
entropy

Article

Information Bottleneck Classification in Extremely
Distributed Systems

Denis Ullmann , Shideh Rezaeifar , Olga Taran , Taras Holotyak, Brandon Panos
and Slava Voloshynovskiy *

SIP—Stochastic Information Processing Group, Computer Science Department CUI, University of Geneva,
Route de Drize 7, 1227 Carouge, Switzerland; denis.ullmann@unige.ch (D.U.); shideh.rezaeifar@unige.ch (S.R.);
olga.taran@unige.ch (O.T.); taras.holotyak@unige.ch (T.H.); brandon-leigh.panos@etu.unige.ch (B.P.)
* Correspondence: svolos@unige.ch; Tel.: +41(22)-379-01-58

Received: 28 August 2020; Accepted: 26 October 2020; Published: 30 October 2020
����������
�������

Abstract: We present a new decentralized classification system based on a distributed architecture.
This system consists of distributed nodes, each possessing their own datasets and computing modules,
along with a centralized server, which provides probes to classification and aggregates the responses
of nodes for a final decision. Each node, with access to its own training dataset of a given class,
is trained based on an auto-encoder system consisting of a fixed data-independent encoder, a pre-trained
quantizer and a class-dependent decoder. Hence, these auto-encoders are highly dependent on the class
probability distribution for which the reconstruction distortion is minimized. Alternatively, when an
encoding–quantizing–decoding node observes data from different distributions, unseen at training,
there is a mismatch, and such a decoding is not optimal, leading to a significant increase of the
reconstruction distortion. The final classification is performed at the centralized classifier that votes
for the class with the minimum reconstruction distortion. In addition to the system applicability
for applications facing big-data communication problems and or requiring private classification,
the above distributed scheme creates a theoretical bridge to the information bottleneck principle.
The proposed system demonstrates a very promising performance on basic datasets such as MNIST
and FasionMNIST.

Keywords: information bottleneck principle; classification; deep networks; decentralized model;
rate-distortion theory

1. Introduction

Most classical machine learning architectures are based on a common classifier that typically
requires centralizing all the training data in a common data center for training as schematically shown
in Figure 1a. However, such a centralized system faces several critical requirements related to data
privacy and the need for big-data communications to collect data of all classes at the central location.
In practice, sensitive data such as medical and financial records or any personal data are usually kept
private in multiple independent data centers and cannot be shared between third parties for various
reasons. At the same time, a huge amount of newly acquired private data that requires special care
when fed to a machine learning tool, is captured daily. However, from both privacy and practical points
of view, it is not feasible to transfer all collected data to a centralized data center and to perform the
system re-training on new data. To face these challenges, a concept of “Decentralized machine learning”
is proposed and developed in several works, where the data are stored locally on the devices and a
common centralized model is trained. Not pretending to be exhaustive in our overview, we mention
some of the most important contributions within the literature. “Parallelized SGD” was introduced in
2007 [1] and further extended in [2] to reduce the communication costs using compression or pruning

Entropy 2020, 22, 1237; doi:10.3390/e22111237 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-7179-005X
https://orcid.org/0000-0002-8103-3722
https://orcid.org/0000-0001-8537-5204
https://orcid.org/0000-0002-7096-7941
https://orcid.org/0000-0003-0416-9674
http://www.mdpi.com/1099-4300/22/11/1237?type=check_update&version=1
http://dx.doi.org/10.3390/e22111237
http://www.mdpi.com/journal/entropy

Entropy 2020, 22, 1237 2 of 30

algorithms. An alternative solution known as “Federated Averaging” was proposed in [3] with many
attempts to improve the performance and communication cost as in [4].

𝐱 𝑝 𝐱

ⅈ 1 ⅈ 1
𝑝 𝐱

𝐱 𝑝 𝐱

𝑝 𝐱

1

0

1

0

9

9

9

9

መ

ෝ

Figure 1. Theoretical and practical differences between centralized and decentralized training:
(a) for the centralized training, the model can access all available data and, therefore, learn decision
boundaries between classes. It is usually a single supervised classifier. More generally, it can be
decomposed into an encoder followed by a classifier: the data manifold is projected by E onto a
constrained space to make the work of C simpler as in [5]. In theoretical terms, this model is justified
by the Information Bottleneck (IB) principle [6] described by the Markov chain above and corresponds
to the IB for supervised models described in [7]; (b) for the fully decentralized training, we assume the
scenario, where each node has an access to the training data of one class only. The model cannot learn
the decision boundaries between classes contrary to the centralized one. Each node is following the
unsupervised IB model described in [7]. They share the same E and D structure but the parameters of
encoders φ0, . . . , φNm , and decoders θ0, . . . , θNm are learned for each class individually, given by the
data manifold of each class. At the classification stage, the nodes share only the reconstruction errors
with the central node.

The term Federated Learning (FL) is used for a type of decentralized learning, where a global
model is kept in a central node/device and many local nodes/devices have different amounts of
samples from different classes. In FL, the local and/or global nodes share the gradients or model
parameters during training by efficient techniques such that RingAllReduce [8] for gradients sharing
or Federated Averaging [4] for local model parameters averaging on the central node, and Ensemble
Learning [9] for local predictions averaging. When all devices have samples from all classes in equal
amounts, the setup is commonly referred to as Independent Identically Distributed Federated Learning
(IID-FL). However, in practice, it is often that different nodes/edges/devices might have samples
only from some classes in different proportions. Such an unconstrained environment would almost
always mean that not all edge devices will have data from all the classes. This is commonly referred
to as a Non-Independent Identically Distributed Federated Learning (Non-IID-FL). This represents a real
challenge for FL and leads to significant drops in classification accuracy. Recently, many works propose
solutions to cope with this problem, such as mixing Federated Averaging with Ensemble Learning [10],
incorporating recent communication and data-privacy amplification techniques [11], sharing small
subsets of IID training data among the local nodes [12], adapting the local nodes communication
frequencies to the skewness [13], and efficiently defending communications between nodes [14]. In [13],
the authors compare the performance of different classification architectures on the IID and Non-IID

Entropy 2020, 22, 1237 3 of 30

data with different training tricks and demonstrate a significant drop in performance for Non-IID
data. Therefore, to the best of our knowledge there is a significant gap between the performance of
centralized systems and the Non-IID-FL systems.

The challenges of decentralized classification. There is a gap between the classification results
of centralized and decentralized classification, even for simple datasets such as MNIST [15], for which
a very high recognition accuracy was achieved on centralized models while the performance in the
decentralized setting is quite modest. Studies such as [16,17] showed that semi-supervised classification
is even a more challenging task for such systems. Anomaly detection and one-class classification are
two subfamilies of unsupervised learning closely related to decentralized classification. Well-known
methods such as one-class support vector machines [18] are proposed, but in practice they suffer from
very slow training and limited performance. To the best of our knowledge, all recent advances in
anomaly detection use generative models composed of encoding and decoding, with adversarially
learned denoising to better separate in- and outlier images [19], or by adversarially learning a
disentangled implicit representation [20], or by constraining a latent representation to generate only
possible examples from the class and to avoid generating any example outside the class, no matter how
close it is to the class [21]. These studies state without theoretical explanation that their models seek to
project and compress the data distribution of a class in an optimal way to keep only the information
necessary to identify the class in question while being able to regenerate the initial data from the
compressed version with minimal error. However, the most recent studies clearly demonstrate the
critical limitations of trained representations on single class data. As shown in [21], if the model is not
sharpened to reject outlier samples, it can learn more generic information than is strictly necessary
for a given class, in which case it is unable to isolate that class from the others. This is, for instance,
the case in [21], where the one-class model was trained on class 8 and yet considers outlier classes 1,
5, 6 and 9 as inlier class 8.

2. Problem Formulation: The One Node–One Class Setup

Contrary to the centralised classification presented in Figure 1a, each class is assigned to one
decentralized training node, which learns to optimally compress and decompress in-class data as
shown in Figure 1b. The setup under analysis of this paper is shown in Figure 2. We assume
that the system consists of Nm local nodes and one centralized node. Each node has access to
its own privacy sensitive dataset. The entries of each local dataset are generated from one-class
distribution. The centralized node does not have any access to the local node datasets and cannot
receive any information about the updates of gradients typically considered in the FL settings.
The only information that can be exchanged between the local nodes and centralized node is the
probe, which is considered to be a public one, and the feedback of local nodes in a form of scalar
variables. Therefore, the communication between the local nodes and centralized node is reduced
to minimum at the testing stage. At the training stage, we assume no communication between the
centralized node and local nodes. Additionally, the local nodes do not share any information between
them. Up to our best knowledge such a scenario was not addressed in known FL systems.

The privacy protection model considered in this work has an asymmetric character. We only
address the privacy protection of owner datasets, i.e., the training data. At the same time, the probe to
be classified at the testing stage is not considered to be privacy sensitive one. Therefore, we assume
that it can be shared in the plain form among different nodes. Although our model can also address the
privacy protection mechanism for the probe, this problem is out of scope of this paper. We also assume
that the nodes are playing a fair game and do not modify or taper their feedback to the centralized
node. Therefore, the model under investigation assumes the following setting.

Entropy 2020, 22, 1237 4 of 30

𝒟 𝒟

𝑁

𝒟𝑁⋯

ෞ

Figure 2. Classification setup under the analysis in this paper. It shows which parameters of the system
are under the privacy protection and which are shared in the public domain. Also, the hyperparameters
such as the learning rate and the number of epochs are in the public domain, sent from the central node
to all local nodes.

At the training stage we assume an extreme case of a Non-IID system setup, where each
node/device has an access only to the samples of a single class/distribution. According to this
assumption we want to address many practical scenarios, where the nodes representing some
institutions like labs and research centers, companies, service providers, individuals or even countries,
do not want or cannot share their data with each other for various reasons that include for example
privacy concerns, competition issues, national security interests, etc. as well as technical constrained
related to the transfer of big volumes of data via band-limited channels in a restricted amount of
time. At the same time, the data owners representing such kind of nodes are interested in providing
classification services to some third parties based on the possessed data without revealing it explicitly to
any third party. There are numerous examples of considered scenarios ranging from privacy sensitivity
medical records or biological research, where some particular institutions, which are specialized on
study of some disease or phenomena, invest considerable amount of time, efforts and money to collect
such kind of data. In addition, one institution might possess data from healthy population and yet the
others with some specific diseases. Obviously, these institutions would be interested in sharing their
data to reveal new discoveries but cannot proceed due to the above economical, privacy or competition
reasons. One can also envision a scenario of personalized marketing, where each node represents a
client or a company that has some unique experience or interest expressed by the data collected from
its activity in certain domain. The advertising party suggests some services or product to all clients by
sending a probe and if there is a match between the interest and proposal, a deal is concluded. At the
same time, it is obvious that the interests of each client are private. The scenarios of astronomical or
genetic research might also face big-data communication concerns, where a lot of data are collected and
labeled at some distributed locations and to transfer all these data to a central node might represent a
great technical or economic challenge. Additionally, the situation might be complicated by a need for
regular data updates. All these scenarios are evidently exemplified on systems like Square Kilometer
array (SKA) [22], where the data are planned to be collected on two continents with a rate of 1 Petabyte
per day, with the envisioned daily transfer to a centralized location by an airplane.

