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Abstract: The constantly and rapidly increasing amount of the biological data gained from many
different high-throughput experiments opens up new possibilities for data- and model-driven
inference. Yet, alongside, emerges a problem of risks related to data integration techniques. The latter
are not so widely taken account of. Especially, the approaches based on the flux balance analysis (FBA)
are sensitive to the structure of a metabolic network for which the low-entropy clusters can prevent the
inference from the activity of the metabolic reactions. In the following article, we set forth problems
that may arise during the integration of metabolomic data with gene expression datasets. We analyze
common pitfalls, provide their possible solutions, and exemplify them by a case study of the renal
cell carcinoma (RCC). Using the proposed approach we provide a metabolic description of the
known morphological RCC subtypes and suggest a possible existence of the poor-prognosis cluster
of patients, which are commonly characterized by the low activity of the drug transporting enzymes
crucial in the chemotherapy. This discovery suits and extends the already known poor-prognosis
characteristics of RCC. Finally, the goal of this work is also to point out the problem that arises
from the integration of high-throughput data with the inherently nonuniform, manually curated
low-throughput data. In such cases, the over-represented information may potentially overshadow
the non-trivial discoveries.

Keywords: genome-scale metabolic networks; information redundancy; metabolic landscapes
analysis; graph entropy; renal cell carcinoma; transcriptomics

1. Introduction

Observing the technological progress of the recent decades one can notice that it facilitated an
access to vast biomedical data resources describing different molecular levels (so-called -omics data).
Consequently, our comprehension of biological processes becomes more profound as well as reliable.
These facts open up a broad field of data integration, that aims to infer from various data collection
platforms taking into account known biological dependencies between them.

Motivations. In the literature, it is broadly emphasized that the integration of -omics data
improves understanding of various phenomena. The modern studies and corresponding literature
emphasize the significant role of the integration of different -omics data types for better comprehension
of a phenomenon of interest [1]. However, these integration procedures, thanks to a wider perspective,
are not only meant to provide a new insight into a specific phenomena, but above all should constitute
a deeper understanding of the general genotype-phenotype gap and the relationship between these
two layers [2]. Importantly, each unique set of -omics data can be integrated using various statistical
methods, and thus may result in an unprecedented outcome. As a consequence, each year a number
of reviews are published to track and summarize the current state of the art in the field of -omics
integration, which one can check for more detailed discussions [3,4].
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In this work, however, the aim is to focus on a particular problem of the transcriptomic and
metabolomic data integration. We report an interesting phenomenon related to the analysis of
individual metabolic networks in the context of transcriptomic data. The conducted study allowed
to detect a common and robust artificial pattern identifiable for each data cohort from the Cancer
Genome Atlas that splits cancer-specific patients into two to four clusters. Interestingly, each cluster is
characterized by a peculiar activity pattern among reactions hubs. In the article, we prove that these
observations result mostly from the uneven metabolic information distribution within the metabolic
network. To the best of our knowledge, no one has yet commented on the problem that the structure
of a metabolic network can introduce when used along with integrative methods, in particular when
used in the context of the flux balance analysis (FBA) [5].

Related research. One of the first attempts to this type of integration was suggested by Covert
and Palsson, where authors infer the binary enzymatic activity from the transcriptomic continuous
signal [6]. Next, a cascade of methods was proposed to harness transcriptomic data for analysis of
metabolic networks. Among the most discussed methods we can point out: E-Flux [7], GIMME [8],
GIMMEp [9], iMAT [10], INIT [11], MADE [12], mCADRE [13], PROM [14], RELATCH [15]. Apart from
some minor details, fundamentally these approaches differ at three basic levels: (i) the way of
inference of the enzymatic activity from transcriptomic data; (ii) the determination of the flow capacity
boundaries from transcriptomic data; (iii) number of samples needed to create a mathematical model.
These methods along with their other features, were already discussed and compared in few reviews
where detailed descriptions can be found [16–19]. Therefore, here, we focus on a summary of what
type of biomedical outcomes they have provided so far.

Using this type of models, where a general metabolic network becomes context-specific through
integration with a transcriptome of specific tissue or organism few groups of researchers have already
reported some interesting discoveries. With nearly 2000 samples of breast tumor Leoncikas et al.
discovered a novel poor prognosis cluster characterized by local production of serotonin along
with active extracellular matrix and membrane remodeling reactions [20]. Li et al. by integrating
transcriptomic knowledge with human metabolic network suggest a supervised method to predict
novel drug-target interaction [21]. In their work they predict related metabolic reactions and enzyme
targets for approved cancer drugs, and predict drug targets with statistically high confidence rate.
Reconstruction of a genome-scale metabolic models for 126 human tissues and cell types including
healthy and tumor type was derived using the Recon 1 human metabolic network accompanied by
transcriptomic data [13]. Among all, the set of models includes 26 tumour-specific models accompanied
by their normal counterparts, in particular 30 models of brain tissue subtypes were determined.
Next, using the modified version of iMAT, differential fatty acid uptake into mitochondria along with
arachidonic acid and eicosanoid metabolism were suggested to explain different proliferative rates and
invasiveness between PC-3/M (highly proliferative, cancer stem cells) and PC-3/S (highly invasive,
epithelial-mesenchymal-transition-like properties) subpopulations derived from prostate cancer cell
line [22].

