
entropy

Article

Classification of Actigraphy Records from Bipolar
Disorder Patients Using Slope Entropy:
A Feasibility Study

David Cuesta-Frau 1,* , Jakub Schneider 2,3, Eduard Bakštein 2,3 , Pavel Vostatek 4,
Filip Spaniel 3 and Daniel Novák 2

1 Technological Institute of Informatics, Alcoi Campus, Universitat Politècnica de València,
46022 Valencia, Spain

2 Department of Cybernetics, Czech Technical University in Prague, 166 36 Prague, Czech Republic;
schnejak@fel.cvut.cz (J.S.); eda@zzz.cz (E.B.); xnovakd1@fel.cvut.cz (D.N.)

3 National Institute of Mental Health, 250 67 Klecany, Czech Republic; Filip.Spaniel@nudz.cz
4 MINDPAX, Prague, 128 00 Vinohrady, Czech Republic; voo@centrum.cz
* Correspondence: dcuesta@disca.upv.es; Tel.: +34-966-528-505

Received: 5 September 2020; Accepted: 28 October 2020; Published: 1 November 2020
����������
�������

Abstract: Bipolar Disorder (BD) is an illness with high prevalence and a huge social and economic
impact. It is recurrent, with a long-term evolution in most cases. Early treatment and continuous
monitoring have proven to be very effective in mitigating the causes and consequences of BD. However,
no tools are currently available for a massive and semi-automatic BD patient monitoring and control.
Taking advantage of recent technological developments in the field of wearables, this paper studies
the feasibility of a BD episodes classification analysis while using entropy measures, an approach
successfully applied in a myriad of other physiological frameworks. This is a very difficult task, since
actigraphy records are highly non-stationary and corrupted with artifacts (no activity). The method
devised uses a preprocessing stage to extract epochs of activity, and then applies a quantification measure,
Slope Entropy, recently proposed, which outperforms the most common entropy measures used in
biomedical time series. The results confirm the feasibility of the approach proposed, since the three
states that are involved in BD, depression, mania, and remission, can be significantly distinguished.

Keywords: bipolar disorder; actigraphy; sample entropy; permutation entropy; slope entropy;
time series classification

1. Introduction

Bipolar Disorder (BD) is a chronic mental illness with a prevalence of approximately 1–2% [1,2].
It has high heritability rate and equal distribution across both genders [3]. The main symptom is
the recurrent changing of symptomatic episodes of depression or of elevated mood (mania) with
non-symptomatic (remission) periods [4]. The factors contributing to relapse in BD are not yet clearly
understood, but it has been suggested that there is an association with the dysregulation of circadian
rhythm and sleep [5,6].

There have been many attempts to rate or quantify the level of depression or mania [7]. The ultimate
goal is to evaluate the effects of treatment. Most of these approaches are based on a set of psychiatric
symptoms, as those described in the comprehensive study [8]. In this work, the 17 most commonly
found symptoms in depression were first identified. Subsequently, a depression scale was created using
10 out of these 17 symptoms, those that exhibited the largest variation with treatment, and the highest
correlation with changes. A similar rating approach could be applied to BD, but, in the case of BD, it is
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more important at first to distinguish between the three mood states. Such technical approach could be
more convenient in this case than a classical psychiatric approach.

The three possible episodes: depression (dep), mania (man), and remission (rem) are hypothesized to
be linked to different degrees and patterns of physical activity [9]. Taking advantage of all the disparity of
wearables available nowadays, with actigraphy monitoring and recording capabilities, it is reasonable
to assume that a suitable analysis of the resulting actigraphy time series could become a reliable tool
for diagnosis and assessment in BD.

An actigraph is a wrist-worn device used for inexpensive evaluation of sleep and circadian
rhythms [10–12] in common conditions (ambulatory patients mainly). In general, motor activity
measurement or actigraphy can be used for a disparity of clinical purposes: to quantify physical
activity, in chronobiology applications, to detect sleep patterns and stages, and many more that are
related to health and diseases [10]. For example, and specifically in the case of BD, the dysregulation
of rhythmicity that is connected to BD and the Krane–Gartiser actigraphy study described in [9]
suggested that the complexity of activity differs among mood episodes. However, the short duration
of the actigraphy follow-up period in most of these studies poses the main challenge in comparing
data from symptomatic periods, since they occur quite rarely [2] (once in every two years).

We devised a study to compare actigraphy recordings from in vivo symptomatic mood episodes
of outpatients with a long follow-up period (up to two years). Using this new scheme, we were able to
explore actigraphy data from remission periods as well as relapse episodes of mania and depression,
gaining new insight into disease progression and outcome.

