
High Level Synthesis

of
Neural Network Chips

Meyer Elias NIgrI

a thesis submitted for the degree of

Doctor of Philosophy in Computer Science

University of London

Department of Computer Science

University College London

February 1993

ProQuest Number: 10044300

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10044300

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This thesis investigates the development of a silicon compiler dedicated to generate
Application-Specific Neural Network Chips (ASNNCs) from a high level C-based
behavioural specification language. The aim is to fully integrate the silicon compiler with
the E sprit II Pygmalion neural programming environment. The integration of these two
tools permits the translation of a neural network application specified in nC, the
Pygmalion's C-based neural programming language, into either binary (for simulation) or
silicon (for execution in hardware). Several applications benefit from this approach, in
particular the ones that require real-time execution, for which a true neural computer is
required.

This research comprises two major parts: extension of the Pygmalion neural
programming environment, to support automatic generation of neural network chips from
the nC specification language; and implementation of the high level synthesis part of the
neural silicon compiler.

The extension of the neural programming environment has been developed to adapt
the nC language to hardware constraints, and to provide the environment with a simulation
tool to test in advance the performance of the neural chips. Firstly, new hardware-specific
requisites have been incorporated to nC. However, special attention has been taken to
avoid transforming nC into a hardware-oriented language, since the system assumes
minimum (or even no) knowledge of VLSI design from the application developer.
Secondly, a simulator for neural network hardware has been developed, which assesses
how well the generated circuit will perform the neural computation. Lastly, a hardware
library of neural network models associated with a target VLSI architecture has been built.

The development of the neural silicon compiler focuses on the high level synthesis
part of the process. The goal of the silicon compiler is to take nC as the input language
and automatically translate it into one or more identical integrated circuits, which are
specified in VHDL (the IEEE standard hardware description language) at the register
transfer level. The development of the high level synthesis comprises four major parts:
firstly, compilation and software-like optimisations of nC\ secondly, transformation of the
compiled code into a graph-based internal representation, which has been designed to be
the basis for the hardware synthesis; thirdly, further transformations and hardware-like
optimisations on the internal representation; and finally, creation of the neural chip’s data
path and control unit that implement the behaviour specified in nC.

Special attention has been devoted to the creation of optimised hardware structures
for the ASNNCs employing both phases of neural computing on-chip: recall and learning.
This is achieved through the data path and control synthesis algorithms, which adopt a
heuristic approach that targets the generated hardware structure of the neural chip in a
specific VLSI architecture, namely the Generic Neuron.

The viability, concerning the effective use of silicon area versus speed, has been
evaluated through the automatic generation of a VHDL description for the neural chip
employing the Back Propagation neural network model. This description is compared with
the one created manually by a hardware designer.

7 ̂ adoftojile

Acknowledgements

The completion of this work owes much to many people. Firstly, I would like to
express my indebtedness to my supervisor Prof. Philip Treleaven who assisted, advised and
gave me tremendous support throughout this research. His continuous encouragement
made the conclusion of this thesis possible.

Secondly, I would like to thank the Brazilian institution CNPq (Conselho Nacional
de Desenvolvimento Ciendfico e Tecnologico) for the financial support.

Special thanks must go to Marley Vellasco for her precious friendship, her patience
while reading the earlier draft of the thesis, and for providing invaluable discussions
throughout this research.

I am also grateful to Dr. Peter Rounce and Annop Mangat for their patience and
constructive criticism while reading the earlier draft of the thesis, and to Michael Recce for
his extremely important incentive during the writing up phase of this thesis.

I am thankful to all my colleagues in the Department of Computer Science at UCL
for their friendship, in particular to Cesare Alippi, Carlo de Oliveira, Marco Pacheco, TÂ
Luiz Ribeiro, and Paulo Rocha. I am also grateful for the support received from my
colleagues at the G alatea group.

I also thank my dear friends Pedro Vellasco and Idea Ortiz for their friendship,
concern and support throughout these years.

Most of all I wish to thank my wife, Debinha, for her inestimable support and
motivation. Without her patience, confidence and love this work would have never been
thinkable.

Last but not least, I want to thank my parents Esther and Elias and my sisters.
Tuna and Sonia, for their immeasurable love and strength during all these years.

Table of Contents

Abstract 3

Acknowledgements 7

Chapter 1 — Introduction 17
1.1. Neural Computing...17

1.1.1. Artificial Neural Networks...18
1.1.2. Applications of Neural Networks... 21
1.1.3. Neural Network Implementations.. 22

1.2. Silicon Compilation.. 24
1.3. Motivations and Thesis Goals...25
1.4. System Overview..27
1.5. Thesis Contributions.. 29
1.6. Thesis Organisation.. 30

Chapter 2 — Neural Computing Systems 33
2.1. Overview.. 33
2.2. Neural Programming Environments..34
2.3. Neurocomputers...37

2.3.1. Electronic Neural Chips..38
2.3.2. Optical Neurocomputers..43

2.4. Integrating Software and Hardware Tools... 44
2.5. Summary... 45

Chapter 3 — Silicon Compilers 47
3.1. Introduction ...47
3.2. Characteristics of Silicon Compilers...49

3.2.1. Input Description... 50
3.2.2. Internal Representation...52
3.2.3. Target Architecture..53
3.2.4. High Level Synthesis.. 54
3.2.5. Logic Synthesis.. 54
3.2.6. Layout Synthesis..55

3.3. Anatomy of High Level Synthesis...55
3.3.1. High Level Transformations...56
3.3.2. Data Path Synthesis.. 57

10___ Table of Contents

3.3.3. Control Synthesis.. 61
3.4. Taxonomy of Silicon Compilers... 61

3.4.1. Olympus System.. 62
3.4.2. Yorktown System.. 63
3.4.3. HIS System..64
3.4.4. Cathedral System... 64
3.4.5. Galatea System...65
3.4.6. UCL’s Neural Silicon Compiler...66

3.5. Summary.. 67

Chapter 4 — nC Neural Network Specification Language 69
4.1. Pygmalion Programming Environment..69
4.2. nC Network Specification Language..72

4.2.1. Basic Concepts...72
4.2.2. nC Application Definition.. 77
4.2.3. nC Algorithm Definition.. 78

4.3. nC Extensions..79
4.3.1. nC Strengths and Weaknesses..79
4.3.2. Time and Area Constraints.. 81
4.3.3. Fixed-Point Precision Calculation..82
4.3.4. Realisation of the Activation Function.. 83

4.4. Summary.. 84

Chapter 5 — Simulation of Neural Networks Hardware 85
5.1. Overview.. 85
5.2. Back Propagation Computation... 86
5.3. Hardware Constraints...87

5.3.1. Multiplication...87
5.3.2. Summation...88
5.3.3. Activation Function... 89
5.3.4. Table’s Indexing Mechanism..89

5.4. Back Propagation and Precision Requirements... 90
5.4.1. Theoretical Analysis.. 90

5.5. Hardware Simulation..93
5.5.1. Hardware Library.. 93
5.5.2. User Configuration Parameters..94
5.5.3. Simulation Results... 94

5.6. Summary.. 98

Chapter 6 — NSC and Target Architecture 99
6.1. Overview.. 99

Table of Contents__ 11̂

6.2. High Level Synthesis...100
6.3. Generic Neuron Architecture... 102
6.4. Processing Element Organisation... 106

6.4.1. Communication Unit.. 106
6.4.2. Memory Unit...107
6.4.3. Execution Unit..108

6.5. VHDL Implementation of a Back Propagation Neural Chip.............................. 109
6.5.1. Communication Unit.. 111
6.5.2. Memory Unit...115
6.5.3. Execution Unit..117

6.6. Processing Element...119
6.7. Back Propagation Neural Chip... 120
6.8. Summary... 121

Chapter 7 — NSC Implementation 123
7.1. Overview.. 123
7.2. nC Compilation and Transformation Steps.. 125

7.2.1. nC Parsing..125
7.2.2. nC Data Structure Transformations... 127
7.2.3. nC Syntax Tree Transformations..128

7.3. Intermediate Code Representation..131
7.4. ICR Transformations...133

7.4.1. Graph Partitioning...134
7.4.2. Constant Propagation and Storage Elimination..134

7.5. Target Architecture...136
7.6. Data Path Synthesis...138

7.6.1. Allocation of Storage Elements..140
7.6.2. Allocation of Operators.. 142
7.6.3. Allocation of Interconnections.. 143
7.6.4. Scheduling.. 144

7.7. Module Generation...146
7.8. Control Synthesis..148
7.9. VHDL...151
7.10. Neural Network Partition..152
7.11. Summary... 152

Chapter 8 — From nC to VHDL Neural Chips 155
8.1. Overview...155
8.2. nC Description of a Back Propagation Network... 155

8.2.1. Application Definition.. 155

12__Table of Contents

8.2.2, Algorithm Definition...156
8.3. nC Compilation and Syntax Tree Transformations...159
8.4. Hardware Synthesis...160

8.4.1. Graph Generation and ICR Transformations..160
8.4.2. Data Path Synthesis.. 165
8.4.3. Control Synthesis... 169

8.5. VHDL Description..170
8.6. Summary... 170

Chapter 9 — Assessment 173
9.1. Software and Hardware Integration..173
9.2. Pygmalion Extensions.. 174

9.2.1. nC Extensions.. 175
9.2.2. Hardware-Specific Algorithm Library.. 176
9.2.3. Simulation of Neural Networks Hardware...177
9.2.4. Summary...177

9.3. Neural Silicon Compiler... 178
9.3.1. nC High Level Transformations... 179
9.3.2. Intermediate Code Representation... 180
9.3.3. Target Architecture.. 180
9.3.4. Data Path Synthesis... 181
9.3.5. Control Synthesis... 182
9.3.6. VHDL Description of Neural Chips... 182

Chapter 10 — Conclusions and Future Work 183
10.1. Summary... 183
10.2. Research Contributions... 184
10.3. Future Work..186

References 189

Appendix A — Published Work 203

Appendix B — nC Language Syntax and Example 205

Appendix C — Hardware Simulation Results 221

Appendix D — VHDL Description of Processing Elements 229

Appendix E — List of Abbreviations 247

List of Figures

Figure 1.1 — Multi-layer Neural Network.. 18
Figure 1.2 — (a) Artificial Neuron; (b) Sigmoidal Activation Function............................ 20
Figure 2.1 — Current Design Cycle of Neural Network Applications.............................. 35

Figure 2.2— Basic Analogue Artificial Neuron..39
Figure 2.3 — General Schemes for Optical Implementation of Neural Networks............ 44
Figure 2.4— Proposal for Integrating Software and Hardware Tools............................. 45
Figure 3.1 — Example of the Design Hierarchy in VHDL..50
Figure 3.2 — Examples of Control and Data Flow Graphs...53
Figure 3.3 — ASAP Schedule, ALAP Schedule, and Mobility..58
Figure 4.1 — Pygmalion Neural Programming Environment..70
Figure 4.2 — The nC Hierarchical Data Structure...73
Figure 4.3 — The nC system Data Structure...74
Figure 4.4 — The General RULE Data Structure...74
Figure 4.5 — Description of the Neuron’s State Update rule level.................................. 75
Figure 4.6 — Description of the Cluster’s State Update meta-rule level.......................... 75
Figure 4.7 — The TAGVAL and UNVAL Data Structures... 76
Figure 4.8 — The config Structure.. 78
Figure 4.9— The Extended RULE Structure...81
Figure 4.10 — The Extended neuron_type Structure... 82
Figure 4.11 — The Extended TAGVAL Structure...83
Figure 5,1 — Methods of Employing Truncation After a Multiplication Operation......... 88
Figure 5.2— The Effect of Overflows and Underflows.. 89
Figure 5.3 — The Lookup Table Indexing Mechanism... 90
Figure 5.4— Mechanism for Converting a Value into the Table’s Index......................... 90

Figure 5.5— The Character Recognition Application.. 95
Figure 5.6— The Effect of the Lookup Table...96
Figure 5.7— Impact of Hardware Constraints During the Learning Phase......................97
Figure 6.1 — The Hardware Development Extensions to the Pygmalion Environment. 100
Figure 6.2— A Generic Neural Silicon Compiler.. 101
Figure 6.3 — The Generic Neuron Model... 104

Figure 6.4— Processing Elements Interconnection: (a) Single Bus; (b) Multi-busses... 105
Figure 6.5— Processing Element’s Internal Organisation.. 106

13

14___ List of Figures

Figure 6,6 — Communication Unit’s Internal Structure..107
Figure 6.7 — Memory Unit’s Internal Organisation..108
Figure 6.8 — Execution Unit’s Internal Structure...109
Figure 6.9 — VHDL Implementation of the PE’s Communication Unit.........................I l l
Figure 6.10 — VHDL Implementation of the Communication Unit’s Data Path........... 112
Figure 6.11 — Specification of the PE’s my_address Register.. 113
Figure 6.12 — VHDL Implementation of the Communication Unit’s Control Module ..114

Figure 6.13 — VHDL Implementation of the Processing Element’s Memory Unit 115
Figure 6.14— VHDL Implementation of the Memory Unit’s Storage Module............. 116
Figure 6.15 — VHDL Implementation of the Memory Unit’s Addressing Module 117
Figure 6.16 — VHDL Implementation of the Processing Element’s Execution Unit 117
Figure 6.17 — VHDL Implementation of the Execution Unit’s Data Path Module 118
Figure 6.18 — VHDL Implementation of the Execution Unit’s Control Module 119
Figure 6.19 — VHDL Implementation of a Hidden Layer Processing Element.............120
Figure 6.20 — VHDL Implementation of a Simple Back Propagation Chip...................121
Figure 7.1 — nC Compilation at the Neuron Level...126
Figure 7.2 — Example of a nC Syntax Tree Structure for an Assignment Operation 127
Figure 7.3 — Transforming Memory References into Registers..................................... 130
Figure 7.4 — The ICR Syntax Definition.. 133
Figure 7.5 — Example of Graph Partitioning.. 134
Figure 7.6 — Graphical View of Variables Lifetime...135
Figure 7.7 — A Generic Multi-Port Template for Registers... 146
Figure 7.8 — The Counter Module...147
Figure 7.9 — ALU Module for Implementing Typical Neural Network Computation... 148
Figure 7.10 — A Finite State Machine Template in VHDL.. 150
Figure 8.1 — The config structure for the OCR Application... 156
Figure 8.2 — State_Update Rule Definition... 156
Figure 8.3 — Err_caLhidden Rule Definition... 157
Figure 8.4— Err_caLoutput Rule Definition... 157
Figure 8.5 — Weight_Update (Forward) Rule Definition for the Output Layer...............158
Figure 8.6 — Weight_Update (Backward) Rule Definition.. 158
Figure 8.7— ICR Format for a Hidden Layer Neuron..161
Figure 8.8 — The CDFG for the Hidden Layer’s Rules..162
Figure 8.9 — Lifetime Analysis for Variables in the Back Propagation Example........... 163
Figure 8.11 — Synthesised Data Path for the Execution and Memory Units..................168
Figure 8.12— Generated List of Actions for the FSM...169

List of Tables

Table 2.1 — Neural Network Programming Environments...36

Table 3.1 — The Hardware Design Hierarchy...47

Table 3.2 — Simple Taxonomy of High Level Synthesis Systems.................................... 61

Table 5.1 — Theoretical Results for the Sigmoid Function...92

Table 5.2 — 32-bit Floating-Point Simulation Results.. 98

Table 6.1 — Characteristics of Some Popular Neural Network Models......................... 103

Table 6.2 — PE Functionality for Hidden and Output Layers... 110

Table 7.1 — PE Functionality for Hidden and Output Layers... 138

Table 8.1 — Transforming Generic and Extended Parameters.. 159

Table 8.2 — Activity List for Some Storage Elements..163

Table 8.3 — Allocation and Binding of Registers in the Data Path.................................166

Table C.l — Data Precision Influence without Employing Lookup Table...................... 222

Table C.2 — Data Precision Influence Employing Lookup Table.................................. 223

Table C.3 — Impact Caused by the Employment of the Lookup Table (12 bits data).... 224

Table C.4— Impact Caused by the Employment of the Lookup Table (14 bits data).... 224

Table C.5 — Data Precision Influence Employing Lookup Table (16 bits Data)............224

Table C.6 — Data Precision Influence Employing Lookup Table (with |X term).............225

Table C.l — Simple vs. Complex Back Propagation Computation................................ 226

Table C.8 — Effects of the Back Propagation Parameters.. 227

Table C.9 — Effects of the Back Propagation Parameters.. 227

15

Chapter 1

Introduction

This chapter presents a brief introduction to the neural computing and the
silicon compilation areas. It then discusses the motivations and goals o f this
research, gives an overview of the neural silicon compiler system developed, and
concludes with an outline o f the thesis contributions and thesis organisation.

1.1. Neural Computing

Neural computing has developed over the last decade as an important paradigm to
solve pattern processing problems, such as speech and image processing, that are
particularly difficult for traditional computing [44,76,82]. Unlike conventional
computing, which requires the development of a set of rules and algorithms for solving
problems, neural computing attempts to solve these problems by presenting a set of inputs
and training the system to output the appropriate responses [199].

Neural computing is the computation of artificial neural networks, which are
modelled upon the knowledge of how the human brain is structured. Although the precise
knowledge of how the human brain computes is still very hmited, its anatomy and
physiology have been identified in detail over the last decades [167]. Inspired by these
studies, several artificial neural network models have been devised
[39, 79, 82, 86, 99, 106, 122,161, 202] and shown their ability to exhibit properties
analogous to the brain: association, generalisation, parallel search, learning, and flexibility.

As it is well known, neural computing is an interdisciplinary subject, which has
attracted researchers from different areas. As a result, a large number of books have been
published providing comprehensive introductions to every aspect of the field: theory,
software, hardware, and applications [12,76,78, 82,122,199]. However, for the purpose
of completeness, the next sub-sections provide a brief review of this area. The discussion
focuses on the hardware implementation aspects, since this is the main topic of study in
this research.

17

j 8 ____________________________________ Introduction_____________________________ Chapter 1

1.1.1. Artificial Neural Networks

Artificial neural networks are massively parallel systems that combine a network of

highly interconnected processing elements (PEs), or artificial neurons, that use

mathematical algorithms, or neural network models, to process the information [44].

These PEs are simplified versions of the biological counterpart and carry out very simple

calculations. Each interconnection between PEs have an associated weight value. The

process of programming a neural network is achieved by a learning algorithm that adjusts

the values of the weights in response to training patterns.

Artificial neural networks can be characterised by four key properties:

• network topology;

• recall procedure;

• learning procedure; and

• input values.

Network topology, the neurons’ interconnection pattern, is perhaps the most

distinguishing characteristic of neural models, and the most difficult issue when hardware
implementation is sought. Typically, PEs are arranged into disjoint structures called layers.
Each PE in a layer has usually the same activation function and learning rule. Early models,

such as the Perceptron [122], are single feed-forward networks. In this topology
each network input is connected to all PEs, and the information flows through the network
from input to output, without feedback of outputs.

Input
layer

hidden layers output
layer

fE PE
PE

Input
pattern output

pattern

weighted connections

Figure 1.1 — Multi-layer Neural Network

More recent models have extended the concept of a single layer network into a
structure of multiple feed-forward layers. Multi-layer networks are composed of one input

layer, one output layer, and one or more internal (hidden) layers (see Figure 1.1). A

Chapter 1_______________________________ Introduction______________________________________ 19̂

further extension includes the introduction of backward connections, which aims to
improve the learning procedure by feeding backward error values between two
consecutive layers [161].

An appropriate interconnection strategy for data communication among neurons is
fundamental for an effective implementation of neural networks in hardware. In digital
electronics technology, for instance, point-to-point interconnection among every neuron is
clearly impossible due to hmitation of the silicon area and number of pins. Thus, broadcast
bus architectures are commonly used as the most flexible approach [180].

Recall procedure is realised by every PE in the network. Each PE is primitive,
meaning that it can be an analogue neuron or a simple reduced instruction set (RISC)
microprocessor. The recall procedure computes the neuron’s state S. It is specified by the
propagation rule net, which is typically the sum of weighted input values (.̂w) modified by
an offset 0 that defines the neuron bias (see Figure 1.2a), followed by an activation
function /:

net = ^^s.w -Q and S = f{net)

The activation function may be implemented by: a simple linear function,

S = K.net

where ̂ is a constant; a threshold function,

^ fl if net >T
[O otherwise

where T is a constant threshold value; or a function that more accurately simulates the
non-linear transfer characteristic of the biological neuron and permits more general
network functions. The sigmoid function (see Figure 1.2b),

is one of the non-linear function most used by popular neural models. Another non-linear
function, the hyperbolic tangent function,

S = X2ccùï{net)

is often used by biologists as a mathematical model of nerve-cell activation [199].

20_____________________________________ Introduction_____________ Chapter 1

Hardware implementation of the propagation rule can be easily achieved by both
analogue and digital circuits. However, the implementation of some complex activation
functions, such as the sigmoid and hyperbolic tangent, is very expensive using digital
technology. In those cases, it is common to overcome this difficulty using look-up tables
to implement the desired function [130].

Sigmoidal Function

SjO

-10

net

Figure 1.2 — (a) Artificial Neuron; (b) Sigmoidal Activation Function

Learning procedure is an iterative process, by which the network is presented
several times with training patterns. It is either supervised or unsupervised. In supervised
learning, input patterns are presented to the network together with the corresponding
desired output pattern. The network’s task is to adjust the connection weights to provide
the correct input-to-output mapping. The procedure for adjusting weights is usually based
upon the PE’s error value, typically the difference between the expected and the computed
output of each PE [199]. However, there are some apptications where the desired
input-output mapping is not available or known. In those cases, where input patterns are
classified without any knowledge of the target output, unsupervised learning is more
suitable. The network detects the patterns’ regularities and classifies them into disjoint
groups according to their similarity categories [99].