In summary, the general biomedical aim of this approach is to model the gene–protein–reaction
interactions in the form of a metabolic network and infer multiple biological properties,
e.g., post-transcriptional gene activities or intensity and activity of metabolic reactions, that can
explain the nature of analyzed sample.

Our results. In this paper, we want to draw attention to a specific problem related to the task of
the data integration and analysis based on the general metabolic networks along with transcriptomic
data. First, we present how the specific structure of sub-networks can inflate the importance of
specific groups of enzymatic reactions, which may lead to incomplete or questionable conclusions.
Next, in order to cope with that obstacle, we suggest a possible routine that can track and eliminate
the unwanted problem influencing the metabolic knowledge obtained from the integration procedure.
Furthermore, we present our results from the analysis of the TCGA renal cell carcinoma (RCC)
dataset, which point out reactions discriminating patients in the context of the observed clinical
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factors. Additionally, we report the discovery of a poor-prognosis cluster of patients along with its
characterization. Finally, we point out and discuss some already existing methods of analysis of
metabolic networks that are likely to be influenced by this subtle yet significant network structural
property. The preliminary version of this study was published as an extended abstract in the
proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),
pp. 96–101; Madrid, Spain.

2. Materials and Methods

2.1. The Human Genome-Scale Metabolic Reconstruction

In general, a metabolic network is a set of reactions among elements of a given set of metabolites.
Each reaction may be associated with a specific genetic rule that needs to be met in order for reaction
to occur. If a reaction has no genetic rule assigned to it, it can be triggered whenever all substrates
are available. A genetic rule usually describes which genes/proteins need to be active/present in the
system to carry out the reaction. In particular, a rule may require simultaneous presence of several
enzymes (e.g., the transfer of L-Oh-Proline by the Apical Imino Amino Acid Transporters in Kidney and
Intestine requires both Transmembrane Protein 27 and Solute Carrier Family 6), or alternative enzymes
that can catalyze the reaction (e.g., efflux of 2-hydroxy-atorvastatin-lactone into bile that is supported
by ATP binding cassette subfamily C member 2 or subfamily B member 1). Finally, each reaction
has also a lower and upper bound describing minimal and maximal flow of metabolites through
this reaction.

On the other hand, formally, the network can be considered as a Petri net with conditional
transitions of places, where by a conditional transition we mean additional Boolean formula that needs
to be met in order for transition to occur (see Figure 1 for the example).

In our study we used the human genome-scale metabolic reconstruction model, RECON 2.2 that
details known metabolic reactions occurring in humans, and thereby holds substantial promise for
studying complex diseases and phenotypes [23]. The model described 7785 reactions (i.e., transitions
of a Petri Net), between 2654 metabolites (i.e., places), out of which 4742 depended on a genetic rule
(i.e., condition of a transition). We will refer to these reactions as enzymatic reactions. Each genetic rule
was a Boolean formula in a disjunctive normal form (DNF), where each Boolean variable corresponds
to the activity state (active or not) of one of 1670 unique genes. Additionally, all of the metabolites in the
network were distributed among 10 compartments. In total, we considered 6048 compartment-specific
metabolites. For more details see Table 1 and Figure 2.

2.2. Metabolic Landscapes

In order to construct a sample-specific metabolic model from a general metabolic network given
a transcriptomic pattern the following procedure was applied. First, we specified the thermodynamic
conditions describing the acceptable capacity of reactions fluxes, i.e., set the minimal and the maximal
flow levels through each reaction. Next, we evaluated each genetic rule, based on the transcriptomic
data to decide which reactions could occur in the initial model (see an example in Figure 1).
Finally, the obtained, individualized model could be further studied taking into consideration the
metabolic network structure. In our work, the linear programming problem was formulated and the
simplex algorithm was run to find the steady-state flux distribution. This procedure provided two types
of information. First, it suggested a new pattern of fulfillment among the genetic rules (binary-valued),
where each change, in contrast to the original value, could be considered as a post-transcriptional
change. Second, it outputted a vector of fluxes that met the criteria of the linear problem that was
solved. These fluxes could provide information about the metabolic reactions or pathways that were
mostly exploited given such expression patterns.
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Table 1. The table provides a summary of the RECON 2.2 metabolic model.

all reactions 7785

enzymatic 4742
transport 3043

exchange a 701
demand b 44

reverse 3782
directed 4003

all metabolites c 6048
unique substances 2654

boundary 722
compartments 10

all genetic rules 4742

simple rules 2912
complex rules 1830
unique rules 1341
unique genes 1670

a Exchange reactions describe in- and outflow of metabolites through the system boundary. b Demand
reactions are intra-network,unlimited sinks or sources of metabolites degradation or production. c An
additional metabolite (in contrast to the summary reported in [23]) was required for the R_biomass_other
reaction.