Therefore, in the considered setup we assume very restricted communications between local and
central nodes. Furthermore, we assume that no global model is stored in the central node and the
nodes have no communications with the central node in terms of both sharing samples (local class in-
or outliers) and gradients or parameters in the open or obfuscated form.

Entropy 2020, 22, 1237 5 of 30

At the testing stage we address the classification problem. We assume that the central node has
a probe that is not private, and it can be openly communicated between the nodes. In this way,
the privacy of the probe is not considered in our work.

During the classification, the local nodes only communicate the reconstruction error in the form
of a scalar to the central node, thus allowing for efficient and fast training and classification even when
the local nodes are distributed around the world. For instance, this can be the case for astronomy
observation centers which contain large quantities of data, where the training and classification
have high transmission restrictions. Such a problem formulation is not directly addressed in the FL
formulation and to the best of our knowledge there are no results reporting the performance of FL on
this extreme Non-IID setup. We refer to this particular case of Non-IID data as One Node–One Class
(ON-OC) setup.

The considered classification setup has a significant conceptual difference with the centralized
classification systems. Centralized classification is based on the notion of a decision boundary
between the classes that should be learned by observing multiple training samples from all classes
simultaneously, as shown in Figure 3a. The classification is based on a decision to which region of
space, split by the decision regions, a probe x belongs to. In the fully distributed case, referred to as the
ON-OC setups, where no gradient is shared between nodes, the proposed system learns manifolds of
each data class independently represented by colors in Figure 3b. The encoding-decoding of x achieves
this by class-dependent encoder–decoder systems producing minimum reconstruction error for the
matched probe case.

(a)

x

(b)

x

Figure 3. Conceptual difference between (a) the centralized classifications and (b) the extremely
decentralized ON-OC classification. Colors represent the manifolds of each learned class.
(a) Centralized and Federated classification; (b) ON-OC classification

We propose a theoretical justification and proof of concept for a fully decentralized classification
model, where the classifier training procedure is not required to see all class data at the same time
to achieve a high accuracy classification. More precisely, we assume that each class is assigned
to one decentralized training node, which learns to optimally compress and decompress in-class
data, such that the reconstruction error is minimized for in-class data, and the latent compressed
representation learns in-class data manifold instead of inter-class boundaries (Figure 3). At the same
time, the presented framework can be extended to the more general case of multiple classes per node.
In this case, the nodes can benefit from a priori simpler semi-supervised training, or at least they can
train as many models as the number of classes per node, given that they have enough data. Once the
training is completed, the classification step presented in Figure 4 is as follows: the central node sends
a sample x, a probe, from the data distribution to be classified, to each of the local nodes. These local
nodes are optimized on a single class to compress and decompress and only the reconstruction errors
of the probe are transmitted from each node to the central node, which votes in favor of a class with
the lowest error.

Entropy 2020, 22, 1237 6 of 30

𝟑

𝟐

𝟏

ෝ2

𝟏 𝟏
𝑓

Ƹ
11

1

2

𝑓

𝑓

Ƹ
3

3
𝑓

ෝ
1

ෝ 𝟑

1
2

1
2

1
2

1
2

1
2

1
2 3

2

𝟐 𝟐
𝑓

𝟑 𝟑
𝑓

Figure 4. At testing time, the probe x is sent from the central node to Nm compression-decompression
local nodes, trained on their own data (“TR.” denotes “trained”), e.g., Nm = 3 for this example.
The results of decompression expressed in the reconstruction error denoted as e1, e2 and e3 are sent back
to the central node. The proposed distributed model classifies in favor of the smallest reconstruction
error. The compression in each node is characterized by a compression rate RQ, which is chosen to
be such that the distortion distributions for mismatched classes are maximized with respect to the
matched case.

3. Related Work

In contrast to the Federated Learning-based classification considered in Section 1, in this section
we will consider concepts related to the proposed framework.

An information bottleneck interpretation. We use the Information Bottleneck (IB) principle
presented in [6] to build the theory behind centralized and decentralized classification models.
The analysis of the supervised and unsupervised information bottleneck problems was performed
in [23] and generalized to the distributed setup in [24]. In this work, we extend the IBN to demonstrate
the importance of compression in the form of vector quantization for the classification problem.
Moreover, we show that the classical centralized training is a supervised IB scenario whereas the
decentralized one is an instance of an unsupervised IB scenario as developed in [7] and summarized
in Figure 1. Ideally, each node should: (a) store in its encoded parameters the in-class data
information to ensure the distribution of one class to be distinct from the other ones, (b) be trained to
compress and decompress optimally for in-class data, such that the reconstruction error is minimized
(blue rate-distortion curve in Figure 4 of the matched case), and sub-optimally for out-of-class data,
such that the reconstruction error is not minimum (orange rate-distortion curve of the same mismatched
case), and (c) have a rate of compression (RQ in Figure 4), which separates the optimal node from
sub-optimal ones. Shannon’s rate-distortion theory assumes that the compression-decompression
model used for the data compression should be jointly trained for input data statistics. This makes
a link to optimal matched signal detection used in the theory of signal processing: each class has its
own representative manifold and a corresponding filter represented by its proper encoder–decoder
pair. The main difference with the matched filter, is that this filter is designed for one particular signal.
Thus, the matched filter detects the closeness of the probe to the signal. In our framework, we validate
the proximity of the signal to the entire class manifold represented by the ensemble of training data.
However, it is not done by measuring the proximity of each available training in-class data point and
aggregating the results, but instead by the trained model itself, ensuring a continuity of the learned
data manifold that is achieved by the considered encoder–decoder system as whole. It is important
to note that compression is not required for such learning. Instead, the compression is needed to

Entropy 2020, 22, 1237 7 of 30

distinguish in-class and out-class probes by providing higher reconstruction error for the out-class
samples, as shown in Figure 4 for the mismatched case plot.

Big-data and privacy-preserving classification. In the considered setup, the notion of privacy
concerns the training data sets that are kept locally in each node. No data sharing or model parameter
sharing is required either between the local nodes or centralized server. Therefore, the training stage is
considered to be privacy-preserving one. At the same time, we assume that the probe distributed by the
centralized node for the classification is not considered to be privacy sensitive one at the classification
stage. Therefore, no special measures are taken to preserve its privacy. At the same time, one can
assume special obfuscation strategies for the probe protection like randomization of special dimensions
in the embedded space and we refer an interested reader for the overview of such techniques in [25].

The potential benefits of the considered architecture are as follows: (a) there is no need to transfer
all of the data or gradients to a centralized location (large-scale applications); (b) data privacy is
ensured by keeping data and model parameters locally; (c) the reconstruction score is produced locally
and also (d) it might eliminate a potential vulnerability against adversarial attacks by preventing
the ability to learn a sensitive classification boundary. To fully benefit from these attractive features,
we have to validate the performance of the proposed distributed classification architecture against the
classical fully supervised architecture that has access to all training samples simultaneously for the
optimal decision rule. This is the targeted goal addressed in the current paper.

Novelty and contribution:

1. We propose a fully distributed learning framework without any gradient communication to the
centralized node as it is done in the distributed systems based on FL. As pointed out in [11,26]
this resolves many common issues of FL related to the communication burden at the training
stage and the need for gradient obfuscation for privacy reasons.

2. We consider a new problem formulation of decentralized learning, where each node has an access
only to the samples of some class. No communication between the nodes is assumed. We call this
extreme case of Non-IID Federated Learning as ON-OC setup.

3. We propose a theoretical model behind the proposed decentralized system based on the
information bottleneck principle and justify the role of lossy feature compression as an important
part of the information bottleneck implementation for the considered ON-OC classification.

4. In contrast to the centralized classification systems and distributed Federated Learning,
which both mimic the learning of decision boundaries between classes based on the
simultaneously available training samples from all classes, we propose a novel approach,
which tries to learn the data manifolds of each individual class at the local nodes and make the
decision based on the proximity of a probe to each data manifold at the centralized node.

5. The manifold learning is also accomplished in a new way using a system similar to an
auto-encoder architecture [27] but keeping the encoder fixed for all classes. Thus, the only
learnable parts of each node are compressor and decoder. This leads to the reduced training
complexity and flexibility in the design of compression strategies. Additionally, by choosing the
encoder based on the geometrically invariant network a.k.a. ScatNet [28], one can hope that the
amount of training data needed to cope with the geometrical variability in training data might be
reduced as suggested by the authors of [28].

6. Finally, the proposed approach also differs to our previous framework [29] in the following way:

• The framework in [29] was not based on the IB principle, while the current work explicitly
extends the IB framework.

• The previous work [29] did not use the compression in the latent space while the current
work uses an explicit compression in a form of a vector quantization. The use of quantization
is an important element of the IB framework in the considered ON-OC setup. In this work
that the results of classification with the properly selected compression are considerably
improved with respect to the unquantized latent space case considered in our prior work [29].

Entropy 2020, 22, 1237 8 of 30

• The [29] was based on the concept of Variational Auto-Encoder (VAE), which includes the
training of the encoder and decoder parts. This requires sufficient amount of data to obtain
the invariance of the encoder to the different types of geometrical deviations. At the same
time, the current work is based on the use of geometrically invariant transform, in particular
ScatNet, which is designed to be invariant to the geometrical deviations. This allows, first of
all, to avoid the training of encoder and, secondly, to train the system without big amount of
labeled data or necessity to observe the data from all classes.

• In the case of VAE-based system the latent space is difficult to interpret in terms of the
selection of dimensions for the quantization. In the case of use of ScanNet as an encoder
part the latent space is well interpretable, and its different sub-bands correspond to different
frequencies. In this respect, it becomes evident which sub-bands should be preserved and
which ones could be suppressed (depending on the solved problem).

• Finally, this new setup shows higher classification accuracy for the ON-OC setup.

