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Abstract—Model-based gait recognition is considered to be
promising due to the robustness against some variations, such as
clothing and baggage carried. Although model-based gait recog-
nition has not been fully explored due to the difficulty of human
body model fitting and the lack of a large-scale gait database,
recent progress in deep learning-based approaches to human
body model fitting and human pose estimation is mitigating the
difficulty. In this paper, we, therefore, address the remaining
issue by presenting a large-scale human pose-based gait database,
OUMVLP-Pose, which is based on a publicly available multi-
view large-scale gait database, OUMVLP. OUMVLP-Pose has
many unique advantages compared with other public databases.
First, OUMVLP-Pose is the first gait database that provides two
datasets of human pose sequences extracted by two standard
deep learning-based pose estimation algorithms, OpenPose and
AlphaPose. Second, it contains multi-view large-scale data, i.e.,
over 10,000 subjects and 14 views for each subject. In addi-
tion, we also provide benchmarks in which different kinds of
gait recognition methods, including model-based methods and
appearance-based methods, have been evaluated comprehen-
sively. The model-based gait recognition methods have shown
promising performances. We believe this database, OUMVLP-
Pose, will greatly promote model-based gait recognition in the
next few years.

Index Terms—Gait database, benchmark, gait recognition,
human body pose.

I. INTRODUCTION

AIT is one of the most popular behavioral biometrics in
the world because it has unique advantages compared
with face, iris, palm print, etc. Gait features can be captured
at a long distance and are hard to disguise, and consequently,
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gait recognition technology has been added to the repertoire of
tools available for crime prevention and forensic identification.

The gait recognition methods mainly fall into two groups:
appearance-based methods and model-based methods. The
appearance-based methods directly extract gait features from
an image sequence to encode the spatial and temporal
information. Most of the appearance-based methods usually
extract silhouettes from raw videos first and then extract gait
features, e.g., gait energy image (GEI) [1], which is created by
averaging the pixels of silhouettes in a gait cycle, chrono gait
image (CGI) [2], and gait flow image (GFI) [3]. Due to the
simplicity of feature extraction and high performance in recog-
nition accuracy, appearance-based methods have been more
popular than model-based methods for more than a decade.
However, the challenges caused by variations in view, speed,
clothing, carrying status, etc. can affect the accuracy of the
appearance-based gait recognition methods.

The model-based methods extract features by fitting a
human articulated model to an image and by extracting kine-
matic information such as a sequence of joint positions or joint
angles [4], [5], [6], [7], [8]. The model-based methods can be
robust against appearance changes due to clothing and carrying
status variations since extracted joint positions/angles are less
affected by clothing and carrying status variations. However,
human model fitting, a key procedure of the model-based
approaches, has been thought to be error-prone, computa-
tionally exhaustive, and demands high image resolution. As
a result, the model-based methods have been less employed
in the video-based gait analysis community for more than a
decade.

Situations surrounding the human model fitting (or human
pose estimation) have, however, been drastically changing
for these years. One such seminal work is a training-
based approach to pose estimation with a depth sensor (e.g.,
Kinect) [9]. For example, Kastaniotis ef al. [10] used skeleton
data from a single Kinect sensor instead of a setup of multiple
synchronous cameras in [11]. This shows that the body joints
from Kinect can contribute to gait recognition, i.e., the fea-
sibility of model-based gait recognition. The commonly used
cameras in video surveillance are, however, not depth sensors
such as Kinect but conventional cameras (e.g., color cameras
or monochrome cameras).

Thereafter, deep learning-based approaches significantly
advanced state-of-the-art human pose estimation, and standard

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-5213-5877
https://orcid.org/0000-0002-3546-8071

422 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 2, NO. 4,

techniques such as OpenPose [12] and AlphaPose [13] have
been widely used in many research fields, which indicates
the possibility of model-based gait recognition with conven-
tional cameras in visual surveillance scenarios. For exam-
ple, Liao et al. [14] proposed a pose-based temporal-spatial
network (PTSN) that takes a sequence of estimated human
poses as input and showed its effectiveness on cross-view
gait recognition with a publicly available gait database, i.e.,
CASIA B [15]. Although CASIA B contains large view vari-
ations (eleven views) from 0° to 180°, the number of subjects
is still limited to 124, which is insufficient to fully demon-
strate the possibility of model-based gait recognition in this
deep learning era.

We, therefore, built the world’s largest multi-view gait
pose database named “OU-ISIR Gait Database, Multi-View
Large Population Database with Pose Sequence (OUMVLP-
Pose)”! to further advance state-of-the-art model-based gait
recognition. The contributions of this study are three-fold.

« The first gait database with pose sequences extracted
by deep learning-based pose estimators. While the
existing gait databases were released in the form of
images (e.g., GEI, silhouette sequences or RGB image
sequences), we construct the gait database with the pose
sequences obtained by two state-of-the-art pose estima-
tion algorithms for the first time to the best of our
knowledge. The constructive database is beneficial for
the gait analysis community to revisit the model-based
approaches.

o Large-scale and multi-view database. Since the
database was built upon the large-scale multi-view gait
database, i.e., OUMVLP [16], it contains 10,307 subjects
with a wide range of views (14 views, 0°-90°, 180°—
270° at 15° interval), which results in the world’s largest
gait database with pose sequence. As deep learning-based
methods require massive samples for sufficient training
and reliable evaluation, the constructed database is suit-
able for evaluating model-based gait recognition with
deep neural networks such as [14].