Activity Reactions
G1: 0 R1 : M1 + M2

G1∨G2−−−−→ M4 R4 : M1
G2−−→ M3 + M4

G2: 1 R2 : M3
G3−−→ M2 R5 : M4

>−−−→ M1

G3: 1 R3 : M1
G1∧G2−−−−→ M2 R6 : M3 + M4

G1∧G3−−−−→ M5

Individual Model

R1 R2 R3 R4 R5 R6

M1 M2 M3 M4 M5

G1 ∨ G2 G3 G1 ∧ G2 G2 > G1 ∧ G3

Figure 1. An example of metabolic network with genetic rules. The example is composed of six
reactions Ri among five metabolites Mj. Among these reactions there are five enzymatic reactions
that are coordinated by the enzymes related to the three specific genes Gk. All arrows describe the
flow of metabolites through reactions according to the above list of reactions. Using the gene activity
pattern, a general network can be turned into transcriptom specific and represented as a Petri net with
conditional transactions. Here we can see that inactivity of gene G1 results in silencing (dotted line)
of the reactions R3 and R6 which represses the production of the metabolite M2 and eliminates the
production of the M5 in the system.
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Figure 2. The figure presents an outline of the reactions distribution in the metabolic model of
RECON 2.2. There are nine inter-cellular compartments depicted and the additional boundary
component which represents external entry and exit of metabolites into the metabolism network
model. Each line connecting two compartments represents all reactions that involve metabolites from
these compartments. The number of these reactions and their direction is assigned to each line. To keep
the figure readable, for less than 10 reactions we use a dotted, thinner line.

2.3. TCGA Transcriptomic Data

In this study we used 20 RNA-seq transcriptomic datasets provided by TCGA, each composed
of cancerous and control samples and accompanied by clinical data. For the purpose of our work,
each dataset was subjected to a standard preprocessing routine with recount R package [24]. The raw
counts were scaled by the total coverage of the sample, that is, the area under the curve (AUC) of the
coverage. Next, only genes that were composing genetic rules in the RECON 2.2 model were selected.
Finally a number of 5 read counts was selected to be a threshold for a gene to be considered as active.
After Leucken et al. the thresholding procedures were as permissive as possible, so that downstream
analysis could be conducted and interpreted [25].

In the presented case study we used the kidney cancer dataset (renal cell carcinoma, RCC)
composed of the 897 primary tumor and 129 normal tissue samples. Tumor tissues were also
classified by their morphological type subtype into four groups: 527 clear cell RCC, 290 papillary RCC,
66 chromophobe RCC and 14 unclassified RCC samples. For 201 patients the survival data were also
available. Additionally, we used the brain cancer dataset (707 samples) to showcase the artifacts of the
clustering results obtained from the metabolic landscapes.
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2.4. Steady-State Flux Distribution

In order to determine the activity state of each reaction in a personalized model we made use
of the approach proposed by Shlomi et al. [26]. We formulated a mixed-integer linear programming
(MILP) problem (see Equation (1)) and solve it using Gurobi solver [27]. The goal was to maximize
an objective function (1a) with respect to stoichiometric (1b), thermodynamic (1c) and transcriptomic
(1d–g) constraints. For detailed description see the Methods section in [26].

The solution of the described problem provided a binary vector of activity states for each reaction
which we refer to as a metabolic landscape.

max
v,y+ ,y−

∑
r∈A

(y+r + y−r ) + ∑
r∈I

y+r s.t. (a)

S · v = 0 (b)
vmin ≤ v ≤ vmax (c)
vmin,r(1− y+r ) ≤ vr − y+r r ∈ A (d)
vmax,r(1− y−r ) ≥ vr + y−r r ∈ A (e)
vmin,r(1− y+r ) ≤ vr r ∈ I (f)
vmax,r(1− y+r ) ≥ vr r ∈ I (g)
v ∈ Rm, y+r , y−r ∈ {0, 1}

(1)

In the described setting the FBA problem was formulated as a linear program and solved using
the simplex algorithm. However, it should be emphasized that the structure of the underlying graph
was crucial in context of the flux analysis and the existence of dense sub-graphs loosely communicating
with neighbouring vertices strongly influenced the final outcome of the algorithm.

2.5. Graph Entropy

To detect the possible sources of the structural redundancy in a metabolic network we applied the
measure of entropy on a graph structure. To account for the context of the metabolic fluxes we made
use of the entropy based on the inner and outer neighbours of vertices within a given sub-graph [28].

Namely, for a graph G = (V, E) and its sub-graph G′ = (V′, E′) where V′ ⊂ V and E′ ⊂ E
contains all edges adjacent to vertices in V′ we define the probability of the inner (PI) and outer (PO)
flow of a vertex v ∈ V′ as:

PI(v) =
I(v)
N(v)

; PO(v) =
O(v)
N(v)

= 1− I(v)
N(v)

where I(v), O(v) are the number of neighbours of v that: belong to V′ and not belong to V′, respectively,
while N(v) are all neighbours of v. Based on that we define the entropy H(v) of a vertex v as:

H(v) = −PI(v) log2 PI(v)−PO(v) log2 PO(v)

and consequently, the entropy of a graph G induced by sub-graph G’, HG′(G), is defined as:

HG′(G) = ∑
v∈V′
H(v)

Given the above definitions, we determine the entropy of a group of enzymatic reactions within
the RECON 2.2 metabolic network. Additionally, we evaluate the entropy induced by groups of
random reactions sampled from the entire network. These steps aim to depict the graph in terms of the
entropy and thus connectivity and the flow of metabolic information, that is subject to the metabolic
landscape analysis.
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2.6. Binary Data Analysis

Since the final outcome of a linear programming problem is a set of binary vectors, it is necessary
to introduce specific methods to analyze them. In the literature there are described various statistical
methods that are specifically dedicated to the analysis of binary data, including: the non-negative
matrix factorization [29], the sparse logistic PCA method proposed by Lee et al. [30], and the variational
factorization method employing independent beta latent densities [31].

