
 
 

Entropy 2020, 22, 1239; doi:10.3390/e22111239 www.mdpi.com/journal/entropy 

Article 

Training Multilayer Perceptron with Genetic 

Algorithms and Particle Swarm Optimization for 

Modeling Stock Price Index Prediction 

Fatih Ecer 1, Sina Ardabili 2,3, Shahab S. Band 4 and Amir Mosavi 5,6,7,* 

1 Department of Business Administration, Afyon Kocatepe University, 03030 Afyonkarahisar, Turkey; 

fecer@aku.edu.tr  
2 Biosystem Engineering Department, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran; 

s.ardabili@ieee.org  
3 Kando Kalman Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary 
4 Future Technology Research Center, College of Future, National Yunlin University of Science and 

Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan; 

shamshirbands@yuntech.edu.tw  
5 Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany 
6 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 
7 School of Economics and Business, Norwegian University of Life Sciences, 1430 As, Norway 

* Correspondence: amir.mosavi@mailbox.tu-dresden.de or amirhoseinmosavi@duytan.edu.vn 

Received: 22 August 2020; Accepted: 28 October 2020; Published: 31 October 2020 

Abstract: Predicting stock market (SM) trends is an issue of great interest among researchers, 

investors and traders since the successful prediction of SMs’ direction may promise various benefits. 

Because of the fairly nonlinear nature of the historical data, accurate estimation of the SM direction 

is a rather challenging issue. The aim of this study is to present a novel machine learning (ML) model 

to forecast the movement of the Borsa Istanbul (BIST) 100 index. Modeling was performed by 

multilayer perceptron–genetic algorithms (MLP–GA) and multilayer perceptron–particle swarm 

optimization (MLP–PSO) in two scenarios considering Tanh (x) and the default Gaussian function 

as the output function. The historical financial time series data utilized in this research is from 1996 

to 2020, consisting of nine technical indicators. Results are assessed using Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE) and correlation coefficient values to compare the 

accuracy and performance of the developed models. Based on the results, the involvement of the 

Tanh (x) as the output function, improved the accuracy of models compared with the default 

Gaussian function, significantly. MLP–PSO with population size 125, followed by MLP–GA with 

population size 50, provided higher accuracy for testing, reporting RMSE of 0.732583 and 0.733063, 

MAPE of 28.16%, 29.09% and correlation coefficient of 0.694 and 0.695, respectively. According to 

the results, using the hybrid ML method could successfully improve the prediction accuracy. 

Keywords: stock market; machine learning; multilayer perceptron; financial data; artificial 

intelligence; artificial neural networks; online trading; big data; social science data; evolutionary 

algorithms; optimization  

 

1. Introduction 

Accurately predicting the stock market (SM) index direction has frequently been a topic of great 

interest for many researchers, economists, traders and financial analysts [1]. Nonetheless, the SM field 

is neither static nor predictable. In fact, SM trends are sensitive to both external and internal drivers. 
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Thus, SM index movement estimation can be categorized under complex systems [2]. Stock price 

movement is often interpreted as the direction of stock price and used for prediction. Determining 

the future direction of stock price movement is of utmost importance to investors to evaluate the 

market risks. Predicting direction of stock price movement has been seen as a challenging and 

complex task to model [3]. Complex system is a framework to work how a system’s sub-categories 

interact with each other and how the whole system interacts and manages relationships with its 

environment. Whereas modeling such complex systems, challenges have encountered during 

constructing a reliable and effective technique and deciding its architecture [4]. 

Stock price movement forecasting is a compelling task because of the high volatility, anomaly 

and noisy signal in the SMs’ area. Over the past two decades, this topic has attracted the attention of 

researchers in different fields, particularly artificial intelligence [5]. Stock prices are nonlinear with 

regard to historical data and other technical and macroeconomic indicators [6]. Many researchers 

often preferred to use time-series analyses which is utilized to estimate future events according to 

historical data before the capabilities of neural networks were discovered. Autoregressive integrated 

moving average (ARIMA), autoregressive conditional heteroskedasticity (ARCH) model and 

Generalized autoregressive conditional heteroskedasticity (GARCH) model, support vector machine 

(SVM) are among the best-known models among the methodologies [7]. Moreover, regression 

analysis and artificial neural networks (ANNs) have frequently been used for forecasting and 

classification in order to cope with these nonlinear relationships [7–10]. Systems that utilize technical 

analysis, across expert systems, hybrid systems and various types of computational intelligence have 

as well been suggested [11–13]. Interests of researchers continue to increase for applying different 

types of artificial intelligence to forecast SM index direction. Due to the nonlinear structures of the 

problems, the prediction approaches are typically highly complex, meanly needing to develop 

efficient solution methods for such models. Technical analysts work with many data, technical tools 

and especially technical indicators to decide price trends and market trends on the basis of price and 

volume conversions in the market [14]. In light of existing literature, several technical indicators have 

been preferred as input data in the creating of forecasting methodologies to predict the direction of a 

SM index [15–22]. Cervelló Royo and Guijarro, 2019 employed four ML based prediction methods 

including gradient boosting machines (GBM), random forest (RF), generalized linear models (GLM) 

and deep learning (DL) for to address the estimation of market trends as a comparison analysis by 

accuracy rate (%) [23].  