« Performance evaluation of the model-based gait recog-
nition. We conducted a set of evaluation experiments
with a variety of model-based approaches ranging from
a traditional method [4] to recent deep learning-based
methods [14]. This can be a good milestone for future
studies of model-based gait recognition. We also show the
significant improvement from the traditional model-based
approach to the current deep learning-based approach and
show a still remaining gap of performances between the
model-based and appearance-based approaches with deep
learning frameworks.

The rest of the paper is organized as follows. Section II
presents the existing gait databases and related work on pose
estimation methods. Section III introduces the construction
of our pose sequence database, and Section IV presents the
performance evaluation results with the constructed database.
Section V concludes this work.

'OUMVLP-Pose  is  available at
u.ac.jp/BiometricDB/GaitLPPose.html.

http://www.am.sanken.osaka-

EXISTING MULTI-VIEW GAIT DATABASES

TABLE I

OCTOBER 2020

Database #Subjects #Views Range
of views
CMU Mobo [17] 25 6 0° — 360°
Soton small [18] 12 4 -
Soton multimodal [19] | >400 12 -
CASIA A [20] 20 3 0° — 90°
CASIA B [15] 124 11 0° — 180°
AVA [21] 20 6 -
WOSG [22] 155 8 -
KY4D [23] 42 16 0° — 360°
OU-TD C [24] 200 25 0° — 360°
OU-LP [25] 4,016 4 55° — 85°
OU-MVLP [16] 10,307 14 0° —90°,
180° — 270°

II. RELATED WORK
A. Gait Databases

The existing major multi-view gait databases are shown in
Table I. The CMU Mobo database [17] contains 25 individuals
walking in four different walk patterns: slow walk, fast walk,
incline walk and walking with a ball. All subjects are cap-
tured under six views from 0°-360°. The Soton Multimodal
database [19] contains over 400 multimodal subjects involving
gait, face and ear. The gaits of all the subjects are captured
under 12 views. The CASIA A database [20] includes 20
subjects and four sequences per view per subject. They are
captured at a rate of 25 frames per second and includes a
total of 240 sequences under three views: 0°, 45°, and 90°.
The CASIA B database [15] contains 124 subjects with large
view variations from 0° 180° with 18° intervals. It includes
6 normal sequences, 2 carrying bag sequences and 2 cloth-
ing sequences. The AVA database [21] includes 20 subjects
with different body sizes under six view angles. The WOSG
database [22] contains 155 subjects with 8 views. The KY4D
gait database [23] contains 42 subjects of three-dimensional
volume data which constructed multi-view images captured
by 16 cameras. The OU-ISIR Treadmill Database C [24] con-
tains 200 subjects with 25 views, which includes 12 views
with 30° intervals, 2 tilt views and 1 top view. The OU-ISIR
LP [25] contains 4,016 subjects with 55°, 65°, 75°, and 85°
views.

While the above mentioned gait databases lack either or
both aspects of the number of subjects (less than 1,000) or
the view variations, OUMVLP [16] contains both a large num-
ber of subjects and wide view variations, i.e., 10,307 subjects
from 0° to 90°, 180° to 270° with 15° intervals as shown in
Fig. 1. The original images® are captured with the image size
of 1,280 x 980 pixels at the frame-rate of 25 fps by seven
network cameras at intervals of 15° azimuth angles along a
quarter of a circle whose center coincides with the center of
the walking course. OUMVLP provides its data in the for-
mat of GEIs as well as silhouette sequences. Although the
GEI is the most widely used gait feature in the video-based
gait analysis community, a large-scale multi-view gait database
with pose sequences is demanded since it enables us to more

2While silhouette sequences and GEIs are open to the public, the original
images will not be released due to privacy issues.
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Fig. 1. Capturing setup of OUMVLP and examples of extracted pose from
multiple views.

purely analyze gait, i.e., motion pattern when free from the
body shape.

B. Gait Recognition

Gait recognition is a challenging task since there are a lot
of variations. Many recent works are focusing on developing
methods to extract robust gait feature to the variations. Some
recent survey papers [26], [27] gave comprehensive analy-
sis on gait recognition. Here we just list some recent works.
Ben et al. [28] propose a coupled patch alignment (CPA) algo-
rithm that effectively matches a pair of gaits across different
views. Ben er al. [29], [30] proposed another two cross-
view gait recognition methods respectively based on matrix
and tensor, which are suitable for reducing the small sample
size problem in discriminative subspace selection. Some other
cross-view gait recognition methods can be found in [31],
[32], [33]. To extract invariant gait feature, generative adver-
sarial networks (GAN) are also employed in [34], [35]. In [36]
the authors innovatively combined silhouette segmentation and
gait recognition and proved that the combination can improve
gait recognition obviously.

The previously mentioned methods are all appearance-based
ones. In [6] the authors introduced a typical model-based gait
recognition method. They used pendular motion to describe
the thigh and lower leg motion, and studied on different walk-
ing styles, walking and running. Recently Liao et al. [14] took
the advantage of deep learning and used a pose estimation by

deep learning to recover human skeleton models. They also
converted 2D pose data to 3D for view invariant feature extrac-
tion in [37]. The models by deep learning are much better than
those by traditional methods. They also took a temporal-spatial
neural network for gait recognition. We believe that model-
based methods will be promoted greatly by deep learning. But
we need a large gait database to advance gait recognition on
model-based methods.