Nonetheless, in our case, in order to explore the data, track the potential latent variables and
visualize results we use the standard principal component analysis (PCA), which provides numerically
stable and robust results and is also used to define a function for separating variables selection.

PCA Loadings-based Variables Selection

Let M ∈ {0, 1}m×n be a binary data matrix with m observations and n variables, L =

(L(1), ..., L(n)) be a loadings matrix and P scores (or principal components) matrix, satisfying P = ML.
By definition P is a representation of M in a new basis that is composed of vectors of L. For the purpose
of binary landscapes analysis, we construct a set of highest valued coordinates from first k directions
of the rotation matrix. The general parametrized function L describes the selection procedure:

L f ,k(L) =
k⋃

i=1

{
j : |L(i)

k | ≥ f
(

L(i)
)}

where f is the function determining the threshold for the value of a coordinate to be assumed significant
and k is the number of vectors from loading matrix that are considered. The function is used to select
the groups of reactions with the highly correlated activity pattern between all samples. In parallel,
the results from PCA Loadings-based variable selection were compared with the overall entropy
analysis of the network structure considering the interaction between the groups of enzymatic reactions.
It turned out that the groups requiring the adjustment belong to the group of clusters characterized by
the low entropy and loosely connected to the other vertices in the network.

To determine differentiating variables in the studied datasets, two measures were used.
First, the Jaccard Index is used to determine differentiating reactions between two groups of samples.
For any z ∈ {0, 1}n we define z1 = ∑

i
zi and z0 = ∑

i
(1− zi). Given that the Jaccard Index of two binary

vectors J : {0, 1}n × {0, 1}m → [0, 1] is defined as:

J (x, y) =
min

(
x1, y1)+ min

(
x0, y0)

max (x1, y1) + max (x0, y0)

The index is non-linear and depends on the lengths of vectors, thus evaluates to 0 when two vectors
don’t share any element, increases with an increasing number of shared elements between vectors.
It reaches the maximal value of 1 when both vectors share the same elements and the same lengths.
In the process of variables selection as a threshold value we set 0.25 of the maximal value that the
index can reach (given the lengths of compared vectors).

Additionally, the Tanimoto similarity measure of two binary vectors T : {0, 1}n × {0, 1}n → [0, 1]
is defined as:

T (x, y) =
n− |{i : xi 6= yi}|
n + |{i : xi 6= yi}|

and is used as a distant measure between two binary metabolic landscapes.
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3. Results

3.1. Metabolic Network Structure Problems

The first step was to apply the procedure suggested by Shlomi et al. to the cohort of the TCGA
data in order to verify if there existed a common metabolic pattern among various types of tumors,
or alternatively, if there existed any metabolic biomarkers which may be of diagnostic importance.

As mentioned in the introduction, our preliminary results suggested that, surprisingly, each data
set was composed of two to four clearly separable clusters of patients. In the case of 13 out of 20 TCGA
cancer datasets, the corresponding set of metabolic landscapes was well-separated into four clusters
that, on average, were differentiated by the activity of 180 reactions. Additionally, for the remaining
seven cancer-specific landscape datasets there were on average 95 reactions differentiating samples into
two clusters (see Figure 3 for an example based on brain cancer dataset). Moreover, it turned out that
almost all (>95%) discriminating (using Lmax,2 function) reactions in these clusters were coordinated
by two main enzymes that were encoded by: SLCO1A2 (solute carrier organic anion transporter family
member 1A2; coordinating superfamily of 94 Amino Acid-Polyamine-Organocation reactions [32]) and
SLC7A9 (solute carrier family 7 member 9; coordinating superfamily of 79 Resistance-Nodulation-Cell
Division reactions [33]) genes. These observations may lead to a conclusion that cancers in general
have natural subfamilies that can be described by the activity of specific groups of metabolic reactions
and thus also activity of particular enzyme encoding genes. Activation of SLCO1A2 is related to the
development and functioning of the immune system, organismal system for calibrated responses to
potential internal or invasive threats and is highly over expressed in breast cancer tissues [34]. On the
other hand, SLC7A9 enables the transportation of substances (such as macromolecules, small molecules,
ions) into, out of or within compartments of a cell, or between cells. Additionally, as a co-enzyme
with SLC3A1 coordinates group of five transportation/exchange reactions of L-Cystine, L-Alanine
and L-Ornithine, that were also detected as differentiating the cancer data. This observation implies
activation of SLC3A1, that was recently reported to promote breast cancer tumorigenesis [35].

Even though these literature reports may sound promising, we report another observation related
to the analysis performed on a dataset with 500 randomly generated gene activities that were subjected
to the metabolic analysis (see the right panel of the Figure 3). Despite the fact that the gene activity
dataset did not include any relevant information, we were able to identify two groups of reactions
differentiating samples into four well-separable clusters. These observations, undoubtedly, put in
question all results related to the clustering of metabolic landscapes performed on all cancer datasets,
since the analysis inferred about the knowledge that did not come from the data but from the topology
and structure of metabolic network.
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Figure 3. The comparison of the first three principal components of metabolic landscapes determined
for brain cancer (left) and random (right) datasets. In both cases samples form well-separating clusters
that can be identified by the activity pattern of overrepresented gene rules. For the brain dataset:
SLC7A9 and SLC28A3. For the random dataset: SLC7A6 and SLCO1B1.

