid-19 [39]. The model does not apply to epidemics
in which immunity fades over time and reinfections are likely to result in SARS.

4. The estimated SARS fatality rate for Covid-19 ranges from 0.9% to 2.1% [40]. In the model,
the SARS case frequency rate is 1%. This value should be treated as an order of magnitude,
not a specific number.

5. It is known that the occurence and course of SARS caused by Covid-19 is correlated with the age
and co-existing diseases of the patient. We want to introduce such correlations to the model in a
minimalist way. For this purpose the agent population is divided into a part where SARS cases
are less frequent and a part where they occur more frequently. The first part can be thought of as
healthy or young people, and the second as chronically ill or the elderly. We label the parts by
H and C. The parts differ not only by the frequency of SARS occurence, but also by the SARS
mortality rates. The split into the H and C groups may look artificial at first sight but it seems to
be the simplest way of implementing the observed variation for Covid-19 of the probability of
occurrence and the course of SARS for different age groups. In principle, the model is well suited
to implement many age groups having different patterns for the occurence of Covid-19 SARS and
other diseases, but this would make the model more complicated and it would not dramatically
change the qualitative picture. So we stick to the simplest solution. We denote the part sizes pH
and pC, respectively. To fix attention we choose pH = 75% of the total population and pC = 25%.
This split roughly overlaps with the split of the population of a European country (like Poland),
into people younger than 60 years (H), and older than 60 years (C). The implementation of
mortality rates for SARS and other diseases as well as the frequency of SARS occurrence for
H and C subpopulations will be presented in detail in the next section where we discuss the
stochastic processes that describe the dynamics of the epidemic.

6. The occurence of SARS cases is also simulated as a stochastic process. An infected person
may develop SARS with a certain probability during the infectious period. In the model,
this probability depends on whether the person is mechanically ventilated or not. The respiratory
ventilation decreases the death probability, so it is important to support by ventilation as many
SARS patients as possible.

7. The number of ventilators, or more generally the healthcare system capacity is limited.
Not everyone who needs a support may obtain it in time, when there are too many SARS
cases at once. The limited capacity of the healthcare system is simulated in the model by a simple
stochastic process of distributing ventilators between SARS patients. Once a patient receives a
ventilator he or she will continue to use it until he or she recovers or dies. The ventilator is then
transferred to a new person who is randomly selected from all SARS patients who are in need
of one.

8. The death probability is correlated with the general health conditions of the patient. In the model,
it is simulated by differentiating the death probability according to the H and C groups to which
the patient belongs. The details are given in the next section.



Entropy 2020, 22, 1236 4 of 21

9. The healthcare system capacity is simulated by the number of respiratory ventilators available
(or the number intensive care beds). The number of ventilators differs from country to
country. It is approximately 13.6 per 100,000 people in Portugal [41], 27.3 in Russia [42], 30.1 in
Germany [43], 52.6 in the USA [43] and 26.6 in Poland [44]. In the study, we use a value 53, which
is close to that for the USA and 27 which is close to that for Poland. When assessing excess deaths
it is convenient to compare them to the number of deaths when there is no epidemic. The daily
deaths per 100, 000 people within the period 2007–2014 were 2.74(5) in Portugal, 3.78(18) in
Russia, 2.74(3) in Poland, 2.30(18) in the USA and 2.48(7) in the UK [45]. The numbers in the
parentheses correspond to the standard deviations calculated from the eight yearly values in
the quoted period. In our study, we use daily deaths’ values that simulate those for the US and
Poland, i.e., 2.30 and 2.74 per 100,000 persons, respectively.

10. The number of deaths from non-Covid causes is expected to increase during the epidemic.
The effect is mainly expected in developed countries where it is related to delayed diagnoses and
late admissions of patients with cancer [46,47] and coronary heart diseases [48]. For example,
it was estimated that the diagnosis delays caused by one year of epidemic conditions would
lead within 5 years in the UK to an increase of the number of deaths for colorectal cancer
by 15.3–16.6%, for breast cancer by 7.9–9.6%, lung cancer by 4.8–5.3% and esophageal cancer
by 5.8–6.0% [46,47]. Cancer Research UK has estimated that 2,000 fewer cancers were being
diagnosed per week in April 2020 as compared to three years earlier [46]. In Poland, in April 2020
only 50% of patients, compared to April 2019, used the system of rapid therapy, which had been
introduced some years ago to speed up the treatment of oncological patients. Every third visit to
an oncology doctor was canceled, the number of diagnoses using MRI, computed tomography,
PET-CT decreased by 30% [49].

The death risk for people with cardiovascular diseases significantly increases during an epidemic.
The number of patients ST-elevation myocardial infarction dropped during the lockdown.
More than 40% of patients with a heart attack were admitted beyond the optimal time
window [48].

These two examples show that protracted epidemic conditions in the healthcare system may have
a significant impact on statistics of non-Covid deaths. Some effects will be seen with a time-lag.
Cardiovascular diseases and cancer account for the largest share of death statistics. For example
there were 647,457 deaths from heart disease, 599,108 from cancer out of a total of 2,813,503 deaths
in the USA in 2017 [35]. This is roughly 44.3%. Thus, an increase in the number of deaths from
these causes by a few percent may be significant for the entire population. People with other
chronic conditions will be statistically more exposed to the death risk due to restricted access to
healthcare resources during a long-lasting epidemic. Elderly people and people with chronic
diseases are fearful of exposure to the virus so they avoid public places including hospitals
and health clinics. In effect, they are more exposed to health risks. These phenomena are
difficult to model, since they depend on many factors, which cannot be easily quantified, like the
organization of the healthcare system, redeployment of resources during epidemic, quarantine
procedures in hospitals etc. Instead of seeking a complicated model with many parameters which
would describe all these factors we propose to investigate what happens when the rate of deaths,
due to causes other than those related to the virus, increases on average by a factor x during the
epidemic, where x is just an input parameter of the model. In particular, we study an increase of
the daily mortality from non-Covid causes by x = 1%, 2%, . . . , 5%.

11. Geographic distribution of the population is simulated in the model by geometric 2d
random networks [50,51], see Section 2.1 for details. Compared to classic random graphs [52],
growing networks [14] or other classes of random networks which are constructed in a
non-geometric way, such networks are much better at mimicking the distribution of social
distances between people in a situation when social contacts in public places and non-local
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transmissions are limited. In the model, one can distinguish local and non-local modes
of disease transmission. It is a simplified version of the meta-population dynamics [25,26].
Local transmissions are modelled by infections of neighbouring nodes of the network,
while non-local ones by infections of randomly selected nodes, independently of their position
in the network. The non-local mode of disease transmission simulates intense social contacts
in public places where many people meet, who then move to distant places. The effect leads to
outbreaks in remote places and therefore significantly accelerates the spread of the epidemic.

