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ABSTRACT Unit Commitment (UC) is a key task in electric power system operation, aiming at 
minimizing the total cost of power generation.  It is essential to monitor wide range of activities and 
practices of UC necessary to determine the operating plan of generating units. The UC problem is 
particularly crucial, when the behavior of loads at every hour interval, is oscillatory and with different 
operational constraints and environments. Many works have been proposed, with different optimization 
methods to solve the UC problem. This paper gives a detailed review of the evolutionary optimization 
techniques, employed for solving UC problem, by collecting them from lots of peer reviewed published 
papers. This review was carried out under many sections, based on various evolutionary optimization 
techniques, to help new researchers, dealing with modern UC problem solutions, under different situations 
of power system. 

INDEX TERMS Unit commitment, evolutionary optimization, power balance, load dispatch, operating 
cost, spinning reserve. 

NOMENCLATURE 
A. VARIABLES AND CONSTANTS ���,�    Actual power output of wind generator 
  all committed units. 
CSui    Cold start-up cost of i th generating unit. 
Dh     Load demand in the hour h. 
Ei

max    Maximum energy delivery of unit i. 
Ei

min    Minimum energy delivery of unit i. 
F(Pit)    Fuel cost of i th generating unit during tth interval.  
Fi    Fuel consumption function of unit i. 
Fmax(i)    Maximum consumption of total fuel for unit i. 
Fmin (i)   Minimum consumption of total fuel for unit i. 
HSui    Hot start-up cost of i th generating unit. 
I(i,t)   Commitment status of unit i at time t. 
MDT,j  Minimum down time of unit j. 
MUT,j  Minimum up time of unit j. 
N  Total number of units. 
NB  Number of buses. 
NL  Number of transmission lines. 
P(i,t)  Power generation of unit i at time t. 

PD
t  System load demand at time t. 

Pi max  Allowable maximum output of generator i. 
Pi min  Allowable minimum output of generator i. 
Pit  Output power of i th generator at tth hour in MW. 
Pmin,n  Minimum power generated by all 

committed units.    
Prt  Reserve power of i th generator at tth hour in MW. 
PR

t  Spinning reserve at time t. 
Psk   Slack bus generation output at kth hour. 
r  Probability that the reserve is called and generated.  
R(i,t)  Level of spinning reserve of unit i at time t. 
RDi  Ramp down rates of unit i. 
Rpt  Forecasted reserve price at tth hour/MW. 
RUi  Ramp up rates of unit i. 
Sl

max  Maximum transmission power of 
line l. 

Spt  Forecasted spot price at tth hour in/MW. 
STi  Startup cost is given for i th generating unit.  
T  Total number of hours.  
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φk
max  Maximum phase angle of kth transmission line. 

φk
min  Minimum phase angle of kth transmission line. 

B. ABBREVIATIONS 
ACO Ant Colony Optimization. 
AFSA Artificial Fish Swarm Algorithm. 
AHN Augmented Hopfield Network. 
ALHN Augmented Lagrange Hopfield Network. 
ANN Artificial Neural Network. 
AQEA Advanced Quantum EA. 
ASSA Absolutely Stochastic SA. 
BCPSO Binary Clustered PSO. 
BDE Binary Differential Evolution. 
BFA Bacteria Foraging Algorithm. 
BHC Binary Hill Climbing. 
BSFLA Binary Shuffled Frog Leaping Algorithm. 
CCA Cooperative Co-Evolutionary Algorithm. 
CIGA Chaotic Immune GA. 
CLP Constraint Logic Programming. 
CPSO Chaotic Particle Swarm Optimization. 
CSA Cuckoo Search Algorithm. 
DBDE Discrete binary DE. 
DD Dual Decomposition. 
DE Differential Evolution. 
DP Dynamic Programming. 
EA Evolutionary Algorithm. 
ED Economic Dispatch. 
ELPSO Elite Particle Swarm Optimization.  
EP Evolutionary Programming. 
EPL Extended Priority List. 
EPSO Enhanced Particle Swarm Optimization. 
ES Evolutionary Strategy. 
ES Expert System. 
ESA Enhanced Simulated Annealing. 
FA Firefly Algorithm. 
HTBPSO Hybrid Topology Binary Particle Swarm 

Optimization. 
IA Immune Algorithm. 
IBPSO Improved Binary Particle Swarm Optimization. 
IBSFLA Improved Binary Shuffled Frog Leaping  

Algorithm. 
ICGA Integer-Coded Genetic Algorithm. 
IDE Improved Differential Evolution. 
ILR Improved Lagrangian Relaxation. 
ISAPSO Improved Simulated Annealing Particle Swarm   

Optimization. 
LP Linear Programming. 
LR Lagrangian Relaxation. 
LSA Local Search Algorithm. 
MACO Memory Bounded Ant Colony Optimization. 
MAEA Meta-modal Assisted Evolutionary Algorithm. 
MBDE Memetic Binary Differential Evolution. 
MILP Mixed Integer Linear Programming. 
MRCGA  Matrix Real-Coded Genetic Algorithm. 
MSSA Modified Salp Swarm Algorithm. 
NP Network Programming. 

NSGA-II Non-dominated Sorting Genetic Algorithm –II. 
NUWD Non-Uniform Weight vector Distribution. 
PL Priority List. 
PRGA Parallel Repaired Genetic Algorithm. 
PSO Particle Swarm Optimization. 
QBPSO Quantum inspired Binary Particle Swarm 

Optimization. 
QEA Quantum Evolutionary Algorithm. 
RSA Random Search Algorithm. 
SA Simulated Annealing. 
SADE Self Adaptive Differential Evolution. 
SDP Semi Definite Programming. 
SFLA Shuffled Frog Leaping Algorithm. 
SQP Sequential Quadratic Programming. 
SSGA Steady State Genetic Algorithm 
TS Tabu Search. 
UC Unit Commitment. 
UWD Uniform Weight vector Distribution. 
WLS Wide Local Search. 
 
 
I.    INTRODUCTION 
The Unit Commitment (UC) problem is related to the 
trustworthy operating state of power system network, 
intended for the functioning status of thermal units as well 
as the power dispatch, which involves distributing the 
system load demand to the committed thermal units [1]. 
Thermal power generation plays an important role in the 
majority of the grid connected power systems, to provide 
towering-quality electric power, to consumers in a 
profitable and secured mode [2]. The use of the most 
favorable working plan is to meet the power demand, at the 
least fuel price, by means of the best possible mix up of 
dissimilar power plants [3],[4]. It is possible to meet the 
necessary power demand under more than a few operating 
plans, with on/off position of generating units, over a short 
term scheduling, with the prospect of reducing total 
generation cost while at the same time, gratifying coupling 
constraints of spinning reserve and power balance, in 
addition to corporeal and outfitted constraints of every 
individual unit [5], [6].   

A variety of conventional/predictable techniques was 
carried out from the past studies to solve UC problems 
under a variety of dimensions, bordering on Probabilistic 
techniques [7], [8], Security constrained multi-area method 
[9], Storage and delivery constrained method [10], Priority 
List (PL) [11]-[14], Linear Programming (LP) [15], [16], 
Mixed Integer LP (MILP) [17]-[21], Sequential Lagrangian 
MILP [22], Tighter Approximated MILP [23], Tight MILP 
[24], Tight and Compact MILP [25], [26], Tight Polyhedral 
MILP [27], Strengthened MILP [28], Fuzzy based MILP 
[29], [30], Computationally Efficient MILP [31], Dynamic 
Programming (DP) [32]-[35], Decomposition based DP 
[36], Enhanced DP [37],  Multi-Pass DP [38], Dynamic 
Regrouping based Sequential DP [39],  Dual Optimization 
DP [40], Dual Decomposition (DD) based Sequential 
Quadratic Programming (SQP) [41], Semi Definite 
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Programming (SDP) [42], [43], Lagrangian Relaxation 
(LR) [44]-[55], Adaptive LR [56], LR with Lagrange 
Multiplier (LM) Updating  [57], LM based Sensitive Index 
[58],  Lagrangian Reduction Search Range [59],   
Lagrangian heuristics based on disaggregated bundle 
technique [60], Augmented Lagrangian (AL) approach 
[61], [62], Decomposition Method [63]-[65], Hybrid 
Decomposition [66],  Integer Programming (IP) [67], 
Adaptive IP [68], Projected Mixed IP [69], Monte Carlo 
[70], Branch and Bound Algorithm [71], Modified  Sub-
gradient method [72], Benders Decomposition [73]-[75], 
Outer Approximation (OA) [76], OA and Outer Inner 
Approximation [77] and Tighter Relaxation [78], [79]. 

There are key difficulties, to resolve the UC problems, 
by incorporating these classical approaches like deprived 
convergence, computation intricacy to handle multi-
objective functions with many constraints, to achieve 
efficient results.  Nontraditional artificial intelligence based 
optimization approaches like Network Programming (NP) 
[80], Tabu Search (TS) [81], Hybrid fuzzy based TS [82], 
Heuristic search techniques [83]-[85], Simulated Annealing 
(SA) [86]-[89], Twofold SA [90],[91], Adaptive SA [92], 
Enhanced SA [93],[94], Stochastic SA [95],[96], Ant 
Colony Optimization (ACO) [97],[98], ACO with Random 
Perturbation [99], Memory Bounded ACO [100], Nodal 
ACO [101], Hybrid Taguchi ACO [102], Fuzzy  Logic 
[103]-[107], Fuzzy based SA [108],[109], Fuzzy DP [110], 
Fuzzy Hierarchical Bi-Level Modelling [111], Artificial 
Neural Network (ANN) [112]-[119], Hybrid ANN [120]-
[122], Hopfield ANN [123]-[127], Expert System [128]-
[131] and Quasi-Oppositional Teaching Learning 
Algorithm [132], could cope with the convergence 
properties, intricacy of computational operation and give 
innovative solutions against conservative methods. Every 
traditional and non- traditional technique has diverse 
properties, merits and demerits.  The key advantages and 
disadvantages of some traditional and non- traditional 
methods, focused on this section, are given in Table 1.   

Aside from the above techniques, there is an additional 
class of numerical methods, applicable to the UC problem 
called evolutionary optimization techniques, which have 
greater capability to search for superior results of intricate 
optimization problems. However, these techniques 
necessitate a substantial quantity of computational time, to 
come across the near-global minimum, particularly for a 
large-scale UC problem.   

The main objective of this paper was to present 
comprehensive review, about the different evolutionary 
optimization techniques, to deal with various dimensions of 
UC problems, under different constraints and environments. 
Summarization of reviews, extracts from the referred 
publications of leading international journals, names of 
international journals, along with their publishers, are listed 
in Table 2. Also the number of articles published since 
1973 related to UC problems displayed in Fig. 1 based on 
the list of journals given in Table 2. The contributions of 
this paper include the following: 

1. Clear reviews about the UC problem, with different 
evolutionary optimization techniques like GA (section II. 
A), PSO (section II. B), EA (section II. C), EP (section II. 
D), DE (section II. E), SFLA (section II. F), FA (section II. 
G), other evolutionary optimization techniques (section II. 
H) and hybrid evolutionary optimization techniques 
(section II. I) are presented. 

2. The constraint implementation, tool of simulation, 
hardware used to run simulations and the test and practicing 
systems used to validate of results, focused in the 
references, have been captured and tabularized. 

3. The distinguished features of every proposed work 
focused on the references related to evolutionary 
optimization techniques, have been captured and 
tabularized.  

The rest of the paper is ordered as follows. Section II, 
explains about the general backdrop of UC problem, 
including a variety of equality and inequality constraints 
focused in the references. Section III, describes the review 
of different evolutionary optimization techniques, germane 
to UC problem focused on the references. Finally, section 
IV, concludes this paper.   

    
II. COMMON BACKDROP CONCERNING UC PROBLEM 
UC is an extremely important optimization assignment since 
the best possible scheduling of commitment, can reduce the 
enormous amount of total production costs while overcoming 
a variety of unit and system constraints. UC problem 
solutions are implemented for both stochastic and 
deterministic loads. The configuration of UC problem, with 
on/off scheduling of generating units, is represented in Fig. 2. 
Owing to the poor accuracy of results obtained from 
stochastic loads, the constraints of stochastic UC models are 
changed into the determinate form and then the formulation 
solution can be done by any of the customary optimization 
algorithms.   

Two types of analysis, like data envelopment analysis and 
principal component analysis are applied to deterministic 
loads, to provide definite and unique solutions. The input and 
output variables are defined in the first analysis and 
minimum number of variables is in the second analysis. The 
different types of objective functions, related to UC problem 
under different circumstances, are as follows. 

A.    TRADITIONAL FUEL BASED CIRCUMSTANCE 
The Traditional UC is an optimization problem which can be 
mathematically formulated as:  

��	 
 
 �����. ��� +�
���

�
���

�� .  ��� + �� .  ���       �1� 

There are three costs to minimize from the equation (1). The 
term  ���� denotes the generation of unit i at time t, and F���� denotes the fuel cost of the unit i at time t and the 
terms ST .  U ! and SD .  ��� represent the start up and 
shutdown costs respectively.  
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FIGURE 1.    Number of articles published since 1973 related to 
 

The production cost of the operating generators, which is 
basically a convex function, is called fuel cost. The cost 
equation, for a unit i, can be represented in a quadratic form 
as:  

����� # $� + %�  .  �� � &�  . ��'
where,  $�,%�, and &� are fuel cost coefficients of ith generating units. 
The startup cost of ith generating unit can be articulated by:

��� # ()�*� ,   ��,+,,� - ��,.+/0 � ��1�*� ,   ��,+,,� 2 ��,.+/0 � ��
where )�*�: Hot start-up cost of ith generating unit. 1�*�: Cold start-up cost of ith generating unit.

In standard systems, the archetypal value of the shut down 
cost is zero and it is considered as a fixed cost and given by

�� .  ��� # 3��                      
where 3 = Incremental shut-down cost. 

B.  STOCHASTIC BASED CIRCUMSTANCE
Stochastic circumstance is one wherein arbitrariness is 
incorporated either in the objective function or in the 
constraints. According to the realistic requirement like 
probability-constrained and anticipation programming, 
several types of hesitant programming methods can be 
implemented, to carry out the stochastic optimization. 
Owing to the large scale integration of renewable resources 
like solar and wind, etc., ambiguity occurs in po
systems at the present time. Therefore, for the successful 
and consistent operation of the system, the demand and 
supply may as well be different within a stochastic 
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TABLE  1.  Key advantages and disadvantages of classical and non-classical approaches focused in literature.

Algorithm Ref. No. Advantages Disadvantages 
Linear 
Programming 

 

[15-31] • Offers an information base for optimum allocation 
of inadequate resources. 

• Helps to making adjustments according to the 
altering conditions. 

• Helps to solving the multi- dimensional problems. 
• Simple and easy to understand. 
• Analyses the problems in more flexibility and 

adaptive. 
• Provides better quality of decision. 

• Cannot resolve the problems in which variables 
cannot be stated quantitatively. 

• The factor of uncertainty is not considered in this 
method. 

• Extremely mathematical and complicated. 
• To specify an objective function in mathematical 

form is not a trouble-free task. 
• Impracticable to solve nonlinear functions. 

Dynamic 
Programming 

 

[32-40] • Stores preceding values to keep away from the 
multiple calculations 

• This recursive procedure does not have memory. 
• Convenient to use again the partial covered 

subordinate solutions. 

• Must be keeping the track of the number of 
partial solutions. 

• Not capable of resolving non-integer constraint 
based problems. 

Sequential 
Quadratic 
Programming 

[41] • Usually necessitates the smallest number of 
functions and gradient evaluations.  