4. Theoretical Model

4.1. Information Bottleneck Concept of Centralized Systems

The theory of the centralized classification model is based on the recently proposed Information
Bottleneck (IB) principle [6]. In a centralized classification model, the training samples are taken from
the available labeled data of all Nm classes: {xi, mi}ND

i=1 ∼ pD(m, x), where ND corresponds to the
number of training samples. It corresponds to the supervised version [7] of the IB with a variational
approximation, where the model learns to minimize the mutual information Iφ(X; Z) between the
labeled data X and the latent representation Z, while retaining the mutual information Iφ,θ(Z; M)

between the latent representation Z and class label M larger than some value Im. This explains a
compression of X by means of a parametrized encoding qφ(z|x) such that Z is a sufficient statistics for
M, allowing the training of a mapper to classify from Z to M, using pθ(m|z). Figure 1a describes the

architecture of transmission of information M
p(x|m)−−−−→ X

qφ(z|x)−−−−→ Z
pθ(m|z)−−−−→ M. The parameters φ for

compressing X into the latent representation Z, and θ for classifying Z into M, are jointly trained to
optimize the Lagrangian of the supervised IB developed in [7] as:

(
φ̂, θ̂

)
= arg min

(φ,θ)
LS(φ, θ), with LS(φ, θ) = Iφ(X; Z)− βIφ,θ(Z; M), (1)

where S stands for the supervised setup and β is a regularization parameter corresponding to Im.
Moreover, the mutual information between the input Z and the output M of the classification can be
decomposed as:

Iφ,θ(Z; M) = H(M)− Hφ,θ(M|Z), (2)

where M is a categorical variable whose realizations are one-hot-class encoded vectors m of
dimension Nm corresponding to the number of classes. As a result, assuming that all classes are
equiprobable, the value of H(M) is determined as H(M) = log2(Nm), and therefore not parametrized,
which leads to: (

φ̂, θ̂
)
= arg min

(φ,θ)
Hφ(Z)− Hφ(Z|X) + βHφ,θ(M|Z), (3)

where Iφ(X; Z) = Hφ(Z) − Hφ(Z|X). The common classification models therefore optimize these
three terms simultaneously, and we have the following interpretations for Equation (3):

• A minimization of Hφ(Z) such that Z should contain as little information as possible about X

for compression purposes; therefore one has to compress at the encoding X
qφ(z|x)−−−−→ Z. In general,

this compressing encoding is learned by optimizing φ. We simplified the learning process by
using a deterministic compression map Z = Qφ(fφ(X)), where fφ(·) is a feature extractor and

Entropy 2020, 22, 1237 9 of 30

Qφ(·) is a vector quantizer. Accordingly, the rate RQ = Hφ(Z) ≤ log2 K is determined by the
number of centroids K in the considered vector quantizer, with equality, if and only if all centroids
are equiprobable.

• A maximization of Hφ(Z|X) under the deterministic encoding Z = Qφ(fφ(X)) reduces to zero
and thus: Hφ(Z|X) = 0 in Equation (3).

• A minimization of Hφ,θ(M|Z), which represents the cross-entropy between the distribution of
the true labels p(m) and the estimated ones pθ(m|z):

Hφ,θ(M|Z) = −Ep(x,m)

[
Eqφ(z|x) [log2 pθ(m|z)]

]
, (4)

with p(x, m) = p(m)p(x|m).
Finally, under the deterministic compressing encoding Z = Qφ(fφ(X)), we can conclude that the

low rate, RQ achievable with smaller K, corresponds to higher compression and increased distortion,
and as a result increased, Hφ,θ(Z|X) and leads to the minimization of Iφ(X; Z) = Hφ(Z)− Hφ(Z|X) in
Equation (1). At the same time, Z should contain enough information about M, which is controlled
by the term βHφ,θ(M|Z) in Equation (3) and by the term βIφ,θ(Z; M) in Equation (1). Under the fixed
rate RQ, one trains the decoder pθ(m|z) that simultaneously represents a classifier:

θ̂ = arg min
θ

Hφ,θ(M|Z), where Z = Qφ(fφ(X)),

then θ̂ = arg max
θ

Ep(x,m)

[
log2 pθ(m|Qφ(fφ(x)))

]
.

(5)

This setup represents many classical state-of-the-art centralized fully supervised classifiers trained
based on the maximum likelihood in Equation (5).

4.2. Information Bottleneck Concept of Decentralized Systems

In the general case, in contrast to the centralized systems considered above, the proposed
decentralized classification is based on the Nm nodes, each representing an unsupervised system,
and the centralized node that distributes the probes for classification, and collects Nm scores for the
final decision. Therefore, given a training set {xi}NDm

i=1 for each class m ∈ {1, . . . , Nm} generated from
x ∼ pDm(x) as shown in Figure 1b, each decentralized unsupervised system includes an encoder
Eφm(·) = Qφm(f (·)), decomposed in a deterministic data-independent feature extraction f (·) followed
by a trainable compression Qφm(·) and a parametrized decoder Dθm .

The training of unsupervised nodes is based on the unsupervised IB considered in [7]
(see Figure 1b):

(
φ̂m, θ̂m

)
= arg min

(φm ,θm)

LU(φm, θm), with LU(φm, θm) = Iφm(X; Z)− βIφm ,θm(Z; X), (6)

where U stands for the unsupervised setup and similarly to the supervised counterpart:

Iφm(X; Z) = Hφm(Z)− Hφm(Z|X) = Hφm(Z) = log2(K),

and Iφm ,θm(Z; X) = Hφm ,θm(X)− Hφm ,θm(X|Z).
(7)

In this work, we will assume that Hφm ,θm(X) = HD(X) is independent of encoding-decoding
parameters and represents the entropy of the training dataset and:

Hφm ,θm(X|Z) = −EpD(x)

[
Eqφm (z|x) [log2 pθm(x|z)]

]
, (8)

represents the conditional entropy that is determined by the decoder pθm(x|z). Assuming that
pθm(x|z) ∝ e−d(x,Dθm (z)), one can interpret log2 pθm(x|z) ∝ −d(x, Dθm(z)), where d(x, Dθm(z)) denotes

Entropy 2020, 22, 1237 10 of 30

the distortion function between x and its reconstructed counterpart x̂ = Dθm(z). Accordingly,
for the considered non-stochastic encoding Z = Qφm(f (X)), Equation (8) reduces to Hφm ,θm(X|Z) =
−EpD(x)

[
d(x, Dθm(Qφm(f (x))))

]
and:

θ̂m = arg min
θm

EpD(x)
[
d(x, Dθm(Qφm(f (x))))

]
. (9)

The encoder in the considered setup consists of data-independent transform f (.) and trainable
quantizer Qφm(·). There are several ways to implement such a quantizer. In this paper, we consider a
vector quantizer that consists of a codebook Qm. Practically, the centroids of this codebook are learned
using K-means algorithm and the quantization procedure consists of searching the closest centroid in
the codebook to each entry as explained in Figure 5. Each class is represented by its own Km centroids.

Therefore, given a training set {xi}NDm
i=1 for each class m ∈ {1, . . . , Nm} generated from x ∼ pDm(x)

as shown in Figure 1b, each node trains its own encoder–decoder pair
(
Eφm , Dθm

)
, i.e., the compressor

Qφm(·) and the parameters of the decoder θm according to:

LU(φm, θm) = log2 Km + β
NDm

∑
i=1

d(xi, Dθm(Eφm(xi)), (10)

where Km is several centroids for each class. The total number of centroids for all classes is bounded
that corresponds to the constrain on the total allowable rate. One can easily notice that the first term
represents the rate of latent space and the second one the reconstruction distortion. Therefore, in this
formulation, the unsupervised IB reduces to the rate-distortion formulation [30] averaged over all
classes/nodes. This also explains the role of the rate-distortion function shown in Figure 4. For our
experiments, the compression ratio is not learned and the structure of the compressing encoder
Eφ(·) = Qφ(f (·)) allows us to set this ratio to be fixed to meet certain requirements considered below.
In case of the fixed number of centroids per class considered in this paper, one can skip the term
log2 Km in (10).

Once trained, the Nm nodes return the distortions em = d(x, Dθm(Qφm(f (x)))), m = 1, . . . , Nm

for each probe x. The centralized node receives all distortions {em}Nm
m=1 and picks up the minimum one

as the result of classification:
m̂ = arg min

1≤m≤Nm

em. (11)

The detailed architecture of our model for a local node is sketched in Figure 5. The chosen
encoding strategies for the scattering feature extractor f and the compression Qφm are detailed in
Section 5.1.

መ

𝑺𝑪𝑨𝑻𝑵𝑬𝑻

1

𝑪𝑶𝑫𝑬𝑩𝑶𝑶𝑲

1

𝑆𝐽

𝑺𝑪𝑨𝑻𝑵𝑬𝑻 , ,𝟾0

81 7 7

80

ො

ො =

2 7 71 28 28 1 28 28

− 𝟷

Q𝒎(a)

(b)

Figure 5. A detailed architecture of proposed model for a local node compression: (a) the generation of
a dictionary to quantize a portion of the scattering transform feature vector, (b) the processing chain
for encoding, compression and regeneration.

Our architecture resembles the principles of multi-class classification with the independent
encoding of each class. Our approach is also linked to the information theory of digital communications.

Entropy 2020, 22, 1237 11 of 30

In the classical Shannon’s communication theory, the asymptotic equipartition property ensures that
the capacity of the communication system is asymptotically achieved using Nm independent binary
classifiers known as jointly typical decoders assigned to each message to be communicated [30], Chap. 3.
As with these frameworks, we want to build Nm distributed classifiers ensuring unified classification,
e.g., decoding. However, instead of using Nm binary classifiers, we will use a compression framework,
which assumes that each class has its own optimal compressor-decompressor pair in terms of
reconstruction error. If the probe comes from a corresponding class, its compression-decompression
distortion is minimum for a chosen rate RQ, while if it is not the case, the distortion is maximized.
The compressor-decompressor pair corresponds to an encoder-quantizer-decoder setup, where the
latent space vector is quantized to a certain number of bits or rate RQ = log2(K). We investigate
an extreme case, when the encoder has the same architecture for all classes consisting of the
data-independent feature extractor and the quantizer that is optimized for each class. The encoder
is based on the recently proposed deterministic geometrically invariant scattering transform a.k.a
ScatNet [28]. On the other side, the decoders are trained independently for each class to ensure the
best class reconstruction accuracy.

We use the IB formulation as the theoretical basis for the fully distributed system. At the same
time, the mechanism of exact information compression in the IB is not fully understood and there are
various interpretations how the deep network tries to compress information by keeping the only most
important information in the latent representation for the targeted classification task. The original
work [6] suggests that the stochastic gradient descent places the noise to the irrelevant dimensions
of the latent space at the second stage of training. Other authors [31] interpret the IB compression as
clustering, where several inputs are clustered together, if they contain the same information according
to the assigned class labels. Otherwise, VAE [32] and Adversarial Auto-Encoders (AAE) [20] try to
produce the latent space that follows some pre-defined distributions, where the IB compression can
be controlled by a proper selection of the dimension of the latent space or addition of noise to some
dimensions or shaping the distribution of the latent space by an introduced prior.

In this work, we proceed with a hypothesis that the IB is achieved by the direct compression
of certain dimensions in the latent space representation, even when the dimension of latent space is
larger than the input one. At the same time, the selection of dimensions or groups of dimensions
referred to as channels in the latent space to be compressed is based on the analysis of class common
features. The lack of the knowledge of common dimensions in the considered formulation of
distributed classification between the classes is compensated by the known properties of the scattering
transform [33], obtained with ScatNet [28]. The low frequency channels of ScatNet represent low
resolution data that are very correlated for all classes. Therefore, its lossy representation corresponds
to the selective compression suggested by the IB principle.