C. Pose Estimation

A human pose skeleton represents a person by a set of
connections of human joints. It is a set of coordinates that
can be connected to describe the pose of the person. Human
pose estimation is challenging for computer vision. With the
development of deep learning, human body pose estimation
has achieved great progress in recent years. The pose esti-
mation approaches are grouped into bottom-up DeepCut [38],
OpenPose [12] and top-down approaches AlphaPose [13], and
Mask-RCNN [39]. The top-down approaches detect the person
first, followed by estimating the body parts. The bottom-up
approaches detect all parts of every person, then group the
parts belonging to distinct persons [40]. Bottom-up methods
are more robust to occlusion and complex poses. However,
most bottom-up methods do not directly benefit from human
body structural information leading to many false positives.
Top-down methods utilize global contexts and strong structural
information, but they cannot handle complex poses. Moreover,
the performance of top-down models is closely related to
person detection results.

Cao et al. [12] proposed using deep learning to create
accurate human models called “OpenPose”, which can jointly
detect human body joints including hands, feet, elbows and
others. The method can handle multiple persons in an image.
It can predict vector fields named part affinity fields (PAFs),
which can directly expose the association between anatomi-
cal parts in an image. They designed an architecture to jointly
learn part locations and their association, in which a set of
2D vector fields encodes the location and orientation of limbs
over the image domain. These fields and joint confidence maps
are jointly learned and predicted by CNN. Fang et al. [13]
proposed a novel regional multiperson pose estimation frame-
work to facilitate pose estimation, AlphaPose, in the presence
of inaccurate human bounding boxes. The framework follows
the top-down framework, which consists of three components:
a symmetric spatial transformer network, parametric pose
nonmaximum-suppression, and a pose-guided proposal gener-
ator. It significantly outperforms the state-of-the-art methods
for multiperson human pose estimation in terms of accuracy
and efficiency. AlphaPose is an accurate real-time multiperson
pose estimation system, which can achieve 72.3 mean average
precision (mAP) on the COCO dataset and an 82.1 mAP on
the MPII dataset. In addition, the source code of AlphaPose
is provided.

III. OUMVLP-POSE DATABASE

OUMVLP-Pose was built upon OUMVLP [16]. OUMVLP
contains 10,307 subjects of round-trip walking sequences
captured by seven network cameras at intervals of 15° (this
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Fig. 2. Statistics of the number of frames in a sequence.
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Fig. 4. A pose sequence from the 45° view.

sums to 14 views by considering the round trip on the same
walking course) with an image size of 1,280x980 pixels and
a frame-rate of 25 fps. The video capturing setup is shown in
Fig. 1. The statistics of the number of frames per sequence is
shown in Fig. 2. The number of frames in a sequence is from
18 to 35, and most of the sequences contain approximately 25
frames. More details about the database can be found in [16].

We then extracted pose sequences from RGB images of
OUMVLP. More specifically, we employed pretrained ver-
sions of OpenPose [12] and AlphaPose [13] to extract human
joint information. As shown in Fig. 3, the estimated results
include 18 joints in total: Nose, Neck, RShoulder (right shoul-
der, the following names named similarly), REIbow, RWrist,
LShoulder, LElbow, LWrist, RHip, RKnee, RAnkle, LHip,
LKnee, LAnkle, Reye, LEye, REar, and LEar. We show some
samples from multiple views in Fig. 1, and some extracted
pose sequences in Fig. 4.

Two datasets in OUMVLP-Pose were created. One was cre-
ated using the OpenPose method, and another was by the
AlphaPose method. The two datasets contain the same number
of subjects and the same parameters. The only difference is
the pose accuracy of the two pose estimation methods. After
the acceptance of the paper, we will release OUMVLP-Pose
to the research community.

IV. PERFORMANCE EVALUATION

First, we evaluate the performances of two existing model-
based approaches on the constructed database: one is a method
using Fourier transform analysis on leg movement [4], which
was proposed in the early stage of gait recognition, and
the other is a recent deep learning-based approach. Second,
we compare the model-based approach with widely used
appearance-based approaches.

A. Model-Based Benchmarks

1) Fourier Transform Analysis on Legs Movement: Model-
based approaches have been actively studied mainly in the
early stage of gait recognition studies. We chose a method
from such model-based approaches for comparison with the
recent deep learning-based approaches. More specifically, we
chose a Fourier transform-based approach to gait recognition
proposed by Cunado et al. [4]. The method extracts two angles
from legs, the thigh angle and the knee angle. The angle val-
ues from a sequence can be put into a vector which will be
the input of Fourier transform. The length of the angle vector
in our experiments was set to 20 as the other experiments.
The phase-weighted Fourier magnitude spectra is the feature
vector for classification. We implemented the algorithm as
described in [4]. The classifier we used is NN (nearest neigh-
bor). Compared with the CNN-based methods described in the
following part of the paper, the Fourier method only uses 2
joint angles for gait recognition, not all joints as other methods.

2) CNN for Feature Extraction: Considering the recent
progress of deep learning approaches on many computer vision
and biometric authentication tasks, it is natural to employ the
deep learning-based approaches for the model-based method
of gait recognition.