In several studies, technical indicators are used as input data. The trend was to identify novel 

methods that provide the highest accuracy for the classification methods in the index direction 

prediction. When we provide real-valued technical indicators as inputs to the models, forecasting 

techniques to be classified in accordance with the values of technical indicators are created [15,20]. 

When technical indicators are utilized, the prediction models consider each indicator as input data, 

regardless of the index being considered [7]. The studies in which the methods that deal with 

technical indicators as input data are used in the index direction prediction constitute the framework 

of this study. Estimating the BIST 100 index’s direction is a significant financial issue that has carefully 

monitored in financial markets around the world [24,25]. In this context, this research aims to predict 

stock price movement direction through an integrated multilayer perceptron methodology. More 

specifically, two novel models, i.e., multilayer perceptron–genetic algorithms (MLP–GA) and 

multilayer–particle swarm optimization (MLP–PSO) with Tanh (x) as the output function, have been 

proposed and applied for prediction compared with the default Gaussian function. Thus, it is 

intended to fill a gap in SM direction prediction literature. PSO has been employed by researchers for 

the prediction of stock market. Lahmiri, 2018 developed spectrum analysis and support vector 

regression integrated with PSO to estimate the stock price using time series data [26]. Pulido et al., 

2014 employed PSO for the optimization of a hybrid ANN–Fuzzy model for the prediction of Mexican 

Stock Exchange [27]. Lahmiri, 2016 employed PSO for the optimization of the architecture of a feed 

forward neural network in the prediction of stock market [28]. 
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The rest of this research is organized as follows: The next section reviews the relevant literature. 

Section 3 deals with the research methodology. The results are given in Section 4, while the findings 

are discussed in Section 5. The conclusions are presented in the final section. 

2. Literature Review 

In recent years, there have been a great deal of papers investigating the direction of the next day 

trends of SMs. Academicians and traders have made enormous efforts to forecast the next day trends 

of SM index for translating the predictions into profits (Kara et al., 2011). In this section, we focus the 

review of methods and technical indicators utilized for forecasting of direction movement of stock 

index. As shown in Table 1, an ANN model was used in some of the studies [18,25,29,30], whilst 

hybrid models were preferred in other studies [17,21,31–33] as displayed in Table 2. In Table 1. the 

notable algorithms are back-propagation neural network (BPNN), independent component analysis- 

BPNN (ICA–BPNN), Naive Bayes (NB), and k-nearest neighbors algorithm (k-NN).  

Table 1. Stock market index direction forecasting with machine learning considering comparative 

analysis involving ANN-based methods  

References Method/s Application/Data Result 

[15] ANN, ARIMA KLCI (1984–1991) ANN outperformed ARIMA model 

[16] SVM, BPNN KOSPI (1989–1998) SVM outperformed ANN 

[32] 
ICA–BPNN, 

BPNN  
TAIEX (2003–2006) ICA–BPNN is superior 

[17] ANN, NB, DT BSE (2003–2010) Hybrid RSs outperformed ANN 

[34] PNN, SVM S&P 500 (2000–2008) PNN provided high accuracy 

[24] ANN, SVM BIST 100 (1997–2007) 75% accuracy using ANN. 

[29] ANN TEPIX (2002–2009) ANN showed promising results 

[35] ANN, GA TEPIX (2000–2008) ANN delivered next day estimates  

[25] ANN BIST 100 (2002–2007) ANN achieved success with 82.7% 

[36] SVM, ANN IBEX-35 (1990–2010) SVM outperformed ANN 

[37] k-NN, PNN S&P 500 (2003–2008) k-NN outperformed PNN. 

[18] ANN 
BOVESPA (2000–

2011) 
ANN suitable for direction estimation 

[38] LSSVM, PNN,  CSI 300 (2005–2012) LSSVM outperformed other models  

[39] 
Random walk, 

ANN, SVM, fuzzy  

BSE-SENSEX (2011–

2012) 

The fuzzy metagraph-based model 

has reached a classification rate of 

75%. 

[40] ANN, RF, k-NN 
Amadeus (2009–

2010) 
RF outperformed ANN 

[20] NB, ANN, SVM 
CNX Nifty (2003–

2012) 
NB outperformed other models 

[41] 
DWT, ANN, SVM–

MLP 

DJIA-S&P500 (2000–

2012) 
SVM–MLP is superior  

[42] 
Probit, Logit, 

Extreme Value 
S&P 500 (2011–2015) 

Extreme Value outperfomed Logit 

and Probit. 

[7] PSO–ANN 
S&P 500, IXIC (2008–

2010) 
Acceptable prediction and robustness  

[43] RF & ANN S&P 500 (2009–2017) RF outperformed ANN 

[44] Hybrid fuzzy NN DAX-30 (1999–2017) minimum risky strategies 

[45] GA, SVM, ANN 
BM&FBOVESPA 

PETR4 (1999–2017) 
SVM performed better than ANN. 
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Table 2. Stock market index direction studies using methods other than ANNs. 

Author/s Method/s Application Result 

[31] 
GA–SVM, random walk, 

SVM, ARIMA, BPNN 

S&P 500 (2000–

2004) 

GA–SVM has been shown to 

outperform other models. 

[14] 

Fuzzy sets, physical, 

support vector 

regression, partial least 

squares regression 

TAIEX and HIS 

(1998–2006) 

Their proposed models 

outperform the compared models 

according to the RMSE. 