5. Implementation Details

5.1. Training of Local Encoders

In this paper, we proceed with the local compressing encoders Eφm(·) consisting of a
deterministic feature extractor f (·), followed by a learnable compressor Qφm(·): Eφm(·) = Qφm(f (·)).
The compressing encoding minimizes Iφm(X; Z) for the classifying purposes. In our setup, the feature
extractor f (·) = SJ(·) is fixed to be the scattering transform of deepness J for all classes as defined
in [28]. There are several reasons for this choice: (i) the scattering transform is known to preserve
the energy in the Fourier domain [34], and is highly sparse and invariant to some geometrical
transformations [33], i.e., it produces the same latent space representation f (X) for small variability in
X, (ii) in turn it needs less training examples to ensure invariance to geometrical transformations as
shown in [28], where the authors show that the ScatNet of depth 2 with a simple linear SVM can achieve
better classification accuracy for the smaller amount of training samples and (iii) the invariance and
sparsity of the latent representations also help better training the decoding due to smaller variability

Entropy 2020, 22, 1237 12 of 30

and simpler (sparse) manifold, but also (iv) the invariant and deterministic scattering feature extraction
brings interpretability of the latent representation to choose the compression strategy for unseen
classes. The last is very important for the considered distributed setup, where no information about
the classes is shared between the nodes.

In following, we consider the details of implementation of the fixed and class-independent
scattering transform f (.) and learnable quantizer Qφm(.).

5.1.1. Structure of the Scattering Transform

The feature extractor used to encode X is a deep scattering convolutional network defined in [28]
of depth J equal to 2 or 3: f (·) = SJ(·). We recall from Section 4 that the role of the feature extractor
f (·) is to provide an exhaustive and qualitative description of X in such a way that the subsequent
compression can select only the strictly relative components for the classification towards M. This role
falls perfectly to the scattering transform SJ(·), which can produce on demand more or less features
of X according to its depth J. If some data need very fine features to separate between classes by the
compression, a deeper decomposition of SJ(·) is required. Table 1 presents the number of features
extracted by SJ(·) according to the depth J, and the way in which these features are obtained.

The scattering extraction defined in [28] involves using a wavelet [34] basis ψα
j (u) =

2−2jψ(r−α2−ju), where ψ is the Morlet mother wavelet, 1 ≤ j ≤ J is the scale and r−α is the rotation by
−α with α

2π ∈ Z/LZ the finite group of L elements. It also involves the use of the absolute function
as an activation function applied after convolutions with the wavelets and a local averaging ΦJ on a
spatial window of scale 2J . Each feature channel is of size H/2J ×W/2J , where H ×W is the original
image size. Table 1 shows the dimension of the scattering representation according to J and the initial
size of a realization x of the random variable X.

The interpretation of the scattering feature space helps us choose the compression strategy for
our experiments. As described in Table 1, the size of SJ(x) is H/4×W/4× NSJ (with the format
Height×Width× Channel) when x is a grayscale input image of size H ×W; and when x is a color
input image of size H×W × 3 the size of SJ(x) is H/4×W/4× 3NSJ . Each channel of deepness δ ≤ J
of the scattering transform SJ(x) corresponds to a fixed parameter path α1, . . . , αδ, and j1 < · · · < jδ
applied to the input image. The channels are ordered by increasing depths δ < J and parameters
{αd, jd}δ

d=1 of their corresponding path, therefore the first channel SJ
0 is only a blurry version of x. For a

better visualization and understanding, we give examples of the 81 channels obtained by the scattering
transformation of two MNIST samples in Figure 6 and more examples are shown in Figure A1.

Table 1. The number of growing scales paths until the deepness J = 3. Each deepness parameters jd, αd
in a given path are parametrized by 0 ≤ α

2π L < L for the rotations and 1 ≤ jd−1 < jd < jd+1 ≤ J for
the scales. NsJ is the total number of scattering features channels given for deepness J, H is the height
and W the width of x. These values are for gray-scaled images (×3 for RGB pictures).

Scattering Features for One Given Number of S2(x) S3(x) TensorsS2(x) S3(x)
Path by Growing Deepness Channels (J = 2) (J = 3) Sizes(J = 2) (J = 3)

x ? φJ(2Ju) 1 1 1 NSJ 81 729∣∣∣x ? ψα1
j1

∣∣∣ ? φJ(2Ju) JL 16 24 HeightH/4 H/8∣∣∣
∣∣∣x ? ψα1

j1

∣∣∣ ? ψα2
j2

∣∣∣ ? φJ(2Ju) (J
2)L2 64 192 Width W/4 W/8∣∣∣

∣∣∣
∣∣∣x ? ψα1

j1

∣∣∣ ? ψα2
j2

∣∣∣ ? ψα3
j3

∣∣∣ ? φJ(2Ju) (J
3)L3 0 512

Entropy 2020, 22, 1237 13 of 30

Sample Deepness 0 Deepness 1 Deepness 2

Figure 6. Scattering representation, feature selection and compression used for the bottleneck of our
experimental setup. This figure shows the encoded representation for two MNIST samples, with the
scattering transformation of deepness J = 2. The feature selection is represented by the violet frames at
scattering deepnesses 0 and 2, which selects only the two extreme channels of these representations.
These two steps are deterministic and identical for each node. The second step of compression consists
of quantizing the channel of deepness 0 with a node-dependent dictionary as shown in Figure A2.

5.1.2. Training of Local Quantizers

As shown in Figure 4, because the local encoding-decoding node was trained on the distribution
of a class m its rate-distortion curve (RDC) will be sub-optimal for the distribution of another class m′

and it will be above the RDC for the distribution of the class m, as soon as the distribution of these
classes do not overlap in the considered space. Consequently, we target a rate RQ for the local node
encoder–decoder, where the RDC for the dedicated class distribution is highly separable from the
RDCs of other class distributions. For a sake of simplicity and interpretability, we have selected the
same compression strategy and the same rate for all nodes.

The compression strategy is hybrid: (i) we want to quantize the channels with the lowest entropy,
e.g. the channels that produce the same output for the in-class samples, and (ii) keep the channels with
the lowest inter-class mutual information. The interpretations of the scattering transform channels
given in section 5.1.1 allows us to make the choice of: (i) quantizing the first channel SJ

0, (ii) keeping as is
the channels of index larger than a given i?, and (iii) suppressing all channels SJ

2, . . . , SJ
i?−1. In the local

node for the class m, the encoding zm(x) = Eφm(x) = Qφm(S
J(x)) of a given sample x is defined by:

z(1)m (x) = arg min
q∈Qm

〈SJ
0(x), q〉CS, z(2,...,Nz)

m (x) = SJ
i? ,...,NSJ

(x), (12)

where Nz = NSJ + 2− i? is the number of channels of z, 〈·, ·〉CS is the cosine similarity and Qm is
the codebook of centroids for the given class m used for the vector quantization of SJ

0(x). For our

experiment, it is made up of the centroids q ∈ Qm of a K-means pre-trained on
{

SJ
0(x)

}
x∈Dm

,

i.e., the training samples coming from the first scattering channel of the local data class m.
The quantized and kept channels are highlighted with violet frames for some MNIST samples in
Figures 6 and A1.

5.2. Training of Local Decoders

The architecture of the decoder Dθm (1 ≤ m ≤ Nm) of class m is presented in Table 2. As suggested
by Equation (10), its parameters θm are trained and optimized only over the dedicated class dataset Dm

by minimizing the distortion between the original and locally reconstructed samples. The distortion
measure used in this experiment is the `1 loss, which has been proven to generate finer images than
`2 loss [35]. One could also go further and train it jointly with the adversarial loss like in [7], but the

Entropy 2020, 22, 1237 14 of 30

simple use of `1 is shown to produce satisfactory results on our experiments with lower complexity.
We use the Adam optimizer [36] to find:

θ̂m = arg min
θm

EpDm (x) [‖x̂m − x‖1] , with x̂m = Dθm

(
Eφm (x)

)
, (13)

where φm corresponds to the parameters of encoding considered in Section 5.1, namely the codebook
Qm, the index i? and the scattering depth J.

Table 2. The decoder Dθ batch-normalizes and convolves the compressed scattering representation z;
then it chains cycles of deconvolutions with batch-normalizations and ReLu activation functions until
the probe size is recovered. The last activation function is the hyperbolic tangent. c = 1 for gray-scaled
images and c = 3 for RGB images. The deepness J of the scattering encoding determines as well the
deepness of the decoder.

Stage Number of Channels Filter Size Stride Size Scale Activation

input zm = Eφm (x) Nz 1/2J

Batch Normalization
Convolution 23(J+1)c 3× 3 1× 1 ReLU

Deconvolution 23Jc 4× 4 2× 2 1/2J−1

Batch Normalization ReLU

Deconvolution 23(J−1)c 4× 4 2× 2 1/2J−2

Batch Normalization ReLU

...

Deconvolution, output: x̂ c 4× 4 2× 2 1 tanh

It is important to point out that different classes might have different complexity of manifolds.
To balance the same reconstruction error for different local encoder–decoder pairs, we assumed that the
reconstruction error for all nodes should be approximately the same. Given different complexity of data
manifolds for various classes, it can be achieved either by optimizing the structure of encoder–decoder
pairs or adapting the number of epochs per each node. In this work, we proceeded with later and kept
the structure of encoder–decoder fixed for all classes and just adapted the number of epochs to ensure
approximately the same reconstruction error at the training stage.

5.3. Central Classification Procedure

Given a probe x coming from the testing dataset Dtest, we pass it through the Nm class-dependant
local node encoder-decoders and communicate the Nm reconstruction errors (e1, . . . , eNm) to the central
node. As shown in Figure 4 and Equation (11), the probe x is classified according to minimum of the
reconstruction error: m̂ = arg min1≤m≤Nm

em, where em = d(x̂m, x). The spatial differences between
the probe and its reconstructions contributing to these errors are shown in the third and sixth lines of
Figure 7 to exemplify the underlying process. We tested different classifying losses than the training
`1 loss. Experimental metrics for the distortion measurements considered in this paper include the
following reconstruction errors: {em}Nm

m=1:

• the Manhattan distance d`1 ,
• the perceptual distance dVGG defined in [37],
• the pseudo-distance dt, which counts the number of pixels with an absolute error larger than a

threshold t:

dt(x̂, x) =
Nx

∑
i=1

1|x̂[i]−x[i]|≥t, where 1|x̂[i]−x[i]|≥t =

{
1, if |x̂[i]− x[i]| ≥ t,

0, else.
(14)

Entropy 2020, 22, 1237 15 of 30

For too small or large thresholds t, the pseudo-distance dt(., .) fails to really capture reconstruction
errors. For instance, for any images x1 and x2 of the same size Nx1 with pixel values ranging from 0 to
1, d0(x1, x2) = Nx1 = Nx2 and d2(x1, x2) = 0. For this reason, Section 6.1 presents the classifying results
experimented with dt for 6 different median value thresholds: 0.2, . . . , 0.7.Version October 24, 2020 submitted to Entropy 14 of 29

(a) A
B
C

Pr
ob

e

m 0 1 2 3 4 5 6 7 8 9

0 0 1 21 0 0 0 0 0 0

(b) A
B
C 8 0 0 14 0 0 1 0 0 0

A : Reconstructed images.
B : Pointwise differences with probe.
C : Number of classifying metrics votes.