For this purpose, we first apply a normalization procedure to
the pose sequences because the size of a human body changes
according to the distance between the subject and the camera,
which is undesirable for recognition purposes. In this study, we
used the distance dpeck—hip between the neck and the middle
point of the hip (computed as the center of RHip and LHip)
as a normalization factor. We normalize the position so that
the neck joint ppeck is located at the origin and the neck-hip
distance dpeck—nip s unity. Specifically, the position of the i-
th body joint p; is normalized to a new position p; in the
normalized coordinate as

s o
>, _ DPi = Pneck
=

= . (1)
dheck—hip
Next, we apply deep learning-based approaches to the nor-

malized pose sequences. As one of the most standard methods,

we apply a convolutional neural network to the sequence of
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Fig. 6. The positions of 18 joints are stored in a column vector. N vectors
from the N consecutive frames are concatenated to a matrix of size 36 x N.

a pose (i.e., the normalized positions of the joints). More
specifically, we first construct a matrix whose row and col-
umn correspond to the normalized position of the joints and
frames. Since we have a two-dimensional position (x,y) for
each of the 18 joints for N frames, the size of the matrix is 36
xN. The data structure sent to the CNN is illustrated in Fig. 6.
Given the matrix as input, we then apply two-dimensional con-
volution layers, pooling layers, and a full connection layer, as
shown in Fig. 5. The network is similar to that in [37], but
with fewer layers, and it is easier to train. To normalize in the
temporal domain, the frame with the largest distance between
two feet is selected as the first frame for the input data. If
the frames after the selected first frame are not enough to
N frames, the frames before the selected first frame will be
padded to the end.

For feature extraction in gait recognition, it is crucial to
reduce the intra-class variation and enlarge the inter-class
variation, and hence, the multiloss strategy is employed to
optimize the network. As in [37], we employed two losses:
cross-entropy loss based on softmax and a center loss. The
cross-entropy loss with softmax can be used for classifying the
input into multiple different classes while the center loss learns
a center for deep features of each class and gives a penalty for
the distances between the deep features. With joint supervi-
sion, we can simultaneously enlarge the inter-class differences
and reduce the intra-class differences. We call the above men-
tioned CNN network architecture CNN-Pose throughout this
paper.

After we trained a model with the AlphaPose data, we
analyzed the distributions of the intra-class distances and
inter-class distances of the extracted gait feature vectors. All
samples from the same subject were used to compute the intra-
class variation, and samples from different subjects were for
the inter-class variation. The histograms of the two variations

0.1

T T

inter-class

0.09 N intra-class | 7
0.08
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0.06
0.05
0.04
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Fig. 7. The distributions of the inter-class distance and the intra-class distance
on the test set.
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LSTM.

are shown in Fig. 7. From the figure we can find that the
extracted gait feature can distinguish different subjects even
there is still an overlap between the two distributions.

3) PTSN by Combining CNN and LSTM: In addition, we
introduce another popular architecture to encode temporal
information from pose sequences, i.e., long short-term memory
(LSTM), as shown in Fig. 8, which is from the PTSN method
in [14]. Two types of features extracted through CNN and
LSTM are combined to capture the dynamic-static information
from gait poses, which has a powerful representation capacity
to extract invariant features from different gaits. We call the
above mentioned CNN network architecture PTSN throughout
this paper.

B. Appearance-Based Benchmarks

To evaluate the performance of the model-based features,
some appearance-based features should also be involved
and compared. Therefore, we employ the following typical
appearance-based benchmarks, which are designed for cross-
view gait recognition ranging from classical linear algebraic
methods to recent deep learning-based methods.

o The VTM method [41] acquires the VTM with the train-

ing data of multiple subjects from multiple view angles.
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TABLE 11
EXPERIMENTAL DESIGN OF THE OUMVLP-POSE DATABASE

Trainin, Test

& Gallery Set | Probe Set
ID: 1-5153 | ID: 5154-10307 | ID: 5154-10307
Seq: 00, 01 | Seq: 00 Segs: 01

In a recognition phase, the VTM transforms gallery gait
features into the same view angle as that of an input
feature, and the features match under the same view.

o Linear discriminant analysis (LDA) [42] is adopted as
a baseline in OUMVLP. Principal component analysis
(PCA) is first applied to an unfolded feature vector of GEI
to reduce dimension and, subsequently, LDA is applied
to obtain the discriminant features.

« GEINet [43] is based on one of the simplest CNNs where
one input GEI is fed, and the number of nodes in the final
layer (fc4) is equal to the number of training subjects. A
softmax value calculated from the output of the final layer
is regarded as the probability of matching a corresponding
subject.

e LB (local at the bottom) [44] is one of the state-of-the-
art gait recognition networks that takes a pair of GEIs as
the input. Paired convolutional filters are used to compute
the pixelwise weighted sum of the pair on the first layer,
which simulates the differences (i.e., matching) between
a probe and a gallery image. The cross-entropy loss is
adopted for training, where the two softmax values return
the probability that the input pair belongs to the same
subject or different subjects.

C. Experimental Design and Evaluation Criteria

There are 10,307 subjects in the database. We divided them
into two sets. The first one, which contains 5,153 subjects, is
the training set, and the second, which contains the remaining
5,154 subjects, is the test set. The test set is separated into a
gallery set and a probe set. Since each subject roughly owns
2 sequences, we put the sequence “00” in the gallery set and
the sequence “01” in the probe set. The experimental design
is also shown in Table II.