• Does not try to gratify the equalities at every 
iteration 

• Usually infringes nonlinear constraints until 
convergence, frequently by huge quantities.  

• Requires a good quadratic programming solver. 

Semi-Definite 
Programming 

[42-43] • Speedy and significant for seed methods.  
• It is a convex problem and therefore, has no local 

minima/maxima. 
• Easy to be implemented. 

• Lack of the relative numerical precision of an 
optimal solution 

• Poor accuracy.  

Lagrangian 
Relaxation 

 

[44-62] • It basically produces sub-problems that can be 
solved in parallel. 

• Equations are simple to keep in mind. 
• Fewer numbers of variables involved. 
• Computer programs are incredibly easy to encode. 

• Slower convergence. 
• Do not give any bounds on the quality of the 

solution. 
• It can oscillate and fail to converge if the slave 

problems are also uniform. 

Decomposition 
Method 
 

[63-66] • Easy to implement 
• Less computing time is required to run the 

program 

• There is no way to be sure that every essential 
component has been captured and appropriately 
related. 

Integer 
Programming 

 

[67-69] • Easier way in terms of time, cost and effort that 
might be required to derive an integer solution.  

• Possible to model any of the variables and 
constraints. 

• More flexibility and realistic.   

• Does not satisfy all given constraints.  
• More complicated to model and solve 

Monte Carlo 

 

[70] • Does not disturb the continuing activities of the 
real system. 

• More general than mathematical models. 
• More sensible replication of a system than 

mathematical analysis. 
• Effective to analyze transient conditions over 

mathematical techniques  

• Poor reliability. 
• Less accuracy than mathematical analysis.  
• Needs more computation time to run complex 

problems 

Branch-and-
Bound Algorithm 
 

[71] • It finds the minimum path in place of finding the 
minimum descendant, so there should not be any 
recurrence. 

• Less time complexity.  

• The load balancing aspects make parallelization 
difficult. 

• Capable of running with small size network only. 

Modified Sub-
gradient Method 

[72] • Inexpensive iteration process and does not need 
second derivatives. 

• Extremely simple for minimizing convex non 
differentiable functions. 

• Slower convergence. 
• Poor tuning process. 
 

Benders 
Decomposition 

 

[73-75] • Obliging tool for solving process design problems.  
• Alternates between the solution of relaxed master 

problems and convex nonlinear sub-problems. 
• Not free from local optima. 

Outer 
Approximation 
and Outer-Inner 
Approximation 

[76-77] 
• Good performance of the approximate 

computation of the projection. 
• Very complicated to solve the large size models. 

Tighter 
Relaxation 
Method 

[78-79] • Transaction with additional variables in the higher 
dimensional space, in addition to supplementary 
constraints 

• Simple and to adoptable to computers 

• Slower progress than the contra methods  
• Extremely enormous and tough to solve. 

Network 
Programming 

 

[80] • Powerful, flexible and intuitive. 
• Updated information only can be sent. 
• Quick solution obtained. 
• They have naturally integer solutions. 

• Cannot devise the extensive range of models.  
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TABLE  1.  Key advantages and disadvantages of classical and non-classical approaches focused in literature (Continued).

Algorithm Ref. No. Advantages Disadvantages 
Tabu Search 
 

[81-82] • Convenient to apply for both continuous and 
discrete solution spaces. 

• Permits non-improving solution to be accepted in 
order to escape from a local optimum. 

• Numerous parameters to be determined. 
• Large number of iterations is required. 
• Complicated to find global optimum and depends 

on parameter settings. 

Heuristic Methods 
 

[83-85] 
• Easy to implement and learn. 
• Does not stop at local optimum. 
• Efficient to solve. 

• Complexity in computation and need much more 
computation time. 

• Heuristic evaluations are insecurely structured 
and therefore, run the risk of finding one-time, 
low-priority problems. 

Simulated 
Annealing 

 

[86-96] • Coding is simple even for complex problems. 
• Cost functions and arbitrary systems are easy to 

deal. 

• There are a small number of local minima. 
• Necessitates a few other complementary methods 

to find an optimal solution. 

Ant Colony 
Optimization 
 

[97-102] • Can be used in dynamic applications.  
• Inherent parallelism. 
• Well-organized for some problems similar to 

Travelling Salesman Problem. 

• Difficult to understand the theoretical analysis. 
• Needs more convergence time. 

Fuzzy Logic [103-111] • Gives effective solution to complex problems.  
• Interpretability and simplicity. 
• It can handle problems with imprecise and 

incomplete data, and it can model nonlinear 
functions of arbitrary complexity. 

• The algorithms are often quite understandable. 
• Sometimes it uses only approximate data and 

hence simple sensors can be used. 

• It is difficult to develop fuzzy rules and 
membership functions.  

• Outputs can be interpreted in a number of ways, 
making analysis difficult.  

• It requires lot of data and expertise to develop a 
fuzzy system.  

Neural Net works 
 

[112-127] • Suitable to model complex functions. 
• Easy to implement. 
• Ease of use and learnt by example, and very little 

user domain-specific expertise needed. 

• It cannot be retrained. If add data later, this is 
almost impossible to add to an existing network. 

• Handling of time series data is a very complicated 
task. 

• Intricate network structure. 

Expert System [128-131] • Holds and maintains momentous levels of 
information. 

• Centralizes the decision making process. 
• Makes things more efficient by reducing the time 

needed to solve problems. 
• Decreases the number of human errors. 
• Provides tactical and relative advantages that may 

create problems for competitors. 
• Provides reliable answers for cyclic decisions, 

processes and tasks. 

• No common sense used in making decisions. 
• Not capable of explaining the logic and reasoning 

behind a decision. 
• It is not simple to automate complex processes. 
• There is no suppleness and capability to adapt to 

changing environments. 
• Errors may occur in the knowledge base, and 

could lead to incorrect decisions. 

Quasi-
Oppositional 
Teaching 
Learning based 
Algorithm 

[132] • It is consistent, precise and robust. 
• Appropriate crossover and mutation rate is not 

required.  
• It gives improved performance with less 

computational time for the problems with high 
dimensions 

• It converges quickly, if proper precaution is not 
taken. 

• It gives a near optimal solution earlier than an 
optimal one in a limited iteration cycles 

TABLE 2.  List of referred journals with publishers used in this review. 

S. No. Journal Name Publishers 
1 Applied Energy Elsevier 
2 Applied Mathematical Modelling Elsevier 
3 Applied Soft Computing Elsevier 
4 Computers & Electrical Engineering Elsevier 
5 Electric Power Components and Systems Taylor & Francis 
6 Electric Power Systems Research Elsevier 
7 Electrical Power and Energy Systems Elsevier 
8 Energy Elsevier 
9 Energies MDPI Publications 
10 Energy Conversion and Management Elsevier 
11 Engineering Optimization Taylor & Francis 
12 European Journal of Operational Research Elsevier 
13 Expert Systems with Applications Elsevier 
14 IEEE Access The Institute of Electrical and Electronics Engineers 
15 IEEE Transactions on Automatic Control The Institute of Electrical and Electronics Engineers 
16 IEEE Transactions on Energy Conversion The Institute of Electrical and Electronics Engineers 
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TABLE 2.  List of referred journals with publishers used in this review (Continued). 

S. No. Journal Name Publishers 
17 IEEE Transactions on Industrial Informatics The Institute of Electrical and Electronics Engineers 
18 IEEE Transactions on Industry Applications,  The Institute of Electrical and Electronics Engineers 
19 IEEE Transactions on Neural Networks and Learning Systems,  The Institute of Electrical and Electronics Engineers 
20 IEEE Transactions on Power Apparatus and Systems  The Institute of Electrical and Electronics Engineers 
21 IEEE Transactions on Power Systems The Institute of Electrical and Electronics Engineers 
22 IEEE Transactions on Systems, Man, and Cybernetics The Institute of Electrical and Electronics Engineers 
23 IEEJ Transactions on Electrical and Electronic Engineering Wiley Interscience 
24 IET Generation, Transmission & Distribution The Institution of Engineering and Technology 

25 Informatica 
Vilnius  University Institute of Mathematics and Informatics, 
Lithuania 

26 Information Sciences Elsevier 
27 International Journal of Ambient Energy Taylor & Francis 

28 International Journal of Applied Mathematics and Computer Science 
Institute of Control and Computation Engineering, University 
of Zielona Gora 

29 International Journal of Energy Sector Management Emerald Publishing Limited 
30 International Journal of Modelling and Simulation Taylor & Francis 
31 International Journal of Systems Science Taylor & Francis 
32 International Transactions on Electrical Energy Systems John Wiley & Sons 
33 Journal of Circuits, Systems, and Computers World Scientific Publishing Company 
34 Journal of Electrical Engineering De Gruyter, Slovakia 
35 Journal of Electrical Engineering and Technology The Korean Institute of Electrical Engineers 
36 Journal of Electrical Systems Engineering and Scientific Research Groups 
37 Journal of Heuristics Kluwer Academic Publishers 
38 Journal of Information and Optimization Sciences Taylor & Francis 
39 Journal of the Chinese Institute of Engineers Taylor & Francis 
40 Knowledge Based Systems Elsevier 
41 Mathematical Problems in Engineering Hindawi Publishing Corporation 
42 Measurement and Control SAGE Publications 
43 Microprocessors and Microsystems Elsevier 
44 Neural Computing & Applications Springer 
45 Neurocomputing Elsevier 
46 Nonlinear Analysis, Theory. Methods & Applications Pergamon  Elsevier 
47 Operational Research Springer 
48 Simulation Practice and Theory Elsevier 
49 Soft Computing Springer 
50 Swarm and Evolutionary Computation Elsevier 
51 The Hong Kong Institution of Engineers Transactions Taylor & Francis 
52 The Scientific World Journal Hindawi Publishing Corporation 

53 Turkish Journal of Electrical Engineering & Computer Sciences 
TUBITAK (Scientific and Technological Research Council of 
Turkey) 

54 WSEAS Transactions on Computers World Scientific and Engineering Academy and Society 
55 WSEAS Transactions on Power Systems World Scientific and Engineering Academy and Society 
56 WSEAS Transactions on Systems World Scientific and Engineering Academy and Society 

    Equation (5) consists of the objective function of operation 
and start-up/shut down costs of thermal generators, as well as 
the predictable wind power spillage; Equation (6) 
corresponds to system power balance constraints. Equation 
(7) corresponds to DC transmission constraints. The term CD 
in equation (8) indicates the constraints, linked only with 
integer variables, like minimum online/ offline time limits. 
The term CG in equation (9) denotes ramping-up and 
ramping-down constraints. The term C5 in equation (10) 
represents constraints for start-up/shut down costs. Equations 
(11) and (12) represent the upper and lower limits of wind 
and thermal generators’ real power output. 

C.  PROFIT BASED CIRCUMSTANCE 
The chief goal of this profit based circumstance is to 
maximize the profit of the providers, who partake in the 

energy brokerage. Role of self-governing system operator is 
to match the power demand and supply and it establishes 
the rivalry among the generation companies. Consequently, 
the profit is maximized by suppliers to schedule their units 
as said by the predicted power cost. The difference between 
revenue and the total fuel cost is called the profit of 
generating company. Both the revenue and total fuel cost 
are calculated on the basis, the predicted values of reserve 
power, price and power demand. Consequently, predicted 
reserves and powers of the generating company play an 
imperative role in profit maximization.  Problem 
formulation of the profit based UC is given by: 
Maximize. Profit (P) = Available revenue (Ra) – Total 
operating cost (Ct) 
Or �$X�:�YZ. �1� − [T� 
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The available revenue and total operating cost can be 
calculated by: 

[T # 
 
<�� .  �\�F .  ���
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���
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���
���                 �13� 

where �� : Output power of ith generator at tth hour in MW. �\� : Forecasted spot price at tth hour/MW. ��� : ON/OFF status of the unit. ]: Probability that the reserve is called and generated.  [\� : Forecasted reserve price at tth hour/MW. G� : Reserve power of ith generator at tth hour in MW. 
N: Total number of units. 
T: Total number of hours. 
The sum of fuel cost for both power and reserve power 
generation, ���� +  G�� and startup cost of all units is 
called total operating cost of the system. 
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where,  ����� : Fuel cost of ith generating unit during tth interval, is 
given in equation (2). �� : Startup cost is given for ith generating unit in equation 
(3). 

D.  VARIOUS CONSTRAINTS INVOLVED IN UC 
PROBLEM 
A variety of UC related problems are related to numerous 
constraints, like total generated power to meet the load 
demand, sufficient spinning reserve to cover any deficits in 
a generation, loading of each unit to be within its minimum 
and maximum permissible limits, minimum up and down 
times of each unit to be observed and unit availability 
constraints like unit being available or not available, 
running condition, and initial status. Implementation of 
various constraints, simulation tool, hardware and validity 
of results used in reference papers, associated with 
evolutionary optimization techniques, are listed in Table 3. 
The various constraints involved in UC are as follows: 

1) SYSTEM POWER BALANCE/LOAD BALANCE 
CONSTRAINTS 

The generated power from all committed units must be 
sufficient to meet the system power demand, as articulated 
by: 


 ��`�� # I�  ,   ab] Q # 1,2, … , �.                 �15��
���

 

where I�  is system load demand at time t. 

2) SYSTEM SPINNING RESERVE CONSTRAINTS 
In an attempt to minimize the chance of load disruption, 
spinning reserve ought to be available in the power system 
and specified in terms of surplus megawatt capacity, as 
articulated by: 


 `��� ?T� ≥ I� + c�
�

���
                        �16� 

where c�  is spinning reserve at time t. 

3) GENERATOR CAPACITY CONSTRAINTS 
The generated power of units must be in their maximum 
and minimum boundaries, as shown below: � ?�0 ≤ � ≤ � ?T�  , ab] � # 1,2, … , 	.          �17� 

where� ?�0 and � ?T� are the allowable minimum and 
maximum output of generator i, respectively. 

4) RAMP LIMIT CONSTRAINTS 
Because of the confines of thermal stress and mechanical 
characteristics of a generating unit, the real operating range 
of all online units is limited by their ramp rate limits, as 
shown below: � ?T��Q� # :�	�� ?T� , ��A� + d . [���� ?�0�Q� # :$X�� ?�0 , ��A� + d . [��� ,        �18� 

where [�� and [�� are the ramp up and ramp down rates of 
unit i , respectively. 

5) MINIMUM UP AND DOWN TIME CONSTRAINTS 
If any unit is once committed or de-committed, it cannot be 
turned on or off right away. The minimum up and down 
time constraints point out that a unit must be on/off during a 
definite number of hours, in accordance with shutdown or 
start-up respectively. These constraints are expressed by: 

è,� # f1           �a 1 ≤ �g� e,�A� < �H�,e0          �a 1 ≤ �gii e,�A� < �I�,e0  b] 1  bQℎZ]��kZ                         8        �19� 

where, �g� e,�  is the duration for which unit l is continuously on-
line at hour Q.  �H�,e and �I�,e are the minimum up and down time of 
unit l. 
6) FUEL COST CONSTRAINTS 
The fuel cost has to be limited to a particular range, for 
every hour, in the time period. The equation is expressed 
as: 

�?�0��� ≤ 
 �����, Q�E��, Q� + [��, Q�E��, Q� + m��, Q���
��� ≤ �?T����                                                �20� 

where �?�0��� = Minimum consumption of total fuel for unit i. �� = Fuel consumption function of unit i. ��, Q� = Power generation of unit i at time t. E��, Q� = Commitment status of unit i at time t. [��, Q� = Level of spinning reserve of unit i at time t. 
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m��, Q� = Level of non-spinning reserve of unit i at time t. �?T���� = Maximum consumption of total fuel for unit i. 