Learning is far more computationally intensive than the recall procedure, which
suggests that hardware implementation is needed. Nevertheless, a large silicon area is
generally used, thus limiting the number of possible artificial neurons integrated into a
single chip. Learning can be easily implemented in digital circuits. However, it is very
difficult to implement learning with analogue circuits, due to the complexity in conceiving
programmable analogue chips. As discussed later, some specific applications demand
real-time responses and on-line learning, which can only be achieved by specialised
hardware.

Finally, input values for neural models are characterised by the adopted range,
which can be either binary or continuous.

Chapter 1_______________________________Introduction______________________ 21

There is an extensive range of different neural network models — more than 100
neural network models have been reported [80, 82]. These models differ in specific
features such as network topology, activation functions, and learning algorithms. These
features are fundamental for hardware implementation, which is further discussed in this
chapter. Before entering into this discussion, the next sub-section briefly points out some
potential applications of neural networks, which may benefit from hardware
implementation.

1.1.2. Applications of Neurai Networks

Neural computing can be applied in a wide spectrum of fields, ranging from
commercial to engineering applications [76]. It is important to identify these applications
and investigate the benefits they can obtain from hardware implementations of neural
networks.

The commercial world is a fertile area to apply neural networks to improve
earnings and lower losses. Candidate applications involve financial analysis, marketing, and
optimisation, which are usually simulated in conventional computers. Engineering
applications include those problems that are intractable or extremely cumbersome by
traditional computing methods [44, 82], and can, in general, benefit from hardware
implementation. Such applications, found in industrial and military systems, encompass
pattern matching, adaptive control, and signal analysis. In particular, neural computing can
solve problems that require pattern recognition, pattern mapping, dealing with noisy data,
pattern completion, associative look-ups, and systems that learn or adapt during use [79].

Initial results in applying neural networks in financial systems have shown their
ability to handle non-linear data sets with parameter shifts [93]. This brings a good
alternative to the area of financial forecasting to overcome the limited ability of modelling
such data processes with current techniques. Other candidate applications include financial
evaluation and analysis. Problems such as improving forecasting, credit evaluation, and
securities trading have been tackled with relative success [42, 51, 201]. Examples include
the application of neural networks to bond rating [51], which has been reported as
performing better than mathematical modelling techniques like regression; and mortgage
underwriting judgements [42], which has outperformed underwriters’ judgements by
employing a system composed of multiple neural networks, each of which performing part
of the application evaluation’s task. The nature of these problems are today adequately
explored through simulations in conventional computers. It is generally expected that
hardware implementations should not play an important role.

22___________________ Introduction_______________________________Chapter 1

Speech generation and analysis are typical engineering problems that have been
given much attention. A good example of speech generation is the NETtalk system [165],
in which a Back Propagation neural network [161] has been trained to translate English
text to speech. Speech-recognition tasks have also obtained good results [196, 197], which
have encouraged several researchers to continue tackling the problem to obtain better
performance [107].

Control systems are another branch of neural network applications [94] which have
been investigated over the last decade in the industry as well as in military systems.
Control problems cover a wide range of complexities, from simple systems, such as
balancing an inverted pendulum [18], to complex systems such as autonomous control of a
moving vehicle [111].

Applications of neural networks for military systems fall mainly into the category of
automatic target recognition (ATR) [200]. ATR is a problem that involves extraction of
critical information from complex and uncertain data, such as distinguishing tanks from
trucks, jeeps, and other less important targets. A multiclass discrimination system is
required, for which traditional techniques of signal processing, pattern recognition, and
rule-based artificial intelligence have been unable to provide adequate solutions, as
previous ATR systems have experienced high false-alarm rates [156]. Other applications in
mihtaiy systems include anti-missile homing, adaptive tracking, and radar signal
categorisation [200].

Engineering applications generally demand hardware implementation to meet the
required performance. Applications particularly found in control and mihtary systems
present two basic characteristics. Firstly, they are typically embedded systems. Secondly,
they perform specific tasks which are critical in time, requiring fast response from the
controlling devices. Clearly, these two requisites call for the construction of dedicated and
application-specific hardware.

1.1.3. Neural Network Implementations

Implementations of artificial neural systems fall into three categories: simulation in
conventional (sequential or parallel) computers, emulation in general-purpose
neurocomputers, and hardware execution in special-purpose neurocomputers [180, 182].
Simulation is usually provided through software environments for programming neural
network models and applications. A high degree of flexibility is achieved, since any neural
model can be programmed and simulated, but low performance is obtained.
General-purpose neurocomputers allow emulation of a range of neural network models,
therefore obtaining high degree of flexibility while medium performance is generally

Chapter 1_______________________________ Introduction____________________________ 23

provided. Special-purpose neurocomputers implement a specific neural network model
directly in hardware. High performance is obtained, although at the cost of reduced
flexibihty.

Neural programming environments span over a large variety of products, ranging
from simple academic environments to more complex research and commercial
products [183]. These systems have been mainly used to simulate neural networks in
sequential computers, despite the fact that artificial neural networks present high degree of
parallehsm. The Esprit II Pygmalion project [19, 24] is an example of a complex research
system, which will be described in the next chapter.

General-purpose neurocomputers have been mainly addressed by two approaches:
accelerator boards, typically based on floating-point or standard state of the art digital
signal processor, plugged onto workstations; and parallel processor arrays, formed by a
large number of simple processing units, usually based on systolic array techniques
specialised in matrix multiplication operations [153]. General-purpose neurocomputers are
generally implemented using digital electronics technology. The Esprit II Galatea
project [20], successor of the Pygmalion project, extends the neural programming
environment to operate in conjunction with a general-purpose distributed neurocomputing
system. The Galatea system will be briefly described in the next chapter.

Special-purpose neurocomputers vary enormously, depending upon the technology
and technique adopted: electronics or optics, and digital or analogue. Many digital and
analogue electronic neural chips have been successfully built [81,82]. Optical
neurocomputers have been proposed by some researchers [8, 52, 81, 103,151, 203] since
this technology promises to fully exploit neural network characteristics [28]. Chapter 2
discusses these issues in more depth.

Considering the potential applications of neural networks discussed in the previous
sub-section, it is unlikely that commercial systems will require specialised hardware.
Simulation in conventional computers should dominate in commercial applications.
Accelerator boards could also be used to speed-up some time-consuming applications.
Conversely, some engineering problems, such as embedded systems found in process
control and military systems, require the construction of specialised neurocomputers.

The development of neurocomputers and neural programming environments is
recognised as fundamental to the progression of neural computing. However, these
research directions have been carried out independently, with no integration between
software and hardware tools. Clearly, it is important to combine these two trends and
develop a complete integrated system incorporating two routes towards neural networks’

24________________________________ Introduction______ Chapter 1

realisation: simulation on conventional computers or emulation on general-purpose
neurocomputers; and optimised hardware execution through special-purpose
neurocomputers, using high performance application-specific neural chips. This research
involves the integration of such a system and the development of a hardware design tool
that automatically synthesises application-specific chips from a neural network
programming language.

1.2. Silicon Compilation

The term silicon compilation is used to describe the concept for the whole process
of implementing an integrated circuit from an abstract high level behavioural input
description [59, 198]. §uch a powerful design automation tool has been the ultimate goal
of the microelectronics industry over the last decade [59]. It has enormous strengths which
includes:

• considerable reduction on the development cycle of VLSI chips;

• allowing the designer to experiment with several different alternatives to obtain, for
example, the optimal size/speed trade-off for a particular application;

• correct-by-construction feature, a very important issue, since the complexity of VLSI
circuits has increased considerably, with single chips containing over a million
transistors being commonly used nowadays; and

• easier managment of the design cycle, whereas high level behavioural specifications are
generally shorter than low level structural specifications, easier to write, understand,
and modify, less error-prone, and faster to simulate.

Conversely, the use of design automation tools present one disadvantage, in
particular at the highest level of the synthesis process: they cannot, in general, match the
abilities of a skilled human designer, resulting in larger and slower hardware [35, 59,162].

Silicon compilation can be divided in two distinct tasks: high level synthesis and
low level synthesis. The former concerns with the identification of the input description,
which is fiilly behavioural (also called functional), and the construction of a hardware
structure that implements exactly the described functionality. The latter usually involves
logic synthesis and mapping of the hardware structure onto a technology-specific
description, which is then used to produce the actual integrated circuit.

Low level synthesis tools have been developed over the last decade with great
success [61,102,139]. Several steps of the low level synthesis task are already automated
and used through the CAD industry [2]. In contrast, high level synthesis tools are still in
their infancy [187,198]. In fact, the design of such a tool is a very difficult task when

Chapter 1 introduction_____________________________ 25

optimal results are sought [162]. There is no single mapping from one behavioural
description to the structure that implements it. Some assumptions are generally required,
such as the target architecture of the synthesised circuit, which constrains the use of the
silicon compiler to specific domains. Therefore, two classes of silicon compilers arise:
special-purpose and general-purpose.

Some special-purpose silicon compilers have been developed with good results, in
particular the ones that are dedicated to generate Digital Signal Processing (DSP)
chips [108]. Conversely, although some interesting general-purpose silicon compilers have
been developed [30, 120], none have yet been accepted as a standard tool by the CAD
industry, because the quality of the synthesised circuits is still poor when compared to the
circuits produced by experienced hardware designers. Chapter 3 examines some current
developments on silicon compilers.

The development of a silicon compiler system directed towards neural computing
field is seen as very attractive. This is motivated by analyses of the typical design cycle of
neural network applications. Firstly, the application is defined and mapped onto a neural
network, which is specified using a neural network programming language. This involves
the specification of the neural model and the configuration of the neural network.
Secondly, the network is trained using the simulation tool provided by the software
environment. Finally, after the network has been tuned to the particular application, the
user may wish to execute the trained network in hardware, which is particularly useful in
industrial and military systems.

The design of a tool that synthesises integrated circuits for the execution of the
neural network in hardware provides a fast route towards the development of specialised
neurocomputers. Ideally, such a tool, a neural silicon compiler, takes the same neural
network description used for programming and simulation purposes, and generates one or
more identical integrated circuits. Furthermore, applications that require on-chip learning
also have the neural network’s learning algorithm silicon compiled into the specialised
neural chips.

1.3. Motivations and Thesis Goais

Two basic tools are required for neural computing: a neural programming
environment, in which any neural model can be simulated in conventional computers, or
emulated in general-purpose neurocomputers; and a neural silicon compiler {NSC)^ which
provides fast prototyping of specialised neural chips for hardware execution.

26_______________________________ Introduction____________________ Chapter 1

Neural network programming environments are powerful tools during the
specification, simulation, and training of the neural network. Neural silicon compilers are
important to integrate neural networks into one or several chips, and to implement
(possibly trained) neural networks in specialised hardware. While programming
environments are mature tools, neural silicon compilers are still rudimentary
[132, 137, 189]. This thesis reports the development of a neural silicon compiler (NSC),
and the approach adopted to fully integrate it into the Pygmalion neural network
programming environment [24].

An important requirement for this integrated system is that a single specification
language is used by both the programming environment and the NSC. Therefore, the
designer uses the same language to specify, simulate, and train the network, as well as to
generate neural chips that implement the specified neural network.

Another requirement pursued throughout this research is the minimum knowledge
of VLSI design from the designer. This imphes using a software-oriented specification
language, rather than hardware-oriented, as the input for the NSC. Other developments of
silicon compiler systems assume that the user is a hardware designer, who uses the silicon
compiler as a replacement for conventional VLSI design tools [36, 121, 157]. This fact
distinguishes the NSC developed in this thesis from those silicon compilers. Rather than
letting the user provide hardware-specific information, a great degree of effort is put upon
the design of the NSC. Moreover, optimised hardware structures are achieved by
constraining the target architecture to an appropriate VLSI architecture, namely the
Generic Neuron, which has been devised as part of another PhD thesis [190].

The integration between the Pygmalion system and the NSC is enforced through
the development of a simulator for the hardware’s target architecture. The simulator
extends the software environment, allowing the user to experiment with several hardware
constraints and to analyse their impact during the execution of the neural computation in
hardware. While the NSC can provide the correct-by~construction feature for VLSI
design, it caimot guarantee correct neural computation. The hardware simulator bridges
this gap providing the NSC with the necessary information concerning the hardware
constraints.

The development of the NSC is concentrated on the high level synthesis part of the
silicon compiler. As mentioned earlier, low level synthesis tools have reached a stage of
maturity, while high level synthesis tools still need some research. The aim of the NSC is to
extract from nC, the C-based input language, all relevant information of the neural
network, and to synthesise optimised hardware structures for neural chips. The NSC
outputs the result as a structural representation at the register transfer level of the circuit in

Chapter 1_______________________________Introduction______________________________________ 27

VHDL, the IEEE standard hardware description language [6]. This approach relies on
state of the art CAD tools, which are capable of implementing low level synthesis from
VHDL.

Finally, it is paramount for an appropriate exploitation of neural networks’
hardware that a trade-off between performance and flexibility be achieved. High
performance is obtained through the synthesis of specific neural circuits dedicated to
execute a particular neural model. Flexibility is provided at the design stage by the
Pygmalion environment, which allows experimentation with several different neural
models, and by the Generic Neuron VLSI target architecture [190], which is capable of
implementing most of the neural models.

1.4. System Overview

This section outlines the major parts of this research, which comprises:

introduction of hardware extensions to the nC language;

design of a simulator for neural network hardware;

design of the intermediate code representation (ICR) for neural network hardware;

implementation of the NSC, comprising the data path and control synthesis tools; and

translation of the synthesised circuits into a VHDL description.

The incorporation of hardware extensions in the nC specification language has
considered the requisite of minimum (or even no) knowledge of VLSI design from the
user. Typically, the user only needs to supply high level data, such as the weights’
precision, activation function’s realisation, and time constraints in any of the neural
computing phases: recall and learning. This extended nC specification is the input for both
the hardware simulator and the NSC.

The design of a simulator fo r neural network hardware has four main goals: to
provide a tool to analyse the impact caused by hardware constraints on the design of
digital neural chips; to provide a way to assess, in advance, the performance of the target
architecture design; to provide the necessary hardware information for the NSC\ and to
permit the experimentation with different hardware configurations (such as precision
requirements for weights and states, specially during the learning phase), which will
ultimately result in smaller (i.e. VLSI area) and faster neural chips.

The design of an intermediate representation for neural networks’ hardware serves
as the starting point to the hardware synthesis tools. The nC language is initially compiled
using conventional techniques of software compilation. The textual description is

28_____________________________________ Introduction_______________________________Chapter 1

translated into a parse tree representation, from which several optimisation steps are
carried out. This representation is further translated into a graph-based internal
representation, which is more suitable for expressing data dependency and control flow for
hardware synthesis.

The specification of the intermediate code representation (ICR) separates the
NSC system from the input description and the programming environment. Therefore, any
other (neural network) specification language can be used, given that the translation to the
ICR is provided. Similarly, different programming environments can be built upon this
intermediate representation. This approach provides an open system, in which new
developments can be integrated on top of the NSC system.

The implementation o f the NSC centres on allocation and scheduling algorithms
[35, 46, 114, 146], which are employed in conjunction with each other to create efficient
data path hardware structures for the neural circuits. These algorithms are interdependent
and the order of their execution has a considerable impact on the results. Generally,
scheduling of operators and operations to control steps attempts to minimise the execution
time of a particular task, while allocation of operators and variables to structural elements
seeks the minimisation of hardware components, and consequently, VLSI area.

The approach adopted in this thesis comprises two modes: default mode and
user-driven mode. The first approach tries to produce the smallest possible circuit. This is
obtained by employing hardware allocation before scheduling [46]. In this case, a
straightforward sequential schedule is adopted, since duplication of hardware components
is not permitted. The second approach requires a more elaborated scheduling strategy to
match the user-specified time constraint, such as the time required to accomplish a single
feed-forward computation of the whole network. In this case, scheduling is employed
through an ASAP (As Soon As Possible) strategy [146], which leads to a highly parallel
implementation, since functional units are duplicated. In both cases, hardware allocation
makes use of multi-port storage elements and multiple busses for interconnecting data and
operators.

Control synthesis is performed after data path synthesis, and consists in
constructing a finite state machine that implements a controller for the data path created
[77, 152]. Two-phase clocking scheme is employed, which permits a certain degree of
parallelism in executing neural algorithms.

After the neural circuit has been synthesised, its hardware structure is translated
into a VHDL description. A library of technology-dependent VHDL modules (ALU,
multi-port registers, flip-flops, RAMs, etc.) has been built during this work, which is

Chapter 1_______________________________Introduction______________________________________29

known and used by the NSC. These modules are parameterised and used by the module
generator, another integral part of the NSC.

The module generator builds specific VHDL cells based upon the hardware
allocation strategy carried out by the NSC. These cells are automatically generated and
configured to be used according to several issues related to the synthesised data path
structure. For example, multi-port registers are generated following the description on the
number of busses connected onto the register, the definition of the data width, and the
optional use of tri-state logic.

1.5. Thesis Contributions

This thesis presents an effective and consistent approach to support two of the
specialised tools for appropriate utilisation of neural computing: a neural programming
environment and a neural sihcon compiler. The need for integrating these two tools has
been fully investigated, producing a system that enables the user to use two different
routes for neural networks written in the Pygmalion's nC specification language: either
binary, for simulation; or silicon, for hardware execution.

Based on this motivation, a neural silicon compiler has been developed, focusing
on the high level synthesis part of the process. The Pygmalion environment has been
extended to provide an integrated system for exploiting software and hardware in neural
computing. The main contributions of this thesis are:

• extension of the Pygmalion neural network programming environment, consisting of
hardware extensions to the nC language, and hardware extensions to the environment
as a whole, which comprises a hardware library, the hardware simulator, and the NSC\

• development of a parameterised simulation tool for neural networks’ hardware, which
has generated a platform for investigating the effectiveness of implementing neural
networks in digital hardware; the results obtained through these simulations are
reported in chapter 5;

• development of a high level synthesis tool that takes a fully behavioural C-based
program as input, identifies all the required information concerning the neural
network’s topology, neuron functionality, weights and states data, and creates a
hardware structure for the neural chips;

• development of data path and control synthesis algorithms, based on heuristics that
guide the generation of the neural circuits towards the Generic Neuron architecture;

30_____________________________________ Introduction__________ Chapter 1

• development of a cell library of VHDL components, dedicated to the implementation
of the neural circuits, and development of a translator for the synthesised hardware
structure into a VHDL description, at the register transfer level. This description is
capable of being input into any commercial CAD system supporting VHDL and low
level synthesis tools.

Additionally, this research has generated three pubhshed papers [15,132, 133], and has
contributed to the E sprit n Galatea Neurocomputing System [20].

1.6. Thesis Organisation

The remainder of this thesis is organised in nine chapters, which range from a
survey of neurocomputers and silicon compilers to a detailed description of the whole
system and the implementations carried out during this research.

Chapter 2 examines existing neural computing systems. It firstly presents an
overview of neurocomputers, followed by a description of some implementation examples
using electronics and optical technology. It then examines neural programming
environments, and concludes with a proposal for integration between hardware and
software.

Chapter 3 presents a survey on sihcon compilers. It starts by characterising sihcon
compilers through the identification of ah phases of the process. This is followed by a
taxonomy of sihcon compilers, which are classified into general-purpose and
special-purpose. It carries on with a review of some systems, and concludes with a brief
description of the neural sihcon compiler developed in this thesis.

Chapter 4 presents a description of the nC neural network specification language,
which has been developed as part of the ESPRIT II Pygmalion project [24]. It initiates with
a review of the Pygmalion programming environment and its functionality. After
describing nC, this chapter concludes with a description of the proposed and developed
hardware extensions for thé language.

Chapter 5 reports the development of the simulation tool for neural networks’
hardware. It begins with a general overview of the problems involved in the realisation of
neural networks in digital hardware. It then discusses hardware constraints, which are
specific to neural computing, analysing both recall and learning phases. The chapter
concludes by presenting the simulation results, which form the basis for studying the
implementation of neural networks in digital hardware.

Chapter 1_______________________________ Introduction______________________________________^

Chapter 6 presents the neural sihcon compiler framework proposed in this thesis.
The two key components, the nC input description and the Generic Neuron target
architecture, are reviewed from the silicon compiler viewpoint. A Back Propagation neural
network prototype for this architecture is implemented and simulated in VHDL, along with
the construction of the VHDL cell hbrary.

Chapter 7 gives a thorough description of the neural silicon compiler developed in
this research. It starts with the procedures adopted to compile nC into the internal
representation (ICR), which has been defined during this work. All successive
transformation steps are then fully detailed, including descriptions of the hardware
synthesis algorithms.

Chapter 8 investigates the internal structure of the synthesised neural network
circuit by comparing it with the prototype developed in chapter 6. It evaluates the NSC by
running the synthesis of a Back Propagation neural chip, which serves as the basis for a
discussion on the quality of the generated neural circuits.

Chapter 9 provides an assessment for the whole research developed in this thesis.
The main elements are discussed, investigating their strengths and weaknesses. These
include the integration of the NSC into the Pygmalion environment, the hardware
extensions introduced into the nC language, the simulator developed for neural networks’
hardware, the high level synthesis developed for the NSC, and finally the VHDL
description of the neural chips, which is ultimately the output generated by the NSC.

Chapter 10 concludes this thesis by discussing the results achieved during this
work, drawing some conclusions, and pointing out possible future work.

Chapter 2

Neural Computing Systems

This chapter provides a review o f proposed schemes for exploring neural
computing technology. These include the development o f neural programming
environments, the design o f novel architectures for neurocomputers, and
investigations o f new technological alternatives. The chapter concludes with a
discussion on how these schemes can be integrated into a single development
system for both software and hardware exploitation o f neurocomputing.