In our training phase, we set the training batch as 1024,
and the learning rate as 0.001. The learning rate decreased 10
times every 300 iterations. The size of input data is B x N x 36
as shown in Fig. 6, where B is the batch size in training and N
is the number of frames in a sequence. In our training phase
we choose 20 for N. The 20 continuous frames which start
from the frame with the largest distance between feet will be
taken as the input sequence. If the selected frames are less
than 20, we will select the remaining frames from the start of
the original sequence and pad them to the end of the selected.

Two evaluation criteria were employed to evaluate different
recognition accuracies: the rand-1 recognition rate, and the
equal error rate (EER). The results and analysis are listed in
the following subsections.

D. Performance of Benchmarks

First, we evaluated the recognition accuracy of CNN with
the rank-1 recognition rates on the two datasets, AlphaPose

50 T
©
¢ ——FT
=—B—PTSN
CNN-Pose

40

20

EER(%)

angle(®)

Fig. 9. The EERs of three model-based methods on the AlphaPose dataset
where the probe angle is the same as the gallery angle.

and OpenPose. Due to the evaluation in the OU-ISIR MVLP
database, the recognition rate of the 0-90° gallery vs. the O-
90° probe is similar to that of the 0-90° gallery vs. the 180-
270° probe, the 180-270° gallery vs. the 0-90° probe, and the
180-270° gallery vs. the 180-270° probe. We also adopted the
same evaluation criteria to focus on four typical view angles
0°, 30°, 60°, and 90°. The specific CNN network is shown in
Table III and Fig. 5.

Table IV and Table V show the rank-1 recognition rates on
two datasets with the CNN network. From the two tables, we
find that the recognition rate will be relatively high when the
probe angle is the same as the gallery angle. View variation
can greatly reduce the recognition rate. The average rate on
the ApahaPose data is 20.42% and greater than 14.76% on
the OpenPose data. In Table VI and Table VII, the EERs are
listed. A lower EER value means a better recognition rate.
From the four tables, it is obvious that a better quality pose
estimation can lead to a better recognition rate.

We then evaluated the recognition accuracy of all model-
based benchmarks mentioned previously. The rank-1 recogni-
tion rates are shown in Table VIII, and the EERs are illustrated
in Fig. 9. The probe angle of each experiment in Table VIII
and Fig. 9 is the same as its gallery angle. From the results, it
can be found that the FT method achieves an average recog-
nition rate of 0.73%. The recognition rate for random guess is
1/5154 = 0.0194%. The FT method is about 37 times better
than random guess. By taking account of the fact that the orig-
inal paper reported 80% and 90% rank-1 identification rates
on 10 galleries by kNN classifiers (k = 1 and 3, respectively),
the obtained accuracy for the FT method on our database is
reasonable. It shows that even one thigh angle and one knee
angle can contribute to gait recognition obviously.

The CNN methods in Table VIII and Fig. 9 achieves much
better performance than the FT method for more body joints
and the CNN classifiers. We believe that there is still great
potential for pose-based methods. The pose data are 2D data
in the experiments in this paper. Some methods can convert 2D
pose data to 3D as that in [37], which will obviously improve
the robustness with view variation. Besides, the progress on
pose estimation will also advance model-based gait recognition
for their better accuracy on human pose estimation.
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TABLE III

IMPLEMENTATION DETAILS OF THE CNN NETWORK

Layers I:fufﬁitte): Filter size Stride Padding Group Aﬁclt:é?itcl)?ln
Conv.1 32 3x3 1 0 Y ReLU
Conv.2 64 3x3 1 0 N ReLU
Pooling.1 - 2% 2 2 0 N -
Conv.3 64 3x3 1 1 Y ReLU
Eltwise.1 Sum operation between conv. and pooling layer
Conv.4 128 3x3 1 0 Y ReLU
Pooling.2 - 2x2 2 0 N -
Conv.5 128 3x3 1 1 Y ReLU
Eltwise.2 Sum operation between conv. and pooling layer
FC 512 [ - [ - [ - [ N [ -

TABLE IV

RANK-1 RECOGNITION RATES BY CNN NETWORK USING OPENPOSE DATASET FOR ALL COMBINATIONS OF VIEWS
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\ Probe \ Gallery \ 0° \ 15° \ 30° \ 45° \ 60° \ 75° \ 90° \ 180° \ 195° \ 210° \ 225° \ 240° \ 255° \ 270° \ mean \
0° | 3198 | 1873 | 11.16 9.14 6.35 43 2.11 5.6 6.36 4.53 5.27 4.38 2.46 2.18 8.18
15° | 16.06 | 52.38 | 30.73 | 21.49 144 7.31 4.22 6.46 | 10.64 7.7 9.24 7.36 3.96 2.86 13.92
30° 9.77 | 30.31 | 53.39 | 45.28 | 2798 | 15.34 7.73 5.76 10.3 | 10.62 | 14.78 | 11.44 6.19 4.74 18.12
45° 7.85 | 21.22 | 43.38 | 68.58 | 53.35 | 29.16 | 13.33 5.92 9.24 | 10.69 | 1748 | 15.83 9.79 7.5 22.38
60° 4.85 | 1352 | 2643 | 51.53 | 69.07 41.8 | 18.22 4.49 7.86 9.19 | 16.28 | 16.69 | 10.46 772 | 21.29
75° 3.54 8.68 16.4 30 | 4292 | 58.24 | 30.64 3.45 5.95 7.07 125 | 13.82 | 11.38 10.2 18.2
90° 2.06 3.78 729 | 1219 | 16.89 | 28.73 | 37.93 2.34 3.25 4.45 7.04 8.99 8.73 8.89 109

