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ABSTRACT Recently, with the rapid increase in the number of web services, QoS-aware Web Service
Composition(QWSC) has become a popular topic in both industry and academia. Meta-heuristic algorithm,
as an effective way to solve classical optimization problems, has been successfully applied to QWSC
nowdays. However, such approach has intrinsic drawbacks and usually lack of good performance in
large-scale scenarios. For example, some meta-heuristic algorithms are suitable for continuous search space,
while the search space of QWSC is discrete. For solving those problems which were commonly faced
when applying meta-heuristic algorithm on QWSC, in this research, we firstly introduce a preprocessing
approach for constructing fuzzy continuous neighborhood relations of concrete services, which makes the
local search strategy of meta-heuristic algorithms be as effective in discrete space as in continuous space, thus
improving the optimization performance. Second, we combine Harris Hawks Optimization (HHO) algorithm
and logical chaotic sequence to propose an improved meta-heuristic algorithm named CHHO for solving
QWSC. The ergodic and chaotic characteristics of chaotic sequences are used to enhance the ability of the
CHHO to jump out of the local optimum for further optimization. Experimental results show that the CHHO
has better optimization performance by comparing with the existing mainstream algorithms when solving
QWSC problems. Additionally, the preprocessing approach not only greatly improves the optimization
performance of the CHHO but also can be freely utilized in other meta-heuristics based approaches.

INDEX TERMS Meta-heuristic algorithm, QoS-aware web service composition, Harris hawks optimization,
fuzzy continuous, logical chaotic sequence.

I. INTRODUCTION
Service Oriented Computing (SOC) is a computing method
that uses services as the basic unit to rapidly build distributed
software systems and enterprise applications through service
composition technology [1]. SOC mainly organizes software
applications into a series of interactive services through a
Service-Oriented Architecture (SOA) [2]. SOA is a new
distributed software system architecture proposed to solve
service sharing, service reusing and business integration in
the Internet environment. In the SOA software architecture,
services can be published, discovered, bounded and invoked
through interfaces in a standard format [3].

Web services solve the problems of heterogeneous dis-
tributed computing and code reuse through web ser-
vices description language, simple object access protocol,

The associate editor coordinating the review of this manuscript and

approving it for publication was Halil Yetgin .

universal description discovery and itegration, and extensi-
ble markup language technologies [4]. Web services have
become a recognized mainstream technology for implement-
ing service-oriented architecture (SOA), and flexible aggre-
gation of resources through dynamic composition of services
has become a natural way of thinking for technological devel-
opment [5]. Due to the diversity and complexity of the real
world and the dynamic nature of user requirements, to guar-
antee the Quality of Service (QoS) of web service compo-
sition becomes a crucial and significant challenge [6], [7].
QoS-aware Web Service Composition(QWSC) is one of the
core technologies to solve this problem.

QWSC is an optimization problem with global constraints,
and it is an Non-deterministic Polynomial(NP)-hard prob-
lem [8]. This characteristic makes QWSC problem diffi-
cult to solve, especially with the explosive growth of the
number of web services in recent years. Although vari-
ous approaches such as deterministic algorithms, heuristic
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algorithms, meta-heuristic algorithms, and hybrid methods
have been proposed to solve this problem, there are still many
problems in QWSC that need to be further studied and solved
to meet the increasing requirements of users in a realistic
and complex network environment [9], [10]. Therefore, a new
approach for solving QWSC problem is required.

As one of the commonly used methods to solve opti-
mization problems, meta-heuristic algorithms have been
demonstrated that they can obtain approximate optimal
solutions in a reasonable time without considering the
mathematical properties and characteristics of the prob-
lem itself [11]. Early well-known meta-heuristic algorithms
include, but are not limited to: Genetic Algorithms(GA) [12],
Particle Swarm Optimization(PSO) [13], Differential Evolu-
tion(DE) [14], Ant Colony Optimization(ACO) [15], Arti-
ficial Bee Colony (ABC) [16]. According to No Free
Lunch(NFL) theorem [17], with the continuous research
of meta-heuristic algorithms, many excellent new algo-
rithms have been proposed, such as Whale Optimization
Algorithm (WOA) [18], Grasshopper Optimization Algo-
rithm(GOA) [19], Slime Mould Algorithm(SMA) [20],
Harris Hawks Optimization(HHO) [21].

Among them, HHO is the latest meta-heuristic algorithm
proposed in 2019, due to its simple and easy to imple-
ment, less parameters to be tuned, and excellent perfor-
mance, it has attracted widespread attention once it was
proposed [22]–[25]. Therefore, in this paper, we firstly utilize
HHO as the basis for solving QWSC. However, one of the
potential problems faced by all meta-heuristics is the possi-
bility of early convergence or falling into local minima [25],
in practice, it is usually required that the algorithm needs to be
modified to take full advantage of the unique characteristics
of the optimization problem to overcome this potential threat.
Therefore, how to design a robust and high performance
optimization technique for solving QWSC problem based on
the HHO algorithm is still a challenging task. Meanwhile,
the original HHO is just suitable for solving continuous opti-
mization problems [21], but QWSC is a discrete combination
problem [8]. If this meta-heuristic algorithm designed based
on continuous optimization problems is simply applied to
QWSC problem without modification, the local search strat-
egy of this algorithm cannot guarantee to find similar or better
solution in the local scope of the current optimal solution,
resulting in poor optimization performance [26].