2. Methods

In this section we provide a detailed mathematical description of the model.

2.1. Random Geometric Networks

Random geometric networks are constructed by the proximity rule [50,51]. Two nodes are
connected by an edge if they lie within the given distance from each other. The simplest example
is a network constructed by connecting randomly distributed points in a d-dimensional Euclidean
space. We are using this construction here for d = 2 to mimic geographical distribution of the
population which defines a network of everyday social contacts. For sake of simplicity we assume
that the points are uniformly distributed on a two-dimensional square with the periodic boundary
conditions. This can be done by generating pairs of coordinates (xi, yi), i = 1, . . . , N, consisting of
2N independent random numbers uniformly distributed on the unit interval [0, 1] and connecting
any two points i and j by an edge of the network if the distance between them is smaller than ε:
∆x2

ij + ∆y2
ij ≤ ε2. For the periodic boundary conditions the coordinate differences are calculated as

follows ∆xij = min
(
|xj − xi|, 1− |xj − xi|

)
and analogously for ∆yij. The node degree distribution of

the network obtained in this way follows the binomial law

P(k) =
(

N − 1
k

)
ak(1− a)N−1−k, (1)

where a = πε2 is the area of a circle of radius ε. The mean degree distribution is 〈k〉 = (N − 1)a,
and the variance σ2(k) = (N− 1)a(1− a). When a is of the order of 1/N, then the distribution becomes
Poissonian in the large N limit. The node degree distribution (1) is identical as for Erdős-Rényi random
graphs [52]. The two classes of graphs are however completely different. In particular, the average
clustering coefficient for the geometric random networks is 〈C〉 = 1− 3

√
3

4π ≈ 0.586503 [50], while for
Erdős–Rényi random graphs it approaches zero like 1/N as N tends to infinity [52].

2.2. Agent-Based Implementation of SIR Dynamics

We use a discrete-time stochastic implementation of the SIR dynamics [3,12]. The network is
populated with agents residing on its nodes. The population is divided into three classes of susceptible
(S), infectious (I) and recovered (R) nodes, which describe the state of each agent at time t. The states
change in the course of evolution according to epidemic rules which are implemented in the model
in the form of a discrete time stochastic process. Time is counted in days from the outbreak of the
epidemic. Initially, that is for time t = 0, one agent, or a few ones are infectious, while all others are
susceptible. An infectious agent remains infective for τ days on average, and then it recovers. This is
simulated in the model by assuming that the probability of remaining infective till the next day is
q and of recovering 1− q. The lifetime distribution of infectious state is given by a geometric law

Pi(t) = (1− q)qt−1, t = 1, 2, . . . (2)
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The mean lifetime of an infectious state is related to the probability q as follows

τ = 〈t〉 =
∞

∑
t=1

tPi(t) =
1

1− q
(3)

which means that for
q =

τ − 1
τ

(4)

the expected infectious period is τ days. We symbol 〈. . .〉 stands for expected value. Clearly, for τ � 1
the probability distribution (2) can be approximated by Pi(t) ≈ e−t/τ/τ. Once an infectious person
recovers, he or she remains immune and healthy until the end of the SIR of evolution. Later we will
modify the SIR dynamics by superimposing on it the death dynamics by modifying some of the rules
described in this section. In particular, we shall assume that a recovered person may die with some
probability and then reappear as a susceptible newborn. This means, in particular, that the R state may
change to S with some probability. We shall discuss the death dynamics in the ensuing subsections.
The resulting dynamics is similar to that used in MSIR models [3].

If an infectious node, a, is in contact with a susceptible one, b, the disease can be transmitted from
a to b, if the contact is sufficient for disease transmission. Let p be a probability of transmission from a
to b in one day. The probability pt of a transmission within t days is pt = 1− (1− p)t. The lifetime of
an infectious state is a random variable (2) so the transmission probability for the whole infectious
period is equal to the expected value 〈pt〉 = 1− 〈(1− p)t〉. This yields

〈pt〉 =
τp

1 + p(τ − 1)
(5)

for q given by (4). A node has on average 〈k〉 neighbours, so the number of infections generated by a
single infected node, in a fully susceptible population, is

R0 = 〈k〉 τp
1 + p(τ − 1)

. (6)

This equation relates the basic reproduction number R0 to the parameters p, τ and 〈k〉 of the model.
The epidemic evolution is implemented in a synchronous way. This means that all states are

updated simultaneously. States at time t + 1 are computed from states at time t. The following rules
are used to update the states. If a node is recovered at time t, it remains recovered at time t + 1.
If a node is infectious at time t it remains infectious at time t + 1 with a probability q. Otherwise,
it changes to recovered. If a node is susceptible at t it changes to infectious with a probability p∗.
Otherwise, it remains susceptible. The probability p∗, that a susceptible node becomes infectious is
related to the transmission probability p, by the following relation p∗ = 1− (1− p)i∗ where i∗ is an
effective number of infectious neighbours

i∗ = (1− α)in + α
〈k〉I
N

, (7)

and in is the number of infectious nearest neighbours of the node in the network, that is those which are
connected to it by a direct edge. I is the total number of infected nodes in the network. The parameter
α ∈ [0, 1] interpolates between the local and non-local (global) transmission modes. In the local
transmission mode, that is for α = 0, i∗ is equal to in, while in the non-local transmission mode, that is
for α = 1, i∗ is proportional to all infectious nodes on the network 〈k〉I/N.

Later, we shall compare the results of local and non-local transmissions with the results for
classic SIR models [3,12]. In the classic approach one usually uses the continuous time formalism.
The epidemic evolution is described by a set of first order ordinary differential rate equations for the
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fractions of susceptible, infectious and recovered agents: s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N.
The epidemic outbreaks if s(0)R0 > 1. The quantity

φ(t) = i(t) + s(t)− 1
R0

ln s(t) = const (8)

is conserved during the evolution [3,12]. s(t) is a non-increasing function of time t and r(t) is a
non-decreasing function. The infectious fraction, i(t) increases for t < tmax and reaches a maximum
for t = tmax such that R0s(tmax) = 1. Indeed, as one can see from Equation (8), the derivative
di/ds = −1 + 1

R0s changes sign when this condition is fulfilled. For t > tmax the epidemic begins to die
out and i(t) decreases from the maximum to zero: i(t)→ 0 when t→ ∞. The fraction of susceptible
population for t → ∞ gives the level of herd immunity s(t) → shi. The value shi can be found from
Equation (8). In particular, if i(0) is very close to zero and s(0) = 1− i(0), then shi is a solution to the
equation ln shi = R0(shi − 1). This yields shi ≈ 0.4172, 0.2032, 0.1074, 0.0595 for R0 = 1.5, 2, 2.5, 3,
respectively, to give some examples.