180° 4.87 6.19 5.74 5.21 4.7 3.29 2.03 | 33.73 | 13.06 7.61 6.43 4.93 2.49 1.53 7.27
195° 6.31 | 12.02 | 11.74 | 10.94 9.11 5.5 3.52 | 16.07 | 50.02 221 | 20.06 | 12.19 5.6 3.29 13.46
210° 4.14 7.06 | 11.02 11.3 9.74 6.61 4.17 7.66 20.5 | 31.21 | 26.79 | 16.18 7.7 4.2 12.02
225° 499 | 10.21 | 16.52 | 21.48 | 20.65 | 15.56 9.42 849 | 19.82 | 27.67 | 61.89 | 4227 | 18.63 9.52 | 20.51
240° 411 748 | 1292 | 17.71 | 19.27 | 14.68 9.69 5.07 11.8 | 1476 | 38.19 | 52.09 | 22.73 11.1 17.26
255° 2.73 5.38 8.16 | 11.88 | 14.54 | 14.21 | 11.19 2.79 6.5 8.34 19.5 | 25.33 409 | 20.76 13.73
270° 2.05 3.15 5.02 8.02 | 10.32 | 11.44 | 11.42 1.6 3.24 4.6 9.99 | 11.07 | 1835 | 31.11 9.38
mean 752 | 1429 | 1856 | 23.20 | 22.81 | 18.30 | 11.83 782 | 1275 | 1218 | 18.96 | 17.33 | 12.10 8.97 | 14.76
TABLE V
RANK-1 RECOGNITION RATES BY CNN NETWORK USING ALPHAPOSE DATASET FOR ALL COMBINATIONS OF VIEWS

[ Probe \ Gallery [ 0° [ 15° [ 30° [ 45° [ 60° [ 75° [ 90° [ 180° [ 195° [ 210° [ 225° [ 240° [ 255° [ 270° | mean \
0° | 47.25 | 34.46 | 2358 | 17.64 | 12.63 7.48 5.22 7.85 75 8.13 9.39 8.42 5.55 5.44 14.32
15° 28 | 6453 | 51.11 37.8 | 2599 | 15.75 9.7 8.16 | 1148 | 1297 | 1597 | 14.69 8.7 7.31 22.3
30° | 18.85 | 47.59 | 69.13 | 62.05 | 42.84 26 | 15.75 776 | 11.73 15 | 21.76 | 19.28 | 12.18 | 10.12 | 27.15
45° | 12.89 | 35.37 | 62.32 764 | 62.52 | 39.36 | 22.18 7 | 1032 | 15.82 247 | 2329 | 1556 | 12.71 30.03
60° 8.69 | 24.63 | 44.06 | 61.71 | 7321 | 50.74 | 27.92 6.17 8.81 | 12.41 | 22.85 | 23.79 | 17.27 | 15.23 | 28.39
75° 599 | 14.68 | 27.13 | 38.84 | 52.46 | 62.67 39.2 4.65 5.95 995 | 1653 | 19.62 | 1693 | 16.44 | 23.64
90° 4.23 891 | 15.68 | 22.16 | 28.68 | 39.35 | 49.07 3.26 3.84 6.88 | 1229 | 1543 | 1493 | 15.38 17.15

180° 5.68 7.6 7.57 6.18 5.39 4.03 3.22 30.8 | 1297 7.64 75 6.05 3.39 2.72 791
195° 7.08 | 13.16 | 15.05 | 13.09 | 11.09 7.45 538 | 1574 | 38.78 | 20.78 | 17.77 | 12.35 727 4.78 13.55
210° 6.43 | 13.08 | 17.67 17.1 | 15.21 | 10.93 7.55 848 | 19.44 | 34.14 | 30.25 | 1947 | 11.31 7.16 15.59
225° 8.85 | 17.86 | 25.12 | 27.69 26.6 | 20.13 | 14.21 897 | 1782 | 31.73 | 63.08 | 45.79 | 2547 | 1653 | 24.99
240° 747 | 15.93 | 2243 | 25.06 | 28.07 | 22.03 | 16.76 6.01 | 11.28 | 20.34 | 44.55 60.6 | 3522 | 21.25 | 24.07
255° 5.88 | 11.39 | 16.24 194 | 2243 | 20.59 | 18.19 3.43 7.04 | 13.07 | 25.65 | 35.44 | 51.13 | 3341 20.23
270° 4.53 8.08 | 13.45 15.7 | 19.83 | 19.81 | 18.54 2.86 4.48 8.27 | 16.13 | 22.49 31.9 | 4493 16.5
mean | 1227 | 22.66 | 29.32 | 31.49 | 30.50 | 24.74 | 18.06 8.65 | 1225 | 1551 | 23.46 | 2334 | 18.34 | 1524 | 20.42

E. Comparison Benchmarks With Appearance-Based
Methods

We compared the recognition rates with those by some
appearance-based methods. The results of VTM, LDA,
GEINet, and LB) are from the paper which introduces
OUMVLP [16], and the results of GaitSet are from [31].
All comparisons are listed in Table IX. Different from the
results in Table VIII, the results in Table IX are the aver-
ages on different probe angles with specific gallery angles
0°, 30°, 60° and 90°. The corresponding EERs are illustrated
in Fig. 10. From the comparisons in Table IX and Fig. 10,
we can find most appearance-based methods achieves better
recognition rates than the model-based ones. This shows that

the OUMVLP-Pose database is challenging because only the
positions of the joints are included. There is no body shape
or body appearance feature.