However, manual inspection of these long-term records is cumbersome and error prone. The time
series are very noisy and the important information might be scarce and blurred by artifacts or other
activity aspects independent of the disease state. Because the use of non-linear methods to expose
hidden characteristics of time series has proven to be a very powerful tool in similar frameworks,
we studied the feasibility of such methods in this new signal classification task at hand. Recent works
have already pointed in that same direction, such as [13]. In this work, 106 bipolar I type patients,
73 unaffected siblings, and 76 control subjects with valid actigraphy and sleep diary data for at
least eight days were included in the analysis. This analysis was based on Detrended Fluctuation
Analysis [14], using six time windows. The results gave evidence of significant differences between
control and bipolar patients, but no differences between depressive or manic symptoms were found in
the patients group.

There are many more non-linear signal analysis methods described in the scientific literature.
We first explored the most promising methods: Sample Entropy (SampEn) [15], Permutation Entropy
(PE) [16], and a few derived methods that apparently yield a better classification performance [17],
quantified in terms of accuracy. Some of these methods are Weighted PE (WPE) [18], Bubble Entropy
(BE) [19] and Slope Entropy (SlopEn) [20], and they have the theoretical advantage of using more
than a single source of information, mainly amplitude and ordinal information. From this exploratory
analysis, we chose the final method according to the highest classification performance achieved,
in this case SlopEn. This performance has been recently confirmed in another classification study [21].

A preprocessing stage was also included in order to improve the quality of the data to be analysed.
This preprocessing isolated the epochs of greatest activity and used them for classification purposes
based on SlopEn, omitting periods of no-activity (sleep mainly) or with too short activity. Figure 1
shows a general diagram of the proposed method.
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Figure 1. General diagram of the method proposed.

According to the achieved results, the method can robustly distinguish between dep and man
records, with an accuracy higher than 70% in most cases and, less robustly, yet still statistically
significant, for dep–rem and man–rem (61% and 63%, respectively). These promising results arguably
entail a new line of research worth exploring, with a lot of room for improvement both in terms of signal
acquisition (more stable and longer periods of activity, better separation of activity, and no-activity
epochs), and signal processing (more optimised entropy measures, better input parameter settings).

2. Materials and Methods

2.1. Dataset

Actigraphy data were recorded in 94 BD patients, some of them with several episodes, recruited
while using web forms, and collecting basic demographic information and personal history of BD
diagnosis. All of the patients, who fulfilled the requirements, were examined by psychiatrists at the
National Institute of Mental Health (NIMH), in Klecany, Czech Republic, for confirmation of the BD
diagnosis according to the DSM-5 criteria [4]. The duration of the recordings was up to two years.
The device used was the MINDPAX, provided by the Mindpax company (http://mindpax.me).

MINDPAX actigraphy wearable uses an internal three-axis accelerometer for measurement, with a
sampling frequency of 6 Hz, aggregated into 30-s epochs. The data used for analysis were 14 day long
segments from periods of remission, depression, and mania state. The study was approved by the
ethical committee of the NIMH, Czech Republic, and all of the BD patients signed written informed
consent. On enrolment to the study, after the confirmation of BD diagnosis the patients were equipped
with a wrist-worn actigraphy monitoring device (MINDPAX) and were instructed to wear it on their
non-dominant hand wrist and remove it only when necessary. They were also asked to fill in a weekly
mood questionnaire, while using MINDPAX mobile software application.

We analysed data segments that were chosen in such a way that they contained a minimum
(at most 5%) of invalid (missing samples) data points. A final set of 44 dep, 16 man, and 137 rem records
were analysed. Multiple episodes can be found for some patients in each set, or episodes of the same
patient in more than a set. An experiment using only a record from subject in each class was devised in
order to address this possible confounding factor.

The state was annotated, by a team of experts, based on a monthly Montgomery–Åsberg
Depression Rating Scale (MADRS) [8], the Young Mania Rating Scale (YMRS) [7], weekly self-mood-
estimation questionnaires, medical records, and additional information at the same monthly temporal
scale. All of the patients in the study were examined monthly by trained psychologists using MADRS
and YMRS. The periods from hospitalisations were excluded, due to the restriction of physical activity
during hospital care. An example of these records in their raw state is shown in Figure 2.

http://mindpax.me
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Figure 2. Example of signals from the three classes in the experimental database. The plots shown
correspond to the actigraphy data as they were captured with the monitoring device, no filtering or
preprocessing yet. One day (24 h) corresponds to 2880 samples (sampling period 30 s).