7) NETWORK SECURITY CONSTRAINTS 
Transmission capacity limit, the line flows and bus voltage 
magnitude constraints are grouped into system network 
security constraints, under steady state operation of power 
system and expressed as: 
(a) Transmission capacity constraints 

|�6�Q�| ≤ �6?T�, o ∈ mq                             �21� 
where �6?T� = Maximum transmission power of line l. mq = Number of transmission lines. 
(b) Transmission line flow constraints 

rN?�0 ≤ rN ≤ rN?T� ; t # 1,2, … , mq               �22� 

where rN?�0= Minimum phase angle of kth transmission line. rN?T�= Maximum phase angle of kth transmission line. 
(c) Bus voltage magnitude constraints: 

uN?�0 ≤ uN ≤ uN?T�  , t ∈ mv                        �23� 

where uN?�0= Minimum voltage limit of bus k.  uN?T�= Maximum voltage limit of bus k. mv= Number of buses. 

8) OTHER CONSTRAINTS 
The following constraints are also called sub constraints 
and they are not often implemented, for the application of 
UC problem. 

(a) Energy constraints – They are observed in UC problem, 
with energy contracts which couples generation decisions 
over the time perspective. It can be formulated as follows: 

w�?�0 ≤ 
 �,���,� ≤ w�?T��
���

                      �24� 

where w�?�0 = Minimum energy delivery of unit i. w�?T�= Maximum energy delivery of unit i. 
(b) Must run/down constraints - Based on the temporary 
maintenance and fuel aspects this constraint enforces units 
in or out of service. 
(c) Crew constraints – It is not possible to turn on more 
than one unit at the same time in a power plant while 
starting up owing to deficient crew members. 
(d) Initial operating status of generating units: 
The preliminary operating status of each unit ought to take 
the previous day’s schedule into account, so that each unit 
satisfies its minimum up/downtime. 
(e) Slack bus constraint: xN �?�0� ≤ xN ≤ xN �?T��                  �25� 
where xN= Slack bus generation output at kth hour.  

(f) Emission constraint – Based on polluting gases emitted 
by burning fuel to be limited and expressed by the 
following equation 


 
 )����Q�� ≤ w6�?��                       �26�D
���

�
���

 

where )yz���=Quadratic function connected with some types of 
emission. 
(g) Minimum loading constraint – It is based on the 
following equation 


 ?�0,0 ≤ �{                                  �27��
0��

 

where, ?�0.0= Minimum power generated by all committed units. �{= Load demand in the hour h. 

III. REVIEW OF UC PROBLEM DEALT WITH BY 
EVOLUTIONARY OPTIMIZATION TECHNIQUES 
Evolutionary optimization techniques are devised to solve 
superior dimensional problems and they are proved to be 
better than traditional optimization techniques, to solve multi 
dimensional UC problems. However, these methods require a 
considerable quantity of computational time to arrive at the 
near-global minimum, particularly for a major UC problem. 
Numerous researchers have examined an assortment of 
evolutionary optimization techniques, related to UC problem, 
in diverse dimensions. This paper proposes to present a 
complete review of the UC problem, integrated with 
numerous types of evolutionary optimization techniques like 
UC problem incorporated with GA [133-159], UC problem 
incorporated with PSO [160-170], UC problem incorporated 
with EA [171-177], UC problem incorporated with EP [178-
183], UC problem incorporated with DE [184-190], UC 
problem incorporated with SFLA [191-193], UC problem 
incorporated with FA [194-199], UC problem incorporated 
with other evolutionary optimization techniques like BFA 
[200], FSA [201-202] and CSA [203], UC problem 
incorporated with Hybrid evolutionary optimization 
techniques [204-244], in the subsequent sections. Distinctive 
features of the references, connected to evolutionary 
optimization techniques, are captured and showed in Table 4, 
including the year of the publication.   

A. UC PROBLEM INCORPORATED WITH GA 
Sheble and Maifield proposed the UC problem 
incorporating GA, for 24 hour commitment schedule with 
six generators [133]. Two types of loading procedure (load 
1 and load 2) are implemented to acquire the results 
intended for 24 hour schedule. Load 1 procedure represents 
that all generating units are in the off state, in the initial 
scheduling period and on state, in the final scheduling 
period. Load 2 procedure represents that all generating units 
are in off state, at first scheduling period and all need not be 
at on state during the final scheduling period. The fuel price 
for every UC schedule is premeditated, by the sum of the 
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cost of ED intended for every hour. Sheble and Maifield 
[136] also presented a domain specific mutation based GA 
for UC problem, with three different electric utilities and 
the effectiveness of this approach is compared with the 
Lagrangian relaxation method. 

A new forced mutation operator is introduced with GA 
based thermal UC, subject to demand, generating capacity, 
reserve and minimum up/down time constraints [134]. The 
penalty methods, incorporated with GA were constructed 
[135] and these methods were used to meet the various 
constraints like surplus generation, system demand, 
minimum up and down time, and spinning reserve. A GA 
based UC solution, incorporated with a changing quantity 
function and two sets of problem specific operators is also 
presented [137]. At first set, Swap-window and window-
mutation operators are presented.  Swap-mutation and swap-
window hill climb operators are implemented in the second 
additional set. Yang et al framed a solution through GA, in 
juxtaposition with the means of constraint handling 
techniques. The on-off status of units are represented by the 
binary strings, contained in the entrenched minimum up and 
down time constraints [138] and  developed a parallel GA in 
terms of sequential GA, master-slave and dual-direction ring 
based parallel GA, implemented in an eight-processor based 
transputer network [139]. 

A Dynamic Programming Crossover (DPX), to explore 
the gene sets without any repair algorithms or penalty 
functions in the constrained search space is discussed by Cai 
and Lo [140]. Three types of fitness functions and the 
Roulette Wheel Parent Selection Algorithm based selection 
technique are also designed and executed. A genetic 
algorithm based constrained optimization, with a precise 
changing fitness function method, is proposed to solve the 
cutting stock and unit commitment problems [141]. In this 
method, an active way fitness function is integrated with the 
constraints of the problem and formed by altering penalty 
terms. The penalty factors are reserved low down on the 
initial stage of evolution of GA, to make things easier for the 
search. The search competence of this optimization process is 
reinforced by some supplementary operators like Swap-
Window, Window-Mutation, Swap-Mutation and Swap-
Window Hill-Climbing operators.  

A new Parallel Repaired GA (PRGA) was framed by 
Arroyo et al [142], to resolve UC problem, with three diverse 
optimization methods like Global Parallelization (planned to 
speed up the performance of the GA and lessen the 
computational time), Coarse-Grained Parallelization (to 
amplify the effect of mutation and crossover operators for 
escaping from local optima) and Hybrid Parallelization 
(combination of the Global and Coarse-Grained 
Parallelization) of GA. The performance of this planned 
method was evaluated by a technologically advanced LR 
algorithm. A new problem specific operator was introduced 
by Swarup and Yamashiro [143], to correct and mend the 
process of desecrated schedule, and it was classified into two 
types bit change operator and minimum up/down time 
operator. The bit position was modified by the bit change 

operator like change bit ‘101’ to ‘111’ or ‘010’ to ‘000’, with 
a sure quantity of probability. The bits were re-ordered by the 
minimum up/downtime operator, to satisfy the minimum 
up/down time constraints. The same author also proposes a 
similar approach [147], incorporating randomized operators 
in UC schedule, akin to without any operator, with bit 
operator and with bit and string operator modes. 

A two level GA algorithm was presented, to resolve UC 
problem, subject to spinning reserve, generation limit, energy 
and minimum up/down time constraints [144]. The on/off 
status of generating units was determined by the higher level 
GA. The ED was contracted with the lower level GA. Taylor 
expansion based varying λ-technique was also projected in 
this technique, to overcome the oscillation effect between 
minimum and maximum MW limits. Chen and Wang have 
presented a new cooperative co-evolutionary algorithm 
(CCA), by combining the framework of basic LR with 
traditional GA [145]. Two level approaches are formulated in 
this approach, by optimizing the Lagrange multipliers 
through a sub-gradient based stochastic optimization level in 
the first level (also called high level) and the UC schedule is 
solving with GA in the second level (also called low level). 
The heat consumption (in one million British thermal units - 
MBTU) is chosen as the objective of the optimization 
process instead of fuel cost and the cost per unit heat 
consumption ratio is taken as 6:1 (cost of six units of nuclear 
heat equals that of one unit of coal heat).  

A unit level crossover [146] was implemented to attain 
the better scheduling, by maintaining the initial half of the 
bits and swaps the second half of the bits, by means of 
arbitrarily selected units. The mutation probability ranged 
from 0.004 to 0.024.  Best and worst cost, with an average 
time of this approach is also presented and compared with a 
simple GA. Three special operators like unit 
exchange/copying operator (performing chromosome 
operation to avoid the violation constraints), Excessive-
reserve elimination operator (improve the performance of UC 
schedule) and Chromosome length augmentation (ability to 
increase the length of chromosome in order to include the 
necessary new cycles) were introduced in an Integer Coded 
GA (ICGA) based UC problem, to reduce the size of 
chromosome [148]. Dudek presented a mutation method, 
incorporating GA and its probability, dependant on the 
requirement of meeting the load demand of the units, start-up 
and production costs [149]. The proposed transposition 
operator helps to swap the chromosome sections that encode 
the conditions of two randomly selected units. The 
generation schedule is symbolized by a real number matrix 
based chromosome and the feasible solution is achieved by 
the proposed repairing mechanism [150].  

An encoding-decoding scheme and representation of 
floating point chromosome were designed to reduce the 
complexity of minimum up/down time constraint handling 
[151] and some of the specific crossover and mutation 
operators like arithmetic crossover, simple two-point 
crossover, uniform crossover, Gaussian mutation, Cauchy 
mutation and boundary mutation were also designed and 
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implemented. In [152], two stages are proposed - 
transmission line flow limit by GA, presented in the primary 
stage and the actual power generation limit constraint on line 
phase angle, in the secondary stage. The line flows and losses 
are calculated by a decoupled load flow model. A parallel 
structure based GA is presented to solve thermal UC 
problem, subjected to customary constraints [153]. 

A deterministic selection (a compulsory approach wherein 
individuals, with enhanced fitness, are crossed with those of 
poorer fitness) and an annular crossover (chromosome 
symbolized as a ring to swap of genetic information flanked 
by two individuals) were implemented in [154]. The actual 
and integer part of UC problem is solved by a single 
algorithm called a binary-real coded GA, incorporating 
generated power range (ramp rate) constraint [155]. Real and 
binary part of this proposed method determines the quantity 
of generating power through committed units and their 
scheduling respectively. A new untypical genetic operator 
(transportation) [156] which functions is by means of single 
chromosome and produces offspring through swapping 
chromosome splinters that encode every one decision 
variables of two arbitrarily selected units.  

A memetic, multi-objective evolutionary optimization 
method is presented, with a combination of local search 
algorithm with non-dominated sorting GA-II (NSGA-II), 
which is proposed for the main problem and a weighed-sum, 
lambda-iteration method is used to resolve the sub-problem 
of power dispatch [157]. The emission objective is 
considered in overall environmental UC problem, by 
formulating the multi-objective function amalgamated with 
two UC sub-problems.  The design is equipped with two 
local search strategies and one local search operator.  On/off 
schedule of this method is identified through the global 
search by NSGA-II and a priority list method, which is used 
to generate the on/off schedule solution by means of the 
initial population of chromosomes in NSGA-II. 

In [158], two optimizers are used in the enhanced 
version like real coded GA and MILP, to solve UC and ED 
of micro grids.  With this approach, the formulation of 
strategies, inputs and constraints are initially obtained by 
MILP, with simple algorithm settings and then interfaced 
with the CPLEX software package. An event-driving age 
behavior of lithium-ion battery storage system model has 
also been implemented in this investigated energy 
management system approach, for control of reactive 
power, peak power shedding and load shifting purposes. 
Five main micro-grid operations policies like cost effective 
operation, grid supporting mode, maximum islanding 
degree, eco-friendly operation and malfunctioning policy 
have also been incorporated.  Jo and Kim proposed to solve 
the UC problem, through an improved GA technique. An 
uncertainty integration method was introduced in this 
approach, to assemble the most excellent combination of 
wind and solar units, by Monte Carlo simulation [159]. The 
probability of crossover and initial mutation values are 
given as 0.7 and 0.2 respectively. A modified 

approximation process and repair operators were also used 
in this approach.  

 
 
FIGURE 2.    Basic representation of unit commitment. 

B. UC PROBLEM INCORPORATED WITH PSO 
More particles information was used in an enhanced 
adaptation scheme, with improved social interaction based 
PSO, to control the operation of mutation for effective 
search [160].  An ‘iteration best’ index integrated with PSO 
called Iteration PSO (IPSO) was presented by Lee and 
Chen for getting better fineness of solution and reducing the 
computational time, to resolve UC problem with 
probabilistic reserve, subjected to customary constraints 
[161]. The spinning reserve level is appraised by the effect 
of fuel cost, in addition to outage cost considered in the UC 
problem.  

A priority list, based on strategies of heuristic search and 
unit characteristics, to mend the leading constraints helps to 
enhance the improved discrete binary PSO incorporated 
with lambda-iteration technique, called an improved binary 
PSO (IBPSO) was presented by Yuan et al [162].  Three 
stages have been suggested to solve the UC problem, in 
addition to ED problems, like the amalgamation of discrete 
binary PSO with priority list, executed to commit the units 
to gratify spinning reserve, ignoring the minimum up/down 
time constraints in the first stage. Violations of minimum 
up/down time constraints, in addition to de-committing 
excessive spinning reserve, repaired by a heuristic search 
algorithm in the second stage. Finally, the solution of ED is 
obtained by the lambda-iteration technique. 

Wang and Singh [163] framed a mixed-integer PSO 
(MIPSO), to resolve UC problem, by considering the 
generator outages, subjected to four essential constraints. 
The unit selection is indicated by position values in binary 
numbers and those representing an output of each unit, in 
real numbers.  A new set of individuals was created by 
PSO, combined with GA operators from upper potential 
individuals and further refining them to give close to the 
best concluding solution [164]. In this approach, PSO is 
customized to run in multi-population background and 
everyone is hereditary, from preceding population, through 
applying GA operators.  The entire work is performed with 
three cases (case 1: only thermal units, case 2: thermal 
units, with wind and solar energy, without battery, case 3: 
thermal units, with wind and solar energy, with battery). 
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TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques.  

Ref. 
No. 

Constraints Used Simulation 
Tool Used Hardware Used Cases 

A B C D E F G H I J K L M N O 

[133] √ √ √ √ - - - - - - - - - - - C- language 

DEC (Digital 
Equipment 
Corporation) 
Station 
Computer 

6- unit system 

[134] √ √ √  √ - - - - - - - - - - 
FORTRAN 
77 NG 10- unit system 

[135] √ √ √ √ √ - - - - - - - - - - NG 
IBM PC (Model 
80 386) 9- unit system 

[136] - - - - √ √ √ - - - - - - - - NG 
Sun Sparc 
Station LX 

Big Edison Electric 
Company, Municipal Electric 
Company and Rural Electric 
Exchange having 9- 
generators each 

[137] √ - √ √ √ √ √ - - - - - - - √ NG 
HP APOLLO-
720, 50 MHz 
Work station 

 
10-, 20-, 40-, 60-, 80- and 
100 unit test cases 

[138] √ √ √ √ √ - √ √ - - - - - - - 
Turbo C 
language, 

IBM- PC486-66. 
Taiwan Power 38-unit 
practical system 

[139] √ √ √ √ √ - - √ - - - - - - - 
Express C 
language 

Inmos T800-
G25S Transputer 
with PC-486-66 

Taiwan Power 38-unit 
practical system 

[140] - - - - - √ √ - - - - - - - - NG 
SUN SPARC 
workstation 10 NG 

[141] √ - √ - √ - - - - - - - - - - NG 
HP Apollo 720 
workstation 

10- and 20- unit systems. 
 