To address the issues discussed above, we propose an
improved meta-heuristic algorithm based on HHO and a
preprocessing approach for constructing fuzzy continuous
neighborhood relations of concrete services. The contribu-
tions of this paper are shown below:
• A novel preprocessing method is proposed to establish
concrete services into fuzzy continuous neighborhood
relations.

• A Logistic Chaotic Single-Dimensional Perturba-
tion(LCSDP) strategy is proposed to enhance the
algorithm’s later exploration performance based on the
characteristics of logistic chaos and QWSC.

• A novel Chaos Harris Hawk Optimization (CHHO)
algorithm is proposed by combining the LCSDP strategy
and the original HHO. The computational complexity of
the CHHO algorithm is analyzed.

• We conduct extensive experiments to prove the effec-
tiveness of the proposed algorithm and new preprocess-
ing method.

The rest of the paper is structured as follows: Section II
discusses related works of QWSC problem. Section III
establishes the service composition model and construct
fuzzy continuous neighborhood relationships of concrete
services. Section IV details our proposed CHHO algo-
rithm. Section V demonstrates and analyzes the experimental
results. Section VI provides concluding remarks and high-
lights some future work.

II. RELATED WORKS
In this section, we discuss some of the existing literature
on solving QWSC problem. Many researchers have con-
ducted in-depth researches on QWSC and contributed a lot
for solving the problem. The existing technologies are mainly
divided into three categories [9]: deterministic algorithms,
heuristic algorithms, and meta-heuristic algorithms. Among
them, meta-heuristic algorithms are more popular [10].

A. DETERMINISTIC ALGORITHMS
In [27], the author proposed an integer linear programming
model with penalty coefficients. In this model, violations in
global constraints are allowed, but will be punished accord-
ingly. When user constraints are hard, this method performs
superior to standard methods. In [28], The author considered
the execution time and throughput criteria of service com-
position and proposed a new service composition optimiza-
tion algorithm based on directed graph structure. In [29],
the author proposes a method for efficiently selecting and
combining services by trimming non-skyline services based
on QoS value identification of the skyline service. Neverthe-
less, these methods are deterministic algorithms. When the
candidate service increases, its time and space consumption
will increase exponentially. Their computations are ineffi-
cient when dealing with large-scale data structures.

B. HEURISTIC ALGORITHMS
Heuristic algorithms can obtain high-quality approximate
solutions in a reasonable time under large-scale data. How-
ever, heuristic algorithms are generally designed based on the
specific experience of optimization problems [10]. So there
will be many restrictions on algorithm extension. In [30],
the author proposed an efficient heuristic algorithm for
different service composition structures, which can solve
multidimension multichoice 0-1 knapsack models and multi
constraint optimal path models. For a large number of can-
didate services, the heuristic algorithm can find a feasible
choice of service composition problems in linear time. How-
ever, when the aggregation function of the objective function
is nonlinear, or any global QoS constraint cannot be described
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in a linear form, the aggregation function and the QoS con-
straint cannot be linearized. More explanation of heuristic
algorithm can refer to the following literature [9], [10], [31].

C. META-HEURISTIC ALGORITHMS
Meta-heuristics is also an approximation algorithm, which
is an advanced strategy for exploring search space using
different methods [32]. It does not pay special attention to the
mathematical nature and special experience of optimization
problems [11]. In [33], usedGenetic Algorithm (GA) to solve
the problem of web service composition and proved that GA
can be used as an effective method for web service composi-
tion optimization. Furthermore, In [34], the author proposed
a multi-objective GA, which can obtain acceptable solutions
in a short time. However, in the worst case, the complexity
of the GA is exponential, which is not suitable for large-scale
service-oriented applications.

In [35], the author proposed a novel Eagle Strategy
with Whale Optimization Algorithm (ESWOA) to solve
the QWSC. ESWOA can better balance the exploitation
and exploration stages, thereby speeding up convergence
and avoiding premature convergence. Compared with other
meta-heuristic algorithms, it can achieve global optimal
solutions more seamlessly. In [36], proposed a modified
Artificial Bee Colony(mABC) algorithm by incorporating
chaotic-based opposition learning method and differential
evolution strategies into the artificial bee colony. Compared
with other meta-heuristic algorithms, mABC can find the
feasible solution of QWSC faster and has a strong scalability.
However, ESWOA and mABC did not pay attention to the
problem that the discrete features of the QWSC problem
cannot make the local search of the meta-heuristic algorithm
maximize the performance. When confront with large-scale
high-dimensional data, it is easy to fall into a local optimum
and cannot continue to evolve.