2.2. Preprocessing

A preprocessing stage was devised to extract periods of high activity and of a substantial duration
in order to improve the quality of the possible information provided by these actigraphy records.
To this end, signals were first filtered using a moving average filter, window length of 250 samples,
with the objective of outlining those periods where the subjects had a significant activity. Then,
a thresholding approach was applied to extract those periods from the time series. The threshold
employed was the average of the entire filtered signal. Of those epochs above, the threshold, the longest
corresponding sequence from the original time series was finally chosen as the representative of the
time series. Figure 3 graphically shows the results of this process.
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Figure 3. Examples of the prepocessing stage and the result of activity epoch extraction. (a) Moving
average filtered signal from Figure 2 in order to discriminate between periods of activity and no activity.
(b) Epochs of activity extracted from each original record according to the threshold applied to the
filtered signal. Minimum length obtained was 1000 samples. The activity part was not dependent on
the state.

All of the the resulting records had a length of at least 1000 samples. They were normalised before
entropy calculation, zero mean, and standard deviation one.

2.3. Slope Entropy

SlopEn is a very recently proposed entropy measure [20] that is based on patterns of differences
between consecutive samples in time series. With this new approach, the objective is to carry out a
gradient pattern analysis instead of an amplitude or ordinal one. We hypothesize that this is an efficient



Entropy 2020, 22, 1243 5 of 15

way to characterise variability patterns useful to find possible differences between time series datasets.
In fact, several forms of gradient analysis have been previously used successfully for classification [22],
and the gradient itself of a time series has proven to be a good information–carrying feature [23].
In addition, coarse–graining strategies are common in similarity searches [24], and in the well known
Lempel–Ziv complexity measure [25], since distinguishing features can then become more apparent
than using all the information available. On top of that, using more than two quantification states has
yielded better results than classical binary approaches in some studies to assess complexity changes in
time series [26].

In its seminal study, it outperformed many of the most popular and powerful entropy measures
in terms of class discriminating power, while using a very heterogeneous experimental set. For the
present paper, given the difficulties of the specific physiological records addressed, we first again
explored the most successful entropy measures and the latest developments in this field. Specifically,
we tested SampEn [15], PE [16], WPE [18], BE [19], and Slope Entropy. Briefly, these candidate methods
were chosen for the following reasons:

• SampEn. It is probably the most frequently applied entropy measure. It was an evolution of
Approximate Entropy [27] that solved some of its few problems. It has a high discriminating
power even under difficult conditions [28–31].

• PE. It is getting a lot of attention in the last years due to its simplicity, robustness, and good
discriminating power. It has been successfully used in many time series classification studies so
far [32–34], and many methods have been derived from it [35,36].

• WPE. This is one of the PE derived methods. It includes amplitude information on the PE
computation. It has demonstrated a very high discriminating power and stability in a recent
comparative study [17].

• BE. This is a very recent method that also improves the performance of PE, with less dependence
on input parameters [19]. It has exhibited a good complementarity to PE, with good classification
performance in cases where PE was unable to find significant differences [37].

• SlopEn. Recently proposed, it showed a higher discriminating power than PE and WPE [20] for a
disparity of records. This was the final choice, since it yielded the best classification performance
in an exploratory analysis, as described in Section 3. Therefore, this will be the method described
in detail next.

SlopEn is defined, as follows. Given an input time series x = {x0, x1, . . . , xN−1}, where xi is the
i−th amplitude sample, with N samples, and a subsequence of x of length m commencing at sample j,
xm

j =
{

xj, xj+1, . . . , xj+m−1
}

, an associated symbolic pattern to xm
j has to be computed. To this purpose,

two thresholds have also to be defined: γ, and δ, with γ > δ > 0. Thus, if the difference between two
consecutive samples of the subsequence is defined as d = xj+1 − xj, each symbol is:

• 2, if d > γ.
• 1, if d ≤ γ and d > δ.
• 0, if |d| ≤ δ.
• −1, if d < −δ and d ≥ −γ.
• −2, if d < −γ.

Once all of the symbols are computed for a subsequence, the relative frequency of the resulting
pattern is updated, while using a dynamic list containing all the different patterns found up to sample
j. All of the steps are detailed in [20], including numerical examples and C++ source code for SlopEn
(Matlab R© source code in Appendix A). The numerical values obtained from the Shannon entropy
of the relative frequencies can be normalised using a common reference in order to keep the SlopEn
range within desired limits (for example, between 0 and 1). The SlopEn result of each record will
be the records’ feature to be used in the classification analysis using a threshold, as described in the
next section.
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2.4. Performance Evaluation

The analysis on actigraphy records will be quantified in terms of classification accuracy (percentage
of dep, man, and rem records correctly assigned to their class). Given the general problem of classifying
objects from two generic classes, A and B, and using the popular definition of True Positive (TP), as the
outcome when a time series from class A is correctly classified as A, True Negative (TN), as the outcome
when an instance of class B is correctly classified as B, False Positive (FP), when an object of B is classified
as A, and False Negative (FN), when a record from class A is classified as B, the final parameters that are
used for assessment will be: Sensitivity = TP

TP+FN
, Specificity = TN

TN+FP
, and Accuracy = TP+TN

TP+FP+TN+FN
.