[142] √ - - √ √ - - - - - - - - - - 

Fortran 90 
with Message 
Passing 
Interface 

DEC- Alpha 
21164 processor 
with 128 MB of 
RAM 

Real case of mainland Spain 
45- generating units 

[143] √ √ √ - √ √ √ - - - - - - - - C- Language 

HP-UX 9000 
Engineering 
Work Station 
(EWS) 

10- unit system 

[144] √ √ - - √ - - - √ - - - - - - NG 
Pentium II 400 
PC 10- unit system 

[145] 
 

√ √ √ √ √ - - - - - - - - - - NG 
Pentium-II-26 
Microcomputer IEEE RTS-96 test system 

[146] √ √ √ - √ - - √ - - - - - - - NG 
Pentium–
IV,1.5GHz 
Processor 

10- unit system 

[147] √ √ √ - √ - √ - - - - - - - - C- Language 

HP-UX 9000 
Engineering 
Work Station 
(EWS) 

10- unit system 

[148] √ - √ √ - √ √ - - - - - - - - NG 
Intel P-IV, 1.60 
GHz with 512-
MB  of RAM 

10-, 20-, 40-, 60-, 80- and 
100-units 

[149] √ √ - - √ - √ - - - - - - - - MATLAB 
Pentium III, 
800MHz  PC 3- and 12-unit cases 

[150] √ √ √ √ √ - - - - - - - - - - Visual C++ 

Intel P- IV, 1.4 
GHz CPU with 
256-MB of 
RAM. 

38-unit system 

[151] √ √ √ √ √ √ √ √ - - - - - - √ NG 

IBM-PC with P- 
II, 300 MHz 
Processor with 
128 MB of 
RAM 

20-,40-,60-,80- and 100-unit 
cases 
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TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques (Continued).  

Ref. 
No. 

Constraints Used Simulation 
Tool Used Hardware Used Cases 

A B C D E F G H I J K L M N O 

[152] √ √ √ - √ - √ - - √ √ - - - - NG NG 

Indian utility 66-bus system 
comprising 12 generators and 
93 transmission lines and 
100-unit systems 

[153] √ √ √ - √ - √ - - - - - - - - C- Language 

Intel Duo core 
1.8 GHz 
Processor based 
PC with 2.0 GB 
of RAM. 

10- and 20-unit systems 

[154] √ √ √ √ √ - - - - - - √ - - √ NG NG 10- and 45-unit systems 

[155] √ √ √ - √ - - - - - - - - - - C- Language 

HCL desk-top 
2.9 GHz, 2.0 GB 
of RAM 
Processor by 
Fedora 8 Linux 
environment 

10-unit system  up to 100-
units 

[156] √ √ - - √ - √ - - - - - - - - MATLAB NG 12 -unit system   

[157] √ √ √ √ √ - - - - - - - - - - MATLAB 

Intel Core i5, 3.4 
GHz Processor 
based PC with 
4.0 GB of RAM 

10-unit system  up to 100-
units 

[158] - - - - - - √ - - - - - √ - - MATPOWER NG 22-bus radial LV micro-grid 

[159] √ - √ - √ √ √ - - - - - - - - MATLAB 

Intel     quad-
core, 3.2 GHz 
processor with 8 
of GB RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[160] √ √ √ √ - - - - - - - - - - - MATLAB 6.5 
Pentium IV, 2.0 
G Computer 

20-, 40-, 60-, 80- and 100-
units 

[161] √ √ - √ √ - √ - - - - - - - - NG 
IBM-Pentium-
IV, 2.8 GHz PC 48-unit system  

[162] √ √ √ - √ - - - - - - - - - √ 
C++ 6.0 
language 

Intel Pentium-
IV, 1.5 GHz 
processor with 
128 MB of 
RAM 

20, 40, 60, 80 and 100-units 

[163] √ √ √ - √ - - - - - - - - - - NG NG 10-unit system 

[164] √ √ √ √ √ √ - - - - - - - - - Visual C++ 

Pentium-IV 
processor with 
512 MB of 
RAM 

10-unit system  up to 100-
units 

[165] √ √ √ √ √ - - - - - - - - - - MATLAB 6.5 NG IEEE 30-bus system 

[166] √ √ √ √ √ - - - - - - - - - √ NG 
NG 10-unit system  up to 100-

units 

[167] √ √ √ - √ - - - - - - - - - - 
Visual C++ 
6.0 

Pentium-IV, 2.0 
GHz Processor 
based PC with 
512 MB  of 
RAM 

10-unit system  up to 100-
units 

[168] √ √ √ √ √ - - - - - - - - - - NG 

Pentium-IV, 2.6 
GHz Processor 
with 2.0 GB of 
RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[169] - √ √ - √ - √ - - - - - √ - - 
FORTRAN 
90 

Intel Pentium-
IV, 1.66 GHz 
processor with 2 
GB  of RAM 

10-, 12-, 14-, 20- and  40-unit 
cases 

[170] √ - - √ √ - - - - - - - - - - NG NG 10- unit system 

[171] √ √ - - - - √ - - - - - - - - NG 
Intel Core 2, 
2.20 GHz 
Processor 

10-unit system 
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TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques (Continued).  

Ref. 
No. 

Constraints Used Simulation 
Tool Used Hardware Used Cases 

A B C D E F G H I J K L M N O 

[172] √ √ √ √ √ - √ - - - - - - - - NG 
Pentium-IV, 2.0 
GHz Processor 

10-unit system  up to 100-
units 

[173] √ √ √ - √ - - - - - - - - - - MATLAB 

Intel Core, 2.39 
GB processor 
with 1.99 GB of 
RAM 

10-unit system  up to 100-
units 

[174] - - - √ - - √ - - - - - - - - NG 
Intel Core 2, 
2.20 GHz 
Processor 

6-unit system 

[175] √ √ √ - √ - - - - - - - - - - MATLAB 

INTEL CORE2 
DUO, 2.66 GHz 
Processor with 
1.95 GB of 
RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[176] - - - - - - √ - - - - - - - - NG NG 4- unit and 6- unit system 

[177] √ √ - √ √ - √ - - - - - - - - MATLAB 

Intel      core i7, 
3.07GHz  
processor with 8 
GB RAM 

10-, 12-, 14-, 20- and  40-unit 
cases 
IEEE-RTS -24-bus  

[178] - - √ - √ - √ - - - - - - - √ NG 
NG 10-, 20-, 40-, 60-, 80- and 

100-unit cases 

[179] √ √ √ - √ - - - - - - - - - - NG 
Sun Sparc  work 
Station 10 90 thermal units 

[180] √ - √ √ √ - - √ - - - - - - - MATLAB NG 10-, 23- and 34-unit systems  

[181] √ - √ - √ - - √ - - - - - - - MATLAB NG 10-, 23- and 34-unit systems  

[182] √ √ √ - √ - - - - - - - - - - NG 

NG Indian-utility 11-unit, three 
IEEE hydro-thermal test 
cases like 25-units (22 
thermal and 3 hydro units), 
44-units (32 thermal and 12 
hydro units) and 65-units (45 
thermal and 20 hydro units) 

[183] √ - √ - √ - - √ - - - - - - - NG NG 10-, 23- and 34-unit systems  

[184] √ - √ √ √ - - - - - - - - - √ NG NG 10-, 23- and 34-unit systems  

[185] √ √ - - √ - √ - - - - - - - - 
NG NG 4-unit, 10-unit and 8-unit 

Turkish interconnected 
system 

[186] √ √ √ - √ - - - - - - - - - √ Visual C++ 

Pentium-IV, 2.4 
GHz Processor 
based PC with 
256 MB of 
RAM 

10-unit system  up to 100-
units 

[187] √ √ √ - √ - - √ - - - - - - - C++ language 

PCD32m-
Pentium-IV-
2.4G Processor 
based PC 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[188] √ √ √ - √ - - - - - - - - - - 
Turbo C and 
MATLAB 
R2007a 

Intel Dual Core, 
2.4 GHz, 1.0 GB 
of RAM 
Processor 

6-unit (IEEE 30-bus) and 10-
unit systems 

[189] √ √ √ - √ - - - - - - - - - - 

C- language 
Executed in 
Linux 8.0 
environment 

HC1, 2.9 GHz 
Processor with 
2.0 GB of RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[190] √ √ √ - √ - - - - - - - - - √ NG NG 
10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[191] √ - √ √ √ - - - - - - - - - - MATLAB 

Pentium-IV 
Processor based 
PC with 512 MB 
of RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2020.3010275, IEEE
Access

 

VOLUME XX, 2017 1 

TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques (Continued).  

Ref. 
No. 

Constraints Used Simulation 
Tool Used Hardware Used Cases 

A B C D E F G H I J K L M N O 
[192] √ - √ - √ - - - - - - - - - - NG NG 10-unit system 

[193] - √ √ √ √ - - - - - - - - - - 
MATLAB 
2011 

NG 
IEEE 14- bus, 30- bus, 57- 
bus and 118-bus systems 

[194] √ √ √ √ √ - - - - - - - - - - 
MATLAB 
7.01 

Pentium-IV, 3.2 
GHz Processor 
based PC with 
1.0 GB of RAM 

IEEE RTS 24-unit system 

[195] √ √ √ √ √ - - - - - √ - - - - 
MATLAB 
7.01 

Pentium-IV, 3.2 
GHz Processor 
with 1.0 GB of 
RAM 

IEEE RTS 24-bus system 

 

[196] √ √ √ √ √ - - - - - - - - - - NG 
NG 3-unit, 12-unit, 17-unit, 26-

unit and 38-unit generator 
systems 

[197] √ √ √ √ √ - - - - - - - - - - 
MATLAB 
7.01. 

Pentium-IV, 3.2 
GHz Processor 
with 2.0 GB of 
RAM 

100-unit system, IEEE RTS 
24-bus system and IEEE 118 
bus system and Tai-power 
38-unit system 

[198] √ √ √ √ √ - - - - - - - - - - MATLAB 

Pentium-IV, 
3.40 GHz 
Processor with 
1.0 GB of RAM 

100-unit system, an IEEE 
118-bus system and a 38-bus 
Taiwan practical system 

[199] √ √ √ - √ √ √ - - - - - - - - MATLAB NG 10- unit system 

[200] √ √ √ √ √ - - - - - - - - - - NG 

Intel Pentium-
IV, 2.0 GHz 
Processor based 
PC with 512 MB 
of RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[201] √ √ √ √ √ - - - - - - - - - - NG 
NG 10-unit system  up to 100-

units 

[202] √ √ √ √ √ - - - - - - - - - - MATLAB 7.9 
Intel Core2-Duo, 
2.20 GHz 
Processor 

10-unit system  up to 100-
units 

[203] √ - √ √ √ - √ - - - - - - - - 
MATLAB 
2016a 

Intel      core i5, 
2.30GHz  
processor with 4 
GB RAM 

4- unit system 

[204] - √ - √ √ - - - - - - - - - - NG 
IBM PC-486, 33 
MHz Processor 

43-unit Taiwan power system 

[205] √ √ √ - √ - - - - - - - - - √ NG 
DEC-AXP 4610 
Processor 

110-unit system 

[206] √ √ - - - - - - - - - - - - - NG NG 10-unit system 

[207] √ √ √ - - - - - - - - - - - - NG NG 10-unit and 26-unit systems 

[208] √ √ √ - √ - - √ - - - - - - √ NG NG 10-unit and 26-unit systems 

[209] √ √ √ - √ √ - - - - - - - - - 
Turbo C 
language 

486DX2-66 
Compatible PC 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[210] √ √ √ - √ - - - - - - - - - √ NG 
NG 5-, 10- and 26 generating 

units 

[211] √ √ √ √ √ √ √ - - - - - - - - 
Turbo C 
language 

486DX2-66 
compatible PC 

10- and 20- unit system, Tai-
power 40-unit system 

[212] √ √ √ - √ - - - - - - - - - - NG NG 10-unit system 

[213] - √ √ √ √ √ √ √ - - - - - - - Visual C++ 

Pentium III-
MMX PC with 
450 MHz 
Processor 

10-, 20- and 30-units 

[214] √ √ √ - √ - - - - - - - - - - NG 
Dell DIM 4100, 
1GHz Processor 

10-unit system  up to 100-
units 

[215] √ √ √ - √ - - √ - - - - - - √ NG NG 10-unit system 
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TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques (Continued).  

Ref. 
No. 

Constraints Used Simulation 
Tool Used 

Hardware Used Cases 
A B C D E F G H I J K L M N O 

[216] √ √ √ √ √ √ - - - - - - √ - - C++ language 
NG 

IEEE-118 bus system 

[217] √ √ √ - √ - - √ - - - - - - - Visual C++ 

Pentium-III 
MMX, 450 MHz 
Processor based 
PC 

10-, 20- and 30-units 

[218] √ √ √ - √ - - - - - - - - - - Visual Basic 
NG 

10-unit system 

[219] √ √ √ √ √ - - √ - - √ - - - √ NG 
NG 10- and 20- unit system, Tai-

power 38-unit system 
[220] √ - √ - √ - √ √ - - - - - - - MATLAB NG 10-, 24- and 36-unit systems 

[221] √ √ √ √ √ - - √ - - - - - - - NG 
Pentium-IV, 2.0 
GHz Processor 
based PC 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[222] √ √ √ - √ - - - - - √ - - - - NG 
NG 14-bus system and modified 

IEEE 30-bus system 

[223] √ - - - √ - - - - - - - - √ - NG 
NG Wujiangdu hydropower 

station comprising with 5-
units 

[224] √ √ √ - √ - √ - - - - - - - - MATLAB 7.4 

Pentium-IV, 3.0 
GHz Processor 
based PC with 
1.0 GB of RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases 

[225] √ √ √ √ √ - - √ - - - - - - - MATLAB 

Intel Core 2 
Quad, 2.4 GHz 
processor based 
PC 

10-, 20-, 40-, 60-, 80- and 
100-unit cases, 
Tai-power 40-unit system 

[226] √ √ √ √ √ - - - - - - - - - - Visual C++ 

Pentium-IV 
Processor 
with512 MB of 
RAM 

10-unit system  up to 100-
units 

[227] √ √ √ √ √ √ - - - - - - √ - - C++ language 

Intel Pentium IV 
Processor based 
PC with 512 MB 
of RAM 

10-unit system  up to 100-
units 

[228] √ √ √ √ - - √ - - - - - - - - 
MATLAB 
7.01 

Intel Pentium-
IV,          3.2 
GHz processor 
with 1 GB RAM 

6-, 10-, 26- and 40- unit cases 

[229] √ √ - √ √ - √ - - - - - - - - MATLAB 

AMD Core, 3.01 
GHz computer 
with 4.0 GB of 
RAM 

10-unit system, revised IEEE 
118-bus system comprising 
of 33 conventional units 

[230] √ √ √ - √ - - - - - - - - - - MATLAB 
Intel Core2 Duo 
Processor with 4 
GB of RAM 

IEEE 14-bus 

[231] √ √ √ √ √ - √ - - - - - - - - Java 

Intel Core i5-
3210M, 2.5 GHz  
Processor based 
note book 
computer with 
6.14 GB DDR3-
1600 memory 

10-, 20-, 40-, 60-, 80- and 
100-unit cases, 
 

[232] √ √ √ - √ - - - - - - - - - √ C- Language 

Intel XEON, 
3.10 GHz 
Processor with 
4.0 GB of RAM 

10-, 20-, 40-, 60-, 80- and 
100-unit cases, 
 

[233] √ √ √ √ √ - - - - - - - - - - 
MATLAB 
R2012a 

Pentium-IV, 2.8 
GHz Processor 
with 2.0 GB of 
RAM 

10-unit system  up to 100-
units, 38-unit Tai-power 
practical case 
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TABLE  3.  Implementation of constraints, simulation tool, hardware and validation of results used in reference papers associated to evolutionary    
                   optimization techniques (Continued).  