(c)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 10 20 30 40 50 60 70

Figure 7. (a) and (b): Examples of reconstructions and classification on class 3 samples from (a) MNIST and (b)
FashionMNIST dataset. The first column is for the probe and the following columns are for the results of the
local nodess. The first row is for the names of the local nodes, rows A are for the probes and their reconstructions,
rows B are for spatial errors, whereas rows C count the number votes for the corresponding node’s label given
by the experimented classifying metrics among d`1

, dVGG and {dt}t. One distance is incorrect in (a): d0 vote
for m = 2. Nine distances are incorrect in (b): d0, d.13, . . . , d.19 vote for m = 0 and d.9 vote for m = 6. (c)
TensorBoard of the converging training of the 10 local nodes.

underlying process. We tested different classifying losses than the training `1 loss. Experimental metrics for the380

distortion measurements considered in this paper include the following reconstruction errors: {em}Nm
m=1:381

• the Manhattan distance d`1 ,382

• the perceptual distance dVGG defined in [38],383

• the pseudo-distance dt, which counts the number of pixels with an absolute error larger than a threshold t:

dt(x̂, x) =
Nx

∑
i=1

1|x̂[i]−x[i]|≥t, where 1|x̂[i]−x[i]|≥t =

{
1, if |x̂[i]− x[i]| ≥ t,

0, else.
(14)

For too small or large thresholds t, the pseudo-distance dt(., .) fails to really capture reconstruction errors.384

For instance, for any images x1 and x2 of the same size Nx1 with pixel values ranging from 0 to 1,385

d0(x1, x2) = Nx1 = Nx2 and d2(x1, x2) = 0. For this reason, Section 6.1 presents the classifying results386

experimented with dt for 6 different median value thresholds: 0.2, . . . , 0.7.387

6. Experiments388

Experimental validation with untrained encoding and controlled compression. To investigate the389

importance of compression at the encoding step, we considered the encoder presented in Figure 1 and Figure 4,390

consisting of feature extractor f (·) followed by a controlled compression Qφm(·) of these features. The decoders391

Dθm(·) are trained for each class and corresponding nodes. Our untrained feature extraction f (·) is performed by392

the scattering transform defined in [34], gaining in invariance to geometrical transformations [29] and facilitating393

the learning of neural networks having this sparse representation as an input [5]. This experimentation validates394

the theoretical approach to challenging datasets for decentralized classification, even though it is a simple task395

for centralized ones.396

6.1. Results397

MNIST [16] and FashionMNIST [39] are fairly simple tasks for the common centralized supervised deep398

classifiers, but it is not the case for decentralized models, where it is challenging to learn fine-tuned decision399

Figure 7. (a,b): Examples of reconstructions and classification on class 3 samples from (a,b)
FashionMNIST dataset. The first column is for the probe and the following columns are for the
results of the local nodes. The first row is for the names of the local nodes, rows A are for the probes
and their reconstructions, rows B are for spatial errors, whereas rows C count the number votes for the
corresponding node label given by the experimented classifying metrics among d`1

, dVGG and {dt}t.
One distance is incorrect in (a): d0 vote for m = 2. Nine distances are incorrect in (b): d0, d.13, . . . , d.19

vote for m = 0 and d.9 vote for m = 6. (c) TensorBoard of the converging training of the 10 local nodes.

6. Experiments

The experimental validation is performed with untrained encoding and controlled compression.
To investigate the importance of compression at the encoding step, we considered the encoder
presented in Figures 1 and 4, consisting of feature extractor f (·) followed by a controlled compression
Qφm(·) of these features. The decoders Dθm(·) are trained for each class and corresponding nodes.
Our untrained feature extraction f (·) is performed by the scattering transform defined in [33],
gaining in invariance to geometrical transformations [28] and facilitating the learning of neural
networks with this sparse representation as an input [5]. This experimentation validates the theoretical
approach to challenging datasets for decentralized classification, even though it is a simple task for
centralized ones.

6.1. Results

MNIST [15] and FashionMNIST [38] are fairly simple tasks for the common centralized supervised
deep classifiers, but it is not the case for decentralized models, where it is challenging to learn fine-tuned
decision boundaries, when restricted gradients are communicated to the central node. As mentioned
in the previous sections, the aim of the experiment is to present the results that practically confirm the
theory discussed in Section 4. The compression parameters have been fixed beforehand to simplify the
learning and depend on the used dataset.

Our results in terms of classification error: (1) for MNIST are provided in Table 3 for which we
achieve the state-of-the-art results with exactly 0 error on the testing dataset, and (2) for FashionMNIST
are provided in Table 4 for which we have competitive results with centralized classifiers. The encoding
parameters J (scattering deepness), K (number of centroids), i? (first kept channel in compression) are
different between both datasets because they have different statistics and Fourier spectra reflected in
the scattering transform. Our results considerably outperform the Federated Averaging for Non-IID-FL

Entropy 2020, 22, 1237 16 of 30

setup, and the perfect MNIST classification is not a fluke. In Table 3, the error on the training dataset
is 0% for half of cases of classifying metrics, and only the d.4 classifying loss gives 0% of error on
the testing dataset for 3 cross-validation sessions. To compare with FL, we present the results for
Federated Averaging from [13], where it is shown that from IID-FL to Non-IID-FL, there is a drop
in performance in the classification accuracy from -3% to -74% depending the model and data used,
and the distribution of the data across the local nodes.

Table 3. MNIST classification error on the training and testing datasets for our One Node–One
Class–Information Bottleneck Classification (ON–OC–IBC) setup with different classifying metrics,
compared with the state-of-the-art centralized methods BMCNN+HC [39], EnsNet [40] and RMDL [41],
which are based on merging sub-networks or aggregating their sub-predictions by majority voting,
and the state-of-the-art Federated Averaging (FedAvg) on IID and Non-IID setup given in [12],
where the IID setup corresponds to 10 nodes each with a uniform partition of the data of the 10 classes,
and the Non-IID result is given with a similar setup as ours, with 10 local nodes and one class data per
node, and differs to our setup by the fact that gradients are shared across local nodes.

Centralized Methods FedAvg

Method BMCNN + HC EnsNet RMDL IID Non-IID

Testing Data Error 0.16 0.16 0.18 1.43 7.77

Proposed fully decentralized ON–OC–IBC

Method d`1
dVGG d.2 d.3 d.4 d.5 d.6 d.7

Training data error 1.5 0 3.1 1.5 0 0 0 1.5
Testing data error 4.6 3.1 1.5 3.1 0 4.6 6.2 7.8

Table 4. FashionMNIST classification error on testing dataset for the proposed ON–OC–IBC setup
with different classifying metrics, compared with the state-of-the-art centralized methods such as
RN18+FMix [42], which is a Mixed Sample Data Augmentation that uses binary masks obtained by
applying a threshold to low frequency images sampled from Fourier space, and with classical CNN,
CNN++ and LSTM described in [43], and the state-of-the-art Federated Learning methods such as
FedAvg and WAFFLe [44], the Weight Anonymized Factorization for Federated Learning that combines
the Indian Buffet Process with a shared dictionary of weight factors for neural networks. The results of
these two methods are given for the Non-IID setup with only Z = 2 data classes stored in each local
nodes, either in a unimodal (Uni) way, with a 1:1 ratio of data present from both classes, or a multimodal
(Multi) way, with a 1:5 ratio of data in each local node. For the ON–OC–IBC setup proposed, only Z = 1
data class is stored in each local node, and there is no data distribution ratio, but the number of local
nodes used is exactly the number of classes.

Centralized Methods FedAvg WAFFLe

Method RN18+FMix CNN CNN++ LSTM Uni Multi Uni Multi

Testing data error 3.64 8.83 7.46 11.74 16.04 16.57 12.88 13.91

Proposed fully decentralized ON–OC–IBC

Method d`1
dVGG d.2 d.3 d.4

Testing data error 10.1 12.2 12 13.1 14.4

6.1.1. MNIST

We use the following parameters: J = 2, K = 5, i? = 81 (only the last subband is kept), batch
size is 128 and the learning rate is 10−5. This implies that the size of the scattering features has a
dividing factor 2J = 4 from the MNIST original image size 28× 28. The compression of the scattering
representation goes from a 81 × 7 × 7 tensor (channels first) to a 2 × 7 × 7 with the first channel
quantized by a codebook of K = 5 centroids. The compression rate of the feature vector is 80 log2(5) : 1.
The training of the 10 class-dedicated encoder-decoders described in Section 5.2 is performed with
the Adam [36] optimizer. For each local node, their dedicated training dataset Dm is sampled in their

Entropy 2020, 22, 1237 17 of 30

entirety at each epoch and the 10 local training losses are shown in Figure 7c: the training is very
stable and converges. The structure of the decoder is fully convolutional and described in Table 2
with J = 2: the size of input is 2× 7× 7 (channel first) followed by a sequence of 7 layers alternating
4 convolutions and 3 batch-normalizations [45], ReLU activations [46], and tanh activation for the
output layer.

6.1.2. FashionMNIST

We used J = 2, K = 5, i? = 18: only the paths of deepness 2 (for more details see
Table 1) are kept, otherwise the reconstructions have too large distortions, batch size is 128 and
the learning rate is 10−5. If we keep the same i? = 81 as for MNIST, the reconstructions have too
large distortions. This compression does not hold enough information for optimal reconstruction.
With i? = 18, the compression of the scattering representation goes from a 81 × 7 × 7 tensor
(channels first) to a 65× 7× 7 with the first channel quantized by a codebook of K = 5 centroids.

The compression rate of the feature vector is 5 log2(5)
4 : 1. Under these settings, the 10 independent

class-dedicated encoder–decoder training converges with the same behavior as in Figure 7c.
Nevertheless, the classification accuracy shown in Table 4 is less than for MNIST. This is due to
the fact that when the compression rate is too small, the class-dedicated encoder-decoders are less
separable as shown in Figure 4. Also, playing with the rate RQ and augment from K = 5 to K = 15
the length of the 10 local quantizing codebooks Qm, the classification accuracy drops from 89.9 to
82.81, hence confirming the rate-distortion theory interpretation. The structure of the decoder is a
fully convolutional and described in Table 2 with J = 2: the size of input is 65 × 7 × 7 (channel
first) followed by a sequence of 7 layers alternating 4 convolutions and 3 batch-normalizations [45],
ReLU activations [46], and tanh activation for the output layer.