We use the following input parameters in the Monte–Carlo simulations of the epidemic on
geometric random networks: the number of agents N, the mean node degree 〈k〉, the basic
reproduction number R0, the expected duration of the infectious period τ, the probability α of
long-range transmissions. As an initial configuration, we choose I0 randomly selected infectious
nodes. The remaining nodes are susceptible. The probability to remain infectious till the next day is
calculated from Equation (4). The probability of virus transmission from an infectious to a susceptible
agent within one day is calculated from Equation (6) which gives

p =
1

τ
(
〈k〉
R0
− 1
)
+ 1

. (9)

An example of input values used in the simulations is N = 105, 〈k〉 = 100, R0 = 2.5, τ = 10, α = 0,
I0 = 5.

2.3. Modelling Background Conditions

In order to assess the impact of epidemics on death statistics, one also has to determine the death
statistics and the background conditions in the absence of an epidemic. This is per se an interesting
and very complex problem since it involves demographic factors, efficiency of healthcare systems,
statistics of diseases, and many other factors. This is beyond the scope of this paper. We only model
here basic factors to assess how death statistics change during a pandemic. The population is divided
into classes according to health conditions. In the simplest version of the model we introduce two
classes that correspond to healthy people and people with chronic diseases. We label the classes by
H and C, respectively. The division is symbolic, but it allows the inclusion of statistical correlations
between health conditions and mortality in simulations. This is modeled by choosing the mortality
rate in the C class to be much larger than in the H class. The second important difference between the
classes is that the death probability during epidemics increases faster in the C class than in the H class.
The details are given in the next subsection where we discuss modelling of death statistics.

We assume that the size of the population is constant during the epidemic. The number of deaths
is compensated by the number of newborns. This modifies the SIR dynamics that we described
in a simplified version in the previous section. Denote the fraction of healthy people at time t by
h(t) = H(t)/N, the fraction of chronically ill people by c(t) = C(t)/N and the fraction of deaths by
d(t) = D(t)/N. We have h(t) + c(t) + d(t) = 1.
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We implement the population dynamics as a discrete time stochastic process (Markov chain) with
the following evolution equation

(h(t + 1), c(t + 1), d(t + 1)) = (h(t), c(t), d(t))

 pHH pHC pHD
PCH pCC pCD
pDH pDC pDD

 . (10)

The matrix in this equation is a stochastic matrix. It describes the transition probabilities between the
states H, C, D. The transition rates pDH and pDC add up to one pDH + pDC = 1, which means that
the number of deaths is equal to the number of newborns. The parameter pDH is the probability that
newborns are healthy at birth. For sake of simplicity, but without loss of generality, we additionally
assume pHD = pDC = pCH = 0. The condition pHD = 0 means that the mortality rate of healthy
people is zero or it is much smaller than the mortality rate of chronically ill people. The condition
pDC = 0 means that a dead person is replaced by a healthy newborn. Thus the total size of the
population is conserved. The condition pCH = 0 means that a chronically ill person does not become
healthy again. Under these assumptions the last equation can be simplified to

(h(t + 1), c(t + 1), d(t + 1)) = (h(t), c(t), d(t))

 1− β β 0
0 1− γ γ

1 0 0

 . (11)

The transfer matrix has only two free parameters: β—the rate of becoming chronically ill and γ—the
rate of dying. This stochastic process has a stationary state

h∗ =
γ

β + γ + βγ
,

c∗ =
β

β + γ + βγ
,

d∗ =
βγ

β + γ + βγ
.

(12)

In our study we choose β and γ to reproduce the values d∗ = 2.3 · 10−5 or d∗ = 2.74 · 10−5 which
correspond to the daily mortality rates in the USA and in Poland, as discussed in Section 1. We keep
the ratio h∗/c∗ = 3, so that the simulated population approximately consists of 75% people in the H
class and 25% in the C class. For this choice, the paremeters of the transfer matrix (11) are

β =
4
3

d∗
1− d∗

, γ = 4
d∗

1− d∗
, (13)

and h∗ = 3
4 (1− d∗) and c∗ = 1

4 (1− d∗).
We conclude this section with two remarks. Firstly, we have assumed that there is no direct

transfer from H to D, from D to C and from C to H within one day, by setting pHD = 0, pDC = 0 and
pCH = 0. One should note that the probabilities of transfers between these classes in two (or more)
days are non-zero 1− β β 0

0 1− γ γ

1 0 0


2

=

 (1− β)2 β(2− β− γ) βγ

γ (1− γ)2 γ(1− γ)

1− β β 0

 . (14)

Secondly, the square or a higher power of the transfer matrix (11) is also a stochastic matrix. In principle,
one can replace the original transfer matrix with any power of it, and interpret it as a daily transfer
matrix. This will not change the stationary state. The stationary state is a left eigenvector of the transfer
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matrix associated with the eigenvalue 1 and it is identical for the transfer matrix (11) or any power of it.
The transfer matrix (11) has three eigenvalues. The one which has the largest absolute value is λ1 = 1
and the second largest is λ2 ≈ 1− β− γ. The eigenvalue λ2 tells us about correlation of states at
different times t, t′. The correlation function decays exponentially as exp(−|t− t′|/T). The correlation
time T can be derived from λ2: T ≈ −1/ log(λ2) ≈ 1/(β + γ). For the transfer matrix (11) T is of
order 104. By raising this matrix to the n-th power and interpreting the resultant matrix as a daily
transfers matrix one can reduce the autocorrelation time from T to T/n.

2.4. Simulating Death Statistics during Epidemic

Let us begin this section by recalling the philosophy behind splitting the population into parts H
and C. The mortality rate and the course of SARS for Covid-19 are known to be strongly correlated with
age and co-existing diseases. Elderly people and people with chronic conditions die from Covid-19
SARS more frequently than young and healthy people. If one wanted to make the model very realistic
one should divide the population into many age groups and, for each, collect good statistics on SARS
frequency and mortality and implement these statistics into the model. This would make sense only if
all other elements of the model were realistic. This is not the case in our study. The model we develop is
minimalistic but it should of course implement all important factors, including the correlation between
underlying diseases and SARS mortality. The split into two classes with distinct statistical properties is
the simplest way of doing it. For example, we assume that the frequency, pH,sars, of SARS cases in H
class is much smaller than the frequency, pC,sars, in the C class. For the sake of simplicity, we assume
that the frequency pC,sars is an order of magnitude larger than pH,sars. The values pH,sars and pC,sars
have to be consistent with the average SARS frequency which was previously assumed to be 1%:

psars = h∗pH,sars + c∗pC,sars ≈ 1%, (15)

where h∗ ≈ 3/4 and c∗ = 1/4. In our simulations we use the following values pH,sars = 1/300 and
pC,sars = 3/100, which give the correct average. For this choice, the frequency of SARS cases in the C
class is almost ten times larger than in H. This is the first major difference between H and C classes.
Another factor that plays an important role in the death statistics during epidemics is the fatality rate
for SARS, which also should be significantly different for H and C. In the model, we distinguish four
situations, labeled by C0, C1, H0, and H1:

• C0: Patients with SARS from the C class who are not ventilated;
• C1: Patients with SARS from the C class who are ventilated;
• H0: Patients with SARS from the H class who are not ventilated;
• H1: Patients with SARS from the H class who are ventilated.