2.1. Overview

Implementations of artificial neural networks fall into three categories:

• simulation in conventional computers;

• emulation in general-purpose neurocomputers; and

• execution in special-purpose neurocomputers.

Most implementations of neural networks are based upon simulations in conventional
computers, which are adequate for various current applications. However, for several
real-time applications found in engineering systems, this approach does not provide the
necessary performance. For these applications, the development of general-purpose or
special-purpose neurocomputers — which are optimised to the computation of neural
models — is required [180].

Simulations are generally built together with software environments, which provide
tools for programming and simulating neural network models and applications, called
neural network programming environments. They are powerful and flexible systems for
experimenting on neural models and applications. However, since they are usually built
upon conventional computers, the performance is generally poor.

General-purpose neurocomputers attempt to provide the same kind of flexibility
offered by software simulations, but with an improved performance. They are generally
attached to a neural network programming environment In this case, the environment is

33

34______________________________ Neural Computing Systems_______________________ Chapter 2

expanded, so that neural network algorithms can be simulated in the supported
conventional machines or emulated in the massively parallel neurocomputer.

Special-purpose neurocomputers lack flexibility in executing different neural
models, but are capable of yielding very high performance through optimised hardware
resources, which are tuned to a specific neural algorithm. They are demanded in several
important applications, such as the ones found in process control and military systems,
which generally require (embedded) real-time execution.

The development of VLSI special-purpose neurocomputers requires a set of
sophisticated hardware design tools to help the construction of specialised chips. In spite
of these tools, the design of integrated circuits remains a laborious task. In addition, ASIC
design tools are completely independent of neural programming environments. The
incompatibility between software and hardware tools for neural networks raises the
problem that a neural network application tested in the software environment has to be
fiilly re-designed from scratch if the designer wishes to map the application onto hardware.
Therefore, the construction of a set of integrated tools is demanded to automatically
provide fast prototyping of application-specific neural network chips (ASNNCs) from a
high level specification of neural network applications. This issue is investigated
throughout this dissertation.

The subsequent sections review some existing schemes for implementing neural
networks. A proposal for integrating programming environments with the automatic
synthesis of special-purpose neural chips concludes this chapter.

2.2. Neural Programming Environments

The continuous developments in the neural computing area, where new algorithms
and applications are commonly developed and explored, have fuelled the design of
sophisticated software environments for programming neural networks. These
environments range front commercial products, provided by several companies, to
academic systems, generally available free from university research groups [154].

The implementations of software environments generally follow current trends
towards the design cycle of a neural network application. Figure 2.1 illustrates a typical
path, which usually starts with the definition of the neural network in a high level
programming language. This includes the complete specification of the algorithm or the
modification of parameterised models, which are supplied in a algorithm library. The high
level programming language is then translated into an intermediate-level, machine
independent, neural network specification language, that describes the complete neural

Chapter 2 Neural Computing Systems 35

network and its configuration for the particular application. This portable specification can
then be translated into a simulation file for execution in a specific machine. The execution
of the simulation is controlled by the command language together with the graphic
monitor.

Algorithm
Library

High-Level
Language

(Application
Definition)

Intermediate
Level

Language

Sequential
Computer

Translator Compiler

Parallel
ComputerGraphic

Monitor
Environment

Neural
Computer

Simulator
Command

Figure 2.1 — Current Design Cycle of Neural Network Applications

According to the intended use and scope of the application, neural programming
environments can be classified into three distinct categories [183]: application-oriented,
algorithm-oriented, and general programming systems.

Application-oriented systems are designed for specific market domains, such as
finance and transportation. Professionals in these fields have very little neural network
expertise, but want to apply the technology without having to deal with the process of
programming algorithms.

Algorithm-oriented systems provide an environment in which the user can
experiment with a particular neural model, or several models, which are held in a hbraiy of
parameterised algorithms.

General programming systems, provide a flexible tool for investigating a wide
range of algorithms and applications. They can be further sub-divided into: educational

systems, which provide, for the novice user, a simple tool that helps in learning neural
network techniques; and general-purpose systems, which are the most sophisticated
environments for programming any algorithm and application. General-purpose systems
can still provide an open environment, where the user can modify any part of the system.
In such an environment, the network can be mapped onto certain target computers, such
as the parallel transputer-like architecture, thus taking advantage of the natural parallelism
of neural networks.

Although the spectrum of neural programming environments have different design
goals, they share several common features, which comprise:

36 Neural Computing System s Chapter 2

• a graphic interface^ with menus and a command language for configuring a neural
network, controlling and monitoring the simulation;

• an algorithm library, holding a parameterised set of the most common neural network
models;

• a high level language, for programming or customising an algorithm or application;

• an intermediate-level network specification language, which holds the (partially)
trained network in a machine-independent representation; and

• compilers, for mapping the network representation to the available target machines.

Table 2.1 exemplifies some of the well-known neural programming environments.
Further details on these and several other systems can be found in [183].

System Organisation Category Brief Description

Nestor
Learning
System

Nestor Application-
oriented

Core of three major products: the Decision
Learning System, the Nestor Development
System, and the Nestor Character Learning
System. Targeted to the Financial market [42].

AMT BehavHeuristics
Adaptive decision making system targeted to
airline transportation control.

BrainMaker California Scientific
Software Algorithm-

oriented

Complete environment targeted to the Back
Propagation model.

NeuroShell Ward Systems Group
Back Propagation shell. Designed to solve
classification type expert systems problems.

PDF
University of

California, San Diego
Educational

Programming
system

Simulation package that provides a wide range of
exercises for experimenting with PDP models
[159].

Explorer Neuralware

Small application development User can write C
code for network’s monitoring. On-line help
facility, and checlq>oint for saving and displaying
the user specified networks.

Genesis
California Institute of

Technology

General-
purpose
system

X-Window based research environment
simulation kit Includes graphical interface
(Xodus), a script language interface, an
interpreter, and other supporting facilities.

AnzalAxon HNC

Commercial product Includes NetSet, a graphical
interface; AXON, a language description; a
library of mathematical subroutines; Interact, an
interactive debugger; and a co-processor board
[69,82]

ANSpec SAIC

Commercial product Includes a graphical
interface, an object-oriented language (ANSpec),
an algorithm library, and a co-processor board
(DELTA).

Pygmalion Esprit n Project
Research environment Includes graphical
interface, high level and intermediate-level
languages, algorithm library, and compilers.

Table 2.1 — Neural Network Programming Environments

Chapter 2_______________________ Neural Computing System s______________________________ 37

2.3. Neurocomputers

The development of specialised hardware for neurocomputing attempts to achieve
the required performance through the exploitation of the inherent parallehsm in neural
networks. A neurocomputer is essentially a parallel array of interconnected processors that
operate concurrently. Therefore, it is important to devise an appropriate architecture for
the neurocomputer that efficiently explores issues like parallelism, performance, and the
relationship with the {silicon) device area.

Several different approaches have been addressed to tackle these issues. They can
be divided according to the technology adopted in the constmction of the neurocomputer
(electronic, optical, or electro-optical devices), and the technique used for the circuits
(analogue, digital, or hybrid).

Most of the research has been carried out in the electronics domain, since this is a
well understood and mature technology [123]. Current fabrication technology permits the
construction of structures less than 1 p,m in size, allowing the implementation of several
millions of transistors per chip. Thus, it is possible to build extremely complex electronic
chips, or neural chips with many primitive processing elements (PEs). However, neural
networks pose a difficult problem for electronics: the massive degree of interconnection.
Current silicon technology allows the design of circuits only in a two-dimensional plane
with few available layers. As a result, the required massive interconnectivity is bound to
have a severe effect on the amount of VLSI area. Therefore, the interconnection scheme
generally includes some form of multiplexing [25]. The multiplexed interconnection is
shared by PEs in the network, thus limiting the total number of wires to a realistic size.

Optical computers can potentially circumvent the interconnection bottleneck, since
beams of light can cross each other with no interference. Such capability is believed to be
fundamental for building massively parallel neural computing systems [12, 82, 174, 199].
In addition, there are two other properties of optics that can make it outperform electronic
processing: large time bandwidth, around a gigahertz for laser diodes, and large space
bandwidth product, which provides the exploitation of the third dimension for data
processing. However, this technology is still in its infancy and the results are still far from
reaching any practical design. There are several technological issues that must be solved
before appropriate exploitation of such system can be realised [170]. Nevertheless,
attempts have been made to build optical neurocomputers, which are reviewed later in this
chapter.

Some researchers are trying combine the best that each technology can offer
building electro-optical neurocomputers. Preliminary results indicate that this approach can

38________________________ Neural Computing Systems_________________ Chapter 2

provide a good trade-off between electronics’ high degree of integration and optics’ high
degree of interconnection [27, 53, 72, 73]. This suggests that the functionality of the PEs
is implemented by digital electronic circuits, while the interconnection pattern is realised
through optical devices.

Neural circuits are built based upon digital or analogue techniques in association
with the technology used. In the electronics field, the greatest advantage shown by digital
neurocomputers is flexibility. Programmable chips can be easily built, allowing the
implementation of neural circuits with on-chip learning. The greatest advantage of
analogue neurocomputers is size. Potentially, larger networks can be built onto a single
chip, since simple operations such as multiplication and addition can be performed by only
a few transistors. The digital counterpart requires several tens or hundreds of transistors to
perform the same operations [82, 123, 149].

However, analogue implementations suffer from several problems; the most
important ones being lack of thermal stability, limited accuracy, and high source of
noise [123]. Along with the problems inherent to any analogue electronic implementation,
there are some other specific problems that directly affect neurocomputers. Firstly, the
implementation of memory (required to support the learning) remains a difficult task
[49, 178]. Secondly, the interconnection among several processing elements is another
difficult problem, particularly if it is required to connect multiple chips. Finally, it is not
currently possible to mass produce analogue chips with predetermined weight
values [67, 82, 83, 123, 149].

The next sub-sections review some existing implementations of electronic chips
(analogue and digital) as well as some dedicated neural optical systems.

2.3.1. Electronic Neural Chips

The implementation of integrated circuits dedicated to neural networks is divided
into three categories: analogue, digital, and hybrid.

Analogue Designs

Analogue hardware implementations of neural networks commonly use amplifiers,
based on transistors, parasitic capacitors, and resistors, to realise physical structures that
resemble the simplified mathematical model of the neuron’s state calculation:

s, = f(Zs>x}Mj-Q)
i=l

Chapter 2 Neural Computing System s 39

The basic principle of operation of an analogue electronic neuron is shown in
Figure 2.2.a. The amplifier mimics the above equation, i.e., it performs the sum of
products followed by the activation function / . Inputs and outputs are replaced by wires,
while synapses are replaced by resistors. These electronic neurons can implement a neural
network by using a crossbar scheme as shown in Figure 2.2.b. The main problem with this
approach is that resistors occupy a large silicon area.

Several research groups have designed and implemented electronic neural chips
based on this principle. At AT&T Bell Laboratories [63, 64, 65, 66, 87, 88, 90] Graf and
his group have designed a set of analogue chips, which include: a 22 x 22 array of micro
fabricated resistive synapses (amphfiers are implemented separately) [88]; a fully
interconnected array of 256 amplifiers and fixed connection matrix of resistors^; and
finally, an analogue-digital (hybrid) chip, described later in this section.

A1

Output Lines

A2 A3 A4

\ input
(Dendrites)

Resistors
(Synapses);- Amplifier

(cell Body)

- Output
(Axon)

1c

A4A3A2A1

(a) (b)

Figure 2.2 — Basic Analogue Artificial Neuron

At Caltech, a group led by Mead has designed an analogue neural chip based on
the Hopfield model for associative memory [168]. The prototype contains 22 amplifiers
and a fully interconnection matrix of 462 programmable interconnection elements. Mead’s
approach for implementing large arrays is also to limit the current consumption of the
amplifiers, which is done by keeping most of the MOS devices in a sub-threshold regime of
operation [116]. The synapses are implemented by 41 transistors, most of them operating
in their ohmic (resistive) regime. Mead’s interests lie primarily in the implementation of
processing functions such as the retina and the problem of motion, which are reported in
his book [116].

^To reduce the size of the resistors, a special fabrication process has been developed, in which a finished
CMOS chip is covered with amorphous silicon and the resistors are patterned by electron-beam
lithography and reactive-ion-etching [66].

40______________________________ Neural Computing System s_______________________ Chapter 2

Intel Corporation has commercialised an experimental analogue chip, called the
80170NX Electrically Trainable Analogue Neural Network (ETANN) [1, 84]. The chip
contains 64 neurons and 10,240 synapses (4,096 used to fully interconnect the 64 neurons,
4,096 to connect the 64 neurons to 64 independent inputs, and 2,048 used for setting bias
for each neuron) using “floating gate” non-volatile memory technology. This analogue
memory replaces the digital fhp-flops with a considerable reduction in the synapse’s size.
The synapse cell comprises a pair of EEPROM cells, in which the differential voltage
represents the stored weight. Each synapse multiphes a signed analogue voltage by the
stored weight and generates a differential current proportional to the product. These
differential currents are summed and transferred through a sigmoid function to the
neuron’s output. Although the chip can perform fast computation, low accuracy is
obtained. Typical resolution of the analogue inputs and outputs ranges from 4 to 6 bits.
Better accuracy is obtained if the Bake Re-Training Method ̂ is used, in which the circuit
is exposed to high temperature for some time to reduce the effect of charge movements in
the nitride layer between the EEPROM cells [1]. Learning is done off-line by a
conventional computer with weights set one at a time. Cascadability is possible, although
limited, in which chips can be connected to others directly or through a bus to increase the
number of neurons per layer or the number of layers per network. However, they cannot
increase the number of synapses per neuron.

Digital Designs

Fully digital neural chips are based on an array of simple (digital) processing
elements that can potentially be designed to perform any desired function, thus broadening
the scope of application to several neural models.

At the Institut National Polytechnique de Grenoble (INPG), France, a fully digital
neural chip has been designed employing a two-dimensional array of PEs [137, 138]. The
novelty of this approach concerns the communication mechanism, which is done by an
elaborate shifting scheme on the array, where data busses are connected through soft
switches. The basic structure of the PE contains: a memory block for holding synaptic
weights and algorithmic-dependent parameters; a data path dedicated to perform
multiplication and summation; a controller that implements a finite state machine; and
input and output registers, used to shift the neuron’s state value onto the bus. The PE is
able to autonomously perform all steps of the recall and learning phases, and it can be
customised to the required precision of weights and states through the Galatea sihcon
compiler (see section 3.4.5). The main disadvantage of this approach is the complexity of

^Due to the floating gate memory technology, the value of a weight changes in time. For long period of
time, 4-bit resolution is the limit. However, if Bake Re-Training method is used, resolutions greater than 6
bits can be achieved [1]

Chapter 2_______________________ Neural Computing System s______________________________ ^

the communication scheme. Cascadabihty is limited by the number of pins available per
chip. However, it is claimed that this approach is tailored for future Wafer Scale
Integration (WSI).

Neural Semiconductor Inc. has developed a different approach that uses stochastic
functions of time to represent neuron activations and synaptic weights [179]. The
activations are represented by firing frequencies, and the function of a synaptic weight is
used to modify this frequency. This technique yields high density, since multiplying
stochastic pulse trains require only a single AND gate, and the summation is realised by an
OR operator. Two chips have been designed: the SU3232, containing 1,024 synaptic
elements arranged as a 32 by 32 matrix; and the NU32, which implements 32 neurons,
each including an 8-bit divide-by-N prescaler, a 16-bit integrator, and a stochastic pulse
generator. The precision is controlled by the number of clock cycles (256), thus higher
precision results in slower speed and vice-versa. The architecture is very flexible, being
able to realise any network topology. However, on-chip learning is not possible; the chips
are dedicated to the recall phase only.

At Imperial College o f Science and Technology (UK), Aleksander and his group
have developed a series of WISARD machines, which are adaptive pattern recognition
machines, designed specifically for image processing [12, 13, 14]. The system is based on
the principle that a simple memoiy device has neural-like properties [12]. The system
centres on arrays of RAM cells that operate as image discriminators^ in a way analogous
to a hologram. Each discriminator consists of K RAMs of N bits followed by a summation
operator that counts the number of RAMs in which the output value is ‘1*. The input
images are digitised, so that each pixel is represented by a single bit. The discriminators are
trained with example of objects (frames captured by a video camera). Therefore, the image
(represented by AxK pixels) is fed into the discriminators, which indicate the similarities
among the input pattern and each of the previously training set of patterns.

At University College London^ research in neurocomputers have produced three
distinct digital chips. The first is a general-purpose chips based on the RISC
architecture [140,180], in which PEs are interconnected through linear arrays in the form
of rings to a host microcomputer. The PE unit is divided into communication unit and
execution unit with local memory for program and data, providing a full MIMD machine.
The second is also a general-purpose architecture, which combines MIMD and SIMD
approaches into a single architecture [141]. This combination allows the implementation of
virtual neurons^ in which a single PE can embody the function of more than one neuron.
The third is a special-purpose neural chip based upon the Generic Neuron
architecture [140], described in chapter 6 of this thesis.

42_______________________ Neural Computing System s _________________ Chapter 2

Several other research groups follow the digital design approach. Examples include
the group led by Ramacher at Siemens [153] and the group led by Duraton at Philips
[112]. Both designs are based upon systolic architectures providing efficient circuits to
employ synaptic matrix multiplication [105].

Hybrid Designs

A hybrid neural chip combines analogue and digital techniques in an attempt to
provide the best features of each. For instance, analogue circuits performing the
propagation rule and the activation function may be combined with digital memories. This
avoids the storage problems of analogue technology, and allows the implementation of
on-chip learning [123].

Graf and his group have extended their analogue designs to provide learning for
the chips [65]. They have designed a hybrid chip comprising 54 neurons (amplifiers) fully
interconnected through a programmable resistor matrix of 2916 elements. Two RAM cells
are used in the synaptic circuit, providing excitatory, inhibitory, and disable connections.
The problem with this arrangement is that inhibition is six times stronger than excitation,
which causes mismatching problems, thus limiting the precision.

At the Catholic University o f Louvain^ Belgium, Verleysen and his group have
built a small Hopfield based analogue neural chip to test their approach [192, 193, 194].
The chip contains only 14 neurons and 196 synapses. The synapse circuit is similar to the
one developed by Graf. The synapses are programmable and implemented by RAM cells,
which were improved to overcome the problem of mismatching when inhibitory and
excitatory currents are summed. Their solution consists in summing all excitatory currents
on one hne and all inhibitory currents on another. By employing identical transistors on
each line, the mismatching problem disappears.

At the University o f Edinburgh, Murray and his group have devised a different
approach using pulse-stream arithmetic, which is inspired by its analogous relationship
with biological neurons [124, 126]. In this scheme, neurons operate as switched
oscillators, and the level of accumulated neural activity controls the oscillator’s firing rate.
Therefore, the neuron’s output state is represented by a pulse frequency, and each synapse
determines the proportion of the input stream that passes to the neuron’s input. The
architectural structure is based on a fully connected network, arranged in a
two-dimensional array of synapses. The first prototype is a 3 pm CMOS chip, comprising
a small network of 10 by 10 synaptic matrix and 10 off-chip neurons. The synapse circuit
is based on a digital RAM, that stores the weight, and on chopping clocks, that form the
pulse-stream input to the neuron. The basic component of the neuron is a

Chapter 2________ Neural Computing System s______________________________ ^

voltage-controller oscillator (VCO) that is controlled by the charge on a capacitor. This
digital weight-storage memory occupies a large area, therefore the implementation of the
subsequent prototype includes a fiilly analogue pulse-stream synapse [74, 125].

Murray’s approach has received considerable support, being followed by a number
of other research groups [74, 125].

2.3.2. Optical Neurocomputers

The most crucial issue in developing optical computers is to find suitable device
technologies for the target application [82]. For fully optical neurocomputers, the research
is centred on two basic issues: the devices that simulate the non-linear mapping performed
by the neurons, and the interconnection.

Spatial Light Modulators (SLM) are perhaps the most important devices, being
used as input-output devices, two-dimensional memory, and parallel operation device
[203]. A SLM is basically an electrically controlled two-dimensional array of optical
modulators. Several types of SLMs, built with different materials and principle of
operation, are commercially available [28]. Most of them operate in a high contrast mode,
producing a two-dimensional hght modulation that is proportional to a thresholded version
of an image, thereby simulating the action of neurons [151]. Although several other
approaches have been investigated to simulate an array of neurons [174], the research in
optoelectronics [89, 169] is probably the most important, in which two-dimensional arrays
of detectors and light emitters (using light emitting diodes — LEDs) are integrated onto a
single substrate. A proposal for such an optoelectronic neural system has been reported
in [101].

Regarding interconnection, one of the most promising technologies for realising
programmable optical interconnections (required for learning), with potential high density,
relies on photorefractive crystals [151]. By recording the hologram on these crystals,
programmable connections can be achieved.

Optical implementation of neural networks started to receive a great attention
when Hopfield published his paper back in 1982 [86]. Since then, researchers started to
devise optical techniques to implement the Hopfield Neural model.

Psaltis and Farhat [150] first proposed the arrangement shown in Figure 2.3, which
behaves basically as associative memories. The row of transmitters (LEDs) represents N
logic elements with binary states (LED on or off), the two-dimensional array represents
the synaptic-weights, and the column of detectors (photo-diodes), together with the

44 Neural Computing Systems Chapter 2

feedback pattern, represent the array of thresholding devices. The feedback can be done
electronically or optically. Another group, led by Athale, has developed a similar approach

based on electro-optic components [23].