7. Discussion

7.1. Investigation of the Bottleneck Role

To investigate and experimentally justify the assumptions behind the bottleneck compression
described in Section 5.1.2, we describe the steps of compression in Figure 8 and show the corresponding
representations of data manifolds at these different steps of compression in Figure 9: the over-complete
sparse and geometrically invariant scattering transform representations shown in (b) already give a
higher separability than the raw data of (a). The subband selection (c) and quantization (d) proposed
in Section 5.1.2 increase separability between the classes. We highlight that the tSNE shown in (d) is
assuming an ideal quantization, where the scattering transform channel of deepness 0 is assigned to
the image taken in the corresponding label dictionary; in reality, the quantization is done on each class
node with their local dictionary.

2

𝑺𝑪𝑨𝑻𝑵𝑬𝑻

0
2

80
2

𝑪𝑶𝑫𝑬𝑩𝑶𝑶𝑲

2,6,80

80
2

(0
2)

𝑳𝒂𝒕𝒆𝒏𝒕 𝒔𝒑𝒂𝒄𝒆
𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

Figure 8. Detailed presentation of the different steps of compression for the local node 6,
defined in Section 5.1.2, from the scattering representation of an outlier with label 3 to its
compressed representation.

Entropy 2020, 22, 1237 18 of 30

30 20 10 0 10 20 30 40
Dim_1

30

20

10

0

10

20

30

Di
m

_2

label
0
1
2
3
4
5
6
7
8
9

P=50 LR=200 IT=1000

(a)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2

label
0
1
2
3
4
5
6
7
8
9

P=50 LR=1000 IT=1000

(b)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2

label
0
1
2
3
4
5
6
7
8
9

P=30 LR=1000 IT=1500

(c)

60 40 20 0 20 40 60
Dim_1

60

40

20

0

20

40

60

Di
m

_2

label
0
1
2
3
4
5
6
7
8
9

P=30 LR=1000 IT=1000

(d)
Figure 9. tSNEs showing representations of the MNIST data manifolds at different steps of the
classifying process: (a) for the raw data, (b) for their scattering representations as output of ScatNet
with all deepnesses and coefficients shown in Figure 8, (c) after suppressing the 79 intermediate
channels, when only the two blue framed channels of the scattering representation are kept as shown
in Figure 8, and (d) after quantization of the first channel by node quantizers of the same class as the
samples as shown in the latent space representation of Figure 8, and whose dictionaries are shown
in Figure A2. P, LR and IT respectively stand for the perplexity, the learning rate and the number of
iterations of the tSNEs.

7.2. One-Class Manifold Learning for Separability

An ideal case for the ON–OC–IBC would be to have ideal anomaly detectors or one-class classifiers
at each node. This prompts us to investigate the one-class separating power of each local node.
We experimentally show this with tSNEs in Figure 10 for node 9 and Figures A3–A5 for the others.
After the compression in the bottleneck, the inliers and outliers tend to separate but in different
subgroups, whereas after the reconstruction, the manifold of inliers seems to be a single nested
set, separated from the outliers. At the end, we see that the reconstruction error followed by the
non-linearity d.4 applied to each difference plays an important role for the final classification at the
central node, this is made evident from the improved separability of in- and outlier manifolds in the
t-SNE representations.

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=50 LR=200 IT=1000

(a)

20 10 0 10 20
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=200 IT=1000

(b)

20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=10 IT=1500

(c)

40 20 0 20 40
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=50 LR=200 IT=1000

(d)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=200 IT=1000

(e)
Figure 10. tSNEs showing representations of inliers and outliers on MNIST data manifolds for the
node of label 9, at different steps of the encoding-decoding process. inliers are samples of label 9 and
outliers are samples of the rest of labels: (a) for the raw data, (b) for the data in node 9 after ScatNet
and compression as described in Section 5.1.2, (c) for the data in node 9 after reconstruction by the
decoder, (d) for the error of reconstruction with the original samples as shown in raw B of Figure 7a,
and (e) for error of reconstruction after application of the optimal thresholding with t = 0.4 presented
in Section 5.3 and Table 3. More results for all nodes are shown in Figures A3–A5. P, LR and IT
respectively stand for the perplexity, the learning rate and the number of iterations of the tSNEs.

7.3. Influence of Feature Selection and Link to the Rate of Compression

Figure 11a for the node of label 7 and Figure A6 for all other nodes gives an experimental
proof of the rate-distortion concept for classification on a fully decentralized systems presented in
Figure 4. According to the features produced by the ScatNet, the compression can be controlled by
two parameters to get the best separability between the in- and outliers rate-distortion curves: (1)

Entropy 2020, 22, 1237 19 of 30

for better classification at the central node, several channels from the scattering transform is chosen
with the parameter i? defined in Section 5.1.2, when J = 2, the scattering transform has 81 channels,
in consequence, when i? = 80, only two channels are kept, the first and the last one; (2) and the second
parameter of compression is K, the number of elements in the codebook used for the quantization of
the first channel.

7.3.1. Influence of the Parameter i?

The link between the rate-distortion separability in the local nodes and the classification accuracy
in the central node is confirmed by the rate-distortion curves of Figure 11b, where the highest accuracy
of classification is achieved when i? = 80, which means a local quantization of the scattering transform
channel 0 by the dictionaries of Figure A2, stacked with the last channel of index 80 and a suppression
of all the intermediate scattering channels. With less compression, when i? is smaller, the in- and
outliers are less separable in the rate-distortion curves. It should be pointed out that we interpret the
rate of compression as several selected channels. We did not investigate which sub-bands out of 80
are the most distinguishable due to high complexity and simply controlled the number of sub-bands
indexed in the descending order. Obviously, these parameters can be optimized to further increase the
accuracy of classification.

7.3.2. Influence of the Parameter K

Table 5 summarizes for MNIST dataset how the classification error on the central classifying
node is impacted by the size K of the codebook for the quantization of the first scattering channel.
We fixed i? = 80 for this experiment for classification purposes and used the classifying metric d.4.
This experiment shows that:

• K = 5 achieves smallest classification error in the central node,
• near K = 5 there is a smooth behavior and K = 5 remains optimal in terms of classification.
• K = 1 leads to the overfitting as the table shows a drop of performance between the train and the

test datasets,
• for K > 5, the table shows a drop in performance due to non-separability of rates of distortions

between nodes.

Table 5. Error of classification on the MNIST train and test datasets, for different values of the
quantization parameter K, i? = 80 being set. We use the notation K = ∞ when no quantization is
performed on the first channel of the scattering latent representation. The classification metric is d.4.

K 1 4 5 6 15 20 50 100 ∞

on train (%) 80.4 19.1 0 19.0 89.6 91.1 91.8 91.1 90.2
on test (%) 90.2 23.9 0 24.4 89.7 91.2 92.1 91.2 90.2

It is important to note that for apart from K ∈ {4, 5, 6}, no search for the best hyperparameters
were performed. This is an important factor as for K = 5, the central classification starts to perform
very well given that that same reconstruction accuracy is achieved for all nodes with enough epochs.
However, if nodes are trained with different errors of reconstruction, this imbalances the whole system
and leads to erroneous classification at the central node. We assumed that a good way to measure
the quality of learning of one node is to use its training loss curve across the time shown in Figure 7c:
we fixed each nodes to stop learning after their training loss reach 0.065, with a maximum variation of
10% during 10 epochs. The first thresholding criteria ensures that all nodes have similar distortion
measures, and the second criteria ensures that all nodes learned quite well their own class manifold.
We also added a maximum number of epochs for practical reasons, and for the results given in Table 5,
apart from K ∈ {4, 5, 6}, it is this last criteria which stopped the trainings.

Entropy 2020, 22, 1237 20 of 30

𝑳𝒂𝒕𝒆𝒏𝒕 𝒔𝒑𝒂𝒄𝒆
𝒓𝒆𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

𝑪𝑶𝑫𝑬𝑩𝑶𝑶𝑲

⋯ ⋯

0
2

3
2

𝑖
2

80
2

78
2

(0
2)

⋯

𝑖
2

80
2

78
2

2,6,𝑖

𝑖 = 1

(0
2)

⋯

1
2

80
2

𝑖 = 9

(0
2)

⋯

9
2

80
2

𝑖 = 80

(0
2) 80

2

(a)

0 10 20 30 40 50 60 70 80
Compression index i*

0

10

20

30

40

50

60

70

Cl
as

sif
ica

tio
n

er
ro

r (
%

)

train
test

(c)

0 10 20 30 40 50 60 70 80
Compression index i*

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(b)

Figure 11. (a) presents how different rates of compression are achieved in order to obtain the
rate-distortion curves (b) for the reconstructions at node 7, and (c) for the accuracies of classification at
the central node. In (a) different rates are achieved by changing the index i? defined in Section 5.1.2
before which the scattering channels are suppressed during compression. In (b), the distortion on the
y-axis is measured by the `1 norm of the reconstruction error, and the rate on the x-axis is represented
by the value of i?, the scattering channel index from which the information is kept at the compression
stage, as described in Section 5.1.2; the greater i? is, the more compression occurs. The blue curve is
for inliers (samples of label 7 used to train the node) and the orange curve is for outliers. In (c) the
classification accuracies are given on the training and testing dataset for different rates represented by
i?. The number of centroids for the “0”-subband of ScatNet was fixed to K = 5. (a) Index i? and rate of
compression; (b) Rate-distortion curve for the local node of label 7 on MNIST data; (c) Classification
error (the lower - the better) on MNIST data for the central node.

It is also important to note that we use the `1 norm to estimate the reconstruction error at training,
but for the recognition/testing we use the considered d.4 metric. This is a potential source of the
observed performance but due to the non-differentiability of these metrics we do not consider them in
the training loss.

The hyperparameter search, including K, i? and the stopping criteria, remains an open question
for us that we would like to answer in future studies. We also have in mind to make the rate of
quantization learnable, but this is not under the scope of this paper.

8. Conclusions

The relative competitive results presented in Tables 3 and 4 constitute a proof of concept for our
fully decentralized model. We want to emphasize that it is constructed from the interplay between
information bottleneck principles and recent attempts to make machine learning architectures simpler
and more interpretable (see [28,33,47]).

Shannon’s Rate-Distortion theory and IB principles: The main novelty is that we introduce
a compression by partially suppressing and quantizing information in the latent representations of
untrained feature extractors. We introduce higher reconstruction errors for more separability of the

Entropy 2020, 22, 1237 21 of 30

classes like in Figure 4. We demonstrate that a central node which does not share any information
about classes for training and classification, can achieve competitive classification performance in
comparison to classical systems.

Compression principle: Following the IB principles for two close classes, one should learn
only what makes these classes unique, and compress common data in the latent representation.
Scatnet provides universality and interpretability of its representations. We only quantize the first
channel corresponding to a blurred image of the probe. This is the most common component of the
dataset. Thus, we suppress much information in the first channels while retaining the last channels
which hold the high frequency information of the probe and are unique for each class. This introduces
more separability in the learned manifolds. Nevertheless, we should keep enough information to
reconstruct accurately for the inliers.