Statistical significance p of the differences between SlopEn values of the two classes under analysis in each
experiment was assessed using the Wilcoxon signed-rank hypothesis test, with a significance threshold of
p < 0.05. Further characterisation of the classification performance using SlopEn was carried out using
the Matthews Correlation Coefficient (MCC) [38], a more robust metric when classes are unbalanced.
MCC ranges from −1 to 1, with 1 for a perfect classification, 0.5 for 75% correct prediction, and 0 for a
random guess [21].

Additionally, cross validation will be applied in order to better evaluate the results of the classification.
Specifically, the Leave-One-Out (LOO) method, a k−fold cross validation method of size 1 [30], will be
applied to the final configuration of the experiments. To this end, in each LOO experiment, a time
series from each class will be removed randomly from the experimental dataset used to obtain the
classification. From the resulting classification, a SlopEn threshold will be obtained from the associated
ROC curve from the nearest point to (0,1) [30], and this threshold will be applied to the removed
records. An example is shown in Figure 4. The accuracy in this case will be measured in terms of
percentage of correctly classified removed records. A total of 1000 LOO realisations were used in the
experiments, with random extraction and replacement (bootstrap).
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Figure 4. Example of ROC curve obtained in the experiments from which a classification threshold is
computed according to the nearest point in curve to (0,1).
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3. Experiments and Results

The first stage of the experiments was an exploratory analysis using several entropy calculation
methods in order to choose the approach most likely to be successful in the difficult task of finding
significant differences among the three classes available (grid search parameter values), analysed on a
two by two basis. Table 1 shows the classification accuracy results of this exploratory analysis.

Table 1. Exploratory analysis results using several entropy methods. Significance related to differences
between entropy results from each class. Only SlopEn was able to find statistically significant differences
between all the signal classes pairs. It is important to note that accuracy has to be understood in terms
of p, since groups are unbalanced and a high accuracy can be due to a correct classification of the most
populated class, but with a very poor accuracy for the minority class. The significance p accounts for
this possible variation and the Matthews Correlation Coefficient (MCC) result was also included for
SlopEn with the same purpose.

SampEn WPE PE BE SlopEn

Classes (dep,man)

Accuracy = 0.80 Accuracy = 0.70 Accuracy = 0.73 Accuracy = 0.77 Accuracy = 0.77
MCC = 0.4614 MCC = 0.1108 MCC = 0.3735 MCC = 0.2548 MCC = 0.4276

p = 0.0080 p = 0.0697 p = 0.0059 p = 0.0093 p = 0.0062
m = 2, r = 0.25 m = 6 m = 5 m = 3 m = 6, γ = 0.20, δ = 1× 10−3

Classes (dep,rem)

Accuracy = 0.67 Accuracy = 0.65 Accuracy = 0.67 Accuracy = 0.65 Accuracy = 0.65
MCC = 0.2535 MCC = 0.2610 MCC = 0.2022 MCC = 0.2475 MCC = 0.2465

p = 0.0025 p = 0.0167 p = 0.0108 p = 0.0015 p = 0.0213
m = 3, r = 0.25 m = 7 m = 7 m = 3 m = 6, γ = 0.30, δ = 1× 10−3

Classes (man,rem)

Accuracy = 0.68 Accuracy = 0.61 Accuracy = 0.62 Accuracy = 0.61 Accuracy = 0.68
MCC = 0.1531 MCC = 0.0951 MCC = 0.1323 MCC = 0.2006 MCC = 0.2206

p = 0.2995 p = 0.4382 p = 0.0579 p = 0.1490 p = 0.0332
m = 3, r = 0.30 m = 6 m = 7 m = 7 m = 6, γ = 0.85, δ = 1× 10−3

Because the best performance was achieved using SlopEn, this was the method finally configured
for a general classification analysis (statistically significant differences in all comparisons), although,
on a single case-by-case basis, there were specific higher accuracies. In order to keep the computational
burden of this configuration within reasonable limits, parameters m and δ were kept constant, and only
γ was varied, from 0.10 up to 0.90, in 0.10 steps. Table 2 depicts the performance achieved, omitting
the intermediate γ values that did not provide significant results, until γ = 0.80.