The analysis of the RECON 2.2 network structure revealed that there existed groups of reactions
that were associated with the same genetic rule (top 10 most common genetic rules were related to
over 900 reactions). Even though these reactions were biologically non-redundant (each of them was
functional), they very often formed well-connected sub-networks that were loosely connected with the
rest of the network. As a consequence they made it problematic to apply the FBA methods. As the
way to identify such structures we proposed to apply the notion of entropy induced by sub-networks.
It turned out that these sub-networks minimized the entropy.

In the Figure 4 one can notice the structural properties of the RECON 2.2 metabolic network.
We discovered that among the groups of enzymatic reactions that follow the same genetic rule,
there was a representation of these that consisted of several dozen of reactions and yet induced
a very low entropy of the sub-network. The entropy- and structural-based analysis revealed that
these reactions were very well connected within their group, however they were loosely connected to
the neighbouring vertices outside their group. Such characteristics imposed the risk of the uneven
flow of the metabolic information throughout the network and made it of low probability that initial
transcriptomic conditions would be changed due to the influence of the other neighboring reaction
states. In effect, this may result in the detection of network topology artifacts rather than new
information on metabolic reactions.
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Figure 4. The entropy levels induced by specific sub-networks in RECON 2.2 by their size.
The upper panel depicts the entropy level induced by each sub-network of enzymatic reactions
following the same genetic rule (the blue area and outlying blue points). The grey area shows the
entropy levels for random groups of reactions of a given size. The groups of reactions that characterize
the RCC samples before and after the adjustment, as well as, the potential biomarker reactions for
the discovered poor-prognosis cluster are depicted by corresponding points. The bottom panel is
a close-up view of the low-number groups of reactions.

For this reason we proposed two adjustment methods that take into account this phenomena.
The aim was to transform the data so that the statistical analysis did not detect artificially induced data
separation, but rather may result in a discovery of subtle differences in metabolic activity between
samples possibly related to novel metabolic biomarkers.

3.2. Computational Workflow

Due to the discovery of the artifacts in the results of the metabolic landscape analysis we propose
the following pipeline of procedures, that aims to reduce the statistical redundancy immersed in the
RECON 2.2 network structure.

As the prerequisite, the entropy levels of each group of enzymatic reactions are determined
with the tools described in the Materials and Methods section. These are the base of the control for
redundant activity patterns in the statistical inference from the reaction activities.

First, we processed the RNA-seq transcriptomic data and converted it to the gene activity matrix
using the threshold of five counts. The matrix was then used to create a personalized metabolic
network model. For each of these, a MILP problem was formulated and solved with the Gurobi
solver based on the simplex algorithm. The solution was composed of the sample-specific metabolic
landscapes, which were subjected to statistical analysis. The analysis of the data was supported by the
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two-fold verification if the redundancy among groups of reactions existed. On one hand, using the
PCA loadings-based variables selection L function defined in the subsection Binary Data Analysis,
on the other assessing the entropy of the detected group of reactions. Based on these two conditions,
if needed, the adjustment of these reactions was performed.

The data transformation was based on the aggregation of the activity states for groups of reactions
with respect to compartments to which belong their substrates and products. Namely, each reaction
was labeled with a name of form s1...sk-p1...pj, where s1, ...sk and p1, ..., pj are alphabetically ordered
names of compartments that, respectively, substrates and products belonged to. Next, all reactions
with the same genetic rule and the assigned label were aggregated into the one represent reaction with
the level of activity equal to the average of activities in the group.

Finally, inference from the transformed data structure through the hierarchical clustering using
the binary distance measures (e.g., the Tanimoto similarity), correlation with the clinical data, selection
of discriminatory features and functional analysis of determined clusters was performed. The outline
of the described workflow is also depicted in the Figure 5. Additionally, in the Github repository:
https://github.com/storaged/metabolic-landscape the code and the scripts used in this workflow are
available. For the purpose of this study the workflow was executed on the machine with Mac OS.

TCGA 
transcriptomic  

cancer data

RECON 2.2 
metabolic network  

structure

FBA 
linear programming  

problem solving

PCA & Graph 
entropy 

variables selection

Aggregated 
results 

adjustment method

Metabolic 
landscapes 

binary vectors

Functional 
analysis 

metabolic biomarkers

Figure 5. The workflow outline highlighting the main steps in the proposed data analysis method.

3.3. Metabolic Landscape Adjustment for the Renal Cell Carcinoma

In order to validate the proposed workflow we performed the metabolic landscape analysis on
the TCGA dataset of renal cell carcinoma (RCC). After performing the adjustment methods on the
metabolic landscapes we reported a significant improvement in samples clustering, both in the sense
of unwanted network structure-dependent clusters composition and correlation with clinical data (see
Figure 6). Additionally, we took advantage of the provided prerequisite and confirmed that all of the
adjusted groups of reactions fell into the group of the low-entropy level (see Figure 4).