Choice of parametersJ and i?: For simple datasets like MNIST, we can suppress many ScatNet
channels, and still retain enough information to accurately reconstruct the inliers. For a more complex
dataset, we should suppress less information (i? smaller). With more scattering features (J larger),
one can maintain separability. A trade-off expressed in Equation (10) is made between the rate and the
distortion, and could also be optimized to learn these parameters. One can use a recent framework [48]
to estimate mutual information between the channels of ScatNet to choose which channels contain
common information to be suppressed by quantization. This will be our future line of research for
more complex datasets.

Back to “matched filtering” based on auto-encoding: We show that it is possible to reach and
even outperform more classical centralized deep-learning architectures implemented in a federated,
decentralized model. The most adopted interpretation of a deep-learning-based classification paradigm
is that it can capture and accurately approximate the decision boundaries between the classes in the
multi-dimensional space. In return, it requires having all data in a common place to learn these
boundaries. The state-of-the-art distributed deep-learning classification system mostly targets to
optimize the rate of gradient exchange and potential leakages at the training stage in communication
between the nodes and the centralized server. In contrast, we practically demonstrate that our classifier
can be trained in a completely distributed way, when each node has access to data of its own class,
gradients are not shared and other classes are unknown. Thus, the decision boundaries between the
classes cannot be learned as such. In return, it suggests that we learn and encode a manifold of each
class and only test the closeness of probe to this class at the testing stage. This conceptually link the
proposed approach with the well-known in-signal processing concept of matched filtering.

Data-management advantages: Another consequence of the proposed framework is a possibility
to decentralize the data to analyze and classify it. Such a method would allow the partition of work
for analyzing data between different independent servers. Each pair of encoder–decoder might
be independently trained with different training data, rendering big and maybe confidential data
transfers unnecessary.

Future work: For the future research we aim at investigating the proposed framework on more
complex datasets like, for example, ImageNet [49], Indoor Scene Recognition [50], Labeled Faces in the
Wild [51]. The investigation of a robustness of the proposed framework against the adversarial attacks
is an important open question for the future work as well as the studying of unbalanced decentralized
systems where some classes could come from similar distributions or the situation where nodes could
own different proportions of training data.

Author Contributions: Conceptualization, D.U. and S.V.; Formal analysis, T.H.; Investigation, D.U.; Methodology,
S.R., O.T. and T.H.; Project administration, D.U.; Resources, S.V.; Software, D.U.; Supervision, S.V.; Validation,
D.U., S.R. and O.T.; Visualization, D.U.; Writing—original draft, D.U. and S.V.; Writing—review and editing, D.U.,
S.R., O.T., T.H., B.P. and S.V. All authors have read and agreed to the published version of the manuscript.

Funding: DU was funded by the Swiss National Science Foundation SNSF, NRP75 ’Big Data’ project No.
407540_167158 and OT and SR by SNSF project No. 200021_182063.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2020, 22, 1237 22 of 30

Abbreviations

AE, Auto-Encoder; AAE, Adversarial Auto-Encoder; BMCNN + HC, Branching and Merging
Convolutional Network with Homogeneous Filter Capsules; CNN(s), Convolutional Neural
Network(s); CNN++, CNN with Batch Normalization and Residual Skip Connections; ELBO, Evidence
Lower BOund; EnsNet, Ensemble learning in CNN augmented with fully connected sub-networks;
FedAvg, Federated Averaging; FL, Federated Learning; GAN, Generative Adversarial Network;
IB, Information Bottleneck; (Non-)IID, (Non-)independent identically distributed; IT, Number of
iterations of tSNE; LR, Learning rate of tSNE; LSTM, Long-short term memory; MNIST, Mixed
National Institute of Standards and Technology; MSE, Mean Squared Error; NN(s), Neural Network(s);
ON–OC–IBC, One Node–One Class–Information bottleneck classification; P, Perplexity of tSNE;
RMDL, Random Multimodal Deep Learning for Classification; RDC, Rate-Distortion Curve; ScatNet,
Scattering Network; SKA, Square Kilometer Array; VAE, Variational Auto-Encoder. For all our
diagrams, the colored trapezes represent NNs, and CNNs. The letters E, D and C are reserved for
encoders, decoders and classifiers, respectively. The parameters of the networks are labeled with Greek
indices. Columns represent vectors, with circles and squares being used for numerical and binary
values, respectively.

Entropy 2020, 22, 1237 23 of 30

Appendix A. Bottleneck Interpretation

Sample Deepness
0

Deepness
1

Deepness 2

Figure A1. For 10 MNIST samples: (1) their encoded representation, which is a scattering
transformation of deepness J = 2 and (2) the first step of compression used for the bottleneck of our
experimental setup by the selection of only the two extreme channels inside violet frames. These two
steps are deterministic and identical for each node. The second step of compression consists of
quantizing the channel of deepness 0 with one of the dictionaries described in Figure A2, depending on
the node where the process occurs.

Entropy 2020, 22, 1237 24 of 30

Class of node Dictionary

0

1

2

3

4

5

6

7

8

9
Figure A2. MNIST dictionaries for nodes used for the quantization of the first channel of the scattering
transform. This first channel is a reduced version of the image obtained by a Gaussian blurring.
The dictionary for one node consists of the centroids resulting from K-means applied to the training
data of a node, with K = 5.

Entropy 2020, 22, 1237 25 of 30

Appendix B. Nodes Analysis

Appendix B.1. One-Class Manifold Learning

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

(a) Node 0

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

Di
m

_2 label
out
in

(b) Node 1

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

20 15 10 5 0 5 10 15
Dim_1

20

15

10

5

0

5

10

15

Di
m

_2 label
out
in

(c) Node 2

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

(d) Node 3

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

40 30 20 10 0 10 20 30
Dim_1

40

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

(e) Node 4

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

20 10 0 10 20 30 40
Dim_1

20

15

10

5

0

5

10

15

20

Di
m

_2 label
out
in

(f) Node 5

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

(g) Node 6

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

(h) Node 7

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

40 30 20 10 0 10 20
Dim_1

15

10

5

0

5

10

15

Di
m

_2 label
out
in

(i) Node 8

Raw

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

d.4(RE)

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

(j) Node 9

Figure A3. MNIST manifolds description by tSNE in terms of in- and outliers for raw data and
reconstructed errors RE with the classifying non-linearity d.4. Figure 7 shows that inliers have visually
quite good reconstructions whereas outliers reconstructions are visually different from their raw
version. This visual separability is confirmed by the modified in- and outliers manifolds for each node.
For the raw data, the parameters are perplexity P = 50, learning rate LR = 200 and number of iterations
IT = 1000. For the reconstructed, parameters are given in the detailed Figures A4 and A5.

Entropy 2020, 22, 1237 26 of 30

blank
Bottleneck

compression Reconstruction
Reconstruction

errors (RE)
d.4(RE)

Node 0

20 10 0 10 20 30 40
Dim_1

15

10

5

0

5

10

15

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1000

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=1000
IT=1000

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=1000
IT=1000

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

Node 1

60 40 20 0 20 40 60
Dim_1

20

15

10

5

0

5

10

15

Di
m

_2 label
out
in

P=50 LR=200
IT=1000

40 30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=1000
IT=1500

Node 2

60 40 20 0 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=200
IT=1500

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

60 40 20 0 20 40
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

20 15 10 5 0 5 10 15
Dim_1

20

15

10

5

0

5

10

15

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

Node 3

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=1000
IT=1000

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=50 LR=1000
IT=1500

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1000

Node 4

40 20 0 20 40
Dim_1

15

10

5

0

5

10

15

20

Di
m

_2 label
out
in

P=50 LR=200
IT=1500

40 20 0 20 40
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=200
IT=1500

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

40 30 20 10 0 10 20 30
Dim_1

40

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=1000
IT=1500

Figure A4. Manifold learning of our setup: for each node from label 0 to label 4, tSNEs show the
manifolds for MNIST data at different stages of the proposed local auto-encoders. In orange are
inliers samples (local data used for training, of the same class as the node label) and in blue are
outliers samples(data unseen during training which originates from a different class). First column:
for the output of the bottleneck; second column: for the reconstructed samples at the output of the
decoders; third column: for the reconstruction errors with the original samples; and last column: for the
reconstruction errors after application of the non-linearity metric d.4 which classifies best at the central
node. P stands for perplexity, LR for learning rate, and IT is the number of iterations. We can see that
each step plays a role for the local manifold learning and separation power with outliers.

Entropy 2020, 22, 1237 27 of 30

blank
Bottleneck

compression Reconstruction
Reconstruction

errors (RE)
d.4(RE)

Node 5

60 40 20 0 20
Dim_1

40

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=30 LR=200
IT=1000

15 10 5 0 5 10 15
Dim_1

15

10

5

0

5

10

15

Di
m

_2 label
out
in

P=50 LR=10
IT=250

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

20 10 0 10 20 30 40
Dim_1

20

15

10

5

0

5

10

15

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1000

Node 6

15 10 5 0 5 10 15
Dim_1

20

0

20

40

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

30 20 10 0 10 20
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=10
IT=1000

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

Node 7

80 60 40 20 0 20 40 60 80
Dim_1

40

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=30 LR=200
IT=1500

40 20 0 20 40
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=200
IT=1000

20 10 0 10 20
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

20 10 0 10 20
Dim_1

20

10

0

10

20

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

Node 8

20 10 0 10 20
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=50 LR=200
IT=1500

30 20 10 0 10 20 30
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

40 30 20 10 0 10 20 30 40
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

40 30 20 10 0 10 20
Dim_1

15

10

5

0

5

10

15

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

Node 9

20 10 0 10 20
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

40

Di
m

_2 label
out
in

P=50 LR=10
IT=1500

40 20 0 20 40
Dim_1

40

20

0

20

40

Di
m

_2 label
out
in

P=30 LR=1000
IT=1500

30 20 10 0 10 20 30
Dim_1

30

20

10

0

10

20

30

Di
m

_2 label
out
in

P=30 LR=10
IT=1500

Figure A5. Manifold learning of our setup: for each node from label 5 to label 9, tSNEs show the
manifolds for MNIST data at different stages of the proposed local auto-encoders. In orange are
inliers samples (local data used for training, of the same class as the node label) and in blue are
outliers samples(data unseen during training which originates from a different class). First column:
for the output of the bottleneck; second column: for the reconstructed samples at the output of the
decoders; third column: for the reconstruction errors with the original samples; and last column: for the
reconstruction errors after application of the non-linearity metric d.4 which classifies best at the central
node. P stands for perplexity, LR for learning rate, and IT is the number of iterations. We can see that
each step plays a role for the local manifold learning and separation power with outliers.