We assume that the probabilities of dying from SARS are 1.0, 0.3, 0.9 and 0.1 for C0, C1, H0 and H1,
respectively. These values model a different course of SARS depending on co-existing diseases and
access to a ventilator. They mean that respiratory ventilation increases the probability of staying alive
from 0% to 70% for people with SARS in the C class, and from 10% to 90% for people with SARS in the
H class.

In the simulations, as input paramaters, we use probabilities of dying within one day. They are
related to the probabilities of dying in the whole period of infection by an equation identical to
Equation (5) in which 〈pt〉 is interpreted as the probability of dying from SARS during the whole
period and p is the probability of dying within one day. For τ = 10, the corresponding daily rates are
1.0, 0.041, 0.474, 0.011 for compartments C0, C1, H0, H1, respectively. During an epidemic, the number
of people with SARS may easily exceed the number of ventilators available. In the simulations we set
V = 27 (or V = 53) ventilators per 100, 000 people. These numbers are close to those for Poland (USA),
as discussed in Section 1. A patient with SARS occupies a ventilator until he or she recovers or dies.
In the model, this takes ten days (τ = 10) on average. So, if for some time there are more than 2.7 (5.3)
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new SARS cases a day per 100, 000 people in Poland (USA), the demand for ventilators will exceed the
healthcare capacity.

The ventilator availability is simulated as follows. At any moment of time, the algorithm keeps
track of the number of available ventilators. If this number is larger than zero, and there is a new SARS
case, the number is decreased by one, and one SARS patient is moved between compartments C0 to C1

or H0 to H1, respectively. The ventilator is occupied until the patient recovers or dies, in which case
the number of available ventilators is increased by one. Initially, the number of ventilators is set to V
per 100,000 people.

Another factor that has to be taken into account in assessing the epidemic total death toll is a
lower efficiency of the healthcare system during epidemic [46–48]. This has an impact on the increase
of deaths from non-Covid-19 SARS causes. The effect is significant in the group of people with
oncological cardiovascular diseases [46–48], but also in the group of people who require continuous
medical assistance. To estimate this effect, systematic statistical surveys should be carried out. Here we
just assume that the number of deaths from other causes than those directly related to SARS increases
by a factor 1 + x during an epidemic, where x is a few percent. In the model this is implemented by
changing the value of the parameter d∗ from d∗ to d∗(1 + x) and recalculating the parameters β and γ

(13) of the Markov transfer matrix (11) for days when the number of infectious agents is I > 0.

3. Results

3.1. Modes of Infection Transmission

In the model, the epidemic spreads on a geometric random network through local and non-local
transmission modes. The non-local mode is selected with probability α, and the local one with 1− α,
as described before. For α = 1, the epidemic spreads by the classical SIR mean-field dynamics [3,12]
which depends only on the node degree distribution, while α = 0 it follows a quasi-diffusive dynamics
reflecting the geographic population distribution. In Figure 1 we show phase portraits for epidemics
with different values of α on random geometric networks with N = 105 nodes.
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Figure 1. (Left) Phase portraits of a simulated epidemic, with different values of the long-range
social mixing parameter α, on random geometric random network. The simulations are carried out on
networks with N = 105 nodes and the mean node degree 〈k〉 = 100. The basic reproduction number
used in the simulations is R0 = 2.5, the infectious period duration is τ = 10 and the mixing parameter
is α = 1.0, 0.1, 0.01, 0.002, 0.0 (from top to bottom). The results for α = 1.0 are shown in symbols
and they are compared to a theoretical mean-field result (8) (solid line) going through the symbols.
The value of the basic reproduction number in the mean-field result is R0 = 2.53. (Right) Two different
simulations for α = 1.0 (symbols) compared to the mean-field result (solid line), and three different
simulations for α = 0.0.

As one can see from Figure 1 the results of simulations for α = 1.0 are very well described the
by the phase-portrait (8) of the classical SIR compartmental model [3,12]. The number of infectious
agents it maximal at Smax/N ≈ 1/R0 ≈ 0.4 and the herd immunity is achieved for Shi/N ≈ 0.1− 0.11,
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which is the place where the curve crosses the horizontal axis. This value is close to the mean-field
prediction (8). The value of the basic reproduction number of the best fit to the theoretical curve given
by the mean-field solution (8) is R0 = 2.53. It differs by one percent from the value R0 = 2.5 used in
the Monte–Carlo simulations. The difference can be attributed to the fact that the classical mean-field
dynamics is deterministic [3,12] and R0 is a number, while in the simulations the dynamics is stochastic
and R0 is the mean value of a random variable. The variance of this random variable introduces some
corrections to the effective value of R0.

The phase portrait starts to deviate from the mean-field solution when α decreases (see Figure 1).
As shown in the right panel in Figure 1 the phase portraits for different simulations for α = 1 lie on top
of each other and are consistent with the classical SIR solution. The curves for α = 0 have stochastic
shapes and they differ from each other.

The herd immunity value Shi weakly depends on α (see Figure 1). The values of
Shi/N ≈ 0.10− 0.11 are almost identical for α = 1, and α = 0. What depends on α is the height
of the curve which is a few times larger for α = 1 than for α = 0. This means that long-range social
mixing significantly speeds up epidemic spreading. The effect is illustrated in Figure 2 where we
compare dynamics of the epidemics for four different scenarios which differ by the basic reproduction
number R0 and the long-range social mixing parameter α.
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Figure 2. The charts show the dynamics of epidemic for four scenarios: (1) R0 = 2.5, α = 1.0;
(2) R0 = 2.5, α = 0.0; (3) R0 = 1.5, α = 1.0; (4) R0 = 1.5, α = 0.0. The population size is N = 105,
the mean node degree is 〈k〉 = 100, the expected duration of the infectious period is τ = 10 in
all four cases presented in the figures. (Left) The number of infectious agents I(t) as a function
of time t expressed in days from the beginning of the epidemic. (Right) The number of immune
agents: I(t) + R(t) = N − S(t), where I(t), R(t) and S(t) are the numbers of infectious, recovered and
susceptible agents, respectively. For scenario 1, the herd immunity level 90% is reached in t = 199 days.
In scenarios 2, 3, 4, the herd immunity levels: 89%, 59%, 50% are reached in: t = 398, 444, 1678 days,
respectively.