F. Impact on the Number of Training Subjects

The recognition rate of the CNN network changes with dif-
ferent quantities of training data. We set three different training
sets for evaluation: 1,000, 3,000 and 5,153. The last 5,154
subjects are put into the test set. The impact of the different
training subjects is shown in Table X on the AlphaPose dataset.
In each of the experiments, the probe angle is the same as the
gallery angle. For 00°, 30°, 60° and 90°, the recognition rate
rises with an increased number of training subjects. We can
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TABLE VI
EERS USING OPENPOSE DATASET FOR ALL COMBINATIONS OF ALL VIEWS

[ Probe \ Gallery | 0° ] 15° [ 30° [ 45° [ 60° [ 75° [ 90° | 180° [ 195° [ 210° | 225° [ 240° [ 255° [ 270° [ mean |
0° 8.74 | 10.55 | 12.83 | 12.64 | 14.17 | 16.75 | 20.86 | 17.35 | 1522 | 20.37 | 13.95 | 15.76 | 17.44 | 20.75 15.53
15° 9.47 6.03 9.02 8.29 | 1045 | 13.06 | 18.44 | 16.21 | 11.82 | 1811 | 1097 | 13.03 | 14.92 18.7 | 12.75
30° | 11.93 8.93 8.38 7.7 9.61 | 11.52 | 17.29 | 16.81 | 13.25 | 17.38 | 10.92 | 12.53 | 13.82 17.7 12.7
45° | 11.28 8.19 7.52 4.56 5.73 793 | 14.63 | 15.69 | 12.36 | 17.06 8.72 9.84 | 1146 | 15.39 10.74
60° | 12.66 9.89 9.29 54 4.75 7.01 | 13.95 16.7 | 1299 | 17.71 9.14 9.69 | 10.79 | 15.07 | 11.07
75° | 14.83 | 12.95 | 11.85 8.05 7.13 6.71 | 1295 | 1753 | 14.77 19.2 | 1042 | 10.74 11.1 | 14.81 12.36
90° | 20.09 | 18.17 174 | 1436 | 13.65 | 12.76 | 1344 | 2192 | 1944 | 21.73 | 1528 | 15.76 | 15.74 | 16.57 | 16.88
180° | 15.76 | 1541 | 16.69 | 1559 | 16.44 | 18.16 | 21.73 | 12.62 | 15.06 | 20.68 | 14.67 | 17.31 | 18.68 | 22.07 17.2
195° | 14.64 | 12.23 139 | 12.56 | 13.98 | 15.61 | 20.06 | 15.16 87 | 1625 | 1049 | 13.22 155 | 19.54 | 14.42
210° | 20.24 | 1824 | 1745 | 1738 | 1797 | 1933 | 23.33 | 20.57 | 16.51 | 1698 | 15.22 175 | 19.12 | 22.66 | 18.75
225° | 13.87 | 11.45 | 11.54 9.15 | 10.09 | 11.59 | 16.27 | 1553 | 11.04 | 16.02 5.11 744 | 10.15 | 15.51 11.77
240° | 15.39 13.1 | 13.19 10.3 | 10.61 | 11.83 | 1659 | 17.73 | 13.17 | 17.64 7.31 6.58 9.5 | 1558 | 12.75
255° 17.69 | 16.02 | 1528 | 12.55 | 12.13 | 12.93 17 | 20.08 16.26 19.81 10.47 9.53 8.69 14.46 14.49
270° | 20.92 | 19.57 | 1894 | 16.21 | 15.82 | 16.04 | 18.28 | 23.01 | 19.91 | 23.03 156 | 15.72 | 1391 | 14.11 17.93
mean | 14.82 | 1291 | 13.09 | 11.05 | 11.61 | 1295 | 1749 | 17.64 | 1432 | 18.71 | 11.31 | 1248 | 13.63 | 17.35 14.24
TABLE VII
EERS USING ALPHAPOSE DATASET FOR ALL COMBINATIONS OF ALL VIEWS
[ Probe \ Gallery | 0° ] 15° [ 30° [ 45° [ 60° [ 75° [ 90° | 180° [ 195° [ 210° | 225° [ 240° [ 255° [ 270° [ mean |
0° 8.34 8.31 9.89 10.6 | 11.62 | 14.32 | 17.41 | 21.16 | 1844 | 22.06 | 1346 | 1476 | 16.26 | 1798 | 14.61
15° 9.07 493 5.94 6.64 8.18 10.7 | 13.73 | 21.11 | 16.05 | 20.34 | 10.67 | 11.76 | 13.34 | 15.39 11.99
30° | 10.99 6.68 5.39 5.42 6.57 8.81 | 1248 | 21.32 | 16.09 | 19.72 991 | 1057 | 1212 | 1412 | 1144
45° | 11.61 7.47 5.7 4.21 4.67 6.83 10.1 | 21.24 | 16.09 | 19.73 8.71 895 | 10.67 | 12.38 10.6
60° | 12.98 8.46 6.82 4.64 3.99 5.48 855 | 22.01 | 16.83 | 20.04 9.3 9.1 9.81 | 11.32 | 10.67
75° | 1544 | 10.81 9 6.93 5.44 5.14 821 | 2324 | 18.14 | 21.24 109 | 10.22 | 10.77 | 11.81 11.95
90° | 18.27 14.3 | 12.09 | 10.58 9.18 8.42 855 | 24.69 | 20.56 | 22.72 | 13.36 | 12.27 | 12.64 | 13.29 14.35
180° 21.7 | 20.53 | 20.04 | 20.62 | 20.83 | 22.05 | 23.86 189 | 22.62 | 26.64 | 20.32 | 21.35 23.7 | 2475 | 21.99
195° | 18.77 | 1539 | 15.54 | 15.87 | 15.95 17.7 | 19.99 | 22.14 | 14.05 | 2094 | 14.87 | 15.68 | 1832 | 2053 | 17.55
210° | 2296 | 20.67 | 19.69 | 20.12 | 19.74 | 21.43 | 2225 | 27.39 | 21.01 | 21.16 | 18.67 | 19.03 | 21.09 | 22.86 | 21.29
225° | 13.99 | 10.51 9.12 8.46 8.26 993 | 11.89 | 20.79 | 14.65 | 18.14 5.25 6.59 9.12 | 11.81 11.32
240° | 14.79 | 11.19 9.39 8.28 7.99 9.18 | 11.24 | 21.89 | 15.82 | 19.37 6.57 5.79 787 | 1073 | 11.44
255° | 16.38 | 13.25 | 11.08 9.51 9.1 9.76 | 11.52 | 23.36 | 18.17 | 20.64 8.91 7.58 7.02 9.86 | 12.58
270° | 17.98 | 14.77 | 13.08 | 11.32 | 10.58 11 | 11.95 | 2525 | 20.34 | 22.61 | 11.89 | 10.68 9.75 9.63 | 14.35
mean | 1523 | 11.95 | 1091 | 10.23 | 10.15 | 1148 | 13.70 | 2246 | 17.78 | 21.10 | 11.63 | 11.74 | 13.03 | 14.75 14.01
T i TABLE VIII
::g:: ‘L’gr THE RANK-1 RECOGNITION RATES OF THREE MODEL-BASED METHODS
30@-.... GEINet ON THE ALPHAPOSE DATASET WHERE THE PROBE ANGLE IS THE SAME
LT, OB AS THE GALLERY ANGLE
e, Tt CNN-Pose(AlphaPose)
. "'-.e_ CNN-Pose(OpenPose)
3 . JUPRRPPPITEE [ Methods [ 0° ]30° ] 60°] 90° [ mean |
S il Fourier transform analysis | 0.33 | 0.76 | 0.96 | 0.87 0.73
& PTSN 240 | 382 | 29.3 | 285 30.0
é ‘ CNN-Pose 473 | 69.1 | 73.2 | 49.0 59.7
| l TABLE IX
1°<’> | THE RANK-1 RECOGNITION RATES OF FOUR APPEARANCE-BASED
............. METHODS (VTM, LDA, GEINET, LB AND GAITSET) AND THE
0- """"""""""" LAl POSE-BASED CNN METHOD. THE RATES ARE THE AVERAGES ON
DIFFERENT PROBE ANGLES WITH A SPECIFIC GALLERY
o ! I ANGLE 0°, 30°, 60° AND 90°
0 30 60 90