Ref. 
No. 

Constraints Used Simulation 
Tool Used Hardware Used Cases 

A B C D E F G H I J K L M N O 

[234] √ √ √ - √ - - - - - - - √ - - C-Language 
Intel-3.10GHz 
Processor based 
PC 

10-unit system  up to 100-
units 

[235] √ √ √ - √ - - √ - - - - - - √ 
MATLAB 
7.12 

NG 
IEEE 14-bus, IEEE 30-bus 
and a 10-unit test model 

[236] √ √ √ √ √ - - - - - - - - - - 
MATLAB 
2014a 

Intel      core i5-
3470, 3.20GHz  
processor with 8 
GB RAM 

10- unit system 

[237] √ √ √ - √ - - √ - - - - - - √ 
MATLAB 
R2013a 

NG 4-, 10-, 20- and  40-unit cases 

[238] √ √ √ - √ - - - - - - - - - - 
MATLAB 
R2013a 

Intel      core i5-
3470S, 2.90GHz  
processor with 4 
GB RAM 

IEEE 30-bus system 

[239] √ √ √ √ √ - - - - - - - - - √ 
FORTRAN 
90 

Intel      core i5-
2410 M, 
2.30GHz  
processor with 4 
GB RAM 

10-, 40- and 100- unit cases 

[240] √ √ √ - √ - √ - - - - - - - - NG NG 5-, 6-, 10- and 26- unit cases 

[241] √ - √ - - √ - - - - - - √ √ - MATLAB NG 6- and 10- unit cases 

[242] √ √ √ √ √ √ - - - - - - - - - NG NG 10- unit system 

[243] - √ - √ √ √ √ - - - - - - - - 
MATLAB 
R2018a 

Intel      core i7, 
2.5GHz  
processor with 8 
GB RAM 

188-bus transmission system 
with 33-bus distribution 
system in five cases 

[244] √ √ √ √ √ √ √ - - - - - - - - MATLAB 

Tower server 
with 24 cores, 
48 threads and 
64GB RAM 

4- and 10- unit cases 

(NG = Not given; A = Power balance/Load demand constraints; B = Generator/Unit capacity constraints; C = System/Unit  spinning reserve constraints; D 
= Ramp limit constraints; E = Minimum up/down time constraints; F = Fuel cost constraints; G = Start-up/shutdown cost constraints; H = Must 
run/unavailability/fixed output/Crew constraints; I = Energy constraints; J = Slack bus constraint; K =  Transmission capacity/line flow/bus voltage 
magnitude constraints; L =  Minimum loading constraint; M = Emission constraints; N = Hydro constraints; O = Unit initial/de-rating status constraints) 
 

TABLE  4. Projected algorithms with the distinctive features in reference papers connected to evolutionary optimization techniques. 

Reference 
Number Algorithm used Distinguished features Year of 

publication 

[133] GA • The fuel price of every UC schedule was planned by the summation of the cost of ED 
intended for every hour. 1994 

[134] GA • A new forced mutation operator was implemented in this work. 1995 

[135] GA incorporated with 
penalty methods 

• The penalty methods were used to impose the various constraints, like surplus generation, 
system demand, minimum up and down time, and spinning reserve. 1996 

[136] Domain specific 
mutation based GA 

• Results were obtained from three different practical electric utilities, like Big Edison 
Electric Company, Municipal Electric Company and Rural Electric Exchange having nine 
generators each.   

1996 

[137] Problem specific 
operators based GA 

• Two sets of specific additional operators were handled.  
• Swap-window and window-mutation operators were presented in the first set. Swap-

mutation and swap-window hill climb operators were handled in second set. 
1996 

[138] GA • The on-off states of units were represented by, the binary strings contains with well-
established minimum up and down time constraints. 1996 

[139] Parallel GA • A new technique was presented, to insert the minimum up/down time constraints in the 
binary representation.  1997 
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TABLE  4. Projected algorithms with the distinctive features in reference papers connected to evolutionary optimization techniques (Continued). 

Reference 
Number Algorithm used Distinguished features 

Year of 
publication 

[140] GA • The gene sets in the constrained search space finding out by the Dynamic Programming 
Crossover (DPX), without using any penalty functions or repair algorithms. 1997 

[141] GA • A new precise varying fitness function technique was implemented, to integrate the 
problem’s constraints into the fitness function, as penalty terms. It varies with the 
generation index, resulting in an altering fitness function to make possible position of the 
general area of the global optimum.  

1998 

[142] Parallel Repaired GA • Three different optimization methods, like global parallelization (planned to speed up the 
performance of GA and lessen the computational time), coarse-grained parallelization 
(make to amplify the effect of mutation and crossover operators for escaping from local 
optima) and hybrid parallelization (combination of the global and coarse-grained 
parallelization) were implemented. 

2002 

[143] GA • A new problem specific operator was introduced to correct and repair the process of 
desecrated schedule.  

• The problem specific operator was classified, as bit change operator and Minimum 
up/down time operator. 

2002 

[144] GA • Taylor expansion based varying λ-technique was projected, to overcome the oscillatory 
effect between minimum and maximum MW limits 2002 

[145] LR combined with GA • Two level approaches was formulated, one to optimize the Lagrange multipliers through a 
sub-gradient based stochastic optimization level in the first level (also called high level) 
and the UC schedule, is solved with GA in the second level (also called low level). 

2002 

[146] Two level crossover 
based GA 

• Single point crossover was applied in two ways (maintaining the initial half of the bits and 
swaps the second half of the bits by means of arbitrarily selected units), to achieve better 
scheduling.  

2003 

[147] GA • Randomized bit operators are employed, to satisfy the time dependent constraints. 2003 

[148] Integer-Coded GA • Three special operators were proposed, like unit exchange/copying operator (performing 
chromosome operation to avoid the violation constraints), excessive-reserve elimination 
operator (improve the performance of UC schedule) and chromosome length augmentation 
(ability to increase the length of chromosome in order to include the necessary new 
cycles). 

2004 

[149] GA with specialized 
search operators 

• The mutation method and its probability is dependent on the requirement to meet the load 
demand of the units, start-up and production costs. 

2004 

[150] Matrix real-coded GA • The generation schedule has been symbolized by, a real number matrix based chromosome 
and the feasible solution was achieved by the repairing mechanism.  

• The window mutation operator is also used to enhance the searching performance. 
2006 

[151] Floating-point GA • Specific crossover and mutation operators, like arithmetic crossover, simple two-point 
crossover, uniform crossover, Gaussian mutation, Cauchy mutation and boundary mutation 
were designed and used. 

2007 

[152] GA • It can be solved by customary constraints, excluding transmission line flow limit by GA 
presented in the primary stage.  

• The line flow violations were minimized and committed unit schedule with GA based 
optimal power flow, subjected to actual power generation limit constraint and phase angle 
was focused in the second stage. 

2010 

[153] Parallel structure based 
GA 

• An intelligent mutation was projected for the best solution. If over committed is 
considered, then the more pricey units are de-committed or else those are committed. 

2011 

[154] Annular crossover GA • A deterministic selection (a compulsory approach wherein individuals with enhanced 
fitness are crossed by those of poorer fitness) and an annular crossover (chromosome 
symbolized as a ring to swap of genetic information flanked by two individuals) were 
implemented.  

2011 

[155] Binary-real coded GA • Real and binary part determines the quantity of generating power through committed units 
and their scheduling respectively. 

2013 

[156] GA • A new untypical genetic operator (transportation) is introduced in this work, functioned by 
single chromosome and produces offspring through swapping chromosome splinters that 
encode every one decision variables of two arbitrarily selected units. 

2013 

[157] NSGA-II combined with 
LSA 

• A combination of local search algorithm with non-dominated sorting GA-II (NSGA-II) is 
proposed for the main problem and a weighed-sum lambda-iteration method is used to 
resolve the sub-problem of power dispatch.  

• The design of UC problem is equipped with two local search strategies and one local 
search operator. 

2013 

[158] Real coded GA and 
MILP 

• The different case specific and flexible sub operators were developed by an enhanced real 
coded GA, used as the first optimizer.  The second optimizer was the decomposition of the 
mixed integer, nonlinear programming (MINLP) into MILP, to handle the topological 
constraints.  

2018 
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TABLE  4. Projected algorithms with the distinctive features in reference papers connected to evolutionary optimization techniques (Continued). 

Reference 
Number Algorithm used Distinguished features 

Year of 
publication 

[159] Improved GA • Minimum up and down constraints were considered by the repairing operator, to modify 
the infeasible solution. Infeasible solution was approximated by the approximation 
operator under the satisfaction conditions of spinning reserve and demand constraints. 

2018 

[160] Improved social 
interaction based PSO 

• The convergence is assured by using a new adaptive strategy for selecting parameters and 
adopts the orthogonal design to produce a preliminary population that are sprinkled 
uniformly over viable solution space. 

2006 

[161] Iteration PSO • Spinning reserve level is appraised by the effect of fuel cost, in addition to outage cost, 
considered in UC problem. 

2007 

[162] Improved binary PSO • The amalgamation of discrete binary PSO with priority list is executed to commit the units 
to gratify spinning reserve, ignoring the minimum up/down time constraints in the first 
stage.  

• Violations of minimum up/down time constraints, in addition to de-commit excessive 
spinning reserve, are repaired by a heuristic search algorithm in second stage.  

• Finally, the solution of ED is obtained by the lambda-iteration technique. 

2009 

[163] Mixed-integer PSO • The unit selection is indicated by position values is binary numbers and those representing 
an output of each unit are real numbers. 

2009 

[164] Advanced PSO • A new set of individuals is created by PSO combined with GA operators from upper 
potential individuals and further refines them to give close to the best concluding solution. 

2009 

[165] PSO • The profit based unit commitment problem is solved by using a variety of PSO techniques 
such as chaotic PSO, new PSO and dispersed PSO. 

2010 

[166] PSO • Two iterative control loops are proposed, to control the eventual terminate of the search 
procedure and evolutionary procedure respectively. 

2010 

[167] Enhanced PSO • Three stages are framed to calculate the start-up cost of UC. In the first stage, units are 
committed to satisfy spinning reserve through the combination of discrete binary PSO and 
priority list, without allowing for minimum up/down time constraints.    

• The violations in minimum up/down time constraints are repaired by a heuristic search 
algorithm in second stage. 

• Finally, the ED problem is solved by the lambda-iteration method and the start-up cost of 
UC is calculated as of the total production cost of ED problems. 

2011 

[168] Time variant 
acceleration coefficients 
based PSO 

• Integer and binary coding are planned to satisfy the minimum up/down time and spinning 
reserve constraints respectively.  

• The ability of global search is enhanced by changing the acceleration coefficients c1 and 
c2 effectively, by which either c1 is greater than c2 (at the beginning of optimization 
process) or c1 is less than c2 (at the time of increasing the iterations). 

2015 

[169] Binary PSO and PSO • CHP model was framed as a mixed integer model and hence both binary PSO and regular 
PSO methods were employed, to deal with binary and real variables respectively.  

2019 

[170] Improved PSO • The conventional PSO was improved through bird-flocking simulation in two-dimensional 
space and it was incorporated with time varying inertia weight, which is capable of 
locating faster rate good solution.  

2019 

[171] Two-level two-objective 
EA 

• A new strategy is framed for the coarsening of UC problem, solved by EA, under a low 
level optimization (coarse-grained UC problem).  

• Solutions obtained from low level are injected into high level population of EA for further 
refinement called high level optimization (fine-grained UC problem). 

2009 

[172] Improved Quantum EA • Two effectual techniques are initiated and compared with an ordinary quantum 
evolutionary algorithm.  

• In the first technique, the quantum bits (Q-bits) are updated by a simple rotation gate in 
which determines the rotation angle without lookup table information used in an ordinary 
QEA. 

• Due to the solution quality and convergence speed, the magnitude of rotation angle is 
determined by decreasing the rotating angle approach is proposed in the second technique. 

2009 

[173] Quantum Inspired EA • The ED of each UC schedule is computed by lambda-iteration technique to determine the 
optimal output of the generation and UC schedule is solved by QEA approach. 

2009 

[174] Meta-modal assisted EA • Monte Carlo simulation is carried out, to compute the cost function value of each 
population member of EA 

2010 

[175] Advanced Quantum 
Inspired EA 

• Single-search, group-search and multi-observation techniques are presented.  

• In a single-search process, individual quantum bit (Q-bit) is updated by quantum gates (Q-
gates), which are determined by its observed solution and the best solution of its own is 
recorded.  

• In a group-search process, observed solution determines the Q- gate updating and the best 
solution is found among all the Q-bit individuals. 

2011 
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TABLE  4. Projected algorithms with the distinctive features in reference papers connected to evolutionary optimization techniques (Continued). 

Reference 
Number Algorithm used Distinguished features 

Year of 
publication 

[176] EA • A well-organized and groundbreaking depiction of chromosome is introduced as the 
integer numbers are like decision variables matching to the conversion of binary to 
decimal situations to meet every hour demand. 

2011 

[177] EA with PL • During the evolution, the derived varieties of schedules have been engaged in 
implementing a plurality of PL in the heuristic mechanism. 

2018 

[178] EP • An overall UC schedule is coded as a cord of symbols and out looked as a candidate for 
replication.  

• Preliminary populations of such candidates are arbitrarily produced, to shape the base of 
succeeding generations. 

1999 

[179] LR based EP • The preliminary solution of schedule is achieved by LR and is enhanced this opening point 
by EP so as to discontinue needless units and re-dispatch load. 

1999 

[180] TS based EP  • The algorithm is based on annealing NN and the load demand is taken as a control 
parameter, by a TS approach, to enhance the superiority of the solution.  

• To keep away from the entrapment from local minima, the input of TS is given as of the 
EP algorithm based offspring, with refined initial status and the final status is selected by 
evolutionary strategy. 

2004 

[181] SA based EP  • Each schedule is shaped by committing all the units in keeping with their initial status.  
• A haphazard re-commitment is carried out regarding the minimum down time of the 

particular unit. 

2007 

[182] SA entrenched EP • The optimal point is found by EP technique and SA is entrenched in EP, to make quick 
best point convergence 

2011 

[183] TS based EP  • A selection routine procedure is engaged to eradicate the possible schedules. The trail is 
made to correct the unwanted mutations, prior to the best solution is selected by 
evolutionary scheme. 

2011 

[184] DE • Two adaptations of DE (Boolean logic and Integer-coded) are projected with two 
implementations.  

• OR/XOR-type Boolean logic on variable strings is executed in the first implementation, 
through  binary coding of the selected variables.  The second execution uses integer coding 
of the UC variables 

2008 

[185] SSGA combined with 
BDE 

• Formulated an evolutionary algorithm, comprising three evolutionary algorithms, named 
steady state GA (SSGA), evolutionary strategy (ES) and DE, to solve UC problem. 

2008 

[186] Discrete binary DE • The combined approach of DBDE with PL is helps to commit generating units, without 
considering minimum up/down time constraints, at the first stage.  

• In second stage, the violations found in minimum up/down time are repaired by a heuristic 
algorithm, in addition to de-commit excessive units, based on the schedule obtained from 
the first stage.   

• In the final stage, the optimal solution obtained from the above stages is additionally 
improved by a gray zone modification algorithm, with heuristic unit substitution search 
technique. 