Diffutlng
PD

Arrays

Momory

LED
Memory

Mask

(a) Electronic Feedback; (b) Optical Feedback;

Figure 2.3 — General Schemes for Optical Implementation of Neural Networks

Psaltis and his group have reported several other experiences. A system based on a

variation of the above scheme has been assembled for a network of 32 neurons [52]. A
holographic associative memory arranged as a complex optical loop system for pattern

recognition has been constructed [8]. The system comprises several lenses (Lj), mirrors

(Mj), pinhole arrays, threshold devices (consisting of 10,000 elements simulating neurons),
and a pair of planar holograms. A multilayer optical system performing an approximate
implementation of the Back Propagation learning algorithm has also been built [195].

In Japan, two major companies are investigating optical neurocomputers: NTT and
Mitsubishi. At NTT, an optical multi-layer Back Propagation network, with learning

capability, has been constructed [98]. The modifiable synaptic weights were realised by

using a photorefractive crystal and microchannel spatial light modulator. At Mitsubishi, an

optical neural chip has been fabricated using the GaAs technology [135]. The device

consists of an array of LEDs, an interconnection matrix, and an array of photo-diodes that

were integrated into a hybrid-layered structure on a GaAs substrate. The fabricated device

contains 32 neurons, and implements the Hopfield associative memory with three stored
vectors.

2.4. Integrating Software and Hardware Tools

As seen before, techniques and technologies for implementing specialised hardware

for neural networks are an intensive area of research. Although some areas, such as optical

systems, are still in early stages of development, others, such as analogue and digital
electronics, are very mature and can be applied immediately. For these systems, several

Chapter 2 Neural Computing Systems 45

neural chips have been designed independently of neural programming environments,

although a clear connection between them exists [68].

In this research, integration of software and hardware tools for neural computing is

investigated in depth. An integrated system, able to automatically generate a specialised

neural circuit tuned to execute optimally neural applications, is proposed. The core of this

integration relies on the development of the hardware design tool, which in the case of

electronic chips is called silicon compiler. In addition, a hardware simulator tool is also

needed to simulate exactly the neural computation in hardware. This tool is required

because hardware constraints can severely restrict the correct computation of neural

algorithms.

By integrating these tools (programming/simulation environment and silicon

compiler), the same neural network description used in the programming environment for

simulation is also used by the silicon compiler for hardware implementation. Figure 2.4

depicts the general view of an integrated neural programming environment (see also

Figure 2.1). The implementation of such an integrated system is discussed throughout this
thesis.

Hard war»
A loorithm lj

U b ra iv T

Algorithm
Library

Translator

Intermediate
Level

Language

C h îf f

Sequential
Computer

High-Level
Language
(Application
Definition)

\ \ Parallel
\ . Computer.Graphic

Monitor
Environment B

#e
■

I
1 Simulator
1 Command

V Neural
[Computer

Figure 2 .4 — Proposal for Integrating Software and Hardware Tools

2.5. Summary

This chapter has reviewed past, current, and future trends in developing systems to

exploit neural computing technology. In the software domain, sophisticated neural

programming environments have been developed. They provide an appropriate platform

for experimenting with the continuous progress of neural models and applications. In the

hardware domain, several researchers have devised new architectures and devices that can

emulate the way artificial neurons compute. The range of options varies considerably, and

46______________________________ Neural Computing System s_______ ________________Chapter 2

several different technologies have been tried. In the near future, electronics should
continue to dominate the area, but in the medium to long term, optical devices should
reach a point of maturity, in which practical optical neurocomputers might be constructed
for several different applications.

Chapter 3

Silicon Compiiers

This chapter presents the background fo r the high level synthesis system
developed in this thesis. The entire silicon compilation process is first reviewed
and its characteristics examined. Then, the anatomy o f the high level synthesis
process is investigated. The chapter concludes by presenting a simple taxonomy
o f silicon compilers, focusing the discussion on systems that employ high level
synthesis.

3.1. Introduction

The design of digital VLSI integrated circuits is clearly a laborious task, involving

several levels of specification: system, algorithmic, register transfer, logic, and circuit
(Table 3.1). While system and algorithmic levels contain very little detail about the actual
chip, the circuit level gives a detailed description of the elements that implement it. Along
with the specification levels, designs can be described at three different domains:

behavioural, structural, and physical [58].

In the behavioural domain the system is specified as a black box comprising a

given set of inputs and outputs, and a set of functions describing the mapping from inputs

to outputs. In the structural domain, the system is described by a set of interconnected

components, while the physical domain describes exactly how these interconnected

components should be built.

Level of
Abstraction

Domain of Representation

System Communicating
Processes

Processors,
Memories, Switches

Physical
Partitions

Algorithmic Input-Output Memories, Ports,
Processors Clusters

Register Transfer
or Architectural Register Transfer ALUs, Registers,

MUXs, Busses
Floor Plans,
Macro Cells

Logic Boolean Equations Gates, Flip-Flops,
Cells

Standard Cells,
Module Plans

Circuit Network Equations Transistors,
Connections Layout

Table 3.1 — The Hardware Design Hierarchy

47

48___________________________________Silicon Compilers____________________________ Chapter 3

The translation of a design’s high level description to its final layout has been
frequently defined as a silicon compiler process^ [41,43,58, 171]. However, what is
understood by high level description varies from system to system. Depending upon the
level of abstraction contained in the input description, the complexity of the translation
process differs considerably. This level of abstraction, among the several silicon compilers
available today, ranges from parameterisable layout descriptions to procedural languages,
from macro cell assemblers to user defined module generators, and from completely
specified structural descriptions to behavioural specifications [59].

Today, the most accepted definition of sihcon compilation comprises the whole
process of an integrated system that implements a chip from an abstract behavioural input
description at the algorithmic level [198]. Starting from this behavioural level, several
transformation steps are required to synthesise the behaviour of the input description into a
hardware structure.

High level descriptions starting at the system level (Table 3.1) require a further
degree of transformation, which is higher than the one produced by current silicon
compilers. Typically, it involves the configuration of a system comprising components such
as processors, memories, and controllers, instead of designing those individual pieces.
Thus, a system level synthesis tool comprises two main tasks: partitioning of processes
into reahsable sub-systems; and specification of interfaces between these processes. To
date, none of the existing systems provide complete design aids at this level [187].
Nonetheless, a few research projects have started to tackle some of the these
issues [144, 177].

There are several reasons for producing tools that synthesise electronic circuits
from an abstract description of a design’s behaviour. The most important ones are outlined
below:

• Fast design cycle — reduces the design time, and consequently the time to market, an
important issue in today’s competitive electronics industry;

• Design space exploration — permits the designer a high degree of flexibility, by
experimenting several design possibilities, and avoids the tedious task involved in the
low level tasks of VLSI design;

• Correct-by-construction design — eliminates the possibility of humans errors during
the design; and

^Although the term silicon compilation was introduced in 1979 to describe the concept of assembling
parameterised pieces of layout [92], its meaning has gained popularity and broadened dramatically during
the 1980's.

Chapter 3____________________________Silicon Compilers_________________________ ^

• Easy to specify designs — permits wider utilisation of the system by non-expert users,
and facilitates the design of very complex systems with little or no human intervention.

These strengths have a great impact when hardware implementation of neural
networks is sought. Firstly, a fast route from a neural network specification to sihcon is
generally desired. Secondly, the details involved in designing integrated circuits should be
avoided. Finally, there is a great need for implementing neural chips quickly and rehably,
i.e., fast prototyping with high probability of obtaining working chips. Therefore, the
investigation of a silicon compiler dedicated to produce neural chips represents an
important tool for neurocomputing systems.

The next section analyses the characteristics of sihcon compilers and identifies the
current state of the art, giving motivations for the methodology adopted in this research.

3.2. Characteristics of Siiicon Compiiers

The design of sihcon compilers can be divided in two main phases:

• High level synthesis, which generates a certain hardware structure for the specified
behaviour; and

• Low level synthesis, which converts the structural description into a layout.

The term high level synthesis, in electronic design, concerns the identification of
the high level input description, which is fuUy behavioural (also caUed functional), and the
construction of a hardware structure that implements exactly the described
functionahty [35,114,187]. This hardware structure is usuaUy a register transfer level
(RTL) description, but can also include logic level descriptions. Since this process consists
of translating behaviour into structure, it is frequently referred as behavioural synthesis.
Because the synthesised structure implies a given architecture, this translation is sometimes
called architecture synthesis.

High level synthesis tools are still under research development and their use by
industry is very limited [114]. In fact, the design of such a tool is a very difficult task when
optimised results are sought [162]. There is no single mapping from one behavioural
description to the structure that implements it. Therefore, certain assumptions are
generally required, such as the target architecture, which constrains the use of the silicon
compiler to specific domains [109].

Low level synthesis is the actual construction of integrated circuits from RTL
descriptions at the structural domain [38, 59,108]. It involves logic synthesis and mapping
of the hardware structure onto a technology-specific description, which is then used to

50 Silicon Compilers Chapter 3

produce the final integrated circuit. Low level synthesis is also called structural synthesis
or silicon assembly.

Low level synthesis tools have been developed over the last decade with great
success [29, 31, 102, 139]. Several steps of the synthesis tasks are already automated and
used throughout the CAD industry [32, 61].

High level synthesis and low level synthesis can be characterised by several aspects,
such as the degree of abstraction of their input specification (see Table 3.1) and the
complexity of their synthesis algorithms. The most important issues are reviewed in the
next sub-sections.

3.2.1. Input Description

Input descriptions are extremely important for sihcon compilers, since their level of
abstraction has a great impact on the silicon compiler’s complexity. Throughout this thesis,
a high level description is assumed to be a behavioural description of the design at the
algorithmic level. In addition, only systems that accept high level descriptions as input and
generate the layout of an integrated circuit as output are considered silicon compilers.

As Table 3.1 suggests, input descriptions can be at the behavioural, structural, or
physical domains. Based on this premise, the complexity of CAD systems varies
considerably: behavioural specifications are likely to be the input of high level synthesis
systems (and consequently sihcon compilers), while structural descriptions are usually the
input of logic systems, and physical descriptions are the input of layout synthesis systems.
For purposes of clarification. Figure 3.1 shows a simple description of an adder at different
levels of detail and domains of representation: algorithm level (ALG__Behaviour) and logic
level (LOGIC_behaviour) both at the behavioural domain; and gate level (GATE__Structure)
at the structural domain.

ENTITY adder IS ARCHITECTURE GATE Structure OF adder ISPORT (X: IN BIT; COMPONENT and gateY: IN BIT; PORT (ini I IN BIT;2: OUT BIT; in2 : IN BIT;C; OUT BIT out : OUT BITEND adder; END COMPONENT;ARCHITECTURE ALG Behaviour OF adder ISBEGIN COMPONENT xor gatePROCESS (X, T) PORT (ini : IN BIT;BEGIN in2 : IN BIT;Z <- X + Y; out : OUT BITIF (X - AND Y - '!') THEN C <-);END COMPONENT;ELSEC <- 'O'; BEGINEND IF; add: and gate PORT MAPEND PROCESS; < ini “>END ALG Behaviour; in2 -> I);ARCHITECTURE LOGIC Behaviour OF adder ISBEGIN carry: xor gate PORT MAP (ini -> X/PROCESS (X, Y) in2 -> is,BEGINZ <- X xor Y AFTER 5 na;C <“ X and Y AFTER 5 ns; END GATE Structure;END PROCESS;END LOGIC Behaviour;

Figure 3.1 — Example of the Design Hierarchy in VHDL

Chapter 3____________________________Silicon Compilers___________________________________ 51̂

Today, most of the existing hardware description languages (HDL) allow the
design to be specified in several levels of abstraction. For example, VHDL^, the IEEE
standard HDL [6], can describe designs from system to gate level, at the behavioural and
structural domains. EDIP, the EIA standard interchange format [4], can describe designs
at lower levels such as gate and circuit level, at the structural and physical domains. For
this reason, VHDL is frequently the input for high level synthesis systems [37], and EDIF
is frequently the input for low level synthesis systems, in particular, layout synthesis
tools [166].

Today, there is a trend towards VHDL as the input language for high level
synthesis, as well as logic synthesis [10, 37, 38, 47, 48, 128, 157, 173], in spite of its
inherent difficulty for such task^. VHDL is generally considered difficult to synthesise
because there is no clear guideline for synthesis input [95]. Examples of such difficulties
include semantics such as "a<=b after 10n.y,cafter20/ir,’ and language constructs, such
as assert statements and access types [37]. Although solutions have been proposed [37],
they usually tend to restrict the language to a specific subset, and therefore defeat the idea
of a standard language. Nevertheless, these problems are currently being addressed by the
VHDL standard group, and it is expected that these issues will be resolved by the new
definition [3].

Several other HDLs exist, such as UDL/I^, Verilog, and Ella [45], which, as well as
VHDL are directed to hardware designers. Some research projects have adopted
wed-known software languages, such as C [5, 46], Pascal [148,184], and ADA [62, 70],
and extended them to include hardware constructs, therefore converting them into HDLs.
Two examples include HardwareC [5] and Flamel [184]. Another approach is to use these
software languages without transforming them into HDLs. In this case, no structural or
control information are present in the user’s specification. Therefore, hardware synthesis
becomes a greater problem, since several hardware constraints are omitted, leaving the
synthesis task with a wide range of options. Some specific application domains require this
approach, such as the Cathedral-II [108] silicon compiler along with its language SILAGE,
the Galatea system [20], and the NSC developed in this thesis, which adopts a C-like input
language. For these systems, in particular the last two, the hardware details should be
completely omitted from the user, as discussed in chapter 1.

^VHDL stands for YHSIC Hardware Description Language; where VHSIC is the Veiy High Speed
Integrated Circuits Program Office of the American Department of Defense.

^EDIF stands for Electronic Design Interchange Format.
^VHDL has been originally directed at meeting mixed level simulation requirements only.
^In Japan, VHDL has not been adopted. Instead, UDL/I, Unified Design Language for hitegrated Circuits,
has been standardised by Japanese industries [7] to be a logic synthesis oriented design language [95].

52___________________________________Silicon Compilers____________________________ Chapter 3

3.2.2. Internal Representation

The textual form of the input description is usually translated into an internal
representation, which is more powerful for expressing the data and control flow, and more
suitable for computer manipulation. Two types of representations are generally used,
namely parse trees and graphs, upon which synthesis algorithms are applied. The vast
majority of high level synthesis systems use graphs; examples include the Yorktown
Intermediate Format (YIF) [30], Value Trace (VT) [113], Irvine’s Behavioural
Intermediate Format [50], and IBM’s Sequential Synthesis In-core Model (SSIM) [33].

The role of an intermediate representation is to describe the design’s data and
control flow in a suitable form, in which algorithms can be applied to extract useful
information. Several types of graph representation have been proposed [136]: precedence
graph, control flow graph (CFG), data flow graph (DFG), control and data flow graph
(CDFG), and Petri-nets.

Precedence graphs specify the dependence among operations through the
precedence relations determined by the order they are executed. It is a digraph [40]
composed of a set of vertices and a set of arcs. Each vertex contains one or more
operations. An arc A from VI to V2 indicates that VI is an immediate predecessor of V2.
The control flow and data flow information are obtained by reading the whole graph from
vertex to vertex. The YIF is an example of a system using precedence graphs.

Data flow graphs (DFG) specify data dependencies. Its vertices represent the data
(variables, constants, and signals) and operations, while its arcs represent communication
paths that carry values between nodes, indicating the direction of the data flow
(Figure 3.2a). Control flow graphs (CFG) do not imply data dependency; it only describes
the sequence in which operations are executed. The nodes correspond to the operations,
and the arcs link immediate predecessor-successor pairs, in which conditional branching is
indicated by more than one successor (Figure 3.2b). Several design automation systems
use a form of DFG and CFG formats. Some systems use both formats (CDFG), in which
either separated graphs for data and control are used or a single graph unifying control and
data flow information are employed (Figure 3.2c). The Value Trace is an example of such
approach [113]. Figure 3.2 illustrates these three types of flow graph representation.

Finally, some systems use Petri nets, in which transitions represent actions (or
operations) that are executed (or fired) whenever certain conditions are true, which are
denoted by markings of places [148].

Chapter 3___________________________Silicon Compilers__________________________________ ^

The choice of an intermediate format is usually based upon the type of the input
description and, what is more important, upon the synthesis algorithms. For example,
Petri-nets, precedence graphs, and control flow graphs are useful for the determination of

control states, while data flow graphs are more suitable for the synthesis of data path

structures.

IF (e > 5) THEN
a := e ;

ELSE
c : = b ;

END IF;
(a) DFG (b) CFG (c) CDFG

Figure 3.2 — Examples of Control and Data Flow Graphs

3.2.3. Target Architecture

The automatic synthesis of a hardware structure from an abstract high level
description involves a search through a large design space, since there is no single mapping

from one behaviour to the structure that implements it. Therefore, an exhaustive search for
the optimal implementation is required. This is clearly a very difficult and extremely time
consuming task. Several approaches have been proposed for this task [114] but with

limited practical success [162] for general-purpose systems. Conversely, some
special-purpose systems, in particular those for digital signal processing (DSP)

applications, have reported good results [188]. This is mainly because the special-purpose

approach restricts the design space by limiting the architectural model (or target

architecture).

There are several possible architectures for each application field. Silicon compilers

have been typically developed to design processors and DSP circuits. For these

applications the target architecture is fixed by choosing, for example, the clocking scheme,

the type of communication (synchronous or asynchronous), the type of controller (finite

state machines, or microcode), and the type of data path (serial, parallel, pipelined, etc.).

The definition of a target architecture also permits the synthesis of optimised

circuits, which can potentially match the same quality of a design produced manually. This

is a very important issue, in particular, when neural chips are to be generated through

silicon compilation. By choosing an appropriate target architecture, very dense circuits can

be achieved. Consequently, several processing elements can be integrated into a single

chip, permitting the construction of large neural networks in hardware.

54___________________________________Silicon Compilers____________________________Chapter 3

3.2.4. High Level Synthesis

High level synthesis is the process of transfomiing an abstract behavioural
specification of a digital system into an interconnected set of RTL components, such as
ALUs, registers, memories, multiplexers, and busses. The task of finding a structure that
implements the behaviour is usually achieved by satisfying a set of constraints and goals.
High level synthesis is the front-end of the silicon compilation process, being cmcial for
producing efficient designs. Its output, the RTL specification, can be further transformed
by logic and layout synthesis systems to produce the final chip.

After the input specification has been compiled into an intermediate representation,
the core of transforming behaviour into structure is accomplished by two tasks: data path
and control synthesis. Upon this phase, the following major tasks can be identified:

• Hardware allocation, also called resource allocation or simply allocation, involves the
definition of execution units, storage units, and interconnection units. The allocation of
these units is generally accomplished by an algorithm that takes into consideration time
and area constraints.

• Hardware assignment, which binds operations to specific hardware units, such as
ALUs, registers, and busses.

• Scheduling, which consists in assigning operations to the so-called control steps^. It
determines the exact time slot each operation will be executed, as well as the
composition and contents of the controller.

• Hardware sequencing, which generates a sequencer that uses control signals for
commanding the actions in the data path.

The main tasks involved in high level synthesis are examined in section 3.3.

3.2.5. Logic Synthesis

Logic synthesis fits between the RTL specification and the netlist of gates’
specification [31]. It takes a structural design, with an interconnected set of RTL
components, and generates an optimised combinational logic, which is mapped onto a
library of available cells in a specific technology. Logic synthesis is commonly used for the
synthesis of control parts, since it applies only to the logic extracted from the RTL

control step is the fundamental sequencing unit in synchronous systems, corresponding to a clock
cycle. It is equivalent to a state in a control finite state machine, or microprogram step in a
microprogrammed controller.

Chapter 3____________________________ Silicon Compilers____________________ %

specification. Therefore, memory blocks, ALUs, registers, etc., are simply set aside with
their inputs and outputs being outputs and inputs, respectively, to combinational logic
blocks. Two approaches are used: two-level (PLA-like) logic synthesis; and more recently
multi-level logic, also called random logic, synthesis [31].

Two-level logic synthesis has dominated the arena in the early 80’s [29, 31, 158].
It has been focused on the automatic generation of PLA structures [54, 118]. Since PLAs
are among the most popular structures for implementing logic functions in two-level
form [134], they are today vastly used in commercial microprocessors. The synthesis
basically concerns with minimising the number of PLA product terms through two-level
minimisation steps, aiming at faster and smaller circuits. Although efficient optimisation
algorithms have been devised, two-level logic is not best suited to handling multiple blocks
of combinational logic [31].

Multi-level logic synthesis started in the late 70’s and became mature in the late
80’s, when results achieved the same level of advancement as for two-level logic
synthesis [29, 31]. Today, several commercial CAD companies successfully adopt the
methods and algorithms developed during that period [32]. Multi-level logic is a general
case that includes two-level logic. Its main goals are: (i) to minimise the area occupied by
the logic equations (measured as a function of the number of gates and transistors), while
simultaneously satisfying the timing constraints; and (ii) to maximise the testability of the
synthesised logic [31].

3.2.6. Layout Synthesis

Layout synthesis tools are the most common [102, 139]. The problems
corresponding to physical design are well understood, even though they remain difficult
from a computational standpoint [102]. Layout synthesis takes the netlist of interconnected
cells as input and creates the actual physical geometry (layout) of the design. Several
design systems are commercially available [2,117], and nowadays research is focusing
more on the problems resulting from emerging design methodologies, for example, field
programmable gate arrays (FPGAs) [162].

3.3. Anatomy of High Levei Synthesis

The main steps involved in a high level synthesis system can be summarised as:

• High level transformations of the HDL into an internal representation, usually a
CDFG, and further transformations (and optimisations) of the internal representation
into a more suitable form towards hardware synthesis;

56___________________________________Silicon Compilers____________________________ Chapter 3

• Data path synthesis, comprising two major tasks: allocation and scheduling. The first
assigns each operation to a piece of hardware. This involves the selection of the type
and quantity of hardware modules from a library (called module generation) and the
mapping of each operation to the selected hardware module. The second assigns each
operation defined in the graph to a control step;

• Control synthesis, which generates a controller based on the scheduling performed
previously.