[46] Random forest 
CROBEX (2008–

2013) 

Random forests can be 

successfully preferred to estimate. 

[19] 
Fuzzy rule-based expert 

system 

Apple company 

(2010–2014) 

The fuzzy expert system has 

significant performance with 

minimal error. 

[21] GMM–SVM  
Indonesia ASII.JK 

(2000–2017) 

The GMM–SVM model has been 

found to be superior to other 

models. 

[47] Bayesian network 
iBOVESPA (2005–

2012) 

Mean accuracy with the proposed 

model configuration was almost 

71%. 

[48] 
TOPSIS, SVM, NB, 

Decision tree, kNN 

BSE SENSEX, 

S&P500 (2015–2017) 

While SVM model performs better 

in BSE SENSEX index, k-NN is 

superior to other models in S&P 

500 index. 

[22] ANFIS 
Apple stock data 

(2005–2015) 

The proposed method 

outperformed the existing 

methods. 

[49] RKELM 
BSE, HIS, FTSE 

(2010–2015) 

They proved the superiority of the 

RKELM model over the ANN, 

naive Bayes and SVM. 

[3] Mean Profit Rate (MPR) 

DJIA, S&P500, HSI, 

Nikkei 225, SSE 

(2007–2017) 

MPR is an effective classifier. 

Table 1 summarizes several machine learning methods proposed for stock exchange index 

direction prediction. The most popular methods are RF, SVM and ANN, followed by k-NN and NB, 

with dissimilar accuracy outcomes. The state of the art shows a research gap in using hybrid models.  

Table 2 summarizes the notable machine learning models. Hybrid models of the SVM trained 

with simple evolutionary algorithms such as GA have been the most popular. The state of the art of 

hybrid models shows a research gap in using more sophisticated machine learning models trained 

with advanced soft computing techniques. 

Technical Indicators 

As mentioned above, technical indicators have been useful and effective financial instruments 

for estimating direction of stock price index for years. Technical indicators used for SM direction 

prediction from past to present can be seen in Table 3. 
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Table 3. Technical indicators used in SM direction estimation. 

Author/s Technical Indicators 

[15] 
Simple moving average (SMA), stochastic K (%K), momentum (MOM), stochastic D 

(%D), relative strength index (RSI)  

[16] 

Slow D%, MOM, rate of change (ROC), K%, Larry William’s R% (%R), 

Accumulation/Distribution (A/D) oscillator, disparity5, RSI, disparity10, price 

oscillator (OSCP), D%, Commodity Channel Index (CCI)  

[31] 

OSCP, Stochastic oscillator (SO), Slow stochastic oscillator (SSO), CCI, ROC, MOM, 

SMA, Moving variance (MV), Moving variance ratio (MVR), Exponential moving 

average (EMA), Moving average convergence and divergence (MACD), A/D 

oscillator, Price (P), disparity5, disparity10, Moving stochastic oscillator (MSO), RSI, 

linear regression line (LRL) 

[32] 
The previous day’s cash market high, low, volume, 6-day RSI, today’s opening cash 

index, 10-day total amount weighted stock price index 

[17] 
%K, Positive volume index, %R, negative volume index, %D, on balance volume, RSI, 

MACD, MOM, A/D oscillator, 25-day SMA 

[34] SMA, OSCP, MOM, %D, ROC, disparity, %K 

[29] 
MACD, SMA, %R, CCI, A/D oscillator, %D, weighted moving average (WMA), RSI, 

MOM, %K 

[24] %D, %K, RSI, MOM, MACD, WMA, %R, A/D oscillator, SMA, CCI 

[35] SMA, MACD, RSI, OSCP, MOM, volume. 

[18] MACD, RSI, %D, SMA, Bollinger band, MOM, %R 

[14] 
SMA for 5 days, SMA for 10 days, bias to moving average (BIAS), RSI, psychological 

line (PSY), %R, MACD, MOM 

[38] %K, %R, %D, CCI, A/D oscillator, MOM, MACD, RSI, SMA and WMA. 

[39] MA, exponential moving average (EMA), MACD, RSI  

[19] High price, low price, volume, change of closed price, MACD, MA, BIAS, RSI, %R. 

[20] %D, RSI, WMA, MACD, CCI, A/D oscillator, %K, %R, SMA 

[46] 
5-day SMA, 5-day WMA, 10-day SMA, 10-day WMA, %K, %D, MACD, CCI, 5-day 

disparity, 10-day disparity, OSCP, ROC, MOM, RSI, 5-day standard deviation 

[41] SMA, EMA, A/D oscillator, %K, RSI, OSCP, closing price, maximum price 

[42] SMA, WMA, MOM, %K, %D, %R, RSI, MACD 

[7] 
Change of price, change of volume, 5-day SMA, 10-day SMA, 30-day SMA, moving 

price level (30 days), moving price level (120 days), percentage price oscillator 

[21] 
A/D oscillator, mean of rising days, CCI, SMA, MACD, MOM, on balance volume, 

ratio of rising days, RSI, %R 

[44] 
Triangular moving average (TMA), RSI, SMA, EMA, modified moving averages 

(MMA), volatility ratio (VR), %R, true strength index (TSI), average true range (ATR)  

[48] SMA, %K, %D, %R, MACD, RSI 

[45] SMA, WMA, MOM, RSI 

[22] 1-week SMA, 2-week SMA, 14-day disparity, R%. 