https://github.com/storaged/metabolic-landscape


Entropy 2020, 22, 1238 12 of 21

R
MT

TT

Metabolic Landscape

R
ea

ct
io

n 
A

ct
iv

ity

0 0.4 0.8
Activity

Color Key

Tissue Type (TT)
Primary Tumor
Solid Normal

Morph. Type (MT)
Clear Cell RCC
Papillary RCC
Chromophobe RCC
Unclassified

Gene Rules (R)
SLCO1B1
SLCO1A2
SLC7A5
SLC7A9
other

L

MT

TT

Metabolic Landscape

R
ea

ct
io

n 
A

ct
iv

ity

0 0.4 0.8
Activity

Color Key

Tissue Type (TT)
Primary Tumor
Solid Normal

Morph. Type (MT)
Clear Cell RCC
Papillary RCC
Chromophobe RCC
Unclassified

Location (L)
Cytoplasm
Cyt−Extr
Mitoch.
Other

Figure 6. The comparison of reactions activity before (left) and after (right) the adjustment. On the left
panel, the vertical strip marks reactions associated with the same genetic rule (the orange scale colors)
noticeably determining the clustering of all landscapes. In both panels, horizontal stripes represent the
Tissue Type (TT) and the Morphological Type (MT) of all samples. One can see, how the adjustment
improves the correlation of the data with the clinical variables, especially the morphological type.
Finally, the vertical strip on the right panel presents that correspondence related to the compartments
(the purple scale colors) was introduced.

We removed the amplified activity pattern of reactions coordinated by the same genetic rule, that
influenced the clustering of samples in an unwanted way. After the reduction there were no significant,
discriminating reactions associated with the same genetic rule. This step also resulted in more reliable
clustering of data according to clinical observations, e.g., normal or tumor tissue type or morphological
type of a tumor sample.

The results of our analysis of the renal cell carcinoma TCGA dataset were consistent with
latest reports, that indicated SLC6A3 as a experimentally confirmed biomarker for RCC [36].
The transcriptomic signal of SLC6A3 in our data was clearly discriminating biomarker of Clear
Cell RCC subtype (6.89 logFC).

However, thanks to the analysis of metabolic landscapes we further suggest potential biomarkers
that correspond to specific, known RCC subtypes [37]. The literature so far reports CXCL16 gene
as a significantly expressed in papillary RCC with others still waiting for their validation [38].
Nonetheless, the analysis of metabolic landscapes suggests two transport reactions that discriminate
the Papillary RCC subtype. Both of them are supported alternatively by the already reported SLC6A3 or
SLC6A2, other member of the same Solute Carrier family. The transportation activity state of dopamine
and norepinephrine via sodium symport between cytoplasm and extracellular space are well separating
the Papillary RCC subtype from other samples. Namely, these reactions are predicted to be inactive in
Papillary samples. Our results reported 247 out of 291 (≈ 85%) papillary samples and 42 out of 737
(≈ 6%) other samples characterized by inactivation of these reactions. This observation was also
confirmed by the purely transcriptomic data, which suggested down regulation of both genes (−3.62
and−2.2 logFC of SLC6A2 and SLC6A3, respectively) for papillary samples. This observation suggested
a simultaneous drop of the activity of both SLC6A2 and SLC6A3 as a potential diagnostic biomarker.

In case of the Chromophobe RCC (ChRCC) subtype, before the adjustment of the metabolic
landscapes two genetic rules were in fact separating this subtype from the other cancer samples:
(i) the extracellular space and cytoplasm exchange reactions supported by the complex of SLC3A1 and
SLC7A9 (five reactions involving L- Cystine, L-Alanine and L-Leucine) and (ii) reactions controlled by
SLC7A9 that was involved in 79 reactions. However, after the adjustment two potential biomarkers
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were found: inactivation of sodium-dependent transport of (i) phosphate, supported by SLC17A1
and (ii) ascorbate supported by SLC23A1. Inactive phosphate and ascorbate transport characterized,
respectively, 65 and 62 out of 66 ChRCC samples; 45 and 28 out of 774 other tumor samples. Even in
the literature reports it is still not clear how the phosphate transportation or concentration level
and absorption via SLC23A1 of ascorbate influences the cancer cells [39]. We point to these factors,
both reaction activity and transcriptomic/proteomic levels, as possible biomarkers of ChRCC.

3.4. Poor Prognosis Cluster

Finally, we reported a candidate for a new cancer subtype resulting from the statistical and
functional analysis of metabolic landscape clusters. Based on the samples clustering after the
adjustment (see Figure 6) we further studied the obtained six clusters of samples. Among them,
there were four homogeneous clusters composed mainly of: the healthy tissues (Control),
the Chromophobe RTCC subtype (Chr-basal), the Clear Cell RTCC (CC-basal) and the Papillary
RTCC (Pap-basal). Even though, the pattern of the remaining two clusters was not related to their
morphological type we noticed a statistically significant (p-value: 0.002) difference in the survival time
in one of the clusters (see Figure 7), which we addressed as a poor prognosis cluster.

The first and natural step here is to compare our clustering with the previously published [40].
In particular, the membership of the CpG island methylator phenotype (CIMP) cluster is of high
interest, because of its bad prognosis properties that were investigated in [41]. It turns out that the
entire CIMP cluster was part of the much larger (10 vs. 102) poor prognosis cluster that was identified
based on its metabolic profile. Additionally, our poor prognosis cluster also contained five out of six
samples classified as metabolically divergent (MD) in the literature. While CIMP-associated tumors
showed increased expression of key genes involved in glycolysis, our cluster metabolic pattern was
also associated with deregulations in glycan biosynthesis. However, the important characteristic
feature was the reduced expression of genes related to amino acid transport.