3.3.1. High Level Transformations

The main goal of high level transformations is to optimise the behaviour of the
design in such a way as to produce a more suitable specification for the synthesis of the
hardware structure. Most of the transformations are software-like optimisations [11], such
as constant propagation (where constant expressions are evaluated at compile time), dead
code elimination (where pieces of code not reachable by the program flow are eliminated),
and common sub-expression elimination (where sub-expressions are identified and their
result stored for later reference). Other transformations are more specific to the hardware
synthesis, and they include:

• Hardware-specific local optimisations, which transform some specific operations into
faster and smaller structures. An example includes the division or multiplication of a
number by another that is a power of 2. In this case, shifting operations produce faster
results.

• In-line expansion of subroutines, which unlike software compilers increase the
optimisation possibilities for hardware synthesis, since some of the control steps in the
subroutine can be interleaved with the surrounding statements. Furthermore, the call
and return instructions are eliminated.

• Select combination, which permits the combination of successive i f ot case statements
into one case statement. This eliminates all control steps necessary to make sequential
decision and implements them in a single step. An exception to this rule occurs when
values in one branch of the selection statements are dependent upon values calculated
by previous branches of the same selection.

• Transformation of some specific complex data structures into simpler ones for better
hardware manipulation. An example includes the sum of products operation, present in
the majority of neural models, in which two blocks of memory are the input data. In
this case, it is very common to specify in the input language only one block in which

Chapter 3 _________________________Silicon Compilers_____________________ ^

the data is put in sequence and a pointer is incremented each time a data is read. For
hardware purposes, it is better to have two separated blocks of memory in which data
can be read simultaneously. This is done in the high level synthesis developed in this
work and is explained in chapter 7.

• Introduction of concurrent processes, which may be synthesised as concurrent
hardware, leading to faster designs.

• Reducing the number of levels in the graphs, such as the height reduction algorithm
called level compression in Flamel [184], which may lead to faster hardware.

The design of a digital circuit usually involves the definition of a data path structure
and a control unit that commands data transfers. Data path structures are simply a network
of registers, functional units, multiplexers and busses. The control unit can be either a
microcode, PLA, or random logic. The synthesis of these two hardware structures is
discussed in the next two sub-sections.

3.3.2. Data Path Synthesis

Data path synthesis consists of two basic tasks: scheduling and resource allocation
(binding) [46, 176]. Scheduling involves the determination of which operations are
executed in which control states. Resource allocation consists of: mapping all variables and
operators specified in the input description into storage elements and functional units,
respectively; defining the interconnection resources; and optimising all created resources.

Scheduling and allocation activities are interdependent tasks According to the
amount of hardware allocated, different scheduling possibilities arise. Conversely, for a
given schedule strategy, different pieces of hardware would be necessary to match timing
requirements. For example, two operations can be scheduled in the same control step only
if they do not use common hardware resources; similarly, the decision about the number of
functional units to be used depends on what operations are done in parallel, which is
determined by the scheduling strategy. Therefore, the order in which these algorithms are
executed is very important. Since allocation aims at minimising area and scheduling
attempts to minimise time delay, a trade-off between the two algorithms must be achieved
for each particular case, depending upon the main aspects to be optimised.

Scheduling Algorithms

The task of scheduling is to assign operations to specific clock cycles (in
synchronous systems). The order in which specific operations are accomplished is obtained

58 Silicon Compilers Chapter 3

from the input description. The goal is to optimise the number of clock cycles in order to

maximise speed given certain limits on hardware resources and cycle time.

Scheduling algorithms must respect hardware constraints. For synchronous

designs, every component can be used only once during a specific control step. Therefore,

registers can be loaded only once, combinational logic may evaluate only once (no

feedback), and busses may carry only one value.

The approaches developed so far include: As-Soon-As-Possible {ASAP)

scheduling, As-Late-As-Possible (ALAP), list scheduling, force-directed scheduling, and

path-based scheduling [198].

The ASA P scheduling assigns operations to the earliest possible control step by

sorting the data-flow graph topologically, according to its data dependencies using a

depth-first search [164]. This means that an operation is performed as fast as its inputs are

available. Conversely, ALAP scheduling assigns all operations to the latest possible

control step. To illustrate how these two algorithms work. Figure 3.3 shows a CFG after

ASAP and ALAP algorithms are employed for the given specification [198]. Note that the

ALAP algorithm resulted in the possibility of merging operations 5 and 6 in a single

execution unit, thus saving silicon area. The mobility is thus defined as the difference
between the two approaches, meaning that each operation with a mobility greater than one
(operations 3, 4, 9, and 10 in the example) can be scheduled in one of the control steps

comprised by its mobility.

Examples of systems performing ASAP scheduling include Facet [185],

DAA [100], Bridge [186], HARP [175], and Flamel [184]. ALAP algorithm is generally

used in conjunction with ASAP to calculate the mobility of operations, so that more

sophisticated algorithms can be applied.

ENTITY example IS
PORT(inl,in2,in3:IN Integer; com :IN bit;END example;

ARCHITECTORE Beh of ex IS
BEGIN
PROCESS
VARIABLE a,b,c,e,f:integer;
WHILE(e > f) -- 1
LOOP
IF (com - '!') THEN e ini;f :- in2; a d + in2;b c - in3;
c a + b;
d c + 3;

ELSE e in2;f :- in3;END IF;END LOOP;

- - 2 -- 3 -- 4 -- 5
- - 6
-- 7

-- 9 --10

Control
S tep

MobilityALAPASAP

Figure 3.3 — ASAP Schedule, ALAP Schedule, and Mobility

Chapter 3 ______________________ Silicon Compilers________________________ __________ ^

In ASAP and ALAP algorithms, the decision of the next operation to be scheduled
is made locally, which generally leads to sub-optimal designs. List scheduling overcomes
this problem by using a more global criterion for selecting the next operation [198]. It
creates a Hst of available operations to be scheduled, and sorts the list following some
priority function, such as the length of the longest path. Thus, operations on longer paths
are scheduled earlier than operations on shorter paths, since longer paths require more
control steps. For each control step a list of operations is constructed, containing
operators in which inputs are produced in earlier control steps and therefore do not violate
any resource constraints. Then, the highest priority operator is placed into the current
control step, the list is updated, and the process continues until no more operators can be
place into that control step. This process is repeated for each control step, until the entire
design is scheduled. Several systems use list scheduling, such as MAHA [145],
Slicer [142], and Cathedral-II [108]. They differ from each other depending upon the
adopted priority function.

Forced-directed scheduling employs a different mechanism for deciding the next
operation to be scheduled. It uses the so-called force on each operation, which measures
the number of operations of the same type that can be scheduled on the same control step.
By minimising the force, the algorithm tends to balance the use of functional units across
the data flow graph, producing a schedule that minimises the number of resources needed
to meet a given time constraint. To accomplish this, a distribution graph is constructed for
each set of operations that could share a functional unit, which shows how loaded the
control step is. The mobility of each operation is used to determine the distribution graph.
Once all the forces have been calculated, the operation-control step pair with the least
positive force is scheduled. The advantage of this algorithm is that it tends to balance the
distribution graph, so that a minimum amount of hardware is used to achieve a given time
constraint. HAL [147] adopts such strategy.

Lastly, Path-based scheduling focuses on the conditional branching of control
flow graphs by independently scheduling each path (using one of the above algorithms) to
allow sharing of hardware. YSC [30] uses a heuristic path-based scheduling, while
HIS [36] uses an AFAP (as fast as possible) path-based scheduling, described later in
section 3.4.3.

Allocation Algorithms

The main goal of allocation algorithms is to share hardware units, so that the whole
design is optimised. This means that operations share functional units, variables are
mapped onto conunon registers and memories, and data transfers share busses and

60___________________________________Silicon Compilers____________________________ Chapter 3

multiplexers. The problem of allocating hardware structures to each operation, variable,
and communication path falls into three parts:

• Generation o f storage elements, such as register, signal, up/down counter, RAM,
ROM, and I/O ports);

• Generation o f functional operators, such as adder, subtracter, logical and, logical or,
comparator, etc.; and

• Network generation, which attempts to gather several source signals into one
destination, which can be either a multiplexer or a uni-directional bus. If more than one
destination is desired, bi-directional busses are then required.

There are basically three approaches for solving the allocation problem [198]:
heuristic, linear programming, and graph-based.

Heuristic approaches usually select one element (variable or operation) at a time
according to specific criterion. This may involve the use of a global cost function, which
chooses the assignment that saves the most hardware, or the use of a data-flow order that
results in the lowest cost. Examples of systems employing such technique include
DAA [100], HAL [147] and Olympus [121].

Linear programming approaches formulate the problem from a mathematical
standpoint and try to solve it using linear programming techniques. This was first proposed
in 1983 [71], but due to lack of computational resources the method produced reasonable
results only in small designs. Today, the technique has reappeared in some systems, solving
several allocation problems [26, 60, 104,143].

Finally, graph-based approaches formulate the problem as a clique partitioning
problem. A clique is defined as a complete sub-graph, where each node is connected to
every other by a direct arc. The problem is to find a minimum set of cliques in the entire
graph that every node is in one and only one clique. Tseng and Siewiorek were the first to
transport this problem to allocation [185]. In this case, an arc indicates that two connected
nodes do not share a common control step, thus being candidates for sharing resources. By
finding the minimal number of cliques, by analogy, the minimum number of physical
operators is achieved. Bridge [186] and Facet [185] are both examples of systems
employing such a technique.

Chapter 3 Silicon Compilers 61

3.3.3. Control Synthesis

The task of generating a controller for the synthesised data path is directly related
to the scheduling strategy. Although some authors categorise scheduling as part of the
control synthesis [198], rather than an integral part of the data path synthesis, scheduling
and control synthesis can be distinguished from each other quite dramatically [152].

Control synthesis is the creation of a controller in the form of a finite state
machine, which commands the sequence of the operations executed on the data path by
providing control signals to the data path modules [59]. This is the last step in the
synthesis process, and involves the definition of a controller architecture and the
instantiation of the controller components’ parameters. The finite state machine can be
implemented in various ways, such as random logic, PLA, or microprogram (using a
microcode ROM with program counter) [77, 97, 163].

3.4. Taxonomy of Silicon Compilers

According to the characteristics presented by silicon compilers employing high
level synthesis. Table 3.2 presents a simple taxonomy for some well-known systems. This
includes the characteristics presented in section 3.2 and high level synthesis algorithms
examined in section 3.3. The remaining of this section reviews some of these silicon
compiler systems and classifies them according to the aimed applications, input
description, internal representation, target architecture, and type of synthesis algorithms
employed.

High Level
Synthesis

System

Prim ary
Applications

Input
Description

Internal
Representation

T arget
Architecture

Synthesis
Algorithms

Olympus General-
Purpose HardwareC SIF X Iterative graph-

based scheduling

Yorktown General-
Purpose V YIF X Heuristic padi-

based scheduling

HIS General-
Purpose VHDL SSIM X AFAP path-based

scheduling

Cathedral'll DSP Chips SILAGE SILAGE
primitives

Bit-parallel
processors
for DSP

applications

List Scheduling,
Bus Merging

Galatea Neural Chips N Internal Tables INPG Folding of virtual
neurons into PEs

UCU sN SC Neural Chips nC ICR Generic
Neuron

Default mode and
User-driven mode

Table 3.2 — Simple Taxonomy of High Level Synthesis Systems

62___________________________________Silicon Compilers____________________________ Chapter 3

3.4.1. Olympus System

The Olympus system [121] is a general-purpose integrated set of tools for synthesis
of digital circuits, supporting behavioural, structural, and logic syntheses with timing
constraints. The output of the design is given as a netlist of gates or compiled macrocells,
with no support for placement and routing tools. For these non-supported tools, interface
to standard physical design tools is provided.

The input to the Olympus system is HardwareC [5], an extension of the C
programming language [96], with features to support hardware synthesis. At the
behavioural level, the language includes: support for synchronisation and communication
between different processes; modelling parallelism; and timing constraints’ specification.
At the structural level, the language permits the definition of memory modules, parameter
classes (m, out, incut), and architectural registers that should be implemented as a register
during data path synthesis.

High level synthesis is performed by Hercules and Hebe [121]. Initially, parse trees
are used for the high level transformations. An internal representation, called Sequencing
Intermediate Form (SIF), is used for scheduling and allocation. SEF is represented as a
directed acyclic graph with operations being the vertices and the arcs representing the
predecessor-successor relationships (which are subject to the data flow dependencies
between operations).

The high level synthesis starts with Hercules. The input description is parsed and
translated into an abstract syntax tree representation. The parse tree abstraction provides
the underlying model for semantic analysis and optimisations similar to those used in
optimising compilers, including variable and constant propagation, dead-code elimination,
and data-flow analysis. In addition, Hercules includes a mechanism for hardware-oriented
optimisations, called reference stack [\\9]. This mechanism provides information to
structural synthesis, resulting in a minimised number of registers needed to implement the
functionality of the input description. In addition, control steps needed to implement
alignments to variables are eliminated.

Hebe takes the SIF representation generated by Hercules and implements the
structural synthesis through allocation and scheduling algorithms. Hebe*s strategy for data
path synthesis is to first perform hardware allocation followed by scheduling. It binds
operations to specific resources, and then performs scheduling that satisfies the timing
constraints. This process is repeated for different possible binding alternatives.

Chapter 3_________ Silicon Compilers___________________________________ ^

Control synthesis is implemented as an interconnection of Moore type finite state
machines, one for each state vertex of the control graph. Each FSM may be designed
either as level-sensitive or as edge-sensitive registers. Control synthesis consists of two
tasks. The first is the sequencing control that is responsible for preserving the sequencing
behaviour from the SIF. The goal is to capture the behaviour of the structure in a minimal
number of states and transitions between states. The second is the constraint control that
deals with the constraints imposed by real hardware systems. The goal is to find an optimal
cycle time based on both design and timing considerations.

In summary, Olympus is an open system, and therefore not restricted to specific
applications. It supports only synchronous logic implementation, with no provisions for the
synthesis of pipeline structures or multi-phase synchronous logic. Consequently, the
quality of the generated circuit is generally poorer than the one created manually,
occupying larger sihcon area. Nonetheless, it is a flexible system, comprising several tools
ranging from high level to low level synthesis, which are in continuous development.

3.4.2. Yorktown System

The YSC (Yorktown Silicon Compiler) [30] is also a general-purpose system. Its
synthesis system starts from V descriptions, a Pascal-like language, which includes
processes, asynchronous caUs, and queues.

High level transformations convert V into the Yorktown Internal Format (YIF), a
control and data flow graph, through a series of software-like compilations. In the
data-flow graph, the vertices represent operations and variables, while the arcs represent
data dependencies. In the control-flow graph, the nodes represent operations, and the arcs
represent predecessor-successor relationships.

Scheduling is first performed by a control state assignment, which minimises the
number of control states. The algorithm starts with a single control state. Additional states
are added to permit modelling loops and procedure calls (called module call) [34]. States
are also added according to timing constraints and data flow restrictions. States can be
further split or folded to meet constraints.

Allocation is performed by initially assigning each operation to a combinational
function unit, and each variable to a register, producing a block of combinational logic for
each procedure. Then, for each block, a clique partitioning algorithm is used to accomplish
two functions: to fold together functional units performing the same operation in different
time steps or branch alternatives; and to fold together registers as guided by lifetime
analysis.

64___________________________________Silicon Compilers____________________________ Chapter 3

3.4.3. HIS System

The HIS (High level IBM Synthesis) [36] is another general-purpose system, and
has its roots in the YSC, It uses VHDL as the input language, but can also read the YIF.
An intermediate representation, called SSIM (Sequential Synthesis In-core Model) is used,
which represents control flow and data flow separately, although links between them are
explicitly kept. SSIM is hierarchical in that it can represent several modules at once, each
being synthesised separately.

Scheduling is first performed by an As-Fast-As-Possible (AFAP) algorithm on each
possible path in the CFG. AFAP scheduling attempts to find all possible execution paths
(defined by conditional branches) by searching the control-flow graph. Timing and
resource constraints are expressed as intervals where the paths must be cut to separate the
operations into states. Clique partitioning is then used on each path to find the minimum
number of cuts that meet the constraints, which results in the minimum number of control
steps for each path. This scheduling emphasises conditional branching rather than potential
parallelism like in the list scheduling and force-directed scheduling.

Data path allocation is very similar to the one used in the YSC, It falls into the
category of allocation algorithms based on clique covering. First, a complete initial data
path is generated by allocating functional units and registers, defining interconnections
(multiplexers) between these functional units and registers, and finally deriving the control
signals for the allocated hardware. In a second step, the initial data path is optimised based
on clique covering and colouring approaches, which consists in merging functional units,
registers, and multiplexers.

Control synthesis is done immediately after scheduling, and consists in constructing
a control FSM.

3.4.4. Cathedral System

The Cathedral-Il [108] is a system for synthesising digital signal processing (DSP)
integrated circuits. The synthesis process translates a behavioural, flow-graph algorithm
description expressed in SILAGE, a Pascal-like language, into a dedicated multi-processor
architecture.

SILAGE is a language specialised for high level description of signal processing
algorithms. While the basic object in SILAGE is the signal, a vector where components are
samples in the time domain from infinity to actual time, the basic operation is a functional
application of the signals.

Chapter 3____________________________Silicon Compilers______________________ 65

The synthesis process is strongly based upon the target architecture, which allows
considerable pruning of the search space and permits the use of dedicated optimised
techniques to exploit the architectural properties. The intermediate representation is simply
a set of SILAGE primitives, which are the results of parsing SILAGE and performing
syntax and semantic analysis that determine the data types of all signals.

Data path synthesis, called Jack-the-Mapper, first selects a number of executing
units (EXUs) from a library according to the input specification. Then, dedicated bus
connections between different EXUs within a single processor are allocated. Next, a
partially rule-based and partially algorithmic translator assigns each operation to a
particular type of EXU, assigns variables to register files, and generates a dedicated bus
for each variable. Scheduhng is done by list scheduling algorithm with priority to
operations on the longer critical paths.

3.4.5. Galatea System

In the Galatea project, neural chips are automatically generated through a set of
tools that comprise: the compilation of the neural network language N into the
intermediate language VML\ the application of a folding algorithm that attempts to merge
virtual neurons onto physical neural processors [129, 190]; and the generation of a VHDL
description of the neural chip. Although the Galatea system uses some ideas developed in
the NSC, it is not qualified as a silicon compiler, since no compilation nor synthesis is
done; it is best classified as a high level module generator. However, the Galatea tool is
included in this discussion for purposes of comparison with the NSC system, described in
the next sub-section.

The approach adopted in the Galatea project is limited in two basic issues: (i) it
supports only the recall phase of neural algorithms, that is, on-chip learning is not
supported by the generated circuits; (ii) it aims to generate optimal chips for a specific
application — the OCR (Optical Character Recognition). The compilation of N into VML
produces several tables, which specify the network’s topology, connectivity, and size. A
separate tool, called type simulator [190], provides hardware-specific parameters, which
are obtained from a simulation of the neural network application.

An interesting investigation in the Galatea system concerns the mapping of virtual
neurons (artificial neurons) into physical neurons (the PEs). This idea comes from the fact
that large networks cannot be integrated into a reasonable number of chips. Therefore, in
some applications, each PE should implement more than one neuron. The exact
specification of which neurons each PE realises is performed by the folding
computation [129]. This is done by a rule-based mechanism that examines the structure of

66_________________________ Silicon Compilers___________________ Chapter 3

the neural network and applies special folding procedures. The disadvantage of this
strategy is that parallelism is badly affected.

Th& folded network is then described by an intermediate format that fully specifies
the physical processor by a data structure that defines the number of virtual neurons, the
data precision, and the parameters specific to the neural computation. This format is
submitted to the hardware generator tool, which maps the description onto the specific
target architecture, the INPG’s architecture described in the section 2.3.1.

The Galatea project is still under development and will end by March 1994.
Although the adopted approach limits the number of neural network applications allowed,
designs very close to manual ones are expected to be achieved.

3.4.6. UCL’s Neural Silicon Compiler

The UCL’s NSC synthesis system, developed in this work, is more ambitious than
the Galatea system. The goal is to produce neural chips with on-chip learning capability,
supporting the majority of the neural models known. The high level synthesis starts from
the neural network language nC [191].

Several transformation steps are performed at the high level input. Because nC is
not an HDL, the data structures are not suitable for immediate hardware synthesis. The
transformations performed in nC include: transformations upon the data structures, which
allow better manipulation by the hardware; and hardware-specific optimisations that
attempt to eliminate extra nodes. Transformations are first carried out upon the parse
trees, which are then translated into a graph-based intermediate format (a CDFG), namely
intermediate code representation — ICR. Further transformations are employed, this time
upon the ICR^ before data path and control synthesis are applied.

Scheduling and allocation algorithms are simultaneously executed on the graph-
based intermediate representation. This means that rather than employing first scheduling
for the whole design followed by hardware allocation, or vice-versa, at each iteration of
the algorithm, both mechanisms are employed. However, according to the guideline
implicitly specified by the user, the approach focuses either on allocation or scheduling. If
constraints, such as maximum time to execute certain tasks, are specified, scheduling is
first executed, followed by the allocation for that particular scheduling. Conversely, if
nothing has been defined at the nC level, then allocation takes place first, because the aim
is to optimise primarily the VLSI area, so that several neurons can be integrated into the
same chip. In this case, ASAP scheduling is used, since this algorithm maximises speed.

Chapter 3 _______________________Silicon Compilers___________________________ 67

Then, ALAP can be next employed to check whether some resource sharing is possible
without increasing the control steps.

After data path synthesis is accomplished, the control synthesis takes place by
constructing a finite state machine, which implements the exact scheduling strategy created
previously.