In [37], the author proposed an enhanced Artificial Bee
Colony(ABC) algorithm for solving the QWSC. This method
improves the performance of ABC on QWSC problems
through adaptive neighborhood selection and replacement
strategies. So, this algorithm makes full use of the char-
acteristics of the current optimal solution to generate the
next solution at the later stage of the iteration. This method
fully considers the characteristics of the QWSC problem
and retains the historical optimal information, so it can find
the best solution faster. However, as the dimension of the
abstract service composition continues to increase, the role of
historical optimal information decreases, and the algorithm
can easily fall into a local optimal. In [26], proposed a
definition for the optimal continuity concept. Meanwhile,
three enhanced ABC algorithms are proposed, using different
local search strategies to ensure that the ABC can be opti-
mized in the discrete space of QWSC problem in a manner
to searching in continuous space. This method can make
full use of the local search strategy of ABC, and greatly
enhance the optimization performance of ABC on QWSC.
However, these strategies are customized according to the

ABC algorithm. Hence, a new data preprocessing method
needs to be designed to allow more meta-heuristic algorithms
with the same properties to exert greater performance in
discrete space, thereby promoting the further application of
meta-heuristic algorithms on QWSC.

III. MODEL DESCRIPTION
In this section, we firstly model the QWSC problem as a
mixed integer linear programming problem [38], then con-
struct fuzzy continuous neighborhood relations of concrete
services.

A. MODEL CONCEPTS
The key notations and the corresponding illustration of
our model are listed in Table.1. Below are the concrete
definitions.

TABLE 1. Model notations.

• Composite service is defined as S = {T1,T2,T3, . . . ,
Tn}, where T denotes a task and n is the number of tasks
required to construct the composite service S.

• Abstract service. Task Ti represents the ith abstract ser-
vice in the composite service S. Each abstract service
represents a component in a composition service, which
helps the composition service complete complex soft-
ware functions.

• Concrete service is defined as C = {C1,C2, . . . ,Cn},
where Ci = {Ci,1,Ci,2, . . . ,Ci,m} represents a set of
concrete services of the abstract service Ti

• Quality of Service (QoS) of the jth concrete service
of the ith abstract service is defined as QCi,j =
{qi,j,1, qi,j,2, . . . , qi,j,h}, where h represents the number
of QoS attributes.

• Aggregate function is defined as fk (·), where k is the
kth QoS attribute of S. Different QoS attributes have
different types of aggregation function based on dif-
ferent patterns of service composition such as paral-
lel, sequence, loop, and conditional. Table.2 shows the
aggregation function of four specifice QoS attributes
based on the sequence combination pattern. Because
loop pattern, parallel pattern, and conditional pattern
can all be transformed into sequential pattern in corre-
sponding ways [39], so in this paper, we only consider
sequential pattern.
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TABLE 2. Aggregation function based on sequential model.

• Global constraints is defined as a vector L =

(l1, l2, . . . , lh), where lr (1 ≤ r ≤ h) represents the user’s
global constraint on the corresponding QoS attribute.

• Utility function is defined as following:

UQos =
h∑

k=1

wk fk (
n∑
i=1

m∑
j=1

xijq′ijk )

St.
h∑

k=1

wk = 1, xij ∈ {0, 1}

m∑
j=1

xij = 1. (1)

where UQos represents the aggregation utility value of
the composite service S. The higher the value ofUQos in
the case of satisfying the global constraint, the better the
composite service S is. wk is the weight of the kth QoS
attribute, and with xij ∈ {0, 1} is the selecting variable.
The q′ijk represents the normalized QoS value, which are
defined as follows.

q′ijk =


qijk − qminijk

qmaxijk − q
min
ijk

if qmaxijk − q
min
ijk 6= 0

1 if qmaxijk − q
min
ijk = 0

(2)

q′ijk =


qmaxijk − qijk

qmaxijk − q
min
ijk

if qmaxijk − q
min
ijk 6= 0

1 if qmaxijk − q
min
ijk = 0

(3)

For positive attributes (nomalized by equation.(2),
e.g.., Availability), higher values represent better qual-
ity, whereas for negative attributes (nomalized by equa-
tion.(3), e.g.., Response time), lower values represent
better quality.

B. PROBLEM FORMULATION
The goal of QWSC optimization is to find a set of abstract
service combinations that satisfy the user’s global con-
straints and maximize aggregate QoS performance. There-
fore, we can model QWSC as mixed integer programming
problems. The mathematical description is formulated as
following:

Maximize csQos = 0.5UQos+ 0.5(
L
h
)

subject to L > 0, L ∈ N . (4)

whereUQos is the utility function calculated by equation.(1).
h is the number of global constraints. L is the number of
global constraints that the composite service S meets. The
calculation formula of L is as follows:

fk (
n∑
i=1

m∑
j=1

xijq′ijk ) ≤ lk . (5)

where lk is the global constraints of the kthQoS attribute. The
number of global constraints that the composite service satis-
fies can be calculated by equation.(5). Thereby an objective
function with a penalty constraint is constructed.

C. INTEGER ENCODING AND FUZZY CONTINUOUS
NEIGHBORHOOD RELATIONS
For solving QWSC, the concrete services of each abstract
service can be stored in the form of integer encoding. For
example, number #1 represents the first concrete service.
Fig.1 shows an example of integer encoding for a composition
service.

FIGURE 1. An example of integer encoding.