[3] %D, %K, RSI, MOM, MACD, WMA, %R, A/D oscillator, SMA, CCI. 

[49] SMA, MACD, %K, %D, RSI, %R 

In summary, MACD, %K, %D, RSI, %R, A/D, MOM, EMA, CCI, OSCP and SMA are the technical 

indicators that are frequently preferred by researchers. Furthermore, ANN and its extensions (MLP, 

PNN, etc.) are the most used methods. As far as the authors know, MLP–GA and MLP–PSO 

methodologies with and without Tanh (x) as the output function have not been proposed to forecast 

stock exchange movement prediction for any stock exchange in the literature. As a result, it is 

anticipated that this paper will constitute a significant contribution to the related field. 
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3. Materials and Methods 

3.1. Data 

As shown in Table 4, nine technical indicators for each trading day were utilized as input data. 

Plenty of investors and traders handle certain criteria for technical indicators. A great deal of technical 

indicators is available. As already mentioned above, technical indicators have often been considered 

as input variables in the construction of forecasting systems for estimating the trend of movement of 

SM index [24]. As a result, we determined nine technical indicators by previous studies and the 

opinion of area experts. 

Table 4. Selected technical indicators. 

Technical Indicators Abbreviation Formulas 

Simple n (10 here)-

day Moving Average 
SMA 𝑆𝑀𝐴 =

𝐶𝑡 + 𝐶𝑡−1 + ⋯ + 𝐶𝑡−𝑛

𝑛
 

Simple n (10 here)-

day Moving Average 
WMA 𝑊𝑀𝐴 =

10 × 𝐶𝑡 + 9 × 𝐶𝑡−1 + ⋯ + 𝐶1

𝑛 + (𝑛 − 1) + ⋯ + 1
 

Momentum MOM 𝑀𝑂𝑀 = 𝐶𝑡 − 𝐶𝑡−9 

Stochastic D% STOCH 𝑆𝑡𝑜𝑘𝑎𝑠𝑡𝑖𝑘%𝐷 =
∑ 𝐾𝑡−𝑖

𝑛−1
𝑖=0

10
% 

Relative Strength 

Index 
RSI 𝑅𝑆𝐼 = 100 −

100

1 + (∑ 𝑈𝑃𝑡−𝑖/𝑛)/(∑ 𝐷𝑊𝑡−𝑖/𝑛)𝑛−1
𝑖=0

𝑛−1
𝑖=0

 

Moving Average 

Convergence 

Divergence 

MACD 
𝑀𝐴𝐶𝐷 = 𝑀𝐴𝐶𝐷(𝑛)𝑡−1 +

2

𝑛 + 1
× (𝐷𝐼𝐹𝐹𝑡

− 𝑀𝐴𝐶𝐷(𝑛)𝑡−1) 

Larry William’s R% LWR 𝑊𝑖𝑙𝑙𝑖𝑎𝑚′𝑠%𝑅 =
𝐻𝑛 − 𝐶𝑡

𝐻𝑛 − 𝐿𝑛
× 100 

Accumulation/Distri

bution Oscillator 
A/D 𝐴/𝐷 =

𝐻𝑡 − 𝐶𝑡−1

𝐻𝑡 − 𝐿𝑡
 

Commodity Channel 

Index 
CCI 𝐶𝐶𝐼 =

𝑀𝑡 − 𝑆𝑀𝑡

0.015𝐷𝑡
 

Ct is the closing price, Lt the low price, Ht the high price at time t, DIFF: EMA(12)t- EMA(26)t, EMA 

exponential moving average, 𝐸𝑀𝐴 = 𝑎 × 𝑥𝑡 + (1 − 𝑎) × 𝑥𝑡−𝑚,  smoothing factor: 2/(1 + k), k is time 

period of k day exponential moving average, LLt and HHt mean lowest low and highest high in the 

last t days, respectively, Mt: (Ht+Lt+Ct)/3; 𝑆𝑀𝑡: (∑ 𝑀𝑡−𝑖+1
𝑛
𝑖=1 𝑛⁄ ) , 𝐷𝑡 = (∑ |𝑀𝑡−𝑖+1 − 𝑆𝑀𝑡|𝑛

𝑖=1 ) 𝑛⁄ , Upt 

means the upward price change, Dwt means the downward price change at time t. 

The input variables utilized in this work are technical indicators described in Table 4 and the 

direction of change in the daily Borsa Istanbul (BIST 100) SM index. The entire data contains the 

period from 28 March 1996 to 7 February 2020, providing a total of 5968 trading day observations. 

Furthermore, information about opening and closing price is available for each trading day. The 

number of entire data with decreasing direction is 2827 (47.36%), whereas the number of entire data 

with increasing direction is 3141 (52.64%). All the data were obtained from Matriks Information 

Delivery Services Inc. (https://www.matriksdata.com). 