2009 

[187] Improved DE • In the acceleration operation (if required), the present individuals are artificially pushed 
toward a better point, since no improvement was found in the present generation under 
crossover and mutation operation.  

• In the migration operation (if required), a newly diverse population of individuals is 
regenerated in order to enhance the possibility of the use of  smaller population size, since 
no improvement was found in the best fitness of the present generation 

2010 

[188] Self adaptive DE • The combination of committed and de-committed generating units are decided and 
selected, by using GA during every hour. 

• These GA based pre-committed schedule of generating units, are optimized by projecting 
SADE approach 

2012 

[189] Binary-real coded DE • Unit scheduling procedure is determined by binary part of this method and quantity of 
power generation of committed units is determined by the real part of this approach. 

2012 

[190] Modified Binary DE • The fundamental difference between the standard DE and proposed MBDE, lies in the 
mutation strategy and initialization phase.  

• According to the information, drawn out from the parent vectors by means of mutation 
operators, it builds the multiple probability models, at every iteration.  

2018 

[191] SFLA • The minimum up/down time constraints are directly coded, without considering a penalty 
function method and start-up costs are modelled in two values (both cold start and hot 
start) stair case function.  

• Total operating cost over a scheduling period is the first term of the objective function and 
violations in system constraints are penalized by penalty function, noted as a second term 
of the objective function.   

2011 
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TABLE  4. Projected algorithms with the distinctive features in reference papers connected to evolutionary optimization techniques (Continued). 

Reference 
Number Algorithm used Distinguished features 

Year of 
publication 

[192] Binary and improved 
binary SFLA 

• A novel binary version of SFLA is introduced by ISFLA encoded in discrete space. The 
capability of BSFLA is tested with twelve bench mark functions. 2013 

[193] Improved SFLA • The commitment schedule is given by the main problem, with minimum emission level 
and up/down time constraint satisfaction and this schedule is taken by the sub-problem to 
solve ED, emission dispatch and combining both of them to depend on the weighing 
factor, given to each constraint, to dispatch the real power among the committed units. 

2014 

[194] Fuzzy adaptive FA • The 24 hour UC scheduling is obtained by binary coded FA and the fuzzy designed 
variable is tuned by real coded FA to maximize the fitness function.  

• Lambda-iteration method is also used to obtain the ED problem. 
2012 

[195] Binary-real coded FA • Three stages are framed, with the evaluation of reliability being modelled by generator 
outage disturbance.  

• In the first stage, binary coded FA based, reliability constrained UC problem is obtained. 
The optimal power flow problem is executed through real coded FA in the next stage. In 
the third stage, search ability and the repair strategies are incorporated by both algorithms, 
given in the first two stages. 

• Loss of probability index is projected to recognize the reliability of the system. 

2012 

[196] Binary-real coded FA • A new binary coded FA is planned to resolve the UC problem and the real coded FA is 
used to resolve the ED problem.  

• A tan-h function is initiated in the binary-coded FA to enhance the likelihood of the 
flipping status of the binary variable, thus getting better the quality of solution and 
plummeting the computational time of UC problem. 

2013 

[197] Fuzzy tuned FA • The contradictory functions are devised as a single objective function, by means of fuzzy 
weighted optimal deviation.  

• The fuzzy membership design variables are tuned via real coded FA. 
• Separate parameter settings are used, in each case study, in terms of binary and real coded 

approach. 

2013 

[198] FA with multiple 
workers optimization 

• Global search is attained by means of the local search performed by individual workers 
procedure.  

• The size of the cluster from the distributed model is configured between 10 to 15 nodes. 
Out of these, one can be assumed as master node and others are called multiple workers. 

2016 

[199] Modified FA • Larger random number offered improved searching ability in the beginning stage. In the 
final stage, smaller random number provided enhanced convergence.  2020 

[200] BFA • The penalty functions are not required to handle the minimum up/down time constraints by 
using integer coding of the approach which helps to minimize the simulation time. 2009 

[201] Improved artificial fish 
swarm algorithm FSA 

• Searching performance of this optimization method is enhanced by introducing a new 
intelligent mutation operator, similar to the GA 2013 

[202] Binary  FSA  • Two strategies like strategy-A (payment for power delivered) and strategy-B (payment to 
reserve allocated) are included and simulated in this approach for power selling and 
reserve, using different generator unit combinations 

2015 

[203] Improved Binary CSA • A crossover operator was used in local exploitation, with mutation of the present solution 
and the levy flight was used in global exploration with random characteristics. The best 
solution of this method was updated at every end of the iteration process.   

2018 

[204] Hybrid GA with NN and 
DP 

• This method has three features like to keep away from network learning stagnation, 
minimize the computation time and diminish the uncertain states in NN output 1997 

[205] Hybrid GA • A hybrid GA, incorporated with a speedy priority list, ordering scheme, to resolve the 
generator scheduling. 1997 

[206] Hybrid GA – LR 
method 

• The proposed GA-LR is implemented with two alternative ways.  
• In the first way, the GA plays the main role of solution with LR as a part of the GA 

process like initial population.  
• The LR method uses the GA to update the Lagrange multipliers, in the course of solution, 

in a second way. 

1997 

[207] Hybrid GA-TS method • The genetic algorithm solution is coded as a blend between binary and decimal depiction.  
• A fitness function is created from the total operating cost of the generating units without 

penalty terms. 
1999 

[208] Hybrid GA, with TS and 
SA 

• The role of TS is to generate new members in population of GA, incorporated in 
reproduction phase.  

• Similarly, the role of SA is to improve the rate of convergence of the GA, by testing the 
population members after every generation 

1999 
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Number Algorithm used Distinguished features 

Year of 
publication 

[209] Hybrid LR-GA • In the initial stage, a two stage dynamic programming based search, for the minimum 
constrained Lagrangian function, under stable Lagrangian multipliers.  

• The maximization of the Lagrangian function respecting its multipliers, is adjusted by the 
GA in subsequent stages.   

• A new uniform crossover technique is to create two new offspring chromosomes, by 
means of swap over the bits between parent chromosomes through a randomly generated 
mask 

2000 

[210] Hybrid GA • The choice of the merit-order method is planned for the hybridization process, with a 
simple implementation, fast computation and predictable results.   

2002 

[211] Hybrid annealing GA • Two main features are focused like SA, incorporating quasi-equilibrium control, based on 
genetic operator, including population based state transition and Boltzmann type selection 
operator, incorporated with GA 

2002 

[212] Hybrid PSO • UC problem is solved by both real and binary valued PSO, run in parallel.  
• Four strategies are used to obtain the results like (i) through standard PSO, (ii) through 

PSO with differential mutation, (iii) through PSO with decreasing of the inertia weight in a 
linear manner and (iv) through standard PSO but instead of reinitializing the particle 
values while violating the generating constraints. 

2003 

[213] Hybrid Chaos immune 
GA with Fuzzy system 

• The search process is prevented by chaos search to keep away from premature 
convergence and the fuzzy system implemented to decide the ratio of crossover and 
mutation values, to avoid the excessive convergence time.   

• The ability of global search enhancement and increase of search speed is achieved by 
immune antigen memory and identification function 

2004 

[214] Hybrid PSO-LR 
approach 

• The structure of LR is based on dual optimization process like to decompose a problem 
into one master and more manageable sub-problems.  

• DP method is used to solve these sub problems and maintain the connection between them, 
maintained by Lagrange multipliers which are updated by PSO 

2004 

[215] Hybrid Fuzzy based GA • The spinning reserve quantity and load demand error are considered as two inputs of   
fuzzy model.  

• Similarly, penalty factor and fuzzy load demand are considered as two outputs.   

• The initial population of GA is created by a set of randomly generated feasible solutions 
and the forecasted load demand is estimated by applying fuzzy logic rules 

2004 

[216] Hybrid LR-GA • The wind down coupling constraints (time period, coupling of either units or both), hooked 
on the objective function through Lagrange multipliers and then updated by GA, to 
overcome the convergence difficulties of LR.  

• Dual optimization procedure is implemented to relax the coupled constraints called cost 
and profit based Lagrangian functions 

2004 

[217] Hybrid Chaos search 
Immune GA with Fuzzy 
system 

• A GA based logistic equation can produce a number of areas of near-best solutions to 
uphold solution difference keeping away from early convergence.  

• Such logistic equation is used to frame the chaos search queue method. Ability of partial 
search in chaotic immune GA (CIGA) is increased by the auto regulation unbiased 
mechanism of the immune system, to produce the correct quantity of antibodies, with 
restraint and promotes the individual density in CIGA 

2006 

[218] Hybrid PSO • The UC problem is handled by BPSO, as RCPSO resolves the ED problem and both 
algorithms are run concurrently. 

2006 

[219] Hybrid Fuzzy adaptive 
PSO 

• The equilibrium flanked by local and universal searching capabilities is augmented by 
adopting the fuzzy IF/THEN rules, to vigorously regulate the inertia weight. 

2007 

[220] Hybrid GA with TS • The new scheduled constraints in UC problem are checked and the status of new 
population (generated by GA) is also improved and updated by TS algorithm. 

2009 

[221] Hybrid Quantum  
inspired binary PSO 

• The combination of conventional BPSO with a superposition of conditions, in addition to 
quantum bit is planned. 

• The Q-bit individuals are updated by a combination of coordinate rotation gate, through a 
dynamic rotation angle (used to determine the rotation angle magnitude), to improve the 
capability of the search process. 

2010 

[222] Hybrid Chaotic PSO • Two types of processes have been carried out as like in the first process, the projected real 
coded CPSO is realized, to optimize the solution problems with continuous variables. 

• The binary coded CPSO is implemented to solve the problems, with discrete variables 
found in the second process. 

2011 

[223] Hybrid PSO embedded 
with TS 

• Two types of PSO approach are put into practice like discrete binary PSO and 
conventional PSO, which could solve the UC and ED problems respectively and joint with 
parallel optimization.  

• Supple memory system of TS is used to enhance the PSO and to conquer the hasty 
convergence of conservative PSO. 

2011 
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[224] Hybrid Chemotactic 
PSO-DE with LR 

• It is based on the combined function of BFA, PSO and DE respectively, and updated by 
Lagrange multipliers of LR, to get better its performance.  

• DE-LR method is also proposed in this paper for the same problem solution. 
2012 

[225] Hybrid Expert system 
with Elite PSO 

• All constraints are handled by ES and utilized as a pre-dispatch tool in the beginning, to 
produce a healthy swarm. Then the optimal solution of the problem is acquired by the 
combination of both ES and EPSO 

2012 

[226] Hybrid Fuzzy controlled 
binary clustered PSO 

• The preliminary population is created by the particles in the framework of PSO, which are 
generated by a weighted priority list and clustering procedure of these solutions, based on 
their fitness values.  

• Degree of acceptance for the uncertainties like spinning reserve, total production cost and 
forecasted load demand are determined by fuzzy membership functions and allocating 
membership degree based on error margin.   

• The fuzzified individual membership function variables are amassed and integrated with 
the fitness value to give the adequacy measurement of an exacting candidate schedule. 

2012 

[227] Hybrid advanced fuzzy 
controlled binary PSO 

• Load demand, spinning reserve and production cost are fuzzified, by turning over 
membership degree depending on error margin.  

• The amassed membership function, which combines the individual membership functions 
of fuzzified variables, is integrated with the fitness value, to offer the suitability 
measurement of a particular candidate schedule.  

• A dynamic probabilistic mutation operator is implemented on the individual solutions, 
based on their connected fitness values. 

2012 

[228] Hybrid Fuzzy assisted 
CSA 

• To choose the best solution, fitness sharing incorporated with fuzzification mechanism, 
was introduced in this technique that could serve the next generation. 2012 

[229] Bi-random simulation 
based Hybrid GA 

• Three stages of UC problem are framed as like the resolve of a day-ahead UC decision 
(first stage), the resolve of the intraday UC adjustment decision of sub-fast start units 
(second stage) and the resolve of UC decision of sub-fast start units (third stage) 
respectively.  

• The day-ahead UC decision is solved by GA and the UCED sub-problem (under the group 
of each hour-ahead forecasted wind power and real wind power scenario) is solved by 
MILP method 

2014 

[230] Hybrid gradient GA • Three strategies are implemented the first strategy is rooted in the use of fuzzy logic 
method, the second one relies on the use of genetic algorithm, and the third strategy uses a 
hybrid optimization method, gradient-genetic algorithm. 

2014 

[231] Hybrid enhanced LR-
PSO 

• De-commitment heuristics of generating units and reserve repair procedure are proposed. 2014 

[232] Hybrid GA-DE • Two problem specific variation operators (swap window mutation and window mutation 
operators) and local search operators (swap mutation and swap-window hill climb 
operators) are implemented, to keep away from a premature convergence 

2015 

[233] Hybrid adaptive 
bacterial foraging with 
GA 

• This method is derived from the combination of BFA and GA, with adaptive stopping 
criterion, which can be used to choose the maximum number of iterations on the 
enhancement of the objective function. 

2015 

[234] Hybrid GA with DE • A new hybrid strategy between GA and DE is framed within the structure of MOEA/D, 
such that the binary and continuous variables are evolved by GA and DE respectively.   

• The performance of this method is enhanced by the implementation of a new analogous 
island model, rooted in a mixture of MOEA/D with uniform and non- uniform weight 
vector distribution scheme. 

2015 

[235] Hybrid PSO-GWO • The swarm position is firstly updated by NPSO algorithm and then further updated by 
GWO algorithm 2016 

[236] Hybrid binary PSO with 
SADE 

• The priority sequence of both UC and charging/discharging dispatch of plug-in electric 
vehicles was obtained, by using a dual priority list method. 2017 

[237] Hybrid DE with RSA • A set of random solutions was generated by making the position of individual solutions 
uniformly at random and then the new solutions were generated until the maximum 
number of iterations was reached. 

2017 

[238] Hybrid DE with RSA • The crossover and mutation were used, to update the solution vector, till the optimal global 
solution was obtained. 2017 

[239] Hybrid MBDE with 
BHC 

• The universal solution, searched by the BDE algorithm was improved, by memetic BDE 
algorithm. The fine tuning solutions were obtained by accelerating the local search through 
BHC algorithm.  

2019 

[240] Hybrid DA with PSO • The position of velocity is controlled by a sigmoid function, within the suitable range, to 
be used as a probability. The position change is described by comparing with the random 
uniformly generated numbers between 0 and 1. 

2019 
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[241] Hybrid MSSA-ANN-
PSO 

• The hunting behaviour of original Salp Swarm Algorithm (SSA), for one more position on 
population, is to obtain the best step leader position, by means of using mutation and 
crossover mechanism. The best speed factor and speed of the wind were optimized by the 
prediction procedures of ANN. In this procedure, the wind speed and wind probability 
were taken as the input and output of the network, respectively. 

2019 

[242] Hybrid GA with SA • An additive and divisive hierarchical clustering algorithm was implemented, to control the 
increasing and decreasing manner of the load respectively, incorporated with the hybrid 
technique of GA and SA, to solve the UC problem. The premature convergence was 
eliminated by replacing weaker strings (having a lower fitness value), with strong strings 
processed by SA, to enhance the performance of combined GA.  

2019 

[243] Hybrid PSO with DE • The population of PSO is updated by both PSO and DE. The velocity and position 
particles are updated by PSO and PSO, with DE, respectively, which helps to improve the 
convergence speed and solve large scale optimization problems. 

2020 

[244] Hybrid Improved SA 
with PSO 

• The upper layer UC problem was solved by the elitist strategy PSO, combined with binary 
and SA process. The interior point method was used, to solve the lower level UC problem, 
after dimension reduction. 