As shown in Fig.1, the number of abstract services
({T1,T2,T3,T4}) of the composition service is 4, and there
are eight different combinations in the form of integer encod-
ing. For example, if we select #1 concrete service for T1,
#10 concrete service for T2, #15 concrete service for T3 and
#7 concrete service for T4, then the value of csQos is equal
to 0, which indicates the composition service does not satisfy
the global constraint.

For meta-heuristic algorithms, they are mainly to find the
optimal solution through a combination of global and local
search. Local search strateges performs local search near
the location of the current optimal solution, which usually
performs well on continuous functions but cannot guarantee
the effectiveness while solving QWSC which is a discrete
problem. This is because the QoS values of concrete services
are independent to each other, even if the integer encoding is
very close. For example, as shown in Fig.1, the [5, 6, 12, 13]
code is close to the [6, 6, 12, 14] code, but the values of csQos
are quite different.

To address the problem discribed above, we use a clus-
tering and sorting method to preprocess concrete services
for establishing fuzzy continuous neighborhood relations
between them. We call such preprocessing approach Fuzzy
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Optimal Continuity Construction (FOCC). The specific steps
are described as follows.
• Step 1: K-mean clustering algorithm [40] is used to
group concrete services into classes based on the sim-
ilarity of QoS values. The similarity is calculated by
Manhattan distance [41], which is described below.

y =
h∑
i=1

∣∣∣qai − qbi ∣∣∣ . (6)

where qai and qbi represent the ith QoS attribute of the
concrete service a and b, respectively. h is the number
of QoS attributes.

• Step 2: Clusters are sorted in ascending order by the
sumQoS value of each cluster center. The sumQoS value
is defined as following.

sumQoSi =
h∑
j=1

qj(i). (7)

where qj(i) represents the jth QoS attribute of the
ith cluster center. Larger integer encodings are assigned
to the cluser with higher value of sumQoS.

• Step 3: Inside each cluster, each concrete service is
sorted by its sumQoS value in ascending order.

FIGURE 2. Distribution of QoS values after optimal continuity
construction.

Fig.2 shows the distributions of four QoS attributes
(response time, availability, throughput and latency)
of 2500 concrete services randomly selected from the real
world dataset QWS2.0 [42] after FOCC. The horizontal
axis represents the encoding from 1 to 2500. For example,
#1 represents the first concrete service. The vertical axis
represents the normalized QoS value of each attribute.

From Fig.2, we can obviously observe that after pre-
processing, as the serial number increasing, the QoS val-
ues of the corresponding service increase in general trend.
Although this relation is not exactly accurate, it can provide

a fuzzy standard to establish continuous neighborhood rela-
tions between concrete services, as a result, we can greatly
improve the optimization accuracy and the convergence rate
of meta-heuristic algorithms(demonstrated in SectionV).

IV. THE IMPROVED META-HEURISTIC ALGORITHM
In this section, we combined logical chaotic sequence with
Harris Hawks Optimization (HHO) algorithm to propose
a improved meta-heuristic algorithm named CHHO for
improving the effectiveness while solving QWSC problem.

A. LOGISTIC CHAOTIC SINGLE-DIMENSIONAL
PERTURBATION
Chaos [43] is a disordered state existing in nonlinear
dynamical systems and is widely distributed in nature and
social phenomena. Chaos has the characteristics of pseudo-
randomness, ergodicity and sensitivity to initial values.
Chaotic system can be divided into one-dimensional chaotic
system and high-dimensional chaotic system. One of the very
simple and widely studied one-dimensional chaotic dynamic
system is logistic mapping [44], which can be defined as
following:

C(t + 1) = µC(t)(1− C(t)). (8)

where C(t), 1 ≤ t ≤ (n − 1) represents the t − th chaotic
sequence. 0 < µ ≤ 4 is the parameter of the logistic chaotic
sequence.

Fig.3 shows the effect of different values of µ on the
chaotic distribution. We can observe that the closer µ is to 4,
the stronger the chaos and ergodicity of the sequence is. In our
model, to make better use of chaotic traversal features, we set
µ = 4, the initial value of chaos C(1) to be a random value
between (0,1) and C(1) 6= 0.25, 0.5, 0.75, 1.

FIGURE 3. Influence of different values of parameter µ on logistic chaotic
distribution.

Chaotic motion is non-repeating and has a higher search
speed than random search [45]. Fig.4 shows a example of
points(connected by lines) gernerated by one-dimensional
Logistic chaotic sequence and uniformly distributed sequence
with 2000 iterations, we can observe that the logistic chaotic
sequence is more uniformly distributed in the range of (0,1)
than the random distribution sequence. It can well traverse

VOLUME 8, 2020 69583



C. Li et al.: Meta-Heuristic-Based Approach for Qos-Aware Service Composition

FIGURE 4. Uniformly distributed and logistic chaotic sequences.

all states in (0,1) space in sufficient time. Based on this
characteristic, we can perform a single-dimensional chaotic
traversal search on the location of the optimal solution. Better
solutions can be found by traversing in a single dimension,
while maintaining the most excellent dimensional informa-
tion of the optimal solution. In this paper, we call such process
Logistic Chaotic Single-Dimensional Perturbation (LCSDP)
strategy. The LCSDP can be formulated as follows.