One can see that the spread of epidemic depends not only on the basic reproduction number R0

but also on the long-range social mixing parameter α. Decreasing the parameter α models closing
airports, schools, churches, sport arenas, etc., while decreasing the reproduction number R0 models
social distancing that is maintaining physical distance between people, reducing the frequency of
personal contacts, wearing masks as well as disinfection, quarantine, isolation, etc. In the next
section, we will evaluate the impact of these measures on mortality during the epidemic using
Monte–Carlo simulations.

Let us make a couple of remarks to conclude this section. If one used, in the simulations,
Erdős–Rényi random graphs with exactly the same node degree distribution (1), then one would
observe the classical mean-field epidemic dynamics [3,12] independently of the value of α. There would
be no distinction between the local and non-local transmission modes. Spatial distribution of nodes
plays an important role in imitating geographic epidemic spreading. Epidemics spreading in classical
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random networks [53] are completely different than in geometric graphs, or more generally, in spatial
networks, where it has a quasi-diffusive character [18].

The second remark regards the interpretation of results. The trajectories shown in Figure 2
represent single courses of epidemic for the given parameters. The model is stochastic and non-linear
so trajectories for other time courses for the same parameters may look differently. For example,
the epidemic may die out before it reaches say 1% of the whole population, because of a statistical
fluctuation. We performed multiple runs to see how often it ends below the 1% threshold. The results
for the four scenarios from Figure 2, are presented in the column A of Table 1. The column T shows
the average duration time of epidemic, rhi is the immune fraction of the population at the end of the
epidemic, and Rhi/T is the average number of daily infections. Averages were calculated only from
those cases that exceeded the 1% threshold.

Table 1. Column A shows the percentage of simulated epidemics that expired before reaching 1%; T is
the average duration of epidemics; rhi is the percentage of recovered people at the end of epidemic;
and Rhi/T is the average number of new infections per day for the four scenarios shown in Figure 2.

Scenario A T rhi Rhi/T

1 0.86(22)% 218.5(1.3) 89.821(12) 413.6(2.2)
2 0.91(23)% 420.3(2.8) 88.768(13) 212.9(1.4)
3 12.02(61)% 424.4(3.1) 59.333(41) 141.18(98)
4 14.60(72)% 1529(20) 52.05(10) 35.01(46)

We shall use the four scenarios in the next section to analyze excess deaths during epidemics. It is,
therefore, useful to take a look at the last column of Table 1 which contains averages of quotients of Rhi
at T. The values correspond to the average numbers of new infections a day per 100,000 people for
scenarios 1, 2, 3 and 4, respectively. Since the model assumes that the frequency of SARS cases is 1%,
this means that one can expect c.a. 4.1, 2.1, 1.4 and 0.35 new SARS cases a day per 100, 000 people on
average, and much more in the peak. These numbers should be compared with the healthcare system
capacity, which is modeled by the number of available ventilators (or ICU beds) which are V = 27 for
Poland and V = 53 for the USA per 100, 000 citizens, as discussed in Section 1. A ventilator is occupied
on average for τ = 10 days, thus, the maximum capacity of the healthcare system to admit new SARS
patients is V/τ = 2.7 or 5.3.

3.2. Assessing Mortality Rate for Different Scenarios

We are now going to compare excess death statistics for the simulated epidemics for six scenarios:

1. R′0 = R0 = 2.5 and α = 1.0. This simulates do-nothing strategy. An epidemic spreads without
any restrictions.

2. R′0 = R0 = 2.5 and α = 0.0. This simulates a suppression of virus transmission through reducing
long-range social mixing.

3. R′0 = 1.5 < R0 and α = 1.0. This simulates social distancing and reduces the transmission rate.
4. R′0 = 1.5 < R0 and α = 0.0. This simulates a quasi-lockdown. Both the local and non-local

transmission modes are restricted.
5. A quasi-lockdown for 300 days, as in item 4, and then do-nothing strategy, as in item 1.
6. A quasi-lockdown for 600 days, as in item 4, and then do-nothing strategy, as in item 1.

The parameters: N = 105, 〈k〉 = 100, τ = 10 and I0 = 5 are identical in all simulations. The six
above scenarios are tested in eight systems which differ by the numbers of ventilators V, the daily
mortality rates µ, and the frequency of SARS cases f . We consider the following systems:

1. µ = 2.3; V = 53; These values are close to the real values for the USA, so we call the system in
short ‘US’.
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2. µ = 2.3; V = 106; The number of ventilators is doubled as compared to that in the USA. We label
the system ‘US-V2’.

3. µ = 2.3; V = 53; The frequency of SARS cases drops from the default value f = 1% to f = 0.5%.
This can be interpreted as a consequence of introducing an effective drug that twice reduces the
number of cases of SARS requiring ventilation. We call this system in short ‘US-D’.

4. µ = 2.3; V = 106; f = 0.5%; This can be interpreted as a result of doubling the number of
ventilators and introducing an effective drug. We label the system ‘US-V2D’.

and four corresponding systems for Poland:

5. µ = 2.74; V = 27; f = 1%; We call the system in short ‘PL’.
6. µ = 2.74; V = 54; f = 1%; We label the system ‘PL-V2’.
7. µ = 2.74; V = 27; f = 0.5%; We label the system ‘PL-D’.
8. µ = 2.74; V = 54; f = 0.5%; We label the system ‘PL-V2D’.

As far as the mortality rates and the capacity of the health-care system are concerned the ‘US’
and ‘PL’ systems imitate the situation in the USA and in Poland, while ‘US-V2’ and ‘PL-V2’ simulate a
hypothetical situation when the capacity of the healthcare systems would have been doubled in the two
countries. The ‘US-D’ and ‘PL-D’ systems, in turn, simulate a situation when a pharmaceutic therapy
would have reduced the number of SARS patients who require mechanical ventilation. The resulting
effect of introducing an effective drug and doubling the number of ventilators is simulated by the
configurations ‘US-V2D’ and ‘PL-V2D’.