According to the hardware obtained by the synthesis steps previously described, a
module generation phase follows. It generates multi-port registers (according to the
necessity), memoiy modules (RAM and ROM), and functional units (selected from a
library containing ALUs, multipliers, a parameterised set of multi-port registers,
comparators, tri-state buffers, etc.). At this stage a VHDL description is generated
completing the high level synthesis of neural chips.

The NSC has certain similarities with some of the systems described previously. It
is directed to the generation of ASNNCs as in the Galatea system. It restricts the target
architecture based upon a suitable choice for executing neural computation, in the same
way that the Cathedral-II system defines a suitable architecture for DSP chips. Finally, it
uses a C-based high level language for its input, as in the Olympus system.

The algorithms for hardware synthesis are similar to the ones described previously
in this chapter. The major distinction between the NSC and other systems is that it is
targeted to be used by non-expert in hardware design, which consequently quahfies the
input language as primarily behavioural. The hardware synthesis is performed considering
constraints imposed by the Generic Neuron architecture [190], and optionally by high level
hints defined by the user, which consist of limiting determined neural function in time, or
limiting the number of neural processing elements in each chip.

3.5. Summary

This chapter has presented a review of silicon compilers that employ high level
synthesis. The characteristics of such systems have been examined, constituting the
background for the NSC developed in chapter 7 of this thesis. Based upon these
characteristics, a taxonomy of high level synthesis systems has been presented, and their
approaches have been discussed.

Two types of silicon compilers have been identified: general-purpose and
special-purpose. While general-purpose approaches can generate a circuit that realises any
function described in the input language, special-purpose can only generate
application-specific circuits. Usually, general-purpose silicon compilers try to synthesise a

68__________________ Silicon Compilers____________________________ Chapter 3

circuit with no fixed target architecture; just a few issues are restricted, such as
synchronous or asynchronous systems, pipeline or non-pipeline, and clocking scheme.
Conversely, special-purpose approaches uses a pre-defmed target architecture, which is
generally optimised for the particular application. For this reason, general-purpose systems
tend to produce circuits that do not comply with the microelectronics industry standards in
terms of silicon area, while special-purpose systems tend to yield reasonable circuits.

The next chapter presents an overview of the Pygmalion programming
environment and its input language nC. The Pygmalion system is the adopted platform for
the development of the NSC.

Chapter 4

nC Neural Network Specification Language

This chapter describes the nC neural network specification language, the core o f
the Esprit II Pygmalion neural programming environment. After introducing the
Pygmalion environment, the nC language is fully described and discussed. The
chapter concludes presenting the hardware specific extensions to nC, proposed
and implemented in this work.

4.1. Pygmalion Programming Environment

Chapter 2 presented the requirements and current trends for developing neural
network programming environments. The Pygmalion environment follows these
requirements, providing a sophisticated and powerful tool for programming and simulating
neural networks in different platforms.

The Pygmalion project [19, 21, 24, 181], sponsored by the European Community
E s p r it Programme, has been developed with three basic objectives: firstly, to develop a
European standard general tool that includes the same facilities and functionality found in
commercial systems; secondly, to provide an open environment, which can be easily
extended and interfaced to other tools; and finally, to provide portability for neural
network applications, so that trained and partially trained networks can be easily moved
from machine to machine. To meet the first two objectives, the software environment is
based on X-Windows, C, and C++, while portability is achieved by defining an intermediate
level network specification as a subset of C.

The Pygmalion environment comprises five major parts, as shown in Figure 4.1:

• Graphic Monitor — the graphical software environment, based on X-Windows, for
controlling the execution and monitoring the simulation of a neural network
application;

• Algorithm Library — the parameterised library of common neural models, written in
the high level language (iV), that provides the user with a number of validated modules
for constructing applications;

69

70 nC Neural Network Specification Language Chapter 4

High Level Language N — the object-oriented programming language that defines,

along with the algorithm library, a neural network algorithm and application by
describing the network topology and its dynamics;

Intermediate Level Language nC — the machine-independent network specification

language that represents the partially or fully trained neural network applications; and

Compilers — utilised to translate the user-specified neural network application into

the target UNIX-based workstations and parallel Transputer-based machines.

User

High LbvbI LanguagB - N

Software
Algorithm
Ubrary N

Software |-----
Application ...i
Library

Translator

Graphic Monitor

I n tB r m B d ia tB L b v b I L a n g u a g B
nC

Software ,-----------,
Algorithm , I . I
Ubrary — HnC

Software
Application
Library nC g

Compilers
X

DEC

X

Figure 4.1 — Pygmalion Neural Programming Environment

The Graphic Monitor executes on a host computer and, through the X-Windows
graphic tools and a command language, monitors the execution of the application on a
target machine. Pull-down menus are provided to: select and change the I/O format; the
network architecture, the network learning algorithm, the network training and execution;
and to display neurons’ states and synaptic weights.

The Algorithm Library contains the classical neural network models in a
parameterised specification that can be configured for a particular user application. It
includes popular algorithms such as Hopfield [86], Back Propagation [161], and
Boltzmann Machine [9] where the interconnection geometry and their associated functions
are already specified. The user configures the required application by utilising these

Chapter 4________________ nC Neural Network Specification Language___________________ 71

algorithms and selecting the number of processing elements, their initial state and weight
values, learning rates, and time constants.

The High Level Language N has been designed to allow its usage by both naive
and expert users of neural networks. Its syntax is a subset of C++ augmented with
additional neural-oriented features. N follows the object-oriented methodology, which
permits a neural network algorithm to be specified in two ways: by defining specific types
having their own data and functionality, in analogy to a class in C++; and by assembling
pre-defined types in a modular tree hierarchy [110].

The nC intermediate level language and the Graphic Monitor are closely related.
The nC language, described in the next section, is a subset of C, in which only a limited set
of statements is allowed and a very specific data structure is defined. Algorithms and
applications are programmed using this restricted set of C statements and the pre-defined
network-specific data structure, called system. This data structure represents a hierarchy
of five basic levels: networks, layers, clusters, neurons, and synapses. The Graphic
Monitor uses this structure to display a hierarchy of windows, each corresponding to a
particular level in the system data structure.

Compilers can be easily used since both N and nC are based upon standard
progranuning languages, C++ and C, respectively. In addition, due to the pragmatic
approach adopted by the Pygmalion project, a neural network structure and algorithm
written in N can be translated into an equivalent nC structure, thus generating the nC
version of any N program. From nC, standard C compilers can be used to generate binary
code for specific target machines.

To ensure uniformity and consistency, all major parts of the Pygmalion
environment are centred on a common interface, which conforms with the following
properties: (i) all components are based on the nC hierarchical structure system; (ii) all
algorithms are parameterised; (iii) algorithms and applications are independently specified;
and (iv) algorithms and applications are interfaced through common (nC) data structures,
function names, and system variables.

After this brief introduction, the next section describes in detail the Pygmalion*s
core component— the nC intermediate level language.

72_______________________nC Neural Network Specification Language_______________ Chapter 4

4.2. nC Network Specification Language

In the Pygmalion environment, the nC programming language acts as the
intermediate-level, machine-independent representation for neural networks. It has been
developed based on requirements that provide:

• a general framework, for easy definition of any neural network model with arbitrary
functionality, topology, connectivity, and parameters;

• separate description of algorithms and applications; and

• machine independence, in which a neural network specified in nC can be executed in a
variety of target machines.

Generality is obtained by defining the system hierarchical data structure. This
structure contains all the necessary information to describe a particular neural network,
including the network topology, the data of the system (neuron’s status and synaptic
weights), the functionality of each processing element (PE), the connectivity among PEs,
and the controllability of the network activities.

The independence between algorithms and applications is obtained through the
definition of two different levels of programming. Each algorithm is parameterised, so that
it can be configured to implement different apphcations. Conversely, the application level
contains information about the network configuration and the algorithm control. The
separation of algorithm and application expertise is very important for the development of
generic applications and algorithms in a concise way.

The machine independence feature is achieved by making nC based on the
C language.

4.2.1. Basic Concepts

The nC language centres upon the definition of some basic concepts that are
closely related to neural network algorithms [191]. These are: the system hierarchical data
structure, that groups into one structure all neural network information; and the rule
concept, that embodies the functionality and controllability of neural network models.

Hierarchical Data Structure — system

The core of the nC language is the system data structure. This generic structure
defines the complete configuration of any neural network model, giving the explicit
location of each synapse and neuron inside the whole network. This structure is fixed and

Chapter 4 nC Neural Network Specification Language 73

cannot be modified by users, since it represents the common interface by which the graphic
monitor controls and accesses the network data.

The system data structure comprises five sub-levels, which provide the required
generality to describe any topological configuration. Figure 4.2 shows the system’s
structure, comprising a tree of networks that have layers, composed of clusters, which
comprise neurons, which finally contain synapses. This arrangement fully describes the
topology of the network.

system

net,

layer, layefj -- layer,

cluster, cluster,... cluster.

neuron, neuron,...neuron.

synapse, synapse, -■ synapse.

Figure 4.2 — The nC Hierarchical Data Structure

The network sub-level allows the development of heterogeneous neural models
consisting, for instance, of a Hopfield and a Back Propagation network. The layer
sub-level supports the usage of multilayer networks. The cluster sub-level permits the
assembly of neurons into separated groups. This is motivated by the fact that some neural
network models, such as the Competitive Learning [160] and the Self-Organising
Map [99], assume a sub-division at the layer level. In these cases, neurons belonging to the
same cluster are said to compete with each other, so that only the winner fires.
Alternatively, neurons that exhibit similar functionality can be clustered, thus their
behaviour is determined by the cluster level. The neuron sub-level and the synapse
sub-level incorporate the data of the network, which are the neuron’s output state and the
syn^tic weight, respectively.

All the system sub-levels share a common framework composed of: (i) a list of
rules; (ii) a list of user-parameters; (iii) a list of system-parameters; and (iv) a list of lower
level structures. The list of rules defines the control and the functionality associated with
the hierarchy’s sub-levels. The list of user-parameters embodies the algorithm dependent
variables, as the learning rate and tolerance parameters specified at the network level of
the algorithms. The list of system-parameters contains the algorithm independent
parameters, associated with the specific system’s sub-level. Finally, the list of lower level

74 nC Neural Network Specification Language Chapter 4

parameters is held by each system’s sub-level, such as lists of clusters inside layers. The
complete definition of the system data structure is shown in Figure 4.3.

typedef struct { typedef struct {lot n rules; int n rules;rule type •rules; rule type •rules;int n parameters; int D pareuneters;para type •parameters; para type •parameters ;int nets ; int neurons ;net type ••net; int synapses;) system type; neuron type synapse type ••neuron;••synapse;typedef struct {) cluster type;int n rules;rule type struct NEURON {int n parameters; int n rules;para type •parameters; rule type •rules;int fanin; int n parameters;int fanout; para type •parameters;•input port; TAGVAL state[NO STATES];•output port; int route[5];•target; int fanin;int layers ; ••layer; int fanout;layer type struct NEURON ••input neuron;
) net type; struct NEURON ••output neuron;int synapses;typedef struct { n rules; synapse type ••synapse;int);rule type •rules; typedef struct NEURON neuron type;int n parameters;para type int •parameters ; typedef struct (clusters ; ••cluster; int n rules;cluster type rule type •rules;) layer type; int n parauneters ;para type TAGVAL 1 synapse type;

•pareuneters ; weight;

Figure 4.3 — The nC system Data Structure

Rules

The information concerning functionality and controllability of a neural algorithm
is also incorporated in the system structure through the concept of rules. There are two
levels associated with rules: the functional level, or simply rule level, and the control level,
or meta-rule level. Both levels are defined by the same data structure, as shown in
Figure 4.4.

struct RULE (

);

charcharclass type caddr t
typedef struct RULE rule type;

•tag;
•class;•para_llat;

Figure 4.4— The General RULE Data Structure

The rule data structure comprises four fields: tag, name, class, and parajist. The
tag field has a special meaning which wül be discussed later. The name field defines simply
the rule’s name, which is used by the graphic monitor for display purposes. The class field,
a pointer to the class__type data structure, holds information on the functionality (at the
rule level) and controllability (at the meta-rule level), which are defined by specific
functions. In addition, it specifies the number of parameters described in the parajist field,
which contains a list of parameters that are manipulated by the respective functions.

At the rule level, where the functionality is specified, parameters in the parajist
field are numeric values, upon which the function performs a specific calculation. As an
example, the state_update rule for a particular neuron manipulates values, such as weights

Chapter 4 nC Neural Network Specification Language 75

and states, to compute the sum of products, and applies the activation function to obtain
the neuron’s output state. Figure 4.5 illustrates this example.

Rule Class_type Function
"r_0_1_0_0.0" function

"neuron_state_upd" "State_Update"
class '' num_of_jgen_parm = 2

p a ra jis t num_of_ext_pann = 2

Istatej a c c | size = n j s, w K lw J •1 s„ |w .|

State_L)pdate (parajist)

flenerte extended
parameter# parameter#

= num_ofjaenjjarm

extended . . .
parameters = num_of_exl_parm * size ♦ 1

Figure 4.5 — Description of the Neuron’s State Update rule level

At the meta-rule level, where controllability is specified, parameters in parajist are
pointers to other rules (either at the rule level or at the meta-rule level). In this case, the
associated function does not perform any specific calculation. Instead, it defines how the
network execution is controlled, either sequentially, using sexec built-in function; or in
parallel, using pexec built-in function. Figure 4.6 shows an example in which the
state_update rule for a particular cluster defines iht rule-level function state_update for
each neuron in the cluster.

Rule
"r 0 1 o.r

"duster.state_upd"

class
p a ra jis t

Class_type Function
function pexec 0

{

}

"pexec"

num_of_jgen_pann = 0
num_of_ext_parm = 1

extended
paremeien#

Figure 4.6 — Description of the Cluster’s State Update meta-rule level

Tag Mechanism

It can be observed by Figures 4.5 and 4.6 that parajist has different contents
depending upon the context. In the rule level case, the parajist field contains two main
sections: generic parameters and extended parameters. The former include the
fundamental numeric parameters that must be present in all rules of one specific class. In
the example given in Figure 4.5, these parameters are the neuron’s output (state) and the
accumulator (acc). Extended parameters are related to the variable part of the rule, which
in this example are the input states S j and their associated weights W j . In the meta-rule
level case, the parajist field simply includes the extended parameters.

76_______________________nC Neural Network Specification Language________________ Chapter 4

Due to the context sensitivity of the parajist field, it becomes difficult to detennine
what the contents of generic and extended parameter lists are during compilation L The tag
field has been included in a specific data structure, namely TAGVAL, which defines the
explicit type of the value, either float, integer, etc., through the UNVAL union definition
(see Figure 4.7). Thus, the TAGVAL structure of each parameter provides a proper
mechanism for tracing parameters. Similarly, the RULE structure includes a tag field that
gives the exact level of the function rule (see Figure 4.4).

typedef struct {

) TAGVAL;
typedef union {

) UNVAL;

char *tag;char ‘type;UNVAL value;

float f;short s ;int i;long 1;char c ;char *cp;double d;

Figure 4.7 — The TAGVAL and UNVAL Data Structures

A tag field is a symbolic name defined over three possible syntactic formats [131]:

1. neurons: “/i_x_y_z_w.v”

2. synapse weights: “j_x_y_z_w”

3. parameter values: “p_x_y_z.w”

4. rules: “r_x_y_z_w.v”

The prefix « in the first string identifies a neuron state value, while v specifies the type of
state. Similarly, the prefix s defines a synapse value, the prefix p a parameter value, and the
prefix r defines the address of a rule function. The remaining of the string is variable and
describes the hierarchical structure of the value being represented by the symbolic tag
name. For instance, the symbolic name

"n_0_2_3_6.0"

is equivalent to the nC structure:

sys->net[0]—►layer[2]—►cluster[3]->neuron[6]—►state[0],

which represents the output state value (determined by v - 0) of the sixth neuron in the
third cluster of the second layer in the network 0. The purpose of*.' in parameter and rules

^The tag field was originally envisaged to provide an unambiguous mechanism during the translation of
nC into nC_Code [131], a special version of nC that includes explicit initialisation of all data structures,
thus serving as a portable code for the target machines.

Chapter 4________________ nC Neural Network Specification L a n g u a g e ____________________T7_

is to remove ambiguity, since parameters and rules may appear at all levels. For instance,
“r_l_2.3” represents unambiguously the rule number 3 of the layer 2 in the network 1.

Parallel Execution Operator— PAR

The third basic concept incorporated into the nC language is the PAR operator,
which indicates that all instructions within the following open-and-close brackets should
be executed in parallel. Two basic uses of this operator are illustrated below:

Example 1: pab {
statementl;
statement2;

1

E x a m p l e 2 2 PAE for (i=0,- i<system->layer[l] ->cluster[c] ->neurons; i++)
statement() ;

In these two examples, the compiler (for parallel machines) is instructed to map the
statements in different processors for parallel execution.

As mentioned before, nC programs are divided in two sections: application and
algorithm. The former is the specification of a particular application in which the user
configures the neural network and specifies which model from the algorithm hbrary should
be used. The latter is the description of the functionality of a particular neural model,
which is parameterised so that it can be used by any application. The next two sub-sections
describe in more detail these two sections.

4.2.2. nC Application Definition

The application programmer can build a neural network application by specifying
its configuration and producing the required code to control the execution of the specified
algorithm, which is held in the library.

To specify the network configuration, a special data structure, namely config, must
be used. An example of the config data structure is shown in Figure 4.8. Note that the
complete network’s topology is specified. There is one network composed of three layers
where each layer has one cluster. The first cluster has 96 neurons, the second has 24
neurons, and the third has 96 neurons.

Based upon this initial information, the system structure is constructed at run time
in the very beginning of the nC execution. The config structure does not contain
information about the network’s connectivity. The user must provide the functions that are

78_______________________ nC Neural Network Specification Language________________ Chapter 4

responsible for building the network’s connection pattern, as described in the next
sub-section.

The control section of the application program is defined in the main routine, which
is basically composed of function calls and loops or iteration statements to control the
function’s execution. Functions are of two types: system functions, which deal mainly with
input and output of data; and algorithm functions, which are the routines defmed in the
parameterised neural network algorithm library.

♦define NETS 1♦define LAYERS 3♦define CLUSTERS 1
struct {int nets;struct { int layers;struct { int clusters;struct [int neurons;) cluster [CLUSTERS];} layer [LAYERS];} net [NETS];] config -{ 1, { 3, /* One network of three layers */[1, (96}), /* Layer 1 - One cluster of 96 neurons */(1, [24]I, /• Layer 2 - One cluster of 96 neurons •/[1, [96]] /* Layer 3 - One cluster of 96 neurons */
) ;

Figure 4.8 — The config Structure

Although any algorithm function defined in the hbrary can be called in the
application section, there are four compulsory algorithm functions that should be included
in all apphcations: (i) connect, which allocates memory for aU sub-levels of the system
structure and assigns the correct pointers to establish the network connectivity; (ii)
build_rules, which assigns pointers to the rules that each system sub-level should execute;
(hi) Learn, that executes the learning of a specific pattern, previously stored in the system
structure through the system functions’, and (iv) Recall, that executes the recall phase for
one pattern.

The application section can use the full C syntax to determine the application’s
execution. The only constraint is that connect and build_rules routines must be called before
any algorithm function to fully initialise the system data structure.

4.2.3. nC Algorithm Definition

The algorithm programmer must conform to certain rules to code a particular
algorithm in nC, Firstly, he or she must use only the restricted subset of C statements
available to program aU rule functions. Secondly, the built-in system structure must be
used to describe the functionality of the algorithm in a parameterised way, thus allowing its
usage by a wide range of different applications. Finally, the programmer must provide the
code for connect and build rules routines.

Chapter 4________________ nC Neural Network Specification Language_______________________ 79

The coding of a rule function involves, initially, the decision of what parameters
are necessary. Next the rule’s functionality should he written according to the allowed nC
statements. This should be performed through the manipulation of appropriate parameters.

The code for connect and build_rules routines is fundamental for the correct
execution of a nC neural model. The connect procedure converts the general system
structure declaration into a specific memory organisation, using the set of constants
provided by the config data structure in the application section. It also assigns correct
pointers to the system connectivity. The build_rules procedure uses the network topology
set by the connect routine and construct all necessary rules, at rule-level or meta-rule level.
It basically attributes specific pointers to the rule function and its parameter list (see Figure
4.4). The names of these two procedures are compulsory, but their bodies are algorithm
dependent, and must be coded correctly to generate the desired topology.

The complete specification of the nC language, together with a description of how
to code each module (application and algorithm), can be found in the nC manual [191]. An
example of a complete nC program can be seen in Appendix B of this thesis, which
contains the description of a Back Propagation neural network.

4.3. nC Extensions

4.3.1. nC Strengths and Weaknesses

The nC language has proved to be an effective intermediate language for neural
networks. In addition, it has also been used as the main programming language by users
(bypassing the language A), despite its apparent lack of simplicity from the user’s
standpoint. In particular, the system hierarchical data structure is pivotal for fully
describing neural networks in every aspect: topology, connectivity, functionality,
controllability, and data. By searching through the system structure, the (software or
hardware) compiler can build each element of the network description, and compile their
functionality.

However, it must be noted that this language has been conceived precisely
following a software-oriented approach, rather than a hardware-oriented methodology, as
commonly used by HDLs. Neural networks coded in /iC are meant to be simulated in
sequential or parallel machines, and, when available, emulated in neurocomputers.
Therefore, the Pygmalion environment provides only a software route from nC (and
consequently, from N). There is no provision for hardware support, in which nC would be
used to specify neural networks’ hardware. To make a hardware route from nC, the
language, as well as the environment as a whole, must be extended. While extensions to

80_______________________ nC Neural Network Specification Language________________ Chapter 4

the Pygmalion have been discussed in the previous chapter, this sub-section concentrates
only on the necessary extensions to the nC language that are important for generating
neural chips through silicon compilation.