X (t + 1) = Xbest . (9)

X (t + 1)i = lbi + C(t)(ubi − lbi). (10)

where lbi and ubi are the lower and upper bounds of the ith
dimension, respectively. LCSDP firstly transfer the position
of the current optimal solution to the new position X (t + 1)
by equation.(9), then randomly select a dimension and let
X (t + 1) use a logistic chaos to traverse the search space in a
single dimension by using equation.(10).

LCSDP is specifically designed for QWSC problem. It can
significantly enhance the exploration ability of the algorithm.
On the one hand, most of the excellent dimensional informa-
tion of the current optimal solution is retained in the service
composition process, which ensures the convergence of the
algorithm on the QWSC problem. On the other hand, this
strategy uses Logistic chaos to continuously perturb a single
dimension of the current optimal solution, thereby enhancing
the algorithm’s ability to jump out of the local optimum in the
later iterations.

B. CHAOS HARRIS HAWK OPTIMIZATION
ALGORITHM(CHHO)
Based on the original HHO algorithm, we combine LCSDP
strategy with the HHO to propose an improved meta-huristic
algorithm name Chaos Harris Hawk Optimizer (CHHO).
Compared with the original HHO, the CHHO algorithm has
two main changes. These changes are:

1) First, we deleted the two HHO’s exploitation strategies
which are soft besiege with progressive rapid dives and
hard besiege with progressive rapid dives.

2) Second, we introduced the LCSDP strategy during the
algorithm exploitation stage.

In this paper, we assume the location of the current optimal
solution is a rabbit, and search agents are Harris hawks.
Each Harris hawk adopts a different strategie to chase the

rabbit according to the dynamic characteristics of different
scenes and the rabbit escape pattern. The details of CHHO
are described as follows. Algorithm.1 shows the detail pseudo
code of the CHHO.

Algorithm 1 The Pseudo-Code of CHHO
1: Initialize Harris hawks population Xi(i = 1, 2, . . . ,N ).
2: Calculate the fitness of each Harris hawk.
3: Xbest = rabbit(the current best solution).
4: The population is divided into two equal sub-populations
S1 and S2.

5: While(t ≤Max number of iterations)
6: For(Updated each Harris hawk position (Xi))
7: Update E , r and J
8: If1(|E| ≥ 1) //exploration stage
9: If3(r ≥ 0.5)
10: Use the first exploration strategy.
11: Else If3(r ≤ 0.5)
12: Use the second exploration strategy.
13: End If3
14: Else If1(|E|<1) //exploitation stage
15: If2(Xi is a member of the subpopulation S1)
16: Use LCSDP strategy to update position.
17: Else If2(Xi is a member of the S2)
18: If4(|E| ≥ 0.5)
19: Use HHO’s soft besiege strategy.
20: Else If4(|E|<0.5)
21: Use HHO’s hard besiege strategy.
22: End If4
23: End If2
24: End If1
25: End for
26: Calculate the fitness of each Harris hawk.
27: Update Xbest if there is a better solution.
28: t = t + 1
29: End while
30: Return Xbest

1) INITIALIZATION
N number of Harris hawks positions are randomly generated
by using the following equation.

Xi = lb+ brand(0, 1)(ub− lb)c. (11)

where N represents the number of Harris hawks populations.
rand(0, 1) generates a random number between (0,1). b.c is
a round-down operation. ub and lb are the upper and lower
bounds of the search space, respectively. Line 2th and 3th
of the Algorithm.1 are based on equation.(4) to calculate the
csQos value of eachHarris hawk and the Harris hawk position
with the best csqos is chosen as the rabbit position.

2) CONTROLS ADAPTIVE PARAMETERS FOR
EXPLOITATION AND EXPLORATION
Line 5th in Algorithm.1, CHHO enters iterative main pro-
gram. The control parameter E of the 7th line in Algorithm.1
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is used to adaptively adjust the CHHO exploration and
exploitation stage. The mathematical description of E is
shown below:

E = 2E0

(
1−

T
t

)
. (12)

where T represents the maximum number of iterations. t is
the current number of iterations. E0 is a random number
between (−1,1). Fig.5 shows the distribution of parameter E
with 1000 iterations. From the Fig.5 we can observe that the
parameter E gradually converges from −2 and 2 to 0 as the
iteration increases. The parameter E reflects the movement
state of the rabbit, and different movement states stimulate the
Harris hawks to use different stages to update their position.

FIGURE 5. The fluctuation range of the control parameter E with iteration.

3) EXPLORATION STAGE
As shown in Fig.5, when the parameter E is outside the red
line area, it means that the rabbit has not been locked, and
the Harris hawk enters the exploration phase to search for the
rabbit. From line 9th to 13th in Algorithm.1 are the explo-
ration stages of the algorithm. The CHHO algorithm updates
the positions by using two different exploration strategies.

The first strategy exploration strategy is co-evolution. The
Harris hawk use its own position and the position of some
other family member in the population to update the next
position. The mathematical description is shown below.