The six scenarios in those eight systems are studied for different values of the parameter x,
which controls the increase of mortality from non-Covid–Sars causes [46–48]. We scan the range of x
from 0% to 5%. The results are collected in Tables 2–9. Each entry corresponds to the average number
of additional deaths after 1000 days per 100, 000 people, calculated from 100 independent simulations.
The values in parenthesis represent statistical uncertainties. Only cases of epidemics that exceeded
the 1% population threshold were included in the analysis. The resulting values should be referred to
the expected number of deaths in 1000 days per 100,000 people in the absence of an epidemic, that is:
2,740 in Poland and 2,300 in the USA. When analyzing data in the tables, it is worth remembering that
for scenario 4, the epidemic lasts longer than 1000 days (see Table 1).

Table 2. Excess deaths 1000 days after the outbreak for ‘US’.

x S1 S2 S3 S4 S5 S6

0% 517.9 (7.8) 310.3 (5.3) 136.0 (5.2) 104.7 (5.7) 477.9 (6.7) 352.2 (8.9)
1% 510.6 (5.9) 318.7 (5.0) 156.3 (5.8) 127.8 (5.8) 476.8 (7.0) 336 (10)
2% 527.1 (5.7) 330.1 (4.9) 157.0 (5.1) 142.1 (5.7) 484.3 (6.6) 362 (10)
3% 523.7 (5.4) 338.8 (5.3) 169.5 (5.2) 172.2 (5.3) 505.8 (6.4) 395 (11)
4% 531.2 (5.5) 337.1 (4.8) 185.4 (4.9) 174.8 (5.4) 526.8 (6.4) 417 (11)
5% 545.6 (5.9) 359.9 (4.7) 185.3 (5.0) 212.3 (5.7) 540.0 (6.3) 438 (10)

Table 3. Excess deaths 1000 days after the outbreak for ‘US-V2’.

x S1 S2 S3 S4 S5 S6

0% 335.2 (5.6) 211.2 (4.7) 144.1 (5.2) 99.5 (6.3) 307.9 (5.7) 231.6 (6.5)
1% 340.5 (5.8) 216.9 (5.3) 141.0 (5.1) 140.3 (6.5) 311.6 (5.9) 233.7 (4.6)
2% 340.6 (6.8) 224.1 (5.1) 145.3 (4.7) 153.3 (5.7) 319.8 (6.4) 264.0 (6.9)
3% 347.9 (6.6) 242.6 (4.6) 171.9 (4.5) 160.5 (6.5) 341.4 (6.9) 274.7 (5.8)
4% 355.8 (6.1) 245.9 (4.5) 179.2 (5.3) 196.4 (6.9) 360.8 (7.3) 311.9 (7.0)
5% 357.9 (6.3) 255.8 (4.7) 191.5 (5.2) 218.3 (5.2) 365.2 (6.7) 325.7 (7.2)



Entropy 2020, 22, 1236 14 of 21

Table 4. Excess deaths 1000 days after the outbreak for ‘US-D’.

x S1 S2 S3 S4 S5 S6

0% 173.7 (5.1) 111.0 (4.4) 169.9 (5.3) 49.5 (5.8) 153.8 (5.7) 114.2 (5.9)
1% 176.4 (5.0) 116.1 (4.4) 176.5 (4.7) 81.6 (5.0) 168.4 (5.7) 130.6 (6.0)
2% 181.4 (5.8) 116.9 (4.8) 186.5 (5.2) 97.2 (5.2) 176.7 (5.1) 162.3 (5.6)
3% 192.4 (5.7) 133.9 (4.5) 199.1 (5.1) 118.7 (5.7) 194.8 (5.7) 170.6 (5.4)
4% 191.1 (4.8) 150.2 (5.3) 208.8 (5.1) 145.8 (5.2) 198.6 (5.5) 190.1 (6.2)
5% 192.5 (4.9) 154.5 (4.7) 216.1 (5.1) 161.2 (6.4) 207.5 (5.9) 214.6 (5.5)

Table 5. Excess deaths 1000 days after the outbreak for ‘US-V2D’.

x S1 S2 S3 S4 S5 S6

0% 104.6 (4.9) 111.0 (4.6) 73.3 (4.9) 63.9 (4.3) 107.6 (5.0) 110.6 (6.2)
1% 106.4 (4.7) 116.5 (5.1) 71.2 (5.4) 69.9 (4.6) 111.4 (5.4) 115.9 (5.5)
2% 121.3 (5.1) 115.7 (4.5) 87.5 (5.0) 109.4 (6.0) 127.6 (5.5) 132.7 (5.3)
3% 128.1 (5.3) 133.7 (5.4) 100.8 (5.2) 122.4 (5.3) 138.1 (5.5) 159.3 (5.0)
4% 120.4 (4.6) 133.7 (5.1) 112.2 (5.0) 141.4 (5.2) 154.6 (5.7) 177.1 (4.8)
5% 132.5 (5.2) 159.3 (5.4) 119.4 (5.9) 155.7 (6.4) 162.5 (5.2) 193.4 (5.2)

Table 6. Excess deaths 1000 days after the outbreak for ‘PL’.

x S1 S2 S3 S4 S5 S6

0% 617.9 (7.0) 290.1 (6.4) 225.6 (5.4) 93.9 (7.1) 596.8 (7.1) 460 (12)
1% 628.5 (5.9) 294.3 (6.6) 242.2 (6.0) 127.6 (6.7) 595.1 (7.1) 477 (14)
2% 632.6 (6.3) 304.1 (7.5) 257.0 (6.3) 163.1 (5.9) 617.7 (7.8) 491 (13)
3% 634.0 (6.1) 323.4 (6.0) 266.1 (5.0) 186.5 (6.9) 630.2 (7.4) 519 (13)
4% 642.6 (6.0) 333.7 (6.4) 277.0 (6.5) 208.4 (6.6) 638.2 (6.7) 544 (11)
5% 648.7 (6.5) 340.3 (6.2) 292.4 (6.1) 220.3 (7.6) 645.5 (6.8) 567 (11)

Table 7. Excess deaths 1000 days after the outbreak for ‘PL-V2’.

x S1 S2 S3 S4 S5 S6

0% 498.9 (6.1) 207.4 (5.8) 143.5 (5.5) 91.5 (6.9) 462.9 (6.1) 342 (10)
1% 508.6 (6.1) 225.7 (5.1) 148.5 (5.8) 127.9 (7.1) 487.5 (7.1) 366 (10)
2% 512.4 (6.0) 232.8 (5.7) 163.7 (5.3) 149.8 (5.5) 486.0 (7.6) 379 (12)
3% 513.6 (5.1) 244.2 (5.7) 174.8 (5.4) 187.9 (5.6) 504.6 (7.2) 383 (10)
4% 529.5 (5.9) 249.8 (5.5) 184.6 (5.2) 199.5 (7.0) 520.7 (7.2) 404 (11)
5% 529.5 (5.8) 269.1 (6.4) 194.0 (6.2) 230.2 (4.9) 524.9 (6.0) 442 (11)