3.2. Methods 

3.2.1. Multilayer Perceptron (MLP) 

The architecture of ANN is based on connections of layers by nodes called neurons as well as 

the biological neurons of brain [50]. Each path transmits a signal among neurons in a manner similar 

to that of synapses [51]. MLP, as a feedforward ANN, contains three main parts: one input layer, one 

or more hidden layers and one output layer, which can be successfully employed for prediction, 

classification, signal processing and error filtering [52]. Each node employs one nonlinear function. 
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MLP employs backpropagation learning algorithm for training process [53,54]. MLP as popular and 

frequently used techniques among other MLPs was employed to predict the direction value. MLP 

was developed by the use of MATLAB software. Figure 1 indicates the architecture of developed 

network. Initially, the network divided data into two sets of training data (with a share of 80%) and 

testing data (with a share of 20%) randomly. In the first step of the training process, training to find 

the optimum number of neurons in the hidden layer. In each training process, Mean Square Error 

(MSE) was computed as the performance function. 

Direction

Input layer

Hidden layer
SMA

MOM

WMA

STOCH

RSI

MACD

LWR

A/D

CCI

Hidden layer

Tanh(x)

 

Figure 1. The architecture of MLP. 

Genetic algorithm (GA) and particle swarm optimization (PSO), as evolutionary algorithms, 

have been employed to train the neural network. This approach of hybridization of ANN has a lot of 

advantages such as increasing the accuracy of ANN by updating the weights and bias values using 

GA and PSO [55,56]. The aim of this study is to estimate the weights of hidden and output layers of 

an ANN architecture using GA and PSO during a convergence and accurate estimation process to 

generate accurate results, and, on the other hand, to control the deviation from target point in such a 

way that it prevents deviation and large errors even in different performances. However, the neural 

network needs to be left alone due to the random selection of a sample in order to arrive at an answer 

with appropriate accuracy. Therefore, this can be attributed to the stability and reliability of the 

neural network through GA and PSO. 

3.2.2. Genetic Algorithm (GA) 

GA is a subset of approximation techniques in computer science to estimate a proper solution 

for optimization problems. GA is a type of evolutionary algorithm (EA) that employs biological 

techniques such as heredity and mutations [57,58]. The hypothesis begins with a completely random 

population and continues for generations. In each generation, the total population capacity is 

assessed, several individuals are selected in a random process from the current generation (based on 

competencies) and modified (deducted or re-combined) to form a new generation, and the next 

repetition of the algorithm becomes the current generation [59–61]. 

The optimization process in the genetic algorithm is based on a randomly guided process. This 

method is based on Darwin’s theory of gradual evolution and fundamental ideas. In this method, a 

set of objective parameters is randomly generated for a fixed number of so-called populations. Or the 

fit of that set of information is attributed to that member of that population [62–64]. This process is 

repeated for each of the created members, then formed by calling the operators of the genetic 

algorithm, including mutation and next-generation selection, and this process will continue until the 

convergence criterion is met [59,65]. There are three common criteria for stopping: Algorithm 

execution time, the number of generations that are created and the convergence of the error criterion. 
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The process of implementing GA, which is the basis of evolutionary algorithms, is presented in Figure 

2. which is adapted and regenerated from [66].  

Parents

Generation

Evaluation

Population

Evaluation

Initialization

End

Evaluation

Choosing 
Parents

 

Figure 2. The implementation process of GA  

The main components of the Genetic algorithm include: representation of the environment, 

evaluation function, Population (set of answers), the process of choosing parents, Operators of 

Diversity (Generation), The process of selecting the living (choosing the best population to build the 

next generation) and stop condition. Genetic organization determines how each person displays 

themselves and behaves, and their physical quality. Differences in genetic organization are one of the 

criteria for distinguishing between different methods of evolutionary computation. The genetic 

algorithm uses linear binary organization. The most standard type of this organization is the use of 

an array of bits. Of course, an array of other types of data can also be used. This is due to their constant 

size. This facilitates integration operations [61,67,68]. However, it is possible to use variable length 

structures in organizing GA, which makes the implementation of integration very complex. 

In this research, the genetic algorithm was utilized to find the optimal point of complex 

nonlinear functions in integrating with the artificial neural network. Genetic algorithms optimize 

artificial neural network weights and bias values. In fact, the objective function of the genetic 

algorithm is a function of the statistical results of the MLP. To train, the P number of population of 

each generation, MLP was randomly initialized and the error rate was calculated using training data. 

In the next step, the network characteristics were updated according to the input and output values. 

The training process of the algorithm was repeated until the network features improved, taking into 

account the newly population. In the last step, the output gathered from the network execution was 

compared with the actual values and the model execution finished by minimizing the difference 

between the two values. Figure 3 presents the flowchart of the MLP–GA algorithm. Table 5 presents 

the setting parameters for GA. 

Table 5. The characteristics of the MLP–GA. 

Input Neuron 9 

Hidden layer 2 

Hidden layer activation function Logsig 

Output layer activation function Gaussian, Tanh (x) 

Pop. type Double vector 

Pop. size 50, 100 and 150 

Crossover function Scattered  

Crossover fraction 0.8 

Selection function Uniform  

Migration interval 10 

Migration fraction 0.2 
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Direction

Input layer

Hidden layer
SMA

MOM

WMA

STOCH

RSI

MACD

LWR

A/D

CCI

Hidden layer

Tanh(x) Fitness function

GA

Organized 

connection weights

Cross-over 
mutation

 

Figure 3. The flowchart of the MLP–GA algorithm. 