Table 2. Fine tuning of the γ parameter for SlopEn using a grid search and trying to maximise the
performance in terms of classification accuracy linked to statistical significance. Intermediate results
(from 0.30 up to 0.80) are not included, because they were not significant for man–rem until γ = 0.80
was reached. For all cases m = 6 and δ = 1× 10−3.

γ = 0.10 0.20 0.30 0.80 0.90

Classes (dep,man)

Se 0.70 0.81 0.79 0.75 0.68
Sp 0.69 0.62 0.62 0.69 0.75

Acc 0.70 0.77 0.75 0.73 0.70
p 0.0089 0.0062 0.0150 0.0053 0.0089

Classes (dep,rem)

Se 0.57 0.61 0.54 0.63 0.61
Sp 0.67 0.58 0.68 0.59 0.59

Acc 0.64 0.59 0.65 0.60 0.60
p 0.0099 0.0098 0.0213 0.0357 0.0334

Classes (man,rem)

Se 0.59 0.74 0.73 0.79 0.65
Sp 0.69 0.62 0.62 0.56 0.62

Acc 0.68 0.63 0.63 0.58 0.62
p 0.0915 0.0680 0.1284 0.0385 0.0420



Entropy 2020, 22, 1243 8 of 15

Table 3 shows a finer tuning of the SlopEn parameters. Once the region 0.80–0.90 was considered
to be the optimal region, since it was the only region with statistically significant results in all cases,
γ was varied in 0.01 steps between 0.80 and 0.95 for further optimisation. All of the additional
values tested also yielded significant results for the three classification problems addressed. However,
the results for γ = 0.94 seemed to slightly be above the others, and this was the parameter value finally
chosen for the later experiments. For this configuration, and after normalising the SlopEn results by the
maximum SlopEn value obtained in all the time series (to keep the values within the 0–1 range [39]),
the entropy values for each class were 0.65± 0.06 for rem, 0.63± 0.06 for dep, and 0.68± 0.07 for man.
Anyway, any other configuration would have been equally acceptable.

Table 3. Results for a final fine tuning of the γ parameter value for SlopEn. The optimal value was
found to be 0.94, as highlighted in the corresponding column. For all cases m = 6 and δ = 1× 10−3.

γ = 0.85 0.86 0.94 0.95

Classes (dep,man)

Se 0.75 0.73 0.75 0.73
Sp 0.69 0.69 0.75 0.75

Acc 0.73 0.72 0.75 0.73
p 0.0055 0.0084 0.0077 0.0059

Classes (dep,rem)

Se 0.63 0.61 0.66 0.63
Sp 0.57 0.59 0.60 0.60

Acc 0.58 0.60 0.61 0.61
p 0.0419 0.0457 0.0221 0.0262

Classes (man,rem)

Se 0.65 0.65 0.71 0.67
Sp 0.69 0.69 0.62 0.62

Acc 0.68 0.68 0.63 0.63
p 0.0332 0.0358 0.0358 0.0379

As stated in Section 2.1, the experimental dataset contained, in some cases, more than a single
episode per subject and per state, or a subject had episodes in more than a single state. We devoted more
experiments to assess the possible influence of these many-to-one and one-to-many correspondences.
First, the classification analysis was repeated removing any episode duplication per subject. In this
case, the number of objects per class was reduced to 35 for dep, 15 for man, and 77 for rem. Table 4
shows the results.

Table 4. Classification accuracy achieved removing duplicated states per subject.

Classes (dep,man) Classes (dep,rem) Classes (man,rem)

Se 0.74 0.65 0.66
Sp 0.73 0.61 0.60

Acc 0.74 0.62 0.61
p 0.0132 0.0200 0.1266

Subsequently, the classification analysis was repeated removing any subject from the original dataset
that only had data in one state (except for man class, due to its small size). In this case, the number of
objects per class was reduced to 34 for dep, 16 for man, and 49 for rem. Table 5 shows the results.

Table 5. Classification accuracy achieved removing subjects with data only in one state (except for the
man class).

Classes (dep,man) Classes (dep,rem) Classes (man,rem)

Se 0.76 0.64 0.69
Sp 0.75 0.69 0.62

Acc 0.76 0.67 0.64
p 0.0055 0.0032 0.1316
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For comparative purposes, if this processing was applied using another popular metric in actigraphy
records classification tasks [40], the signal mean (before normalisation), the achieved results were 0.74
and 0.75 for Se and Sp, respectively, with p = 0.0038 when comparing dep and man records, 0.72 and
0.51, with p = 0.0295, for dep and rem, and 0.58 and 0.68, with p = 0.1283, for man and rem.