Table 8. Excess deaths 1000 days after the outbreak for ‘PL-D’.

x S1 S2 S3 S4 S5 S6

0% 262.1 (5.5) 98.9 (5.8) 76.0 (5.9) 42.5 (5.8) 238.1 (6.2) 163.4 (6.5)
1% 261.8 (6.0) 113.6 (5.3) 87.9 (6.2) 65.7 (5.6) 247.8 (7.7) 185.5 (7.1)
2% 269.3 (5.5) 123.2 (5.5) 84.3 (5.7) 101.4 (5.2) 265.2 (6.1) 215.2 (6.7)
3% 272.6 (5.1) 139.0 (5.5) 109.8 (5.1) 123.3 (5.6) 268.0 (5.6) 231.9 (7.2)
4% 278.4 (5.2) 158.4 (5.0) 124.4 (5.8) 157.5 (5.4) 290.1 (7.0) 260.4 (7.4)
5% 282.7 (5.0) 159.5 (4.7) 134.8 (5.9) 189.7 (5.9) 304.3 (5.9) 280.0 (7.2)
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Table 9. Excess deaths 1000 days after the outbreak for ‘PL-V2D’.

x S1 S2 S3 S4 S5 S6

0% 163.3 (5.9) 103.0 (5.6) 66.7 (5.5) 59.2 (5.7) 145.0 (6.3) 112.6 (6.6)
1% 162.2 (5.5) 111.4 (5.4) 82.5 (5.8) 81.4 (6.3) 166.2 (6.3) 129.2 (5.2)
2% 180.7 (6.2) 127.9 (4.9) 90.4 (5.6) 104.7 (5.8) 182.2 (5.3) 154.0 (6.3)
3% 191.1 (5.6) 134.5 (5.2) 110.5 (5.7) 126.7 (6.1) 204.9 (6.5) 178.5 (6.4)
4% 188.7 (5.4) 146.0 (5.5) 112.5 (5.1) 155.9 (6.1) 199.7 (6.1) 199.0 (6.1)
5% 199.8 (5.3) 158.8 (5.2) 126.0 (5.5) 184.5 (6.3) 209.6 (7.1) 224.6 (6.1)

Let us, for illustration, present some results graphically. In Figure 3 we show an example of
time evolution of the number of additional deaths during 1, 000 days after the outbreak in the system
‘US-V2’ for six different scenarios.
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Figure 3. The cumulative number of excessive deaths for different scenarios in Monte–Carlo
simulations of an epidemic for a population of N = 105 agents on a random geometric network
for the system ‘US-V2’ and for x = 0.05. (Left) The upper curve corresponds to the worst-case scenario,
that is, none of the SARS patients receive medical attention during the epidemic. The four curves
below correspond to the scenarios 1-4 presented in the main text and in Figure 2. The dashed line in
the bottom represents the background mortality. (Right) The graphs show the cumulative number of
excessive deaths for scenarios 5 and 6. For reference, also the curve for scenario 1, which is identical as
in the left panel, is shown.

The first four scenarios are shown in the left panel in Figure 3 and the remaining two in the
right one. In the left panel, we additionally draw two reference curves representing the worse-case
scenario when no SARS patients receive required medical assistance during an epidemic, and the
scenario when there is no epidemic. For scenario 1, the number of daily new infections is large and the
number of SARS cases exceeds the healthcare system capacity, so the number of daily SARS deaths
is large. The effect manifest as a steep part of the mortality curve. The epidemic lasts a short time.
For scenarios 2, 3 the epidemic lasts longer but the number of daily new infections is much lower.
In effect, most of SARS patients obtain required medical attention, so the daily excess mortality rate
is much lower than in scenario 4. In scenario 4, the epidemic spreads very slowly. The number of
the new daily SARS cases is small, much below the healthcare system capacity. SARS patients are
optimally treated, however, deaths from causes other than Covid are increasing due to protracted
epidemiological restrictions. The graphs in the right figure show what happens when the lockdown
lasts for 300 or 600 and then it is completely lifted. One can see that at the end of the studied period
the total number of deaths is roughly the same as in the ‘do-nothing’ strategy, shown in the figure
for reference.

As the next example, we compare in Figure 4, additional deaths 1, 000 days after the outbreak
for all six scenarios in the systems ‘PL-V2’ and ‘US-V2’ which simulate hypothetical situations of the
doubled capacity of the healthcare systems in Poland and the USA. The slope of the graphs increases
with the duration of the epidemic as additional deaths from causes other than Covid are increasing
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with time. In particular one can see that the curves for scenarios 3 and 4 intersect for x close to 2%.
In other words, these two strategies are comparable in this case. For economic reasons, strategy 3 is,
however, much better than strategy 4, because it takes much less time. We also see in the figure that
strategies 1 and 6 lead roughly to the same number of additional deaths.
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Figure 4. The number of excessive deaths relative to the expected number deaths in the absence of
epidemic, in the PL-V2 system (Left) and US-V2 (Right), for six scenarios described in the main text.
The points with error bars represent values from Tables 7 and 3 divided by 2, 740 and 2, 300, respectively.
Lines between the points are drawn to guide the eye.

In Figure 5 we compare the effect of doubling the healthcare system capacity, measured
by the number of ventilators (or ICU beds) in scenario 1 (‘do nothing strategy’) and scenario 4
(‘quasi-lockdown’) in the USA. We use parameters as for the ‘US’, ‘US-V2’, ‘US-D’ and ‘US-V2D’
systems. In the left figure, we plot graphs for the ‘do-nothing strategy’. We see that excessive mortality
is approximately 23% and slowly varies with x. If the number of ventilators doubled, the excessive
mortality would drop to around 15%. The introduction of a drug, that reduces the number of SARS
cases requiring respiratory ventilation to 0.5%, would reduce the excessive mortality to approximately
8%, and if additionally, the number of ventilators doubled, to approximately 5%. The picture is
completely different for scenario 4, as shown in the right figure. We see that the graphs for ‘US’ and
‘US-V2’ basically overlap, meaning that the doubling of the number of ventilators has no effect on
mortality in this case. The same holds for ‘US-D’ and ‘US-V2D’. Clearly, in scenario 4, the quantities of
daily infections are so small that the healthcare system has a sufficient capacity. Additional ventilators
are unnecessary in this case.
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Figure 5. Comparison of strategy 1 (Left) and strategy 4 (Right) for the configuration ‘US’, ‘US-V2’,
‘US-D’ and ‘US-V2D’.