X (t + 1) = Xrand − br1 |Xrand − 2r2X (t)|c. (13)

where Xrand is a randomly selected individual from the pop-
ulation. X (t) is the current position of the Harris hawk.
To increase the randomness and range of exploration, set
r1 and r2 to random numbers between (0,1). b.c is a
round-down operation.

The second strategy is to update the current individual
position based on the current rabbit position information,
the average position information of the Harris hawks and

random position information in the search space. Its math-
ematical description is as follows:

X (t + 1) =
⌊(
Xbest − Xm

)⌋
− br1 (lb+ r2(ub-lb)] (14)

where Xbest is the position of the rabbit. Xm is the average
position of the Harris hawks. r1 and r2 are random numbers
between (0,1). ub and lb are the upper and lower bounds of
the search space, respectively.

4) EXPLOITATION STAGE
Lines 15th to 23th in Algorithm.1 are the exploitation
stages of CHHO. Compared to the original HHO algorithm,
the LCSDP strategy of CHHO will be adopted during the
exploitation stage. Meanwhile, for the web service compo-
sition problem, the exploitation stage will also be redesigned.

In the exploitation stage, the Harris hawk population is
divided into two sub-populations of the same number. One
of the sub-populations adopts the LCSDP strategy to improve
the ability of CHHO in breaking away from the local optimum
in the later iterations. Details are described in SectionIV-A.

Another part of the subpopulation adopts the following
strategy to update the position.

Soft besiege strategy. As shown in Fig.5, When the param-
eter E appears in the area between the red and black lines,
the rabbit still has a lot of energy. So, the Harris hawk
used soft enveloping and approached the rabbit gently. The
mathematical description is shown below.

1X (t) = bXbest − X (t)c. (15)

X (t + 1) = 1X (t)− bE |JXbest (t)− X (t)|c. (16)

where X (t) is the current Harris hawk position. X (t + 1)
is the position after X (t) update. 1X (t) is calculated by
equation.(15). Xbest is the current position of the rabbit. J is
a random number between (0,2).

Hard besiege strategy. As shown in Fig.5,When the param-
eter E appears in the area between the black lines, the rabbit’s
energy starts to decrease.The Harris hawks found an oppor-
tunity to make a direct raid, calling it a hard besiege. The
mathematical description is shown below:

X (t + 1) = Xbest (t)− bE |Xbest − X (t)|c. (17)

where Xbest is the current rabbit position and X (t) is the
current Harris hawk position. X (t + 1) is the position of the
Harris hawk to be updated next time.

5) COMPUTATIONAL COMPLEXITY
The proposed CHHO algorithm includes three main compo-
nents: initialization, the updating of Harris hawks’s position,
and fitness evaluation. With population size P and maximum
number of iterations T , the computational complexity of
the initialization and the fitness evaluation step is O(P) and
O(T × P), respectively. In addition to, the computational
complexity of the updating of Harris hawks’s position is
O(T ×P×D), whereD represents the dimension of the prob-
lem. Therefore, the computational complexity of the CHHO
is O(P× (T × D+ T + 1)).
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FIGURE 6. Comparison of different algorithms in different numbers of abstract services(M = 50, N varies from 5 to 50).

V. EVALUATION
The experiments in this section mainly answer the following
questions:

1) How does the proposed algorithm compare with other
algorithms in solving QWSC problem?

2) How effective is our proposed FOCC method?
3) What is the effect of the new approach combining

FOCC and CHHO?

A. EXPERIMENTAL SETUP
All experiments are performed on Windows Server
2012 R2 operating system, using Intel (R) Xeon (R) CPU
E5-2660 v3 (2.60 GHz) and 8GB RAM. All algorithms
are coded and run on MATLAB R2014b software. The
meta-heuristic algorithms compared in this paper include:
CHHO, HHO [21], ESWOA [35], mABC [36]. The popu-
lation size of all algorithms is set to 30(P = 30), and the
maximum number of fitness function evaluation is set to
15000. Meanwhile, in order to reduce the impact of random
noise, each algorithm run independently 30 times, and then
the average result of these runs is obtained as the final result.
On the other hand, in order to make a fair comparison,
the initial parameters of all algorithms are set according to
the original parameters of the corresponding paper. Table.3
shows the parameter values of these algorithms.

TABLE 3. Parameters setting for compared algorithms.

The experiments are conducted on a real dataset
QWS2.0 [42] containing 2507 samples and a standard normal
distribution dataset containing 5000000 samples for ensuring

impartiality. Four QoS attributes(response time, availability,
throughput and latency) with different aggregate functions
(shown in Table.2) are used in the evaluation.

We use the normalized csQos value which is defined in
equation.(18) as the optimization criteria.

csQos′ =
csQos− csQosmin

csQosmax − csQosmin
. (18)

where csQosmax is the largest value and csQosmin is the
smallest value of the csQos. Therefore, the closer csQos is
to 1, the better the performance of the algorithm.

The global constraints are varied according to different test
datasets. To be specifically, we firstly calculate the average
QoS value of each attribute based on all concrete services in
each abstract service, then obtain the global constraints by
aggregating these values according to Table.2.

Additionally, Table.4 shows the notation and the corre-
sponding description used in the experiments.