2020 

 
Raglend et al [165] discussed a profit based UC, 

incorporated with a few PSO techniques like chaotic PSO, 
and dispersed PSO.  The optimization approach has an 
adaptive particle size, which means that the necessity of 
number of duty cycles, by each unit, is determined 
throughout the optimization process [166]. This process 
starts with a number of tribes and ultimately evolves to 
explore the entire problem space. Each particle in a tribe is 
aided by a set of associates in its neighborhood. The global 
solution of this process is determined by tribal location and 
communication between other tribes. Two iterative control 
loops are also implemented, to control the eventual 
terminate of the search procedure and evolutionary 
procedure respectively.  

An enhanced discrete binary PSO, incorporated with 
lambda-iteration method, improved by priority list rooted in 
unit characteristics called enhanced PSO, has been 
proposed with three stages, to calculate start-up cost of UC. 
In the first stage, units are committed to satisfy spinning 
reserve through the combination of discrete binary PSO and 
priority list, without allowing for minimum up/down time 
constraints. The violations in minimum up/down time 
constraints are repaired by a heuristic search algorithm in 
the second stage. Finally, the ED problem is solved by the 
lambda-iteration method and the start-up cost of UC is 
calculated as the total production cost of ED problems 
[167].  In time variant acceleration coefficients, based PSO 
approach [168], the ability of global search is enhanced by 
changing the acceleration coefficients c1 and c2 effectively, 
either c1 is greater than c2 (at the beginning of optimization 
process) or c1 is less than c2 (at the time of increasing the 
iterations).  

The dual operating mode called CHP (combined heat 
and power units), along with heat and thermal units based 
UC problem, was formulated by Anand and Dhillon, by 
incorporating binary PSO with PSO [169]. In this approach, 
the dual mode CHP and heat and power units would 
formulate the multi objective profit and economic based 
model of CHP-UC problem, obtained in the first attempt. In 

the second attempt, both binary and regular PSO techniques 
were applied to the mixed integer UC problem. The best 
and non-dominated solution was obtained, by using the 
cardinal priority ranking method in the third attempt. 
Finally, the effectiveness of the dual mode CHP unit was 
inspected on multi objective profit and economic based 
models, to deal with the cost, along with the pollutant 
emission.  

An improved version of PSO with a simplified method 
was presented by Darvishan et al, to solve UC problem. It 
was subject to some of the key constraints with the 
uncertainty of load demand, modeled by a chance-
constrained programming. It replaced the power balance 
equations, one for every period with the joint chance 
constraint, which bounds the least value of the probability 
together, to meet all the power balance constraints [170]. 

C. UC PROBLEM INCORPORATED WITH EA 
A two-level, two-objective evolutionary algorithm was 
proposed in the platform of generic multi-level 
optimization, called Evolutionary Algorithm System 
(EASY), developed by the laboratory of thermal turbo-
mechanics, National Technical University of Athens, to 
resolve UC problem [171]. The first objective of this 
approach was to cover the distribution of the power demand 
over a scheduling horizon, without considering the total 
operating cost. Minimize the risk of not fulfilling feasible 
variation in demand was the second objective. A strategy is 
framed for the coarsening of UC problem, solved by EA, in 
low level optimization (coarse-grained UC problem). The 
solutions obtained from low level are injected into high 
level population of EA, for further refinement, called high 
level optimization (fine-grained UC problem).  The same 
author(s) have also proposed a meta-modal assisted EA, 
with probabilistic outages, based on two-level evolutionary 
strategy to minimize the total operating cost [174].  Monte 
Carlo simulation is carried out, to compute the cost function 
value of each population member of EA. Simulation of this 
method is obtained from the same platform, given in [171]. 
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A novel evolutionary algorithm, inspired by the concept 
and principles (quantum bit and the superposition of states) 
of quantum computing, named improved Quantum 
Evolutionary Algorithm (QEA), is discussed [172]. Two 
effectual techniques are initiated in this approach compared 
to an ordinary quantum evolutionary algorithm. In the first 
technique, the quantum bits (Q-bits) are updated by a 
simple rotation gate, which determines the rotation angle 
without lookup table information, used in an ordinary QEA. 
Due to the solution quality and convergence speed, the 
magnitude of rotation angle is determined by decreasing the 
rotating angle approach in the second technique. Another 
QEA approach is presented in [173], to determine the 
optimal output of the generation and UC schedule.  

A new priority list based initialization method and a 
special quantum bit (Q-bit) expression were developed for 
ensuring initial search area diversity, to improve the 
efficiency of solution probing [175]. Single-search, group-
search and multi-observation techniques are also 
incorporated in this approach. In a single-search process, 
individual quantum bit (Q-bit) is updated by quantum gates 
(Q-gates), which are determined by its observed solution 
and the best solution of its own is recorded. In a group-
search process, observed solution determines the Q- gate 
updating and the best solution is found among all the Q-bit 
individuals. A well-organized and groundbreaking 
depiction of chromosome is introduced, as the integer 
numbers are like decision variables, matching the 
conversion of binary to decimal situations, to meet the 
every hour demand [176].  

An EA, combined with PL method, was proposed by 
Tsalavoutis et al, to solve UC problem. It dealt with 
customary sub problems, through a simple transformation 
by avoiding binary variables [177]. The performance of this 
approach was improved by an elitist mutation operator 
introduced in this approach, to avoid the premature 
convergence of the proposed technique. The heuristic repair 
mechanism was also included in this work, which utilizes 
the information offered by the PL of the generating units. 

D. UC PROBLEM INCORPORATED WITH EP 
Juste et al [178] proposed an uncomplicated solution of UC 
problem by incorporating EP method, subjected to initial 
unit status, minimum up/down time and start up cost 
constraints. The preliminary solution of schedule is 
achieved by LR, which enhanced this opening point by EP, 
in order to discontinue needless units and re-dispatch load 
found in a coalesced LR and EP [179].  In the EP based TS 
approach, based on annealing NN, the load demand is taken 
as a control parameter by TS approach to enhance the 
superiority of the solution [180]. To ward off the 
entrapment from local minima, the input of TS is given as 
the EP algorithm based offspring, with refined initial status 
and the final status is selected by evolutionary strategy.  
The same author(s) also presented an EP based SA 
approach, to solve UC problem [181].  The effectiveness of 

this approach was tested and compared with the same case 
studies and algorithms respectively.   

A hydrothermal UC problem, incorporated with SA and 
entrenched EP approach (EP-SA), was planned by 
Christober Asir Rajan [182], subject to customary 
constraints. In this approach, the optimal point is found by 
EP technique and SA is assisted by EP to make quick best 
point convergence. The same author also presented an EP-
TS approach, with cooling and banking constraints, to solve 
UC problem solution [183].  

E. UC PROBLEM INCORPORATED WITH DE 
Patra et al [184] projected a DE based solution, subjected to 
ramp limit constraints and developed with binary code and 
integer code implementations. The reserve of the demand is 
considered as 10% for all cases. The higher and lesser ramp 
limits are considered as equal and the ramp rate is given as 
20% of the maximum output per hour. The total production 
cost and CPU time for all unit cases are compared with 
some other optimization methods. The total production 
cost, including and excluding ramp rate constraints, was 
also compared with binary coded DE and integer coded DE 
for all unit cases. An evolutionary algorithm, comprising 
three evolutionary algorithms like steady state GA (SSGA), 
evolutionary strategy (ES) and DE, was formulated [185]. 
During the every iteration of SSGA approach, only one 
offspring is generated in the EA loop and existing one 
individual in the population is replaced by a new one, 
which helps to keep the size of population constant.  Two 
point crossover and self adaptation mutation were chosen in 
SSGA and ES approaches respectively.  

Constraint handling procedure is effectively done in a 
discrete binary DE (DBDE) approach [186], using unit 
characteristics based PL and HS strategies, to enhance this 
technique. Three stages are implemented in this UC 
problem method. The combined approach of DBDE with 
PL helps to commit generating units, without considering 
minimum up/down time constraints, in the first stage. In the 
second stage, violations found in minimum up/down time 
are repaired by, a heuristic algorithm in addition to de-
committing  excessive units based on the schedule obtained 
from the first stage.  In the final stage, the optimal solution, 
obtained from the above stages, is additionally improved by 
a gray zone modification algorithm, with heuristic unit 
substitution search technique.  

An Improved DE, incorporated with acceleration and 
migration operation, was presented by Chang [187]. During 
the acceleration operation (if required), the present 
individuals are artificially pushed toward a better point 
owing to any improvement not found in the present 
generation under crossover and mutation operation. During  
the migration operation (if required), a newly diverse 
population of individuals is regenerated, in order to enhance 
the possibility of the use of  smaller population size, due to 
any improvement not found in the best fitness of the present 
generation.  
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Surekha et al [188] framed a combination of GA and self 
adaptive DE (SADE) approach. The combination of 
committed and de-committed generating units are decided 
and selected, using GA during every hour. These GA based 
pre-committed schedule of generating units are optimized 
by projecting the SADE approach. A binary-real coded DE 
is presented in [189], which incorporated a number of 
repairing mechanisms to make fast searching process. Unit 
scheduling procedure is determined by binary part of this 
method and quantity of power generation of committed 
units is determined by the real part of this approach.  

The binary mutant vectors were generated by a 
probability estimator operator, proposed in a modified 
binary DE (MBDE) based UC problem, by Dhaliwal and 
Dhillon [190]. In this approach, unit scheduling and power 
allocated to commit units, were performed by five different 
priority methods. Three performance indicators like 
standard deviation, total operating cost and success rate 
were also considered in this approach. The results were 
obtained through Wilcoxon signed rank test. 

F. UC PROBLEM INCORPORATED WITH SFLA 
An integer-coded evolutionary optimization technique, 
called SFLA with two term objective functions was framed 
by Ebrahimi et al [191]. In this approach, the minimum 
up/down time constraints are directly coded, without 
considering a penalty function method and start-up costs 
are modelled in two values (both cold start and hot start), 
stair case function. Total operating cost, over a scheduling 
period, is the first term and the violation in system 
constraints are penalized by penalty function in the second 
term.   

A binary and improved binary shuffled frog leaping 
algorithm (BSFLA and IBSFLA) based approach was 
presented by Barati and Farsangi [192]. It was a new binary 
version of SFLA, called ISFLA, encoded in discrete space. 
The capability of BSFLA is tested with twelve bench mark 
functions. The total cost of proposed methods, found in this 
paper, was evaluated with twenty-five diverse optimization 
methods. Anitha et al [193] attempted a multi-objective 
evolutionary approach, named improved SFLA, to resolve 
the combined emission constrained UC problem, subjected 
to regular constraints. The commitment schedule is given 
by the main problem, with minimum emission level and 
up/down time constraint satisfaction and this schedule is 
taken by the sub-problem to solve ED and emission 
dispatch.  It depends on the weighing factor given to each 
constraint, to dispatch the real power, among the committed 
units.  

G. UC PROBLEM INCORPORATED WITH FA 
System reliability level and fuel cost were simultaneously 
optimized, in a multi-objective UC problem, using fuzzy 
adaptive FA, by Chandrasekaran and Simon [194], called 
fuzzy adapted firefly lambda optimization. In this approach, 
the 24 hour UC scheduling is obtained by binary coded FA 
and the fuzzy designed variable is tuned by real coded FA, 

to maximize the fitness function. The Lambda-iteration 
method is also used to obtain the ED problem. The same 
authors proposed another UC problem, based on the same 
algorithm, tuned by fuzzy membership function, subjected 
to customary constraints with the same methodology [195].  

A reliability and network constrained UC problem, 
incorporating binary-real coded FA, based on the flashing 
behaviour of fireflies, was presented by Chandrasekaran 
and Simon [196]. Three stages are framed in this approach, 
with the evaluation of reliability being modeled by 
generator outage disturbance. In the first stage, binary 
coded FA based reliability constrained UC problem is 
obtained. The optimal power flow problem is executed 
through real coded FA in the next stage. In the third stage, 
search ability and the repair strategies are incorporated by 
both algorithms, given in the first two stages. Loss of 
probability index is also employed to recognize the 
reliability of the system. The same approach, subjected to 
customary constraints, was tested with five case studies 
[197].  A global search is attained by means of the local 
search, performed by individual workers [198]. The size of 
the cluster of the distributed model is configured between 
10 to 15 nodes. Out of these, one can be assumed as master 
node and others are called multiple workers.  

A combination of PL and modified FA was proposed by 
Hussein and Jaber, to solve the UC problem, in two steps, 
using PL (on/off cases of units provided in the first step), 
combined with modified FA (load scheduling between units 
provided in the second step) [199]. In this approach, the 
randomization parameter was not kept constant and it can 
be decreased linearly with iterations, with respect to their 
initial and final values. 

H. UC PROBLEM INCORPORATED WITH OTHER 
EVOLUTIONARY OPTIMIZATION TECHNIQUES 
A new integer coded algorithm, consisting of the foraging 
behaviour of E-coli bacteria, called BFA was proposed by 
Eslamian et al [200]. The penalty functions are not required 
to handle the minimum up/down time constraints, by using 
integer coding of the approach, which helps to minimize the 
simulation time. A new implicit reserve constraint UC 
problem, incorporated with an improved artificial fish 
swarm algorithm, was proposed by Han et al [201]. In this 
approach, the spinning reserve constraint is not given 
openly but totally in the transaction between outage loss 
and cost. The searching performance of this optimization 
method is enhanced by introducing a new intelligent 
mutation operator, similar to the GA.  A swap move based 
local search and cyclic re-initialization operators, were 
introduced and integrated with the Binary Fish Swarm 
algorithm, to avoid trapping behaviour at a local optimum 
solution [202]. Feasible search space is kept by adopting a 
repairing mechanism of minimum up/down constraints. 
Two strategies like strategy-A (payment for power 
delivered) and strategy-B (payment to reserve allocated) are 
included and simulated in this approach for power selling 
and reserve, using different generator unit combinations.  
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Zhao et al proposed an improved binary CSA method, to 
solve UC problem, with the help of a new priority list, 
designed by a new heuristic search method, based on the 
minimum output with average fuel cost [203]. To choose 
the right search direction in an iterative process, a new 
binary updating mechanism was incorporated in this 
approach. The infeasible solutions were repaired by a 
greedy method, which contains three main stages like 
meeting minimum up/down and spinning reserve 
constraints and de-committing surplus units. The maximum 
iteration count and population size, proposed in this method 
were 200 and 10 respectively, with the threshold value set 
at 0.7. 

I. UC PROBLEM INCORPORATED WITH HYBRID  
EVOLUTIONARY OPTIMIZATION TECHNIQUES 
A new approach, formulated with GA incorporating NN 
and DP, to solve thermal UC problem was proposed by 
Huang and Huang [204]. Initially, a feasible set of 
commitment schedule for generators is devised by genetic 
enhanced NN and optimized by DP method. This hybrid 
approach has three features keeping away from network 
learning stagnation, minimizing the computation time and 
diminishing the uncertain states in NN output. The multi-
layered perceptrons are taken as a NN model and the 
objective function in a multi-stage process is minimized by 
DP method. 

A large scale UC problem was framed by Orero and 
Irving [205], through a hybrid GA, incorporated with a 
speedy priority list, ordering scheme to resolve the 
generator scheduling.  Two alternative ways are used to 
implement a hybrid GA-LR method of UC problem. In the 
first way, the GA plays the main role of solution with LR as 
a part of the GA process like initial population. The LR 
method uses the GA to update the Lagrange multipliers, in 
the course of solution in the second way [206].  