angle(®)

Fig. 10. The EERs of four appearance-based methods (VIM, LDA, GEINet
and LB) and the pose-based CNN method.

expect the recognition rate can continue to increase with more
training data.

V. CONCLUSION

A large population pose database is introduced in this paper.
It is a large database with multiple view angles and 10,307 sub-
jects. The pose data were extracted from the RGB videos in the
OU-ISIR multi-view large population database (OUMVLP)

[ Methods [ 0° [30° [ 60° ] 90° | mean |
VTM [41] 174 | 214 | 21.6 | 21.6 20.5
LDA [42] 184 | 262 | 28.1 | 248 244
GEINet [43] 306 | 433 | 47.3 | 415 40.7
LB [44] 243 | 38.8 | 43.0 | 37.3 35.9
GaitSet [31] 795 | 899 | 88.1 | 878 86.3
CNN-Pose(OpenPose) 75 | 18.6 | 228 | 11.8 18.0
CNN-Pose(AlphaPose) | 12.3 | 29.3 | 30.5 | 18.1 22.5

using deep learning-based pose estimation methods. Two
datasets, the OpenPose dataset and AlphaPose dataset were
created using two methods, OpenPose and AlphaPose, respec-
tively. In addition to the body pose data, we also provide
benchmarks and analysis on the database.
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TABLE X

THE RANK-1 RECOGNITION RATES ON THE ALPHAPOSE SKELETON
DATA WITH DIFFERENT NUMBERS OF TRAINING SAMPLES WHERE THE

PROBE ANGLE IS THE SAME AS THE GALLERY ANGLE

[ #Training subjects [ 0° [ 30° [ 60° | 90° [ mean |
1,000 119 | 322 | 319 | 104 21.6
3,000 458 | 673 | 729 | 48.8 58.7
5,153 473 | 69.1 | 73.2 | 49.0 59.7

With progress in human body modeling, we believe that
model-based gait recognition should be investigated further.
The proposed benchmark method, CNN-Pose, is relatively
simple. However, it achieved encouraging results. The pose
data are in a 2D dimension and are not robust to view vari-
ation. Therefore, in the future, some 3D human models can
be built for gait recognition. Since the model data is in a 3D
space, we can rotate the model in the 3D space and extract
view-invariant gait features. In addition, the model-based fea-
ture should be more robust to clothing and carrying condition
changes.
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