3.2.3. Particle Swarm Optimization (PSO) 

PSO is a popular and robust optimization method to deal with problems in the n-dimensional 

space. The PSO is a mass search algorithm that is modeled on the social behavior of bird groups. 

Initially, the algorithm was employed for pattern detection of flight of birds at the same time and to 

suddenly change their path and optimize the shape of the handle. In PSO, particles flow in the search 

space which is affected by their experience and knowledge of their neighbors; thus the position of 

another particle mass affects how a particle is searched. Results of recognition of this behavior is the 

searching for particles to reach successful areas. The particles follow each other and move towards 

their best neighbors. In PSO particles are regulated throughout their neighborhood [69–72]. 

At the beginning of the work, a group of particles are produced to reach the best solution. Each 

particle is updated through the finest position (pbest) and the finest position ever obtained by the 

particle population used by the algorithm (gbest) in each step, which is presented in Figure 4 based 

on an adaptation from [73–77]. Updating the velocity and location of each particle is the next step 

after finding the best values, Equations (1) and (2): 

𝑣(𝑡 + 1) = 𝑣(𝑡) + 𝑐1 × 𝑟𝑎𝑛𝑑(𝑡) × (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡)

− 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)) 

(1) 

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡 + 1) = 𝑣(𝑡 + 1) + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡) (2) 
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Figure 4. The performance of PSO  
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Equation (1) has three parts in the right side, current particle velocity 𝑣(𝑡), the second part 

𝑐1 × 𝑟𝑎𝑛𝑑(𝑡) × (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)) and third part 𝑐2 × 𝑟𝑎𝑛𝑑(𝑡) × (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑡)) are 

responsible for the rate of change of particle velocity and its direction towards the best personal 

experience (nostalgia) and the finest experience of the group (collective intelligence). If the first part 

is not considered in this equation 𝑣(𝑡), then the velocity of the particles is determined according to 

the current position and the best particle experience, and in practice the effect of the current velocity 

and its inertia is eliminated. Accordingly, the best particle in the group stays in place, and the others 

move toward that particle. In fact, the mass movement of particles without the first part of Equation 

(1) will be a process in which the search space gradually shrinks and local search is formed around 

the best particle. The parameters c1 and c2 (the value is about 2) determine the importance and weight 

of collective intelligence and nostalgia [74–76]. As for the condition of stopping, the following ways 

are available: 

• A certain number of repetitions, 

• Achieve a decent threshold, 

• A number of repetitions that do not change the competence (for example, if after 10 repetitions 

the competency was constant and did not improve), 

• The last way is based on the aggregation density around the optimal point. 

One of the advantages of PSO over GA is the simplicity and its low parameters. Selecting the 

best values for the cognitive and social component leads to accelerating the algorithm and preventing 

premature convergence occurs locally at optimal points. In PSO optimization, the proposed variables 

are included in the training of a neural network, including network weights and bias. The process is 

as follows: First, N vector of position Xi, which N is equal to the number of members of the category, 

is generated randomly. The neural network is executed according to the parameters equal to the 

variables of these vectors and the error obtained from each run is considered as the degree of fit of 

the variable vector of that network. This process is repeated till the final convergence is achieved. The 

ultimate convergence is to achieve the optimal position vector (values of optimal weights and bias) 

so that the training error is minimized. So the objective function in this optimization need to be 

minimized as the amount of error Forecast [78–80]. Table 6 presents the setting values of the MLP–

PSO. 

Table 6. The characteristics of the MLP–PSO. 

Input Neuron 9 

Hidden layer 2 

Hidden layer activation function logsig 

Output layer activation function Gaussian, Tanh (x) 

Number of Max. Iteration 500 

Pop. size 50, 75, 100 and 125 

c1 2 

c2 2 

3.3.4. Training Phase 

Training process categorized into two main steps. First is to select the best architecture of the 

ANN, the second is to integrate MLP with optimizers. Therefore, training was developed with 10 to 

19 neurons in the first hidden layer and 2 neurons in the second hidden layer with the 80 percent of 

total data, according to Table 7. MLP models called as Models 1–6. After this process, MLP was 

integrated with GA using population size 50, 100 and 150 (models 7–9, respectively) and PSO using 

particle size 50, 75, 100 and 125 (models 10–13, respectively). Training was performed into two 

scenarios, with Tanh (x) as the output function and with Gaussian function as the default function. 
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Table 7. The description of the developed models. 

Model 1 MLP (9-10-2-1) Model 8 MLP–GA (100) 

Model 2 MLP (9-12-2-1) Model 9 MLP–GA (150) 

Model 3 MLP (9-14-2-1) Model 10 MLP–PSO (50) 

Model 4 MLP (9-15-2-1) Model 11 MLP–PSO (75) 

Model 5 MLP (9-17-2-1) Model 12 MLP–PSO (100) 

Model 6 MLP (9-19-2-1) Model 13 MLP–PSO (125) 

Model 7 MLP–GA (50)   

Figure 5 indicates a sample of the training process with MLP–GA which is extracted from the 

training process. The rest of data (20 percent) was employed in testing process. 

 

Figure 5. MLP–GA training process. 

3.3.5. Evaluation Metrics 

Table 8 presents evaluation criteria which compares predicted and output values. These 

equations are metrics for indicating the performance of models in predicting the target values as the 

model output values. In fact, this metrics compares the output of models and target values to 

calculate a value for indicating the accuracy of models [51,56,81]. 