The hardware extensions to the nC language followed the basic guideline: it should
not transform nC into an HDL, since the user is assumed to be either an application or
algorithm expert, and therefore has no knowledge of hardware. This design philosophy
poses severe limitations on the capability of creating neural networks in hardware.
However, it is believed that with an appropriate tool (the neural silicon compiler), efficient
hardware implementations can be achieved even with minimal hardware information
provided by the user. As discussed before, the success of this approach depends heavily on
the design of the silicon compiler tool as well as its target architecture.

The approach developed in this work follows the above guideline closely. The user
specifies high level commands that directly affect the hardware synthesis without giving
any hardware-specific detail. These commands are fundamentally driven by the desired
performance of the final application. These basically include time and area constraints. As
an example, the user can specify a maximum time allowed to perform a particular neural
rule. For real-time applications, it might be necessary to realise a complete recall or
learning phase within a specific time. Conversely, the application might limit the number of
chips due to space requirements. These would require a certain minimum number of PEs
per chip.

Other specific hardware parameters, such as the precision for data and the
mechanism for implementing the activation function, should also be specified by the user.

In summary, the most important strengths of nC are:

• Complete information o f neural networks — the system structure contains all relevant
data for describing neural networks;

• Portability — its structure provides a concise and efficient form to map any neural
network onto several different machines, either based on sequential or parallel
architectures; and

• Algorithm and Application separation — it is a convenient way to separate the
algorithm from the application expertise, in which both can develop generic programs
to be shared in several different circumstances.

The drawbacks of nC are:

Chapter 4________________ nC Neural Network Specification Language_______________________ 81̂

• Complexity — its lack of simplicity, in particular for programming a neural algorithm,
is mainly due to its memory management mechanism, which is performed by connect

and build_rules routines;

• No hardware support — although very flexible, the language offers no hardware
support, which is important for silicon compilation purposes; and

• Hardware compilation — there are several sections in the nC program that are not
relevant to hardware. Therefore, the program should be selectively parsed and {silicon)
compiled to efficiently generate hardware structures.

The lack of hardware support can be easily solved by extending nC with the focus
on hardware compilation. Since the idea is to incorporate a hardware route to the
Pygmalion environment, the fundamental conception of the language must not be changed.
Furthermore, the extensions should be such that nC can still be used in the scope of the
original software-oriented environment. The trade-off in extending nC (for silicon
compilation purposes) without changing it considerably is obtained by adopting very
simple solutions, which nevertheless provide the required support for the generation of
neural chips.

4.3.2. Time and Area Constraints

As seen before, the system structure embodies a rule level concept that comprises
the functionality and controllability of a neural network. A simple extension to this
abstraction is the introduction of one further field to this structure that gives timing
constraints. Therefore, when the neural silicon compiler synthesises each rule, its synthesis
process is driven by the existence of such timing constraints. The extended rule structure
definition is shown in Figure 4.9.

typedef struct { int max time; /* Max time to perform rule In |isecs. */1 timing;
struct SOLE { char *tag;char *name;class type «class;caddr t «para list;timing «hvtlme;
typedef struct SOLE rule type;

Figure 4.9 — The Extended RULE Structure

The timing structure determines the maximum time (in ps) that a specific neural
rule should perform. This parameter should guide the hardware synthesis algorithms to
generate an appropriate structure that meets this requirement. The introduction of timing
constraints at the rule level is extremely convenient, since it is possible to specify the

82_______________________nC Neural Network Specification Language________________ Chapter 4

precise timing information for each phase or sub-phase of a particular neural computation.
This leads to several interesting possibilities, which should be resolved during silicon
compilation time. For instance, the user may specify at the macro level that the recall
phase should be performed by a given maximum time, or yet may specify at the micro level
that one of its rules, for instance the Error_Calculation rule, should not exceed the specified
maximum time.

Similarly, area constraints can also be specified by the user, so that a certain
minimum number of PEs is implemented in each chip. Alternatively, the user may guide the
network partition (see section 7.10) by determining the number of desired PEs in a chip.
This is done for each type of PE (hidden layer, output layer, etc.). The neuron_type level
has been chosen for incorporating this information (see Figure 4.10), since there is a direct
mapping, regarding sihcon compilation, between the neuron level and the PE that
implements it.

typedef struct {int min_PEs; /• Minimum number of PEs in a chip */) area ;
struct HEUSOH {int n rules;ruletype «rules;int nparameters;

Çara type «parameters ;AGVAL state(NO STATES];int route I 5“];int fanin;int fanout;struct NEURON ««input neuron;struct NEURON ««output neuron;int synapses?synapse type ««synapse;area ~ *hw_area;
typedef struct NEURON neuron type;

Figure 4.10 — The Extended neuron_type Structure

4.3.3. Fixed-Point Precision Caicuiation

Original nC programs available in the Pygmalion system have been written using
floating-point precision for all data, despite the fact that the language definition supports
multiple data types [191] through the definition of the TAGVAL and UNVAL structures (see
Figure 4.7). Therefore, the first step towards the use of fixed-point precision (required by
the target architecture) is to support integer data type for all data defined in algorithms and
applications. This involved rewriting great part of the built-in functions, the algorithm
library, and the application section.

The appropriate nC data structure for implementing such extension is the TAGVAL
structure, as shown in the Figure 4.11. The system structure has thus been modified
similarly as described for the RULE structure. A new field called fixed__type is introduced at
the synapse and neuron level (to describe the data format for weight and state values,
respectively) as well as at the parameter level.

Chapter 4________________ nC Neural Network Specification Language_______________________ ^

It is important to observe that due to changes in the system data structure, the
Pygmalion's graphical monitor must be changed accordingly to allow monitoring
hardware-specific parameters. These changes involve the definition of new windows in the
process of monitoring internal variables of the neural algorithm. The simulator for neural
networks’ hardware takes immediate benefit from this extended monitor and is described
in the following chapter.

typedef struct (/* Specifies fixed-point data format */int int_part;int dec part;1 fixed_pt;
typedef struct fchar »tag; /* code geo() and HSC */char type;UNVAL value;fixed pt *hw_prec; /• for fixed-point only •/) TAGVAL;

Figure 4.11 — The Extended TAGVAL Structure

4.3.4. Realisation of the Activation Function

As mentioned in chapter 1, certain activation functions are very expensive to
implement in digital hardware. For those complex functions, a lookup table mechanism is
usually employed. In this case, a new built-in function is defined, which is called lookuptbl.
This function name is known by the compiler, which, instead of compiling it, executes its
function definition to generate the table’s contents. The table’s size and its data width are
specified by the user.

The user should write the activation function, regardless the employment of a
lookup table mechanism. During simulation, the activation function is compiled and
executed as any other function defined by the user. During hardware compilation however,
if the user invokes the reserved function lookuptbl, no compilation takes place. Instead, a
table is constructed with values obtained through the execution of the lookuptbl function.

Along with the lookup table mechanism, some neural algorithms work well with
the implementation of a threshold activation function. This is clearly very simple to
implement in digital hardware using a single comparator. To be able to generate such
simple structure, another built-in function, called threshold_fn, is defined, which must also
be provided by the user. The threshold value and the two extreme values are specified ty
three macro definitions, such as:

#define _THRESHOLD_VALUE 0.5
#define _THRESHOLD_ON 1
#define THRESHOLD OFF 0

84_______________________nC Neural Network Specification Language________________ Chapter 4

This approach provides complete transparency between software simulation and
hardware compilation. With new activation functions being incorporated into the nC
language, the hardware compiler can be further expanded to handle the implementation of
these new functions.

4.4. Summary

This chapter has briefly described the Pygmalion environment and in some detail its
basic component — the nC intermediate level language. The language’s strengths and
weakness have been stressed, and extensions to incorporate hardware parameters for
hardware generation through a silicon compiler have been proposed and implemented.

Extensions of the nC language followed a very simple approach, in which the
hardware transparency from the user’s viewpoint has been preserved. These include
extending the system data structure at specific levels of the hierarchy. Hardware-specific
high level parameters are introduced at the rule level to specify time/area constraints. The
specification of the data format for the fixed-point calculation is provided at the neuron
and synapse levels. Other extensions include the definition of activation functions, which
can be implemented by lookup tables or very simple functions.

The effectiveness of these hardware extensions is central to the automatic synthesis
of the hardware, being fully examined in chapter 7, where details of the NSC
implementation are given. Before describing the NSC, the next chapter presents the
implementation of the hardware simulator for neural networks developed in this work. The
simulator is an integral part of the extensions carried out in the Pygmalion environment.

Chapter 5

Simulation of Neural Networks Hardware

This chapter presents the implementation o f the neural networks’ hardware
simulator, which is fully integrated in the Pygmalion environment. An analysis
of the implementation o f neural networks in digital hardware is initially
investigated, with emphasis on the learning phase. Then, the results o f
simulating a Back Propagation neural network under several hardware
constraints are reported. These results serve as the basis for assessing the
viability o f implementing neural networks in digital hardware.

5.1. Overview

The great majority of software simulation tools for neural networks employ
floating-point calculation with high precision, usually 32 and even 64 bits. In order to
reduce the complexity involved in floating-point computation, both in terms of speed and
area, digital hardware implementations tend to use fixed-point calculation with relatively
low precision [83,149]. This trade-off aims at minimising silicon area, thus allowing the
integration of several PEs in the same chip.

The realisation of digital circuits to execute neural algorithms requires the adoption
of several constraints. These restrictions are necessary to correctly perform the
functionality of the system in a cost-effective way. Regarding the neurocomputing field,
these hardware constraints introduce computational errors that lead to the degradation of
the learning convergence and lack of accuracy in obtaining results. These errors can divert
the trajectory of the learning process, generally increasing the number of cycles required to
achieve the convergence. In extreme cases, they can completely prevent both learning and
recall of some particular patterns.

Therefore, when digital hardware implementations are envisaged, it is important to
investigate the effect of hardware constraints during the execution of neural algorithms. A
flexible hardware simulation tool for assessing hardware performance of neural algorithms
is required. This subject is little investigated in the literature [15,130].

85

86_______________________ Simulation of Neural Networks Hardware_________________ Chapter 5

As seen before, most neural programming environments provide a powerful
software simulation capability, but no hardware support. Therefore, to analyse those
constraints, a parameterised neural network hardware simulator has been developed [130]
and incorporated into the Pygmalion environment This provides a smooth path towards
the implementation of neural chips through silicon compilation. The simulator is able to
mimic hardware realisations under a set of tuneable constraints.

The remaining sections of this chapter describe how this simulator works and,
through its use, investigates the impact of digital implementations on the execution of
neural networks. A Back Propagation network is used to cany out these studies because
this model presents high complexity and generality embracing the majority of the neural
models’ characteristics.

5.2. Back Propagation Computation

Electronic hardware implementations of neural networks basically seek high speed
operation with minimum use of sihcon area. These requirements can be obtained through
the employment of finite precision hardware. However, as mentioned before, this can lead
to computational errors, which can prevent the correct operation of neural algorithms.
Before analysing the errors caused by finite precision in digital hardware, the neural
computation is reviewed, focusing on the Back Propagation network.

The basic computation performed by each neuron in artificial neural networks may
be briefly summarised in the evaluation of the following expression:

Of = y(Net(Ui)) = y (^W g Oj)
;=i

where is the i-th neuron output, which is obtained by the mapping of its input Net{ui)
through the activation function y(.), and is the weight associated with the connection
between neurons i and j. The Hebbian learning rule [78] involves the updating of weights
associated with inter-neuron connections, which according to the Back Propagation
algorithm may be expressed as:

AWj =T|q/6/ (2)

The error §/ assumes different expressions according to the layer involved in the
learning phase. In particular, for the output layer, 6i is singly expressed as the first
expression of (3), while for hidden layers 0/ reduces to the second relation:

Chapter 5_________________ Simulation of Neural Networks Hardware _____________________87

N

îloutput] = (ti - Oi)y'(Xi) bilhidden] = / (^ /) ^ Wki8k (3)
t= l

where 6* is the error generated in the subsequent layer, ti is the target output value
associated with the supervised learning, and y’ is the derivative of the activation function.
Further details can be found in [159].

The recall phase is dominated by Equation (1). Each neuron simply performs the
sum of products operation, followed by the activation function mapping. Conversely, the
learning phase is more computing intensive, where weights are updated according to
Equation (2), which in turn depends on results processed by Equations (1) and (3). The
updating of weights is repeated several times until the error reaches a value within a
certain tolerance. Therefore, when the convergence is close to being achieved, very small
values are obtained. In this case, digital implementations with low precision can prevent
the required correctness.

The need for high precision when errors are being calculated is the reason for all
software simulation tools to employ floating-point arithmetic. However, digital
implementations use fixed-point arithmetic, and its influence in the neural algorithm should
be analysed, along with other hardware constraints. The next section discusses these
hardware constraints, which are usually required for finite precision (neural) computation.

5.3. Hardware Constraints

The employment of fixed-point arithmetic impacts on the hardware in several ways.
By analysing Equations (1), (2) and (3), several sources of errors can be identified during
the computation. These include the result of multiplication and summation operations, the
implementation of the activation function through a lookup table, and the mechanism for
addressing this table.

5.3.1. Multiplication

The multiplication of two binary values of n bits requires the result to be
(correctly) represented by 2n bits. In digital hardware implementations, a register of
2n bits is normally provided. However, neural networks require the computation of a sum
of products for each artificial neuron, as given by Equation (1). Therefore, truncation is
generally employed to bring the result back to n bits. This alters the correctness of the
learning algorithm, thus diverting the training process from the trajectory of the high
computation.

88 Simulation of Neural Networks Hardware Chapter 5

Figure 5.1 illustrates two possible mechanisms for truncating a number back to its
original precision. In this case, two 12-bit fixed-point numbers are multiplied, producing
the result as a 24-bit number. The correct position of the decimal point, after the
multiplication has taken place, is also illustrated in the Figure 5.1. The technique is a
straightforward one, in which the most significant part of the result is extracted
(Figure 5.1a). However, most of the precision, represented by the decimal part of the
number is lost. The second technique (Figure 5.1b) avoids this problem by using a window
that maintains the decimal point in the original position.

0010.0101 0101

0001.1010 1010

0010.0101 0101

0001.1010 1010

0000 0011.1110 0001 0111 0010

(a) MSB Mechanism

Q0Q0|0011.1110 0 0 0 i|0111 0010

(b) Windowing Mechanism

Figure 5.1 — Methods of Employing Truncation After a Multiplication Operation

The MSB mechanism guarantees that no overflow nor underflow conditions occur,
at the expense of loosing precision (in the above example, from 16 bits to 4 bits in the
decimal part). The windowing mechanism provides an improved precision (8 bits in the
example), but tends to cause overflows and underflows if large absolute operands are
used.

Regarding VLSI design, the first approach (Figure 5.1a) is easily implemented in
hardware. The second approach, however, may pose some problems in the interconnection
of the data path, since signals flowing from one cell to another are usually at fixed
positions. Nevertheless, this problem can be solved by directly employing the windowing
mechanism in the hardware multiplication algorithm.

5.3.2. Summation

During the sum of two operands, overflow and underflow can occur, either
because the operands have both large values, or due to the windowing mechanism
employed by the multiplication operation. In either case, for a correct representation of
results, numbers have to be saturated to the proper extreme values. Although these
approximations may introduce further errors in the computation process, they can yield a
positive effect, since the asymptotic behaviour of the activation function tends to saturate
those values. Conversely, saturation may prevent the proper network evolution if they
occur prematurely.

Chapter 5 Simulation of Neural Networks Hardware 89

Figure 5.2 shows that for a sigmoid activation function, values beyond the shaded
region should lead the output to the extreme values (0 or 1). Therefore, any increment in
the net input value will not change significantly the output vdXut f(net). As a consequence,

it is expected that, whenever a solution exists, the learning phase will converge in fewer

cycles than required when using greater precision.

finet)

underflow overflow^

net
-10

Figure 5.2 — The Effect of Overflows and Underflows

5.3.3. Activation Function

The non-linearity associated with activation functions represents one of the main

bottlenecks in digital VLSI implementation of neural networks, since its realisation

requires great overhead in time and silicon area. A common solution makes use of a
lookup table [75] where pre-evaluated values are stored. Interpolation techniques can also

be used to reduce silicon area as well as improving the activation function realisation [91].

Other solutions suggest architectures directly implementing approximating functions, as

piecewise linear [127], or series expansion evaluation [16].

5.3.4. Table’s Indexing Mechanism

When the sum of product’s result is fed into a lookup table, other approximations
arise. For instance, consider a 16 bit entry point. This would require 65,536 entries, which
would be regarded as an unacceptable solution for a digital VLSI implementation. Thus,
the table size imposes an upper bound on the number of bits. If the table has 256 entries,
then only 8 bits out of 16 are taken as input. Again, overflow and underflow situations
must be treated by saturating the activation value to the asymptotic values of the activation
function. This situation is illustrated in Figure 5.3 for a 12-bit entry point and a lookup
table of 256 elements, which forces taking only 8 out of the 12 bits. In this example, the
indexing mechanism is employed by taking the most significant part of the value.

90 Simulation of Neural Networks Hardware Chapter 5

i2bit̂
(1001.100111001 Lookup Table for

1 8 bits the Sigmoid 12bit^
T Function

1 0 0 1 .1001 256x12

Figure 5.3 — The Lookup Table Indexing Mechanism

In the general case, the indexing mechanism should take into account the

fixed-point representation. Figure 5.4 illustrates the strategy, in which saturation is

employed when the number of bits in the integer part of the index is smaller than in the

value. Note that if the msb field in the integer part of value is greater than 0, that means

that the conversion mechanism has resulted in overflow (or underflow) due to fewer bits

representing the integer part of the number. Therefore the saturation mechanism should

result in the respective extreme value, which is dependent upon the way the table is built.

For purposes of hardware simplicity and due to the tw o’s complement representation, the
first half of the table is filled in with positive indexes, while the second half is filled in with

negative values. Thus, the maximum positive number is half the size of the table, while the

maximum negative number is the half size of the table plus one.

msb

value = 1 [Toj'l 1 . 1 0 1 0 0 1 1 1

index = 1 1 1 . 1 0 1 0 0 1 1 1

if (msb 0) {
if (value < c)

retum (size_tbl / 2 + 1
else

retum (size_tbl / 2);

Figure 5.4 — Mechanism for Converting a Value into the Table’s Index

5.4. Back Propagation and Precision Requirements

All the previously discussed hardware constraints are mandatory if efficient

realisation is to be achieved. The effects o f these constraints are analysed through

simulations in section 5.5. However, preceding the simulation results, the next sub-section

present two theoretical studies [17, 85] that lead to some guidelines on precision

requirements for digital hardware realisation of Back Propagation neural networks.

5.4.1. Theoretical Analysis

Very little is actually known on the effect caused by finite precision arithmetic on

neural computation. Nevertheless, two interesting works on theoretical analysis have

provided a preliminary identification on the required precision for the Back Propagation

Chapter 5_________________ Simulation of Neural Networks Hardware____________________ 91

algorithm [17, 85]. This sub-section presents these studies, so that a comparison with the
results obtained through hardware simulations and reported in section 5.5.3 can be made.

As seen in section 5.2, Equations (1), (2), and (3) define the Back Propagation
computation process and represent the key issue in digital hardware implementation. Some
of the previously discussed sources of error in a finite precision computation are
analytically studied by Holt and Hwang in [85], and Alippi in [17]. These include: errors in
the states and weights, in which sources are prior finite precision data manipulations;
errors generated by operations using finite precision calculation, in particular, the
multiplication operation and the non-linear operator y(.); and finally, errors generated by
truncation techniques used in finite precision calculations.

Holt and Hwang [85] have developed an analytical analysis of the effect caused by
these errors in all steps involved in the Back Propagation algorithm: recall phase (1),
weight updating (2), and output and hidden layer error calculation (3). In their work, a
statistical evaluation of the errors is considered. This evaluation is based upon the mean
and variance analyses using truncation, jamming, and rounding techniques, and upon
statistical properties of independent random variables, sum of independent random
variables, and sum of products of independent random variables. The results obtained can
be used to guide the determination of the necessary number of bits for weights in both
phases of the neural computation: recall and learning.

For the learning phase, they have evaluated the effect caused by finite precision
computation on the weight updating:

" ' W ™
where p is defined as the ratio between the statistical expected square of the finite
precision weight updating error and the fiill precision weight updating magnitude [85].
This ratio depends not only upon the number of bits assigned to the finite precision
computation, but also upon the current stage of learning progress, which can be specified
by the distribution of the difference between the desired and actual output.

Based on this result, it is reported that at least 16 bits of precision must be used for
the learning phase to avoid having the training process diverting too much from the
trajectory of the high precision computation. Conversely, for the recall phase, it is
predicted that 8-bit (1 sign bit plus 3 bits to the left and 4 to the right of the decimal point)
value for weights does not degrade significantly the performance, provided that the
network is trained using high precision.

92________________________ Simulation of Neural Networks Hardware_________________ Chapter 5

Alippi [15, 17] has elaborated a distinct approach to study finite precision
computation in the Back Propagation algorithm. His approach provides a definite result on
the minimum number of bits necessary to represent weights in digital implementation. The
result gives bounds on the number of bits necessary to represent the integer and decimal
parts of weight values. This study considers a large family of activation functions, given by
Equation (5),

y = k+ ■ - y c ,T^O (5)
l + e

including the sigmoid function as a subset of this family by choosing k=0, c = l, T = - l .