4. Discussion

We conducted a Monte–Carlo study of epidemic spreading on random geometric networks to
assess the efficiency of non-pharmaceutic interventions in reducing the total number of surplus deaths
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during Covid-19-like epidemics. We discussed strategies based on social distancing and restricting
long-range social mixing. They have different effects on epidemic spreading. Social distancing reduces
the basic reproduction number R0 to some effective reproduction number R′0 < R0. Restrictions on
long-range social mixing reduce virus transmission between remote places. When long-range mixing
is large, an epidemic spreads via mean-field dynamics. When it is small, it spreads via quasi-diffusive
dynamics depending on the geographic population distribution. We studied the two modes of disease
transmission here.

There are two sources of deaths which contribute to the total death toll during a Covid-19-like
epidemic. One is related to Covid-SARS, and the other one to other diseases. The number of SARS
deaths depends on the capacity of the healthcare system, which in the model is simulated by the number
of available respiratory ventilators. If the daily number of new SARS cases exceeds V/τ, where V is
the number of ventilators and τ is the number of days of using one ventilator for one SARS patient,
some people with SARS will not be ventilated and will have lower survival probability. This effect
was simulated in the model. If one assumes that there are 27 or 53 ventilators per 100,000 people, as in
Poland or the USA, and τ is approximately 10 days, then V/τ = 2.7 or 5.3. As long as the number
of SARS patients is below V/τ, then the number of deaths caused by SARS is maximally reduced.
This effect can be achieved by slowing down the epidemic. On the other hand, the number of excess
deaths from other causes may increase [46–48] with the epidemic duration so it is not beneficial to
slow the rate of epidemic spreading too much. The optimal solution is to keep the number of SARS
cases close to the capacity of the healthcare system, but not much below it.

We also showed that a strategy of maintaining the lockdown for some time and then releasing
it by removing all restrictions has a similar effect on the number of deaths in the long term as if the
do-nothing strategy was introduced right at the beginning. The deaths differ only by the time when
they occur: in the do-nothing strategy the mortality is large at the beginning while in the other case it
is large when the lockdown is released.

A strict lockdown makes sense only when one wants to gain time to increase the healthcare system
capacity, for instance, buying new ventilators, increasing the number of ICU beds, training medical
personnel or improving medical and epidemic procedures, or when an effective drug or vaccine is
expected to be introduced in a short time. Otherwise, the optimal strategy is to keep the epidemic
progress at the level that the number of SARS patients at any time is roughly equal to the capacity of
the healthcare system. If the number of SARS cases is much larger than that, too many people will die
of SARS. If it is much smaller than that and the epidemic will last too long, many additional people can
die from cancer, cardiovascular diseases and chronic diseases, due to later diagnoses, later admissions
for hospitalization and restricted access to health services [46–48].

Social distancing reduces the herd immunity level, see Table 1. This means that after lifting
restrictions on social distance and restoring normal contacts between people, the percentage of immune
people will be below the herd immunity level for the unrestricted system. The system will be unstable,
in the sense that a new single infectious person may trigger a new outbreak. The situation is similar
to a superheated liquid, where boiling may occur spontaneously at any time. For example, the total
number of deaths in the simulated epidemic is comparable for scenarios 2 and 3 (see Figure 3), but the
percentage of immune people at the end of the epidemic is 89% in scenario 2 and 59% in scenario 3
(see Table 1). The value 89% is close to the herd immunity level for R0 = 2.5 while 59% is far below it.
This means that the epidemic in scenario 3 can restart from the level 59% when the restrictions are lifted
and a new infective person appears. This example shows that strategies reducing long-range social
mixing bring better effects than introducing social distancing locally. They are, however, much more
difficult to implement.

Let us compare the current Covid-19 mortality to typical mortality rates in Poland. Rates are
quoted as daily deaths per 100,000 people. For example, in 2014 the daily mortality from all causes
was approximately 2.71 including 0.69 from cancer [45,54]. The daily number of deaths registered as
Covid-19 deaths between March the 5th and September the 27th, 2020, in Poland was approximately
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0.031 [55]. According to the WHO data, the cumulative number of registered Covid infections in
Poland in the quoted period was 227.2 per 100,000 people (approximately 2 per mille). The rate of
spreading for Covid-19 is much slower than the simulated epidemics (see Table 1). Covid-19 has
been spreading very slowly so far. If Covid-19 continued spreading at this rate the epidemic would
need many years to end, unless an efficient vaccine is introduced. The number of registered cases is
probably much smaller than the real number of Covid-19 cases because mainly suspected cases have
been tested so far, so the statistics may be very biased. Assuming the number of cases is up to ten
times underestimated, that would mean that at the end of September 2020 approximately 2% of people
in Poland are immune to Covid-19, and 98% are still susceptible and face a Covid-19 infection. If the
epidemic speeds up now too quickly, the effect can be as in scenario 5 or 6, discussed in this paper.
According to the model, initial suppression of an epidemic does not reduce accumulated deaths over
the long term, but extends the duration of the epidemic. Most of the European countries decided to
suppress the Covid-19 in the first six months after the outbreak. Sweden took a different approach.
The comparison [56] shows that at the beginning there were relatively more deaths in Sweden than in
other European countries, but this comparison does not take into account that the epidemic in Sweden
is at a more advanced stage, which means that there are more people who are already immune to
Covid-19. One has to wait with comparisons until the end of the epidemic.

5. Conclusions

Let us underline that the model developed in the paper does not attempt to simulate the Covid-19
pandemic but only to imitate some of its aspects. The basic assumptions are that immunity can be
obtained only by infection and that reinfections are rare and can be neglected. Under these assumptions,
the pandemic ends only after the herd immunity is achieved. The model has been constructed in a
minimalistic way. The scale parameters of the model, like the number of ventilators and mortality
rates simulated the real values. The conclusions drawn from the model can be treated qualitatively.
Let us recall the main ones:

• Strong suppression of an epidemic in the early stages does not significantly reduce the total
number of deaths over the long term, but increases the duration of the epidemic;

• In the absence of an efficient drug and a vaccine, the optimal strategy for reducing the total death
toll for Covid-19-like epidemics, is to keep the number of new infections at a level where the
number of SARS cases is as close as possible to the capacity of the healthcare system.

• In the early stages of an epidemic, suppression should be only then implemented when one wants
to gain time to increase the efficiency of the healthcare system or if the introduction of a drug or a
vaccine is expected in a short time.

In contrast to the model, in the real world, it is very difficult to fine-tune the parameters that control
the rate at which an epidemic spreads and to implement appropriate measures in society, without a
vaccine.
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