Table 8. Model Evaluation metrics. 

Accuracy and Performance Index Description 

Correlation coefficient= 
𝑁 ∑ (𝑋 

 𝑌) −∑ (𝑋 
 ) ∑ (  𝑌) 

√[𝑁 ∑ 𝑋2 
 −(∑ 𝑋 

 ) 2][𝑁 ∑ 𝑋2 
 −(∑ 𝑋𝑌 

 ) 2] 
 
 

N: Number of Data  

X: Target value 

Y: Output value. 
MAPE (%) =

1

𝑁
∑ |

𝑋𝑖 − 𝑌𝑖

𝑋𝑖
|

𝑁

𝑖=1

 

RMSE= √
1

𝑁
∑ (𝑋 − 

 𝑌)2 
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4. Results 

Training was performed by 80% of total data. Results were evaluated in terms of correlation 

coefficient, MAPE and RMSE, according to Tables 9 and 10. Table 9 presents results of the training 

step without the use of Tanh (x) (using the Gaussian function as default) as the output function and 

Table 10 gives results of the training step with Tanh (x) as the output function. 

Table 9. Results for training phase with the Gaussian function as default. 

Model 
Correlation 

Coefficient 
RMSE 

MAPE 

(%) 

Processing 

Time (s) 
Model 

Correlation 

Coefficient 
RMSE 

MAPE 

(%) 

Processing 

Time (s) 

Model1 0.67 0.741035 32.02% 3.82 Model8 0.694 0.718928 30.57% 8.33 

Model2 0.68 0.733079 31.55% 4.11 Model9 0.70 0.713458 30.31% 10.82 

Model3 0.676 0.735209 31.52% 4.97 
Model 

10 
0.692 0.721568 30.40% 6.78 

Model4 0.682 0.730448 30.88% 5.11 
Model 

11 
0.689 0.724479 30.89% 7.32 

Model5 0.689 0.723326 30.84% 5.22 
Model 

12 
0.693 0.720478 30.28% 9.02 

Model6 0.693 0.719818 30.59% 5.30 
Model 

13 
0.704 0.708774 29.93% 10.03 

Model7 0.692 0.720763 30.59% 7.22      

Table 10. Results for training phase with tanh(x) function. 

Model 
Correlation 

Coefficient 
RMSE 

MAPE 

(%) 

Processing 

Time (s) 
Model 

Correlation 

Coefficient 
RMSE 

MAPE 

(%) 

Processing 

Time (s) 

Model1 0.684 0.745674 30.12% 3.82 Model8 0.709 0.72298 28.79% 7.96 

Model2 0.692 0.738467 29.59% 4.11 Model9 0.716 0.717001 28.69% 9.87 

Model3 0.69 0.739543 29.62% 4.97 
Model 

10 
0.710 0.720822 28.93% 6.22 

Model4 0.698 0.730832 29.09% 5.11 
Model 

11 
0.703 0.728695 29.03% 7.12 

Model5 0.709 0.724664 29.23% 5.22 
Model 

12 
0.708 0.721266 28.48% 8.45 

Model6 0.707 0.724155 28.66% 5.30 
Model 

13 
0.720 0.712372 28.16% 9.23 

Model7 0.708 0.723435 28.78% 7.05      

As is clear from Tables 9 and 10, Model 13 provides higher accuracy compared with other 

models. It is also clear that using Tanh (x) as the output function of MLP increases the accuracy of the 

prediction. According to the results, the hybrid methods increase the processing time (s) compared 

with those for the single methods. This was also claimed by Mosavi et al., 2019 [82] and Ardabili et 

al.,2019 [83]. The main reason can be due to the optimizing process on setting the weights and bias 

values of the MLP which consumes more processing time (s). On the other hand, according to the 

Tables 9 and 10, it is clear that the GA requires more processing time compared with that of the PSO. 

More processing time also can be due to the complexity of the optimizers [84,85]. Using Tanh (x) 

reduced the processing time. 

Testing Results 

Tables 11 and 12 present the testing results, respectively, for the Gaussian function and with 

Tanh (x). as is clear, in testing process, results are different from those of training process. According 

to results of testing process, Model 7 followed by Model 13 for both scenarios, with Tanh (x) and 

Gaussian function, provide higher accuracy and lower error compared with other models. It is clear 

that the presence of Tanh (x) as the output function increases the accuracy and reduces the error 

values. 
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Table 11. Results for testing phase with the Gaussian function as default. 

Model 
Correlation 

Coefficient 
MAPE (%) RMSE  

Correlation 

Coefficient 

MAPE 

(%) 
RMSE 

Model 1 0.648 32.63% 0.759687 Model8 0.681 31.00% 0.730846 

Model 2 0.661 32.11% 0.748273 Model 9 0.664 31.44% 0.746575 

Model 3 0.657 32.07% 0.752376 Model 10 0.680 31.11% 0.731245 

Model 4 0.673 31.31% 0.737857 Model 11 0.663 31.89% 0.747604 

Model 5 0.663 31.71% 0.747776 Model 12 0.678 30.97% 0.733873 

Model 6 0.671 31.24% 0.740842 Model 13 0.677 31.04% 0.735221 

Model 7 0.681 30.84% 0.729959     

Table 12. Results for testing phase with Tanh (x). 