Because the actigraphy records were relatively long, with 40,320 samples, additional experiments
were conducted while using more than a single best representative epoch for time series. In the
previous results, only the longest epoch was used, which was assumed to feature the most stable and
longer activity period of each subject. In order to use more data from the available records, all epochs
longer than a predefined N threshold were included in the analysis, the same as in Table 3. The tested
signals were of lengths N = 250 to 2000, with a 250 step. As a consequence, the number of records
finally processed, n, also varied. Table 6 shows these results.

Table 6. The results obtained using all epochs found in the experimental set with lengths 250, 500, 750,
1000, 1250, 1500, 1750 and 2000, instead of only the longest one. At least one representative epoch
was found in this experiment for up to length N = 1000 from each record, whereas it was possible
to draw more than one epoch in other records (That is why n = 3198 for N = 250, but only n = 149
for N = 2000, some records were not included in the experiment in that case). Each column refers to
records of the same length, as shown in the N row. For all cases m = 6, γ = 0.94 and δ = 1× 10−3. In a
few cases Acc coincides with Sp or Se due to value rounding and classes imbalance.

N 250 500 750 1000 1250 1500 1750 2000
n 3198 2853 2449 2119 1846 1397 668 149

Classes (dep,man)

Se 0.68 0.73 0.68 0.67 0.68 0.67 0.74 0.81
Sp 0.54 0.55 0.64 0.70 0.67 0.69 0.61 0.60

Acc 0.64 0.68 0.67 0.68 0.68 0.67 0.70 0.75
p 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0268

Classes (dep,rem)

Se 0.54 0.55 0.58 0.53 0.61 0.63 0.64 0.65
Sp 0.53 0.54 0.54 0.62 0.56 0.58 0.57 0.63

Acc 0.53 0.55 0.55 0.60 0.57 0.59 0.59 0.64
p 0.0014 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0134

Classes (man,rem)

Se 0.68 0.64 0.68 0.64 0.61 0.60 0.61 0.56
Sp 0.47 0.53 0.53 0.60 0.61 0.59 0.54 0.60

Acc 0.50 0.54 0.54 0.60 0.61 0.59 0.55 0.60
p 0.0605 0.0001 0.0001 0.0001 0.0001 0.0040 0.0659 0.4355

Given that most entropy quantification methods are length–sensitive, a specific test was devised
to find out whether record length played a significant role in the classification performance results.
Instead of using the longest epoch available (Table 3), or as many records of a specific length available,
as in the previous case (Table 6), in this experiment maximum length records extracted were cut short
to 1000 samples in all cases. In other words, a time series of 1000 points was the single representative
from each record. Table 7 shows the corresponding results.

Table 7. Results obtained using a single epoch of 1000 samples from each record. A different optimal
parameter configuration was found, but performance was fairly similar to previous cases.

Classes (dep,man) Classes (dep,rem) Classes (man,rem)

m 5 5 4
γ 0.75 0.75 0.9
Se 0.75 0.68 0.75
Sp 0.69 0.66 0.61

Acc 0.73 0.67 0.62
p 0.0076 0.0007 0.0432

MCC 0.4014 0.2939 0.2198
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Finally, the results of the LOO analysis are shown in Table 8, where, in each experiment realisation,
an epoch is randomly left out. These results are more representative of the possible classification
performance achievable in a real application using the method proposed.

Table 8. Results of the Leave-One-Out (LOO) classification evaluation in terms of average accuracy
and standard deviation.

Classes (dep,man) Classes (dep,rem) Classes (man,rem)

0.75± 0.0287 0.58± 0.0407 0.62± 0.0370

4. Discussion

The initial exploratory analysis was devoted to select the most suited method to the classification
of actigraphy records. The candidates corresponded to some of the most widely used entropy methods
in similar tasks, whose performance has been assessed in multiple studies. As expected, all of them
yielded reasonably good results, after a limited grid search for optimal parameter configuration and
avoid over-fitting.

According to the values presented in Table 1, the classification results were the highest for classes
(dep,man) using any of the tested methods. Specifically, SampEn achieved the highest performance,
with a classification accuracy of 0.80, and the lowest was achieved using WPE, 0.70, but did not reach
statistical significance (p = 0.0697). The other methods yielded significant results, with a performance
of 0.73 for PE, and 0.77 for both BE and SlopEn. It is important to note that, although only the best
results were reported in Table 1, these results were very robust in terms of parameter values, with very
similar performances for a wide range of input parameters. Therefore, this case, classes (dep,man),
can be considered easy to classify while using a diverse set of entropy methods with a small parameter
configuration effort.