TABLE 4. Notations for the experiments.

B. COMPARISON OF DIFFERENT ALGORITHMS
In this section, we firstly compared the CHHOwith ESWOA,
mABC, and HHO without using the preprocessing method to
verify the effectiveness of CHHO.

1) DIFFERENT NUMBER OF ABSTRACT SERVICES
Fig.6 shows the optimization performance of the algorithms
mentioned above on both QWS2.0 dataset and random
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FIGURE 7. Computation time comparison on QWS dataset and random dataser(M = 50, N varies from 5 to 50).

FIGURE 8. High-dimensional testing (M = 100, N varies from 100 to 1000) of different algorithms on random dataset.

dataset withN varing from 5 to 50, andM fixed to 50.We can
obviously see that CHHO outperforms other algorithms (with
the increasing of N , the optimal value obtained by other
algorithms decline dramatically while CHHO still main-
tain a certain level). The results demonstrated that CHHO
can significantly improve the optimization performance of
meta-heuristic approaches especially in large-scale scenarios.
This is because CHHO adopt the LSCDP strategy, which can
continuously chaotic single-dimensional perturbation of the
current optimal solution during the iteration process, thus
jumping out of the local optimal and evolving to the global
optimal. On the other hand, we can also observe that the
optimization ability of the algorithms decreases with the
increase of service scale. The reason is that with the expo-
nential growth of the search space, it becomes more and more
difficult for the algorithms to obtain the gloal optimal results.

In order to satisfy users’ real time requirements, the com-
putation time of the algorithms is another crucial fator we
need to consider for the QWSC problems. Fig.7 shows the
computation time of the algorithms according to different
numbers of abstract services(varies from 5 to 50). We can

observe that the computation time of the CHHO algorithm
was greatly reduced compared to the original HHO algo-
rithm. This is because we simplify the exploitation phase, and
removes the parts of HHO that are not helpful for solving
QWSC problem (see Algorithm.1). Moreover, we can still
see that CHHO outperforms other algorithms in most of the
cases.

To further verify the effectiveness of CHHO, Fig.8 shows
a high-dimensional (M = 100, N varies from 100 to 1000)
version of the optimization result and computation time.
We can obviously see the similar results by comparing to
Fig.6 and Fig.7. CHHO obtains better optimal results by com-
paring with other algorithms in all of the cases. For example,
the optimal value of CHHO is 0.51 while other algorithms’
values are below 0.46. On the other hand, CHHO spents least
computation time in all of the cases and sustain a steady and
slow growth with the increase of N by comparing with other
approaches. This result demonstrate that, due to the effevtive-
ness of LCSDP strategy, CHHO still works relatively well
in high-dimensional scenorios, even though its performance
decreases with the increase of search space.
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FIGURE 9. Comparison of algorithms in different numbers of concrete services under per abstract service. (M varies
from 50 to 5000, N = 5).

FIGURE 10. Computation time comparison on QWS dataset (M varies from 50 to 500, N = 5) and random dataser (M varies from
500 to 5000, N = 5).

TABLE 5. Comparison of algorithms under different number of QoS
attributes.

2) DIFFERENT NUMBER OF CONCRETE SERVICES
In this setting, we fix the number of abstract services to 5 and
varyM from 50 to 500 on the QWS dataset (due to the limited
number of dataset) and vary M from 500 to 5000 on the
random dataset (for testing large-scale scenario) to verify the
effectiveness of CHHO.

From Fig.9, we can observe that CHHO maintains a opti-
mal level of more than 0.91 on QWS dataset and more
than 0.89 on random dataset in all of the cases. Similarly,
although other algorithms perform worse than CHHO, they

maintain a certain level of optimal value with the increase
of M . This result demonstrate that the optimization per-
formance of CHHO still outperforms other algorithms, and
optimization performance of meta-heuristic algorithms is not
significantly effected by M . This is because the distribution
of concrete services in search space is disordered and the
evolution times of meta- heuristic algorithm in this kind of
unordered space are limited under certain number of fitness
evaluation. Therefore, the number of concrete services will
not have a great influence on the algorithm performance.
Moreover, from Fig.10 we can observe that CHHO still has
the least computation time in all of the cases. It is worth
to mention that the computation time of these algorithms
do not increase with the increase of M , which is a very
useful characteristic of meta-heuristic algorithms when solv-
ing large-scale QSWC problem. The reason for this phe-
nomenon is that meta-heuristic approach combines global
search strategy and local search strategy, so as long as the
number of fitness evaluation is fixed, the computation time
will not change no matter how many M are in the search
space.
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TABLE 6. Comparison of the algorithms under different problem scales.

3) DIFFERENT NUMBER OF QOS ATTRIBUTE
For comprehensively evaluating the performance of CHHO,
we consider different numbers of QoS attributes in this
setting. We set M = 500, N = 50, and the value of
D ∈ {2, 4, 6, 8}. in order to ensure fairness and facilitate
extension, we generate random datasets with different D.
Table.5 shows the results of optimization value. The symbol
↓ indicates that the optimization performance decrease with
the increase of D. The best results with different size D are
marked in bold font.