Model 
Correlation 

Coefficient 
MAPE (%) RMSE Model 

Correlation 

Coefficient 
MAPE (%) RMSE 

Model 1 0.662 30.92% 0.76042 Model 8 0.692 29.10% 0.734701 

Model 2 0.673 30.15% 0.751537 Model 9 0.679 29.95% 0.744885 

Model 3 0.669 30.13% 0.753864 Model 10 0.694 29.50% 0.73393 

Model 4 0.688 29.54% 0.738487 Model 11 0.674 30.10% 0.749981 

Model 5 0.670 30.29% 0.74539 Model 12 0.694 29.20% 0.733235 

Model 6 0.684 29.48% 0.740869 Model 13 0.694 29.09% 0.732583 

Model 7 0.695 29.16% 0.733063     

Figure 6 presents the deviation from target values of all models into two scenarios with the 

Gaussian function as the default and with Tanh(x) as the output function. According to Figure 6, it 

can be concluded that the presence of Tanh (x) as the output function reduces the range of deviation. 

Models with a high accuracy have lower deviation values compared to others.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 6. Deviation from target values for the developed models. (a) and (d) with the Gaussian 

function as default, (b) and (c) with the Tanh (x) function. 

Figure 7 indicates a simple yet essential form of Taylor diagram for the testing process of the 

developed models. This diagram is developed according to correlation coefficient and standard 

deviation. A point with a lower standard deviation and higher correlation coefficient has higher 

accuracy compared with other points. As is clear from Figure 7, Model 13 and Model 7 present higher 

accuracy compared with other models. 
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Figure 7. Taylor diagram for the best response of the models in testing step. 

According to the results, the advantage of the single models is their lower processing time, but 

the lowest accuracy can be the most important limitation and disadvantage of the single models 

compared with the hybrid ones. This was also claimed by several researches. In the case of using the 

hybrid models, the advantages of MLP–PSO such as higher accuracy and lower processing time 

overtake the MLP–GA. 

5. Conclusions 

In this paper, modeling was performed by MLP–GA and MLP–PSO in two scenarios including 

with Tanh (x) and with the Gaussian function as default as the output function in thirteen categories. 

Research outcomes were evaluated using RMSE and correlation coefficient values to compare the 

accuracy and performance of the developed models in training and testing steps. Based on the results, 

using Tanh (x) as the output function improved the accuracy of models significantly. MLP–PSO with 

population size 125 followed by MLP–GA with population size 50 provided higher accuracy in the 

testing step by RMSE 0.732583 and 0.733063, MAPE of 28.16%, 29.09% and correlation coefficient 

0.694 and 0.695, respectively. As is clear, the only advantage of the single MLP is its lower processing 

time but the important disadvantage can be claimed the lower accuracy compared with the hybrid 

models. According to the results, using hybrid ML method could successfully improve the prediction 

accuracy. Accordingly, MLP–PSO with lower processing time and higher accuracy (as the main 

advantage of the PSO compared with GA) overtakes the MLP–GA. In this way, the problem 

statements were successfully covered by the solution presented in the study. The main limitation for 

the future, is about presenting and beating a new stock market index using evolutionary methods. 

The future work will address the beating of stock market, that the variance of stock market will be 

successfully addressed. Thus, the return variance poses a limitation of the present research. 
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Abbreviations  

MLP Multilayer perceptron TEPIX Tehran stock exchange price index 

MV Moving variance LDA linear discriminant analysis 

GA Genetic algorithms BPNN Back propagation neural network 

RMSE Root mean square error BSE-SENSEX Bombay Stock Exchange 

ANN Artificial neural network TAPI 10 10-day total amount weight stock price index 

MOM momentum ICA Independent Component Analysis 

SVM Support vector machine TAIEX Taiwan Stock Exchange Capitalization Weighted Stock Index 

ROC rate of change KOSPI Korea Composite Stock Price Index 

BIST 100 Borsa Istanbul 100 index MAPE Mean Absolute Percentage Error 

%D stochastic D CSI 300 Capitalization-weighted SM index 

CROBEX Zagreb stock index CNX Nifty Standard & Poor’s CNX Nifty stock index  

DAX-30 German DAX-30 DJIA Dow Jones Industrial Average 

HIS Hang Seng Index FTSE Financial Times Stock Exchange 

k-NN k-nearest neighbor QDA quadratic discriminant analysis 

S&P 500 Standard & Poor’s 500 GMM Gaussian mixture model 

RBF Radial basis function RKELM Robust kernel extreme learning machine 

SMA simple moving average KLCI Kuala Lumpur Composite Index 

RSI relative strength index BOVESPA Bolsa de Valores de São Paulo 

%K stochastic K PNN Probabilistic neural network 

%R Larry William’s R%  A/D Accumulation/Distribution  

OSCP price oscillator CCI Commodity Channel Index 

SO Stochastic oscillator MSO Moving stochastic oscillator 

SSO Slow stochastic oscillator PSO Particle swarm optimization 

MVR Moving variance ratio EMA Exponential moving average 

LRL Linear regression line MACD Moving average convergence and divergence 

NB Naive Bayes SM Stock market 

RS Rough sets DWT Discrete wavelet transform 

IBEX-35 Spanish SM ARIMA Autoregressive integrated moving average 
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