The classification of classes (dep,rem) was more difficult, although all of the methods exhibited
significance in their classifications. The accuracy was lower, 0.67 at most, again for SampEn, but also
for PE, with BE and SlopEn slightly behind with 0.65. WPE was again the worst performing method,
with only 0.61. It is important to note that input parameters for the methods were, in general,
different to those that were used in the previous case.

The last case, the discrimination between classes man and rem, was, by far, the most difficult
case. Despite a relatively extensive grid search for parameter values (m from 3 to 8, and m = 2, 3
for SampEn, with r from 0.15 up to 0.30), only SlopEn was capable of finding statistically significant
results, although with PE that is relatively close (p = 0.0579). This is the case that made the difference,
with a parameter configuration for SlopEn of m = 6, γ = 0.85 and δ = 1× 10−3.

Once SlopEn was considered to be the best choice, a finer parameter tuning process was conducted
in order to find out if the performance could be improved further. In order to keep the complexity of
the process within reasonable limits, tuning was only applied to parameter γ. The main goal of this
process was to find a single parameter configuration that could significantly find differences for all
the cases studied simultaneously, since that is more practical for real applications. This analysis is
summarised in Table 2. It can be observed that, for γ = 0.10, . . . , 0.90, the highest significant accuracy
corresponds to the region above 0.80.

The final stage of this SlopEn parameter customisation scheme is shown in Table 3. Although the
classification results for γ ≥ 0.80 remained quite stable in terms of significance and accuracy, the specific
value γ = 0.94 was taken as the optimal value to use in subsequent experiments. It is important to
be aware of the fact that the grid search was not exhaustive, γ was varied, keeping m and δ constant,
and that could entail that other better configurations were overlooked. However, from all the parameter
regions explored, it can arguably be concluded that no great difference was likely to be found. Moreover,
a combination of parameter values, from the best case for each pair of classes, could yield even higher
classification results. For example, γ = 0.20 yielded an accuracy of 0.77 for classes (dep,man), whereas
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the chosen value, 0.94, achieved 0.75. Anyway, such an approach would overcomplicate things and
it would be more likely to result in data over-fitting. As a consequence, γ = 0.94 was the chosen
value, keeping in mind that other values could provide slightly better performances. With a different
optimal parameter configuration, the results in Table 7 confirmed that time series length did not play a
significant role in classification performance.

The results presented in Tables 4 and 5 were obtained removing duplicities, or subjects featured
by a single state. Using the same input parameters as for the entire dataset, the results were reasonably
stable. However, statistical significance was not achieved for the classification of man and rem classes.
This is the case most difficult to classify, and it seems that a reduction in class objects has a detrimental
impact on significance, despite achieving a similar overall classification accuracy. On the other hand,
the separation of dep and man classes is fairly robust, with a high accuracy.

The results using more than one epoch per time series exhibited a similar behaviour (Table 6).
For relatively few samples (250 samples correspond to 125 min), the number of epochs processed
grew significantly (3198 and 2853 respectively), but the performance was poor. It can be hypothesised
that few samples do not suffice to reflect the status of the subject in terms of entropy computation.
On the other end, if the length of activity required is too large in the preprocessing stage, many records
are not represented in the final experimental set, since they do not contain epochs of stable activity
(no inactivity periods interspersed) of such length, and therefore the classes become more unbalanced.
The length zone around 1000 samples is probably the best one, since at least all of the time series are
still represented, and many of them with more than a record. In fact, these are the results closer to
those that were achieved using the longest epoch as in Table 3.

The LOO analysis yielded a slightly lower accuracy than the classification using the entire dataset,
as expected, since the thresholds were computed with some instances, and applied to the removed
instances that did not have anything to do with that computation in order to assess genericity. Despite
this reduction in accuracy, the LOO results were arguably very close to their counterparts using all of
the records, 0.75 vs. 0.77, 0.58 vs. 0.61, and 0.62 vs. 0.63, for pairs (dep,man), (dep,rem), and (man,rem),
respectively. Once more, it is apparent that dep and man records can be easily distinguished, whereas
the other two cases will probably need further studies in order to achieve a higher performance.

5. Conclusions

Actigraphy is a promising tool for assessing the differences among the episodes that can be found
in BD patients. Long term monitoring enabled by advanced wearables pave the way for better analysis,
but manual inspection of the resulting records can be difficult and time consuming. Entropy related
methods can be successfully introduced in this context to aid in this regard, as the results of this paper
have demonstrated.