To deepen the nature of these newly discovered clusters, we performed a differential analysis
of four clusters (using also CC-basal and Pap-basal) in order to describe a metabolic as well as
genetic nature of this cluster. We determined a set of 106 differentiating reactions coordinated by four
genes: OAT2 (3), PRODH2 (4), PKLR (5) and SLC1A2 (94), see Figure 4. Among these reactions
we report orotate-glutamate antiport, uptake of allopurinol and oxypurinol by the hepatocytes,
mitochondrial proline Oxidase (NAD) and dehydrogenase, and reactions involved in pyruvate
metabolism. Genes coordinating these reactions reveal a specific expression pattern of the poor
prognosis cluster, i.e., the low expression and the consequent inactivation of corresponding reactions.
It is worth to emphasize, that the adjustment procedure provides a confirmation of the significance of
the hub of reactions governed by the SLC1A2 gene (see the corresponding datapoint in the Figure 4).

Additionally, we performed the functional analysis of top 100 differentiating genes, using the
DAVID on-line tool. The analysis provided a consistent output indicating functions and keywords
commonly related to modifications in transport and symport reactions highlighting transmembrane
transport activity. Finally, pathway analysis performed with KEGG implied deregulations in the glycan
biosynthesis and metabolism pathway.
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Figure 7. The analysis of the poor prognosis cluster. The heatmap presents the activity of reactions
from the four clusters determined with the hierarchical clustering. The upper horizontal stripes compare
the predicted subtypes (PS) labeling with the known morphological types (MT). The bottom-left
panel presents the Kaplan–Meier survival curves, which present the significantly lower survival time
of patients from the poor prognosis cancer (p-value: 0.002). The bottom-right panel compares the
expression level of the genes characterizing the poor prognosis cluster.
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The above observations can be preliminarily verified with literature reports. In a metabolic
sense, abnormalities in glycan biosynthesis that we observe were reported as a significant factor
of cancer cells phenotype and biology almost two decades ago [42]. It should be emphasized that
recent studies stress the particular role of amino acid transporters in the pathogenesis of cancer.
Specifically, the deregulation of these genes leads to metabolic reprogramming changing intracellular
amino acid levels, which may underlie the molecular processes that explain poor prognosis in detected
cluster [43]. Moreover, in our study, the poor prognosis properties can be influenced by the low
activity of SLC1A2 belonging to the organic-anion-transporting polypeptide (OATP) family, because it
is responsible for transport of anticancer drugs (e.g., methotrexate used in chemotherapy) [44] and
overall uptake of. Similarly, low expression of OAT2 was reported to influence a poor response
to antitumor UFT-based chemotherapy in colorectal cancer patients [45]. Loss of PRODH2 was
also reported in cancer [46], however no links with cancer prognostics were reported. The above
summary may constitute an introductory justification for the possible existence of the poor prognosis
cluster in RCC mainly conditioned by the chemoresistance dictated by the activity of its potential
biomarker genes.

4. Discussion and Further Research

Concluding, in our article we recall an important yet barely discussed data analysis and
integration problem of the two-fold nature. Using the TCGA datasets and the metabolic network
model we presented how the bioinformatical and statistical data analysis may lead to outwardly
interesting biological and medical observations, which may be justified by the literature reports.
However, not only do we prove that these observations are the inevitable consequence of the model
assumptions (as genetic rules induce clusters artificially), but also we show that these assumptions
conceal the current state of knowledge about cell metabolism, as many discovery claims may testify.

We believe that the identified problem is important enough to look at alternative approaches
and verify if they are not exposed to the similar obstacle. However, as it was already mentioned,
there is a strong evidence that the problem highlighted in this work may be present in other researches
that dealt with the analysis of the FBA outcome. The reason, even though is very subtle, is related
to the linearity of the solving method applied to the non-linear topology of the problem support.
In particular, the existence of internally strongly connected sub-graphs that are loosely connected with
their neighbouring vertices influences the graph flow approaches. The metabolic information cannot be
flawlessly passed on between reactions and thus interferenced by particular information-flow blockers.
Here, we briefly discuss several alternative approaches as an extension to the literature overview
presented in the Introduction.

To the scope of the traditional linear programming approach to solve the FBA problem we add
what Lee et al. proposed in their work. The redefinition of the main objective function as well as
an emphasis put on the more informative nature of absolute gene expression measurements provided
by RNA-seq data was presented. Authors set an optimization problem to maximize the correlation
between an observed transcriptomic profile and levels of reactions fluxes, that is solved using the
MILP solver. Authors provide a case study based on estimation of exometabolic flux in Saccharomyces
cerevisiae and show that their method outperforms the traditional approach upon maximisation of the
rate of biomass production.

Additionally, there is also a bunch of approaches that extends the approach to the FBA problems
onto the field of Bayesian statistics. One example of an extension of the FBA via Bayesian factor
modeling was suggested by Angione et al. [47]. The extension bases on an assumption that
high-dimensional data are generated from the hidden lower-dimensional factors that are shared across
data samples. As a consequence, as a first step authors solve the bi-level FBA problem, which extends
the standard problem by interdependencies among enzymes and genetic rules coordinating metabolic
reactions. Next, Bayesian matrix factorization modeling with Gaussian Markov random field is
incorporated to perform pathway analysis that takes into account reaction-pathway memberships as
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prior knowledge. Using an metabolic model of Escherichia coli authors present how their model tracks
changes in pathway responsiveness for variuos experimental conditions.