Entropy 2020, 22, 1237 28 of 30

Appendix B.2. Influence of the Rate

0 10 20 30 40 50 60 70 80
Compression index i*

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(a) Node 0

0 10 20 30 40 50 60 70 80
Compression index i*

0.05

0.10

0.15

0.20

0.25

0.30

Di
st

or
tio

n
L1

inliers
outliers

(b) Node 1

0 10 20 30 40 50 60 70 80
Compression index i*

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Di
st

or
tio

n
L1

inliers
outliers

(c) Node 2

0 10 20 30 40 50 60 70 80
Compression index i*

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(d) Node 3

0 10 20 30 40 50 60 70 80
Compression index i*

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(e) Node 4

0 10 20 30 40 50 60 70 80
Compression index i*

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Di
st

or
tio

n
L1

inliers
outliers

(f) Node 5

0 10 20 30 40 50 60 70 80
Compression index i*

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(g) Node 6

0 10 20 30 40 50 60 70 80
Compression index i*

0.08

0.10

0.12

0.14

0.16

Di
st

or
tio

n
L1

inliers
outliers

(h) Node 7

0 10 20 30 40 50 60 70 80
Compression index i*

0.09

0.10

0.11

0.12

0.13

0.14

Di
st

or
tio

n
L1

inliers
outliers

(i) Node 8

0 10 20 30 40 50 60 70 80
Compression index i*

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Di
st

or
tio

n
L1

inliers
outliers

(j) Node 9

Figure A6. Rate-Distortion curves on MNIST distributions for each local node. The distortion on the
y-axis is measured by the `1 norm of the reconstruction error, and the rate on the x-axis is represented
by the value of i?, the scattering channel index from which the information is kept at the compression
stage, as described in Section 5.1.2; the greater i? is, the more compression occurs. The blue curves
are for inliers (samples with the same label as the local one used to train the node) and the orange
curves are for outliers. For each node, there is a higher separability when i∗ = 80 which corresponds
to the final setup presented in Section 6.1. These curves correspond to the theoretical ones presented
in Figure 4 and i∗ = 80 corresponds to the optimal RQ for the best classification achieved. We note
that for some nodes, when i∗ = 41, the distortion is larger for inliers than outliers, maybe the structure
of the ScatNet representation is the cause. It also happens for node 8 when i∗ ∈ {1, 9, 41} which
means that for these rates, outliers are better reconstructed by node 8 than samples of 8. This problem
has also been commented in [21] when the classical outlier detector trained on the class 8 of MNIST
perfectly reconstructs outliers. The authors in [21] bypass this problem with some structural tricks and
regularization for the bottleneck of their model which actually increase the rate of compression. In our
setup, when i∗ = 80, the node for label 8 reconstructs inliers better than outliers and can separate.

References

1. Delalleau, O.; Bengio, Y. Parallel Stochastic Gradient Descent; CIAR Summer School: Toronto, Canada, CA, 2007.
2. Tian, L.; Jayaraman, B.; Gu, Q.; Evans, D. Aggregating Private Sparse Learning Models Using Multi-Party

Computation. In Proceedings of the Private MultiParty Machine Learning (NIPS 2016 Workshop), Barcelona,
Spain, 8 December 2016.

3. McMahan, H.B.; Moore, E.; Ramage, D.; y Arcas, B.A. Federated Learning of Deep Networks using Model
Averaging. arXiv 2016, arXiv:1602.05629.

4. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, Fort Lauderdale, FL, USA, 20–22 April 2017.

5. Oyallon, E.; Belilovsky, E.; Zagoruyko, S. Scaling the Scattering Transform: Deep Hybrid Networks. arXiv
2017, arXiv:1703.08961.

6. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. In Proceedings of the
2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015.

7. Voloshynovskiy, S.; Kondah, M.; Rezaeifar, S.; Taran, O.; Holotyak, T.; Rezende, D.J. Information bottleneck
through variational glasses. In Proceedings of the Bayesian Deep Learning (NeurIPS 2019 Workshop),
Vancouver, BC, Canada, 13 December 2019.

8. Gibiansky, A. Bringing HPC Techniques to Deep Learning. Available online: https://andrew.gibiansky.
com/blog/machine-learning/baidu-allreduce/ (accessed on 28 October 2020).

9. You, S.; Xu, C.; Xu, C.; Tao, D. Learning from multiple teacher networks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
13–17 August 2017; pp. 1285–1294.

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

Entropy 2020, 22, 1237 29 of 30

10. Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble Distillation for Robust Model Fusion in Federated Learning.
arXiv 2020, arXiv:2006.07242.

11. Asad, M.; Moustafa, A.; Ito, T.; Aslam, M. Evaluating the Communication Efficiency in Federated Learning
Algorithms. arXiv 2020, arXiv:2004.02738.

12. Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; Chandra, V. Federated Learning with Non-IID Data. arXiv 2018,
arXiv:1806.00582.

13. Hsieh, K.; Phanishayee, A.; Mutlu, O.; Gibbons, P.B. The Non-IID Data Quagmire of Decentralized Machine
Learning. arXiv 2019, arXiv:1910.00189.

14. Fung, C.; Yoon, C.J.M.; Beschastnikh, I. Mitigating Sybils in Federated Learning Poisoning. arXiv 2018,
arXiv:1808.04866.

15. Deng, L. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal
Process. Mag. 2012, 29, 141–142.

16. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-Supervised Learning with Deep Generative
Models. arXiv 2014, arXiv:1406.5298.

17. Gordon, J.; Hernández-Lobato, J.M. Bayesian Semisupervised Learning with Deep Generative Models. arXiv
2017, arXiv:1706.09751.

18. Tax, D.M.; Duin, R.P. Support vector data description. Mach. Learn. 2004, 54, 45–66.
19. Sabokrou, M.; Khalooei, M.; Fathy, M.; Adeli, E. Adversarially Learned One-Class Classifier for Novelty

Detection. arXiv 2018, arXiv:1802.09088.
20. Pidhorskyi, S.; Almohsen, R.; Adjeroh, D.A.; Doretto, G. Generative Probabilistic Novelty Detection with

Adversarial Autoencoders. arXiv 2018, arXiv:1807.02588.
21. Perera, P.; Nallapati, R.; Xiang, B. OCGAN: One-class Novelty Detection Using GANs with Constrained

Latent Representations. arXiv 2019, arXiv:1903.08550.
22. Dewdney, P.; Turner, W.; Braun, R.; Santander-Vela, J.; Waterson, M.; Tan, G.H. SKA1 System Baselinev2

Description; SKA Organisation: Macclesfield, UK, 2015.
23. Alemi, A.A.; Fischer, I.; Dillon, J.V.; Murphy, K. Deep variational information bottleneck. arXiv 2016,

arXiv:1612.00410.
24. Estella-Aguerri, I.; Zaidi, A. Distributed variational representation learning. In IEEE Transactions on Pattern

Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2019.
25. Razeghi, B.; Stanko, T.; Škoric´, B.; Voloshynovskiy, S. Single-Component Privacy Guarantees in Helper

Data Systems and Sparse Coding with Ambiguation. In Proceedings of the IEEE International Workshop on
Information Forensics and Security (WIFS), Delft, The Netherlands, 9–12 December 2019.

26. Chen, Y.; Sun, X.; Jin, Y. Communication-Efficient Federated Deep Learning with Asynchronous Model
Update and Temporally Weighted Aggregation. arXiv 2019, arXiv:1903.07424

27. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006,
313, 504–507, doi:10.1126/science.1127647.

28. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013,
35, 1872–1886.

29. Rezaeifar, S.; Taran, O.; Voloshynovskiy, S. Classification by Re-generation: Towards Classification Based on
Variational Inference. arXiv 2018, arXiv:1809.03259.

30. Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications and Signal
Processing); Wiley-Interscience: Hoboken, NJ, USA, 2006.

31. Zhang, Y.; Ozay, M.; Sun, Z.; Okatani, T. Information Potential Auto-Encoders. arXiv 2017, arXiv:1706.04635.
32. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
33. Mallat, S. Group invariant scattering. Commun. Pure Appl. Math. 2012, 65, 1331–1398.
34. Bernstein, S.; Bouchot, J.L.; Reinhardt, M.; Heise, B. Generalized analytic signals in image processing:

Comparison, theory and applications. In Quaternion and Clifford Fourier Transforms and Wavelets; Birkhäuser:
Basel, Switzerland, 2013; pp. 221–246.

35. Zhao, H.; Gallo, O.; Frosio, I.; Kautz, J. Is L2 a Good Loss Function for Neural Networks for Image Processing.
arXiv 2015, arXiv:1511.08861.

36. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

Entropy 2020, 22, 1237 30 of 30

37. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.
arXiv 2016, arXiv:1609.04802.

38. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv 2017, arXiv:1708.07747.

39. Byerly, A.; Kalganova, T.; Dear, I. A Branching and Merging Convolutional Network with Homogeneous
Filter Capsules. arXiv 2020, arXiv:2001.09136.

40. Hirata, D.; Takahashi, N. Ensemble learning in CNN augmented with fully connected subnetworks. arXiv
2020, arXiv:2003.08562.

41. Kowsari, K.; Heidarysafa, M.; Brown, D.E.; Meimandi, K.J.; Barnes, L.E. RMDL: Random Multimodel Deep
Learning for Classification. arXiv 2018, arXiv:1805.01890.

42. Harris, E.; Marcu, A.; Painter, M.; Niranjan, M.; Prügel-Bennett, A.; Hare, J. FMix: Enhancing Mixed Sample
Data Augmentation. arXiv 2020, arXiv:2002.12047.

43. Bhatnagar, S.; Ghosal, D.; Kolekar, M.H. Classification of fashion article images using convolutional neural
networks. In Proceedings of the 2017 Fourth International Conference on Image Information Processing
(ICIIP), Shimla, India, 21–23 December 2017.

44. Hao, W.; Mehta, N.; Liang, K.J.; Cheng, P.; El-Khamy, M.; Carin, L. WAFFLe: Weight Anonymized
Factorization for Federated Learning. arXiv 2020, arXiv:2008.05687.

45. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. arXiv 2015, arXiv:1502.03167.

46. Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951, doi:10.1038/35016072.

47. HasanPour, S.H.; Rouhani, M.; Fayyaz, M.; Sabokrou, M. Lets keep it simple, Using simple architectures to
outperform deeper and more complex architectures. arXiv 2016, arXiv:1608.06037.

48. Belghazi, M.I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, R.D. MINE: Mutual
Information Neural Estimation. arXiv 2018, arXiv:1801.04062.

49. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

50. Quattoni, A.; Torralba, A. Recognizing indoor scenes. In Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 413–420.

51. Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments; Technical Report 07-49; University of Massachusetts: Amherst,
MA, USA, 2007.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Formulation: The One Node–One Class Setup
	Related Work
	Theoretical Model
	Information Bottleneck Concept of Centralized Systems
	Information Bottleneck Concept of Decentralized Systems

	Implementation Details
	Training of Local Encoders
	Structure of the Scattering Transform
	Training of Local Quantizers

	Training of Local Decoders
	Central Classification Procedure

	Experiments
	Results
	MNIST
	FashionMNIST

	Discussion
	Investigation of the Bottleneck Role
	One-Class Manifold Learning for Separability
	Influence of Feature Selection and Link to the Rate of Compression
	Influence of the Parameter i
	Influence of the Parameter K

	Conclusions
	Bottleneck Interpretation
	Nodes Analysis
	One-Class Manifold Learning
	Influence of the Rate

	References