All of the classification analyses carried out in the present study have demonstrated that it is
feasible to discriminate between dep and man episodes fairly easily, with accuracies in the vicinity of
0.75, balanced sensitivity and specificity, and good statistical significance. The other two comparisons,
dep–rem and man–rem, are more difficult, with borderline classification results that would need
additional classification features, or a finer input parameter tuning.

From a practical perspective, and keeping in mind that further studies are still necessary,
the proposed method could be implemented by detecting activity periods of at least 1000 samples
(movement above certain predefined threshold), and applying the SlopEn configuration of Table 7,
among others, to the data. The resulting value could then be classified as dep, rem, or man, also using
a set of predefined thresholds or any other kind of classifier.

The results achieved in the present study could also be further improved while using recent
straightforward approaches described in the scientific literature. For example, it can be hypothesised
that there is some synergy between methods that could be exploited. This synergy could be exploited
when considering each method as a feature of a multidimensional vector, and apply a clustering
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algorithm to find differences between classes, as in [37], or use each method as the independent variable
of a model that assigns a probability to each class [41], among many other pattern recognition methods.

Another possibility is to avoid the information reduction that mapping relative frequencies of
SlopEn patterns using Shannon entropy entails. Relevance feature analyses have demonstrated that not
all relative frequencies account equally for class differences [42], and that was practically demonstrated
in [43]. Future studies should assess the role of each symbolic pattern for SlopEn, or even other similar
measures, such as PE, on the differences found among actigraphy records.

Finally, SlopEn still has a long way to go in terms of performance optimisation. The SlopEn configuration
used in the present paper is the baseline configuration described in the seminal paper [20]; the only
difference is that records were normalised in this case. In addition to the grid search conducted, another
optimisation could be to use a non-symmetric approach (use different thresholds for rising and falling
slopes), vary also parameter δ, and use a different number of slope thresholds, instead of only two.

Author Contributions: D.C.-F. designed the preprocessing and processing stages based on SlopEn. J.S., P.V. and
D.N. labelled and prepared the actigraphy records. E.B., J.S. and F.S. carried out the acquisition stage and provided
the clinical perspective. J.S. was also included in the preprocessing and analysis of the data. D.C.-F., J.S., P.V.
and D.N. contributed to the writing of this work. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The work of J.S. has been supported by students grant agency of the Czech Technical University
in Prague (grant number SGS19/171/OHK3/3T/13).

Conflicts of Interest: The authors, Ing. J. Schneider, Ing. E. Bakštein, Ing. P. Vostatek, and Ing. D. Novák, are
associated, as consultants, advisors and/or data analysts, with MINDPAX, the company that focuses on management
of bipolar and schizophrenia disorder and mental health data analyses.

Appendix A. Slopen Source Code

function [pe, Psi_Patt, counter] = SlopeEn(data, dim, gamma, delta)
if nargin < 1, error(’The data time-series must be included’), end
if nargin < 2, dim = 6; end
if nargin < 3, gamma = 0.94; end
if nargin < 4, delta = 0.001; end
n_dp = length(data);
if n_dp <= dim || n_dp < 10, error(’The signal is too short’), end
if delta < 1e-12, error(’The delta parameter is too small choose number higher than 1e-12’), end
if delta >= gamma, error(’The delta parameter has to be larger than the gamma parameter’), end
Psi_Patt = [];
counter = [];
patt = nan(1,dim-1);
pe = 0;
for k = 1:n_dp-(dim-1)

subsec = data(k:k+dim-1);
lg_gamma = subsec(2:end) > (subsec(1:end-1)+gamma);
lg_delta = subsec(2:end) > (subsec(1:end-1)+delta);
lg_ab_delta = abs(subsec(2:end) - subsec(1:end-1)) <= delta;
lg_n_gamma = subsec(2:end) < (subsec(1:end-1)-gamma);
for m = 1:dim-1

if lg_gamma(m)
patt(m) = 2;

elseif lg_delta(m)
patt(m) = 1;

elseif lg_ab_delta(m)
patt(m) = 0;

elseif lg_n_gamma(m)
patt(m) = -2;

else
patt(m) = -1;

end
end



Entropy 2020, 22, 1243 13 of 15

n_patt = length(counter);
act_match = false;
for m = 1:n_patt

if sum(Psi_Patt(m,:) == patt) == dim-1
counter(m) = counter(m)+1;
act_match = true;
break

end
end
if act_match

Psi_Patt = [Psi_Patt; patt];
counter = [counter; 1];

end
end
n_patt = length(counter);
for k = 1:n_patt

p = counter(k)/n_patt;
pe = pe + (-p*log2(p));

end
end
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