Lately, in [48] authors presented an approach that results in flux posterior represented as
an unimodal truncated multivariate normal (TMVN) distribution. Using a MCMC Gibbs sampler
implemented in Matlab a group of in-silico experiments was performed to highlight the capabilities
of the model. The presented approach allows to characterize the genome-scale flux covariances,
reveal flux couplings, and determine genome-scale number of intracellular unobserved fluxes in
Clostridium acetobutylicum from 13C data based on a small set of intracellular flux measurements.

Interestingly, the problem of flux estimation was also approached from the perspective of the
thermodynamic analysis. Zhu et al. introduce a novel, two-step optimization method termed as
thermodynamic optimum searching [49]. First, the original FBA is used to determine the maximum
growth rate. Then, the most thermodynamically favored solution is acquired by solving a nonlinear
optimization problem in which the growth rate is fixed to the maximum. The later aim is achieved
by maximizing the entropy production rate while minimizing energy usage and deviation from the
second law of thermodynamics related to the the minimum magnitude of the Gibbs free energy change
and the maximum entropy production principle. The method is supported with five E. Coli case studies
presenting the improved accuracy of predictions compared to the standard FBA.

What should be emphasized here is that none of the recalled articles mentioned any observation
on the relationship between the structure of the metabolic network and their final outcome.
Additionally, an alarming fact is the use of methods such as the categorization of the transcriptomic
signal, linear (or semi-linear) methods of solving the flow problem, binarization of data and their
interpretation based by clustering. All of these observations allow the reader to ask if any control for
artifacts was performed. In order to compare the methods, approaches, objectives of all the mentioned
works in this article a table summary is provided in the Appendix A.

To conclude, the future directions in which we would like to conduct this research include
incorporating other metabolic networks for the landscape analysis, but also improved adjustment
methods, that would define and take into account the confidence of the reaction. One idea in
that direction, would be to incorporate some experimental validations from the literature reports.
Ideally, we would like to reach the gold standard using measurements from the 13C-fluxomics
technology, where metabolic precursors enriched with 13C and quantified by mass spectrometry
or NMR [50,51], as well as from transcriptomic assays. However, such data has so far been collected
for relatively small systems, e.g., single pathways [52] or other simple organisms [53], while our
amendment concerns the whole human cell metabolism. Another option is to take into account the
entropy-based approach and propose a sample-specific adjustment method. Finally, we also suggest
defining a probability of reaction activity, that may be introduced instead of currently considered
binary activity state. This would allow to make use of the continuous information included in the
expression data, rather than reduced binary signal. We believe that these improvements may lead
to better understanding of cancer biology and phenotype resulting from the observed differences in
metabolic activity.
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Abbreviations

The following abbreviations are used in this manuscript:

ATP Adenosine Triphosphate
ChRCC Chromophobe Renal Cell Carcinoma
DAVID Database for Annotation, Visualization, and Integrated Discovery
DNF Disjunctive Normal Form
FBA Flux Balance Analysis
LP Linear Programming
MCMC Markov Chain Monte Carlo
MILP Mixed-Integer Linear Programming
PCA Principal Components Analysis
RCC Renal Cell Carcinoma
RNA Ribonucleic Acid
TCGA The Cancer Genome Atlas
TMVN Truncated Multivariate Normal

Appendix A

A literature search of articles was conducted, and Table A1 summarizes and compares the
literature and research that was related to the FBA problem and integration of the transcriptomic and
metabolic knowledge. Let us emphasize that nearly each objective in the presented works is related to
detection of activation profiles. Yet, artifact detection is not considered in any of the articles.
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Table A1. Summary of the literature related to the problem of integrating the transcriptomic and metabolomic in the context of the flux balance analysis (FBA)
problem.

Author Approach Software Data Used Objective Problem Size

Leoncikas et al.
(2016) [20] MILP R(−) microarray detection

p-value
activity of flux states in

a network
3311 reactions, 2766

metabolites, 2004 genes

Li et al.
(2010) [21] reduced MILP Matlab(−)

gene expression of
NCI-60 cancer cell

lines

reaction flux and activity for
all the reactions

3742 reactions, 2766
metabolites, 1905 genes

Wang et al.
(2012) [13]

Model Building
Algorithm Matlab(+) gene expression or

literature evidence activity for all the reactions 3311 reactions, 2766
metabolites, 2004 genes

Marín de Mas et
al. (2018) [22] MILP FASIMU(+) microarray

transcriptomic data activity for all the reactions 3311 reactions, 2766
metabolites, 2004 genes

Mhamdi et al.
(2020) [54] Bayesian - RNA-seq data prediction of the biomass

production
4008 reactions, 3292

metabolites

St. John P. C. et al.
(2019) [55] Bayesian Python(+)

metabolite, boundary
flux, enzyme

measurements [56]

infer posterior distributions
in kinetic parameters of

a metabolic network

203 metabolites, 240
reactions

Heinonen et al.
(2019) [48] Bayesian Matlab(+) metabolic networks find posterior probabilities

of fluxes states in a network 4388 reactions, 2936 genes

Angione et al.
(2015) [47] semi- Bayesian Matlab(+) microarray

expression profiles

detect pathway
cross-correlations and

predict metabolic pathway
activation profiles

2583 reactions, 466 genes

Heino et al.
(2007) [57] Bayesian Matlab(−)

ischemic biopsy
data [58]

find posterior probabilities
of fluxes states in a network 26 reactions, 53 metabolites
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