A mixed binary and decimal code based, hybrid GA-TS 
method, was used to accelerate the search and put aside the 
memory space, subjected to customary constraints [207]. 
The generation and evaluation of the initial population and 
the fitness function determination are attained through GA. 
The generation of new population members is acquired via 
TS.  The integration of GA, TS and SA algorithms was 
proposed to solve UC problem [208].  The role of TS is to 
generate new members in the population of GA, 
incorporated in reproduction phase. Similarly, the role of 
SA is to improve the rate of convergence of GA, by testing 
the population members, after every generation.   

The application of GA joint, with Lagrangian Relaxation 
(LR) method, called LRGA was proposed by Cheng et al 
[209].  In the initial stage of this approach, there is a two 
stage dynamic programming based, search for the minimum 
constrained Lagrangian function, under stable Lagrangian 
multipliers. The maximization of the Lagrangian function, 
regarding its multipliers, is attuned by the GA in 
subsequent stages.  A new uniform crossover technique is 
adopted, to create two new offspring chromosomes, by 

means of swap over the bits between parent chromosomes 
through a randomly generated mask. A priority list scheme 
based, hybrid GA, with some notable merits like 
predictable results, less computation time and simplification 
was proposed by Paranjothi and Balaji [210].  

A hybrid annealing GA was proposed by Cheng et al 
with two stages named SA search stage and GA evolution 
stage [211]. The Quasi-population creation, in numerous 
search paths, is generated by the execution of iterative 
generate and test procedure, in each stage. Two main 
features are also akin to SA incorporating with quasi-
equilibrium control, based on genetic operator, including 
population based state transition and Boltzmann type 
selection operator, incorporated with GA.  A hybrid version 
of PSO is presented to resolve UC problem, subjected to the 
formulation of normal constraints based on the simple 
alteration like functioning on binary problems which are 
conservatively optimized by GA [212].  

The search process is prevented by the chaos search, in 
the combination of GA and IA, called Hybrid Chaos Search 
Immune Genetic Algorithm and Fuzzy System, to prevent 
from premature convergence and the fuzzy system 
implemented to decide the ratio of crossover and mutation 
values, to avoid the excessive convergence time. The ability 
of global search enhancement and increase a search speed is 
achieved by immune antigen memory and identification 
function [213]. The structure of LR is based on dual 
optimization process, to decompose a problem into one 
master and more manageable sub-problems. DP method is 
used to solve these sub problems and the connection 
between them is maintained by Lagrange multipliers, which 
are updated by PSO [214].  
A new fuzzy unit commitment model, incorporated with GA, 
called Fuzzy GA (FZGA) was proposed by Mantawy [215]. 
In this approach, the spinning reserve quantity and load 
demand error are considered as two inputs of the fuzzy 
model. Similarly, penalty factor and fuzzy load demand are 
considered as two outputs.  The initial population of GA is 
created by a set of randomly generated feasible solutions and 
the forecasted load demand is estimated by applying fuzzy 
logic rules. Yamin and Shahidehpour proposed a hybrid LR-
GA technique [216], with the wind down coupling 
constraints (time period, coupling of either units or both), 
hooked on the objective function through Lagrange 
multipliers and then updated by GA, to overcome the 
convergence difficulties of LR. The dual optimization 
procedure is implemented by relaxing the coupled 
constraints, called cost and profit based Lagrangian 
functions. 

With the combination of Immune algorithm (IA) and 
GA, added to chaos search and fuzzy system, a GA based 
logistic equation can produce a number of areas of near-
best solutions, to uphold solution difference to prevent from 
early convergence. Such logistic equation is used to frame 
the chaos search queue method.  Ability of partial search in 
Chaotic Immune GA (CIGA), is increased by the auto 
regulation, unbiased mechanism of the immune system, to 
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produce the correct quantity of antibodies with restraint and 
promotes the individual density in CIGA. The long 
convergence time of this approach is evaded by the 
proportion of crossover and mutation values, to make 
certain variations in the populations, during the search 
period through the fuzzy system [217].  

A combination of binary PSO and real coded PSO [218] 
is designed, to solve UC problem and ED problem 
respectively, with concurrent run.  In a fuzzy adaptive PSO 
approach, the equilibrium flanked by local and universal 
searching capabilities is augmented by adopting the fuzzy 
IF/THEN rules to vigorously regulate the inertia weight 
[219].  In the GA based TS (GA-TS) technique [220], the 
new scheduled constraints in UC problem are checked and 
the status of new population (generated by GA) is also 
improved and updated by TS algorithm.  

A quantum inspired binary PSO (BPSO) based 
technique, called QBPSO algorithm is intended for UC 
solution, subjected to associated system and unit constraints 
[221]. The combination of conventional BPSO with a 
superposition of conditions, in addition to quantum bit, is 
proposed in this QBPSO approach. The Q-bit individuals 
are updated by a combination of coordinate rotation gate 
through a dynamic rotation angle (used to determine the 
rotation angle magnitude), to improve the capability of the 
search process.  

An efficient tent-map based, hybrid Chaotic PSO 
(CPSO) algorithm [222], incorporated these two types of 
process. In the first process, the projected real coded CPSO 
is realized to optimize the solution problems, with 
continuous variables. The binary coded CPSO is 
implemented to solve the problems, with discrete variables, 
found in the second process. Chaotic map and turbulence 
process are also involved in this approach, to avoid the 
premature convergence of PSO and flee from local minima.  

An improved PSO, embedded with TS (PSO-TS) 
optimization method, is presented with some more different 
constraints like water balance, turbine discharge capacity 
and minimum/maximum reservoir level constraints [223]. 
Two types of PSO approach are put into practice, akin to 
discrete binary PSO and conventional PSO, which solve the 
UC and ED problems respectively and combined with 
parallel optimization. A supple memory system of TS is 
used, to enhance the PSO and conquer the hasty 
convergence of conservative PSO.   

Three different evolutionary optimization methods are 
integrated with each other called Chemotactic PSO-DE 
(CPSO-DE), based on the combined function of BFA, PSO 
and DE and updated by Lagrange multipliers of LR [224]. 
A two-level hierarchical approach, with an expert system 
(ES) and Elite PSO (ELPSO), was presented by Chen 
[225], with all constraints handled by ES and utilized as a 
pre-dispatch tool in the beginning, to produce a healthy 
swarm. Then the optimal solution of the problem is realized 
by the combination of both ES and ELPSO.  

In an advanced fuzzy controlled, binary clustered PSO, 
based on multi-population approach [226], the preliminary 

population is created by the particles in the framework of 
PSO, which are generated by a weighted priority list and 
the clustering procedure of these solutions is based on their 
fitness values. The degree of acceptance, for the 
uncertainties like spinning reserve, total production cost 
and forecasted load demand is determined by fuzzy 
membership functions and allocating membership degree, 
based on error margin. The fuzzified individual 
membership function variables are amassed and integrated 
with the fitness value, to give the adequacy measurement of 
an exacting candidate schedule.  

A fuzzy function controlled multi-population based 
Binary Clustered PSO (BCPSO) was presented by 
Chakraborty et al [227].  A multi-objective, fuzzy assisted, 
hybrid Cuckoo Search Algorithm (CSA) technique was 
proposed by Chandrasekaran, to solve the UC problem 
[228]. The efficiency of this approach was due to both 
binary (for solving ED) and real (for solving UC) coded 
CSA. Consequently, the performance improvement was 
obtained by introducing a tan-h function. The boundary 
values of fuzzy design variables were tuned by the real 
coded CSA and thus in every iteration, the fitness of best 
solution was evaluated.  

Three stages of UC problem like the resolve of a day-
ahead UC decision (first stage), the resolve of the intraday 
UC adjustment decision of the sub-fast start units (second 
stage) and the resolve of UC decision of sub-fast start units 
(third stage) were formulated by Zhang et al [229].  A 
classic gradient method united with GA, was presented by 
Marrouchi and Saber, who made a comparative study, by 
way of fuzzy logic and GA [230].  The strength of LR and 
PSO methods were considered and a new hybrid algorithm 
called enhanced LRPSO (ELRPSO) was proposed by Yu 
and Zhang [231].  

In a hybrid GA and DE (hGADE), the search capability 
of the hybridized variants was enhanced by incorporating 
the initial heuristic generation of population and a 
replacement strategy, based on infeasible solution 
preservation in the population [232]. Two problems 
specific, variation operators (swap window mutation and 
window mutation operators) and local search operators 
(swap mutation and swap-window hill climb operators) 
were implemented to prevent from a premature 
convergence. The proposed evaluation procedure is divided 
into four case studies. In the first case, a heuristic 
initialization strategy is incorporated to improve the 
effectiveness of hGADE variants (hGADE/r1 and 
hGADE/cur1). GA is hybridized with these two classical 
variants of DE and parameter tuning is conducted in the 
second case. The variants of hGADE are validated, with 
some other approaches, in the third case.  In the fourth case, 
the combination of two variants is implemented, to further 
amplify the performance of this proposed approach. A 
hybrid adaptive bacterial foraging, with GA (HABFGA) 
method was examined by Elattar [233], with the 
combination of BFA and GA, with adaptive stopping 
criterion.   
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Trivedi et al [234] proposed an enhanced version of 
Multi-objective Evolutionary Algorithm based on 
Decomposition method (MOEA/D) and incorporated with 
DE (MOEA/D-DE) to solve economic/emission UC 
problem. A new hybrid strategy between GA and DE is 
framed, within the structure of MOEA/D, so that the binary 
and continuous variables are evolved by GA and DE 
respectively.  The performance of this approach is enhanced 
by the implementation of a new analogous island model, 
based on a mixture of MOEA/D, with uniform and non- 
uniform weight vector distribution scheme.  

Two new optimization approaches were posited to solve 
single area UC problem, named swarm intelligence based 
new PSO (NPSO) and a hybrid approach of PSO and Grey-
Wolf Optimization (PSO-GWO) [235]. The swarm position 
was firstly updated by NPSO and then further updated by 
GWO algorithm. A new parallel-series meta-heuristic, 
hybrid optimization technique was proposed by Yang et al, 
to solve the UC problem, by including the demand side 
management of plug-in electric vehicles 
charging/discharging and renewable generations, subject to 
customary constraints. In this approach, a hybrid topology 
binary PSO (HTBPSO), coordinated with Self-Adaptive DE 
(SADE) and a lambda iteration technique, was 
implemented to solve the complex hybrid UC problems 
[236]. This methodology has three important sections, 
including two algorithms running in parallel and linked 
with a series running algorithm. Initially, the HTBPSO 
algorithm was used to determine the on/off status of 
thermal units, in a 24 hour plan, operating in parallel with 
the SADE algorithm, to determine the load shaping demand 
side management of plug-in electric vehicles, in an hour 
based horizon, throughout a day. Then both algorithms 
were operated in series, with a lambda iteration technique, 
to optimize the power generation, in real value, for the ED 
problem. A hybrid DE, with Random Search Algorithm 
(RSA) based, single area UC problem was presented by 
Kamboj et al, subject to customary constraints, to enhance 
the ability of exploitation and universal performance [237]. 
In this approach, the RSA was implemented to perform the 
random population search for global and stochastic 
optimization problem. The same authors proposed the same 
methodology of optimization process, subject to 
import/export and tie line constraints [238]. 

A new mutation strategy based, Memetic Binary DE 
(MBDE) algorithm, was hybridized with a Binary Hill 
Climbing (BHC) algorithm, was proposed by Dhaliwal and 
Dhillon, to solve UC problem, subject to customary 
constraints. In this approach, the combined MBDE and 
BHC were used as global and local search operators 
respectively, to improve the exploration and exploitation 
aspect [239]. A new unit de-commitment plan was also 
presented, to de-commit the needless generating units, by 
prioritizing of generating units and total profit. The power 
allocation of the committed generating units was done by 
using a priority method based, simple algorithm. Two meta-
heuristic techniques called, Dragonfly Algorithm (DA) and 

PSO, were hybridized to solve a mixed integer UC 
problem, was presented by Khunkitti et al, in an improved 
version [240]. In this approach, the sigmoid function was 
also implemented, to find the optimum operating status of 
generating units. A PL method, based on the average 
production cost of a generating unit was also incorporated 
in this proposed work. 

A new multi-objective, hybrid combined technique of 
Modified Salp Swarm Algorithm (MSSA) and ANN, 
assisted with PSO, was proposed to solve EED problem, 
related to hydro, wind and thermal units [241]. The optimal 
combination of the thermal generator unit was created by 
MSSA, with the customary objective functions like 
minimum fuel and emission. The probability factor of wind 
speed was proposed by combining PSO and ANN 
techniques. In this approach, the optimization process of 
MSSA was executed by the combination of thermal 
generators, based on the pumped storage units and the 
uncertainty of wind power. The generating units were 
classified into a variety of clusters, by formulating a new 
approach to UC problem, by combining a hybridized 
method of GE with SA, was suggested by Reddy et al, 
subject to customary constraints [242]. This approach has 
been classified into three stages. In the beginning stage, the 
base load, intermittent load, semi-peak load and peak load 
were formed into clusters and all the generating units were 
separated into the corresponding clusters, based on their 
operating costs. The operating costs were obtained by the 
hybrid of GA and SA techniques. Solution of UC was 
obtained by, incorporating additive cluster algorithm, in the 
second stage, for increasing the load pattern. In the third 
stage, solution of UC was obtained, by incorporating 
divisive cluster algorithm, for decreasing the load pattern. 
A new hybrid version of PSO, incorporating DE, is used to 
solve coordinated security constrained, UC (SCUC), based 
on transmission system operators (TSO) and distribution 
system operators (DSO), proposed in [243]. In this 
approach, the coordination strategy has been formulated by 
analytical target cascading technique (ATC), with large 
scale distributed energy resources and the direct current 
optimum power flow technique, used as a sub problem of 
ATC. The objective function (with penalties) of TSO has 
been decomposed into the objective functions of 
coordinator and TSO and helps it to reduce the quantity of 
quadratic equations.  

A two layer structure based algorithm was proposed, to 
solve UC problem, subject to customary constraints. It was 
based on the improved hybrid version of SA with PSO, 
called ISAPSO, combined with elitist strategy, binarization 
method and unique layering mechanism [244].  An elitist 
strategy was introduced in this approach, which enhanced 
the search of the current optimal solution at every iteration 
process of the algorithm, to reduce the complexity function. 
In this approach, the UC problem was divided by the 
proposed method, into two layers, to solve the sub-problem 
of this algorithm.  The elitist PSO with SA and the 
binarization method was framed, to obtain wide search 
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range with faster convergence in the upper layer.  The 
optimal solution, for each individual in the upper layer, was 
calculated by the convex optimization approach in the 
lower layer. 

IV. CONCLUSION 
Evolutionary optimization techniques play a crucial role in 
solving all types of UC problems, owing to their substantial 
quantity of computational time and speedy convergence 
characteristics, over other traditional optimization 
techniques. This paper has compiled review of the past 
literature, associated with UC problems, with reference to 
various types of evolutionary optimization techniques in a 
multi directional way. This tabulation of review was 
extracted from several research articles, published in the past 
decades, through a number of refereed journals. 
Implementation of a variety of constraints related to UC 
problems reported in the literature are recapitulated and 
tabularized.  The distinctive features of projected 
evolutionary optimization techniques, given in the reference 
papers associated with UC problems, are also summarized 
and tabulated. It could assist new researchers with a concise 
idea, about the use of evolutionary optimization techniques, 
in power system UC problems. 

From the literature review, it can be found that the 
number of researchers in UC problem using evolutionary 
optimization techniques is increasing considerably. It is 
clearly indicated that, the performance of evolutionary 
algorithm in power system optimization task is highly 
encouraging. Being a successful and reliable tool, the 
evolutionary algorithm can be exploited for other power 
system optimization problems like economic load dispatch, 
optimal power flow, optimal reactive power dispatch etc. 
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