The results show that with the increase of D, the perfor-
mance of each algorithm decrease. This is reasonable that
algorithm becomes more and more difficult to find a com-
posite service that meets all constraints when D is large.
However, CHHO still performs better than other algorithms
in all of the cases.

C. EFFECTIVENESS OF FOCC
In this section, to verify the effectiveness of FOCC,
preCHHO, preHHO, preESWOA, premABC are compared
to CHHO, HHO, ESWOA, mABC, respectively. We prefix
the meta-heuristic algorithm with ‘‘pre’’ to represent the
algorithm performs after FOCC (discussed in Section.III-C).
For example, preCHHO represents CHHO performs after
FOCC. The number of clustering category in our preprocess-
ing method is set to 4.

Table.6 shows the optimization results of the above eight
algorithms on random dataset according to differentN andM .
Excellent results are marked in bold font. From Table.6,
we can see that all the algorithmswith ‘‘pre’’ as prefix achieve

better performance than the original ones in all of the cases.
Especially, when N = 1000 and M = 5000, the optimal
result obtained by preCHHO is 0.825471, which is greatly
improved by comparing to CHHO whose result is 0.422020.
These results are understandable because FOCC aggregates
high-quality QoS services in advance to faciliate and speed
up the local search of meta-heuristic algorithms. Moreover,
FOCC does not filter any concrete service, which can avoid
removing appropriate ones in advance. On the other hand,
because FOCC can be done offline, it has no effect of the
computation time of algorithms.

Therefore, we can conclude that FOCC can greatly
improve the optimization performance of meta-heuristic
algorithms(on only CHHO) without lossing computational
complexity.

D. STATISTICAL ANALYSIS
In this section, we use Friedman test [46] and Wilcoxon
signed rank test [47] for statistical analysis to ensure that
our proposed methods are statistically significant. Table.7,
Table.8 and Table.9 show the statistical analysis from differ-
ent perspective, where p-value < 0.05 indicates that the two
methods have significant differences, ‘‘+’’ indicates that the
performance of the current method is better than the other
one. Similarly, ‘‘−’’ / ‘‘=’’ indicate that the performance of
current method is lower than / equal to the other one.

Table.7 shows the statistical analysis of the CHHO com-
paring with ESWOA, mABC, and HHO. We can see that the
p-values of CHHO are extremely low in all of the cases(N
varies from 10 to 1000, M varies from 50 to 5000), which
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TABLE 7. Statistical analysis results of the proposed new algorithm (CHHO) and comparison algorithms.

TABLE 8. Statistical analysis results of the proposed new preprocessing method(FOCC).

TABLE 9. Statistical analysis results of the new method combining new preprocessing method (FOCC) and new algorithm (CHHO).

indicate that CHHO have significant differences to ESWOA,
mABC, and HHO. Moreover, it can be observed from the
‘‘performance’’ index that the CHHO algorithm has the best
performance among these algorithms. Statistically speaking,
our proposed algorithm CHHO is highly competitive.

The results in Table.8 provide statistical analysis for
whether FOCC is helpful for the meta-heuristic algorithms.
We can observe that there is a significant difference between
preCHHO and CHHO, and the performance of preCHHO
is better. Similar results can also be observed between
preESWOA and ESWOA, premABC and mABC. There-
fore, from the perspective of statistical analysis, our pre-
processing method FOCC can significantly improve the

performance of meta-heuristic algorithms for solving QWSC
problems.

Table.9 shows the statistical analysis of the preCHHOcom-
paring with preESWOA, premABC, and preHHO. We can
obviously see that our method preCHHO outperforms other
algorithms in most of the cases.

Therefore, based on the results discussed above, we can
conclude that our proposed approaches (CHHO and FOCC)
are statistically significant.

VI. CONCLUSION AND FUTURE WORK
In this work, we have proposed an approximate optimiza-
tion approach based on the HHO algorithm to address the
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QoS-aware web service composition problem.We firstly pro-
posed a preprocessing approach for concrete service datasets
called FOCC, which makes the local search strategy of
meta-heuristic algorithms be as effective in discrete space
as in continuous space, thereby making some meta-heuristic
algorithms designed for continuous problems suitable for
solving QWSC(discrete problem). Second, we simplified the
structure of the HHO based on the characteristics of the
QWSC and combine the LSCDP strategy, a novel explo-
ration strategy(committed to improving the ability of the
algorithm to jump out of local optimization), to propose a
novel algorithm CHHO. Experimental results based on real
world and random datasets show that our approach(FOCC
plus CHHO) has better performance by comparing with
other mainstream methods when sovling QWSC problem,
especially in large-scale scenarios. It is worth to mention
that the FOCC approach can also be freely utilized to other
meta-heuristic algorithms similar to CHHO.

However, the performance of CHHO is not goodwhenQoS
correlations [48] are exist between services. Qos correlation
means that some QoS attributes of a service may depend on
someQoS attributes of other services. In this way, the LCSDP
strategy of the CHHO has to consider such correlation when
performing single-dimensional disturbances, which leads to
the decline of algorithm performance. Therefore, in the future
work, we will consider the QoS correlations between services
to further improve the proposed approach.
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