A general expression for the number of bits n required for the decimal part of
weights is determined by Equation (6),

/z>log. — 4 — T (6)

where, T| is the learning rate and e is the tolerance value. The number of bits m needed to
represent the integer part of weights is set by:

I" (7)

where t is the effective number of learning steps required to solve the application, and
|X = max(|/:|,|A: + c|). A formal proof of these results can be found in [17]. Table 5.1 shows
the theoretical predictions given by Equation (6) for some values of e and t | .

c 0.1 0,1 0.1 0.1 0.2 0.2 0.2 0.2
TI 0.1 0.2 0.5 1 0.1 0.2 0.5 1

Number of Bits 10 9 8 7 9 7 6 5

Table 5.1 — Theoretical Results for the Sigmoid Function

Equation (6) gives the expression of the required number of bits needed to
represent the decimal part of weight values. It can be seen that this relation is independent
of the involved application. For greater values of e, fewer bits are required, since less
iterations are involved. Equally, for greater values of T|, fewer bits are required, since less
cycles are generally required to achieve the convergence. However, in this case, the
probability of encountering a local minima is greatly increased [161]. When these
situations occur, the convergence becomes impossible to be achieved.

Chapter 5_________________ Simulation of Neural Networks Hardware________________________ 93

Equation (7) gives a maximum number of bits required to represent the integer part
of weights, beyond which no improvement in representing the value is obtained. The
interesting aspect shown in Equation (7) is that results are independent of the specific
problem or application involved. The chosen number of bits for the integer part of the
weight values will support any application that converges in less than or about t steps.

5.5. Hardware Simulation

The basic motivation for the development of a hardware simulation tool is the
investigation of the target architecture’s suitabihty for the realisation of cost-effective
application-specific neural chips. This tool has been designed primarily to analyse how the
adopted hardware constraints, previously discussed, affect the performance and
correctness of neural networks’ execution.

The hardware simulator extends the usage of the Pygmalion environment, so that
users can test the performance of their application in neural networks’ hardware, which
comprises neural chips synthesised by the NSC. The simulator has been designed for target
architectures that use fixed-point arithmetic and lookup tables for evaluating the activation
function. The user may also evaluate the performance of the target architecture regarding
the actual execution time — an important issue for real-time apphcations.

5.5.1. Hardware Library

The Pygmalion's hbrary of neural network algorithms has been expanded to
incorporate a hardware hbrary. It is functionally a copy of the software hbrary, modified to
perform calculations in the same way the target architecture’s hardware does. This
assumes that for each neural network model present in the software hbrary, there wül be a
correspondent model in the hardware hbrary, as many times as the number of target
architectures supported by the NSC.

Most of the work at this stage involves: (i) re-coding all algorithms in the hbrary
for using integer data type, rather than floating-point type; (h) re-coding all built-in
functions to support integer as weU as floating-point types and operations; (hi)
implementation of the activation function either through a lookup table, a threshold
function, or by a function that is coded for hardware execution.

Depending on the user’s activity, either the software or the specific hardware
hbrary is used. If a hardware hbrary is used, input and output operations during the
hardware simulation are scaled from or to real value, respectively, to maintain
compatibihty with the Pygmalion environment This approach permits total transparency

94________________________Simulation of Neural Networks Hardware_________________ Chapter 5

between software and hardware simulation of a particular application, that is, no
modification in the user’s application code is required. The only requirement for hardware
simulations is that the user specifies hardware parameters, described in the following
sub-section.

5.5.2. User Configuration Parameters

The simulator provides a flexible set of parameters. They allow the user to
experiment with existing neural models in the extended Pygmalion environment, and to
employ a wide range of hardware constraints, which include the definition of the following
parameters:

• Target Architecture — uniquely specifies the modules to be used from the hardware
library;

• Data Precision — specifies the number of bits used for the integer and decimal part of
all data, such as weights, states, etc.;

• Activation Function — specifies how the activation function is implemented. The code
for this function must be provided by the user. It is either digitised to produce the
lookup table or silicon compiled during the hardware synthesis, according to the user’s
specification;

• Table* s Index Resolution — determines the number of bits used for the integer and
decimal parts of the index used to address a particular element in the table. The total
number of bits is a function (logj) of the desired table’s size;

• Fixed-Point Mechanism — determines the technique used to represent results after
multiplication and summation operations are performed as described in section 5.3.

5.5.3. Simulation Results

This section reports the most important results obtained through exhaustive
simulations of a Back Propagation neural network. Further details can be foimd in [130]
and in Appendix C, The classical character recognition application is used to test the
hardware performance based on the assumptions discussed throughout this chapter. These
simulations also serve to demonstrate the effectiveness of the modifications and extensions
made in the Pygmalion environment and in the nC language. In particular, the flexibility
provided through the independent specification of hardware constraints allowed the
observation on individual effects caused by each of these constraints. The results are then
compared with the theoretical analyses discussed in section 5.4.1.

Chapter 5 Simulation of Neural Networks Hardware 95

Figure 5.5 shows the character recognition application used as a benchmark for the

simulations. The Back Propagation neural network is configured with three layers of
96x24x96 artificial neurons, and is trained to recognise 10 numeric characters (0-9)

defined over a matrix of 96 pixels (12x8). Such problem is a simplified version of the OCR

(Optical Character Recognition) application, in which the network is trained to read

corrupted characters (or hand-written versions) and complete them to produce the correct

pattern.

Back Propagation
Netwod(

Perfect
Output

Figure 5.5 — The Character Recognition Application

Recall Phase

It has been frequently mentioned in the literature that fewer bits are required to
correctly execute the recall phase of a neural network. This suggests that applications not
requiring learning can be implemented in hardware using lower precision, and therefore

using less VLSI area. This option is very important, and the neural networks’ hardware

simulator offers to the user the required flexibility to determine and tune the best
configuration of hardware parameters.

It has been observed (see details in Appendix C) that at least 8 bits of data (4 in the

integer part and 4 in the decimal part) are required to correctly retrieve the ten patterns

without employing any saturation and overflowlunderflow mechanism. The minimum

number of 4 bits in the integer part guarantees that overflows and underflows do not

occur, while 4 bits in the decimal part is the minimum precision needed to correctly

retrieve all ten patterns. By reducing the number of bits in the integer part of data,

overflows and underflows occur more frequently. When 2 bits are used, the network is no

longer able to recognise all patterns. Appendix C gives details on the obtained results.

The influence of the lookup table is less effective than the precision of data. It has

been found during these simulations that a lookup table made of only 32 entries is enough

to run the network free of any error, while an 8-entry table has been reported to produce

several overflows and underflows, but still able to correctly recognise all ten patterns.

96 Simulation of Neural Networks Hardware Chapter 5

Learning Phase

The learning phase in a Back Propagation neural network involves the recall phase
followed by the processing of Equations (2) and (3). Since this phase deals with the
updating of weights that is a function of the errors given in (3), veiy small values can be
obtained when the convergence is close to be achieved. Therefore, it is expected that low
precision can hinder the correct trajectory towards the convergence.

The influence of the lookup table is shown in Figure 5.6. It can be seen that by
increasing the table size, the number of cycles required to get convergence is also
increased, since the trajectory now takes smaller steps through the solution. A table with
256 entries has shown to be enough for the particular application. In addition. Figure 5.6
indicates that there is a minimum size for the lookup table beyond which no further
improvement in the learning speed is achieved. It has also been observed that for an ideal
sigmoid function (without using lookup table) the convergence is reached in 269 cycles.

Number of A — #
Cycles 200 ' r -----♦

2f>6 1280 2304 33

L

28 43

ookup

52 53

Table

76 64

Size

00 7424 8448

Figure 5.6 — The Effect of the Lookup Table

The reason why the convergence is slower when using high precision calculation of
the threshold table is that it enforces a learning trajectory that uses very fine steps through
the solution, which generally requires more iterations.

The effect of varying the decim^ and integer part of the data is shown in Figure
5.7. By keeping fixed the integer part of the representation (6 bits in Figure 5.7a), and
varying the decimal part, the simulations show the influence of e and t | . These results are
congruent with results obtained in the theoretical analysis (section 5.4.1) and summarised
in Table 5.1. Note that a minimum of 7 bits is required (e = 0.2 and u = 0.5) for the decimal
part of weights, while for e = 0.1 and u = 0.1, a minimum of 10 bits is required.

Similarly, Figure 5.7.b shows the relationship between the learning phase and the
integer part of weights (keeping fixed the decimal part at 13 bits, while the integer part is

Chapter 5 Simulation of Neural Networks Hardware 97

varied from 3 to 6 bits). A minimum of 3 bits is required to represent the integer part.

However, when few bits (such as 3 and 4) are used, overflows and underflows frequently
occur, thus activating the saturation mechanism. Nevertheless, the network is still able to

successfully learn the patterns, although it requires more cycles to converge. From 5 bits

onwards, no saturation mechanism is required, and performance is improved (see details of

these results in Appendix C). Again, these results are very close to the ones obtained in

section 5.4.1.

1500 ^

1000- ^

■ 0.1/0.1
00.1/0.5
0 0 .2/0.1
00.2/0.5

0.2/0.1
0.1/0.1

00.1/0.5
0 .2/0.1

00.2/0.5

0.2/0.5
0 .2/0.1

0.1/0.5
0.1/0.1

(a) (b)

Figure 5.7 — Impact of Hardware Constraints During the Learning Phase

Some discrepancies between simulation results and the theoretical analysis
discussed earlier are due to hardware constraints, which are not considered in the
mathematical approach. The simulation shows that the implementation of the activation
function through a lookup table plays an important role for the learning phase of the neural

computation. Therefore, the table size and its indexing mechanism must be carefully

designed.

Finally, it is interesting to compare hardware simulation with software simulation

results for the same application, employing floating-point representation with no hardware

constraints (Table 5.2). This comparison highlights the relevance of hardware constraints

and shows the feasibility of using fixed-point arithmetic for the learning phase. In contrast

to floating-point representation, experimental results show that with an appropriate choice

of the number of bits, fixed-point notation reduces the required number of learning cycles.

Furthermore, regarding the hardware implementation, fixed-point arithmetic leads to faster

and smaller realisations.

98 Simulation of Neural Networks Hardware Chapter 5

e 0.1 0.1 0.2 0.2

n 0.1 0.5 0.1 0.5
Cycles 963 >2000 512 >2000

Table 5.2 — 32-bit Floating-Point Simulation Results

5.6. Summary

The importance of the hardware simulator, integrated in the Pygmalion
environment, is twofold:

• Hardware experimentation — it provides a tool for testing different hardware
constraints for each particular application and algorithm, so that its final performance
can be better predicted; and

• Hardware parameters tuning — it permits the adjustment of the ASNNCs, so that the
user can find an optimal hardware configuration in terms of area and speed. As an
example, a design with on-chip learning should use higher number of bits for weights
and states than a design that is limited to the recall phase only. In the latter case, a
higher level of integration is obtained, affording a larger number of PEs per integrated
circuit. Therefore, the NSC uses this information to yield the neural chip in an optimal
way.

Although theoretical studies have shown the capabihty of expressing a relation
between the algorithm (Back Propagation) and the required precision, the results are still
very limited and dependent on the algorithm parameters. As an example, the introduction
of a momentum term in the Back Propagation algorithm [161] invalidates the results
obtained by Equations (6) and (7). Conversely, through simulations, the user has the
flexibility to experiment any application or algorithm and find out what hardware
parameters are suitable to solve the particular problem.

An exhaustive simulation of the OCR application under several hardware
constraints has provided encouraging results in terms of hardware performance for the
Back Propagation neural network. The results obtained are consistent with theoretical
studies [17] as well as practical experiments [22]. The success verified through simulations
is particularly important to the Generic Neuron architecture, because all issues investigated
in this chapter are in fact implemented by this architecture.

The next chapter introduces the NSC framework and gives a detailed description of
the Generic Neuron architecture.

Chapter 6

NSC an6 Target Architecture

This chapter presents the proposed framework for the design o f the Neural
Silicon Compiler (NSC). The compileras key component, the Generic Neuron
target architecture, is analysed in detail. Then, a Back Propagation neural
network prototype for this architecture is written and simulated in VHDL. This
includes developing a library o f VHDL modules that are used by the NSC.

6.1. Overview

The main goal of this research is to propose and implement a hardware route to the
existing neural network programming environments, in which ASNNCs can be
automatically synthesised to efficiently execute a particular neural network application.
The Pygmalion system has been chosen as the platform for the development of this
proposal.

As discussed before, the Pygmalion system has been originally conceived to
program neural network algorithms, and to execute neural applications onto a variety of
target machines, typically UNIX-based computers. The emulation of neural networks onto
parallel machines and true neurocomputers is (at the time of writing) being developed by
the Galatea project, which is the Pygmalion's successor. The main goal of the Galatea
project is the refinement of the Pygmalion environment and the construction of
general-purpose neurocomputers [20]. A similar proposal has been developed as part of
another PhD thesis [155], which centres on a flexible communication architecture that
provides a distributed execution environment for neural network models.

Ttierefore, the main distinction between the above two proposals and the present
research is that the first two works concentrate on the execution environment of neural
algorithms, while this thesis focuses on the development environment, which has two
routes: software and hardware. The first route is provided by the Pygmalion environment,
while the second is accomplished through the hardware extensions introduced in this
environment, as shown in Figure 6.1. The basic components of these extensions are:

99

100 NSC and Target Architecture Chapter 6

Hardware Algorithm/Application Library — the hardware counterpart of the

software algorithm library; it holds a duplicate of all neural models, but it is specifically
coded for the target architecture supported by the silicon compiler and the hardware

simulator;

Hardware Simulation — extends the simulation environment to assess the network

behaviour during hardware execution; and

Silicon Compilation — a hardware design tool that reads a nC program and

synthesises a set of identical neural chips, which are then used to execute the entire

neural network in hardware.

User

High Level Language M
Software
Algorithm
Library N

Software
Application
Library N

Tranalator

Graphic I Hardware
Monitor I Simulator

In tem edia te Level Language
nC ____

Software
Algorithm
Library nC
Software
ApplicatiorL
Ubrary

Hardware
Algorithm
Library nC
Hardware ,----------1
App«calJoi>J±=7^

I
Software Compilera

f

\
DEC mà----- Generic

Neuron

Library

Silicon Compilers

Analog

Figure 6.1 — The Hardware Development Extensions to the Pygmalion Environment

The hardware algorithm library and hardware simulation components have been
described in the previous chapter. The general framework of the neural silicon compiler
(high level synthesis) is discussed in the next section.

6.2. High Level Synthesis

The main goal of the NSC is to automatically synthesise neural chips with minimal
knowledge of VLSI design from the user. Figure 6.2 shows the proposal for a generic
silicon compiler for neural networks. The solid lines represent the implemented path of this

Chapter 6 NSC and Target Architecture 101

approach, while the dashed lines depict possible extensions. Central to this proposal is the
Intermediate Code Representation {ICR), an independent hardware description for neural

networks. This representation incorporates information of the network’s topology and
interconnectivity, as well as the functionality of every neuron in the network. This

functionality is described in terms of a graph, which contains data and control information.

The importance of the ICR focuses on the separation between the front-end

compilation part and the back-end compilation (see Figure 6.2). This allows the

construction of an open system: at the front-end, more than one specification language and

programming environment can be used, while at the back-end, several target architectures

and technologies can be synthesised. This approach is attractive for two basic reasons:

• There is no commitment with a particular programming environment — several neural

programming environments exist today, and to make them compatible with the NSC,
the only necessary action is to provide a compilation path from the adopted
programming language to the intermediate representation;

• The system can be gradually extended to provide alternative technological routes, as

soon as they become available; in particular, optical and opto-electronics technology

look a promising alternative for neural computing.

Pysfmêtton W G alatea !

: J
I G en esis , |

e tc ...

Fmnl-End

I I ' < ' «
, Digital , Analog i * Optical (

i t If (
GanerlcNBunm

Figure 6.2 — A Generic Neural Silicon Compiler

102_____________________ ______ NSC and Target Architecture______________________ Chapter 6

By not committing the NSC with a particular programming environment, the use of
a wide range of existing systems is permitted. Furthermore, there is no need for a complete
re-writing of environments; instead, only the hardware extension is required, besides the
compilation path from the high level language to the intermediate representation.

The support given to alternative technological routes provides a great degree of
flexibihty. Digital architectures are very flexible and potentially can implement on-chip
learning. Analogue techniques are suitable only for the recall phase, but have a high degree
of integration. Optical technology seems to be very promising, but still needs some
research. Therefore, as technology progresses, the same system can be gradually expanded
to support automatic synthesis of neural circuits at different technological alternatives.
Following this direction, VHDL plays an important role, since it is a technology
independent hardware description language. The generation of neural circuits at a specific
technology is left to the low level synthesis tools, which are technology dependent.

The implementation of the entire system shown in Figure 6.2 is beyond the scope
of this work. Instead, a single path is drawn: it starts from nC and the Pygmalion
environment, passes through the ICR, and creates a VHDL structure of the neural circuit
targeted at the Generic Neuron architecture. While the next chapter presents a detailed
description of the NSC's implementation, the remaining sections of this chapter are
devoted to the description of the Generic Neuron architecture and the implementation of a
Back Propagation neural network written in VHDL.

6.3. Generic Neuron Architecture

The NSC developed in this work synthesises circuits that are based upon the
Generic Neuron architecture, developed as part of another PhD thesis [190]. The Generic
Neuron architecture has been devised to encompass the main features of the existing neural
models into a single building block. The architecture provides: generality to implement the
wide range of available neural models; and simplicity to optimise the processing element’s
silicon area.

Generality is required by inspecting the spectrum of different neural network
models, shown in Table 6.1. These models differ on several aspects: network topology,
recall phase, and learning phase.

Network topology ranges firom single layer, feed-forward models, such as the
Perceptron [122], through single layer with feedback connections, as the Hopfield
model [86], to more complex interconnection patterns, found in the multi-layer networks

Chapter 6 NSC and Target Architecture 103

with back propagation of errors [161], and two-dimensional grid of neurons of the
Self-Organising Map [99].

Neural

Network

Model

Network

Topology

Range of

input

values

Recall/Learning Phase

/ l - Recall Phase Learning Phase

Propagation
Rule

Activation
Function

f i - Weight
Updating

/3 - Error
Calculation

Hopfield/
Kohonen

single-layer
with

feedback
binary net = Y,s.w hard

limiter
Aw.. = s^.Sj X

Perceptron single-layer
feed-forward

binary or
continuous net = y^s.\v hard

limiter
Cj = t j - S j

Widrow-
Hoff (Delta

Rule)

single-layer
feed-forward continuous net=Y.s.w linear Awy = r\.Si.ej e j =t j - S j

Back
Propagation

multi-layer
bidirectional

links
continuous net='Zs.w sigmoid Awij = Ti.j,..e^.

ej, = r(net).(tj-s,)
e^ = T(net)flE.W

Boltzman
Machine

multi-layer
or randomly
connected

binary net='Zs.w sigmoid Aw..= T|.8̂ . <v = n((pv)-(p.v))

Counter
Propagation

multi-layer
feed-forward binary net='Zs.w hard

limiter
Aw..

Self
Organising

Map

2-dimensional
grid of

output PEs
continuous net = Y,s.w sigmoid AWij =

Neocognitron
hierarchical
multi-layer

feed-forward
continuous linear Aw ĵ = TI'Ey X

Table 6.1 — Characteristics of Some Popular Neural Network Models

The recall phase / j , formed by the propagation rule and activation function,
presents some variations among these neural models. With the exception of the
Neocognitron model [56,57], the propagation rule basically calculates the weighted sum
of the input states. The Neocognitron model applies a more complex function of input
states and weight states, which are classified into excitatory % , W^) and inhibitory
(%, W/j) values. The activation function is usually restricted to either a threshold function,
pseudo-linear function, or sigmoid families function.

The learning phase (/ 2 , / 3 > differs considerably among the models. In algorithms
such as Hopfield/Kohonen’s associative memories [86,99], the learning phase does not
involve any error calculation (shown in Table 6.1 as x), updating the weight values based
upon the Hebbian rule [106]. Other models generally depend upon an error calculation.
They can be as simple as the difference between a target value and the neuron’s output
state (Perceptron [122] and Delta Rule [106]), or can involve more complex

104 NSC and Target Architecture Chapter 6

computations, such as the Back Propagation model [161] in which the error calculation
requires the derivative of the activation function (T(net)).

Simplicity is necessary to integrate as many PEs into a single integrated circuit as
the technology permits. The search for generality and simplicity has resulted in a structure
as shown in Figure 6.3a. The Generic Neuron model performs the neural computation
based on: the set of state inputs S (received from other neurons); the state output s (sent
to other neurons); and the group of error inputs E and error output e, provided to cope
with models with backward propagation of errors. Internally, this model comprises a
memory block for holding the weight values (W), and three basic functional blocks for
implementing the specific computation required by the majority of neural models: the recall
function / j , the weight updating function / 2 , and the error calculation function /g (see
Table 6.1).

Input Bus

(state
inputs)

output)

inputs)
output)

(a)

tkmUnit

' r Neuron UnitWeight Unit
Forward Blocks

Backward Blocks

Output Bus

Figure 6.3 — The Generic Neuron Model

The simplicity of the Generic Neuron model is extremely suitable for sihcon
compilation, since neural models differ from each other essentially on the functions
performed by / j , / 2 , and /g, along with the network’s topology. The correspondent
architectural framework of the Generic Neuron model is represented by the processing
element (PE) shown in Figure 6.3b. The PE comprises three logical units, namely
communication, weight, and neuron unit. The communication unit interfaces with the
other two units and performs the reading and writing of input and output data. The weight
unit executes the weight update during the learning phase, while the neuron unit calculates
the neuron outputs (state and error).

The communication between PEs is accomplished through a broadcast bus
(Figure 6.4a), which provides the system with important features such as flexibility,
expandability, and scalability [190]. Firstly, flexibility is achieved since the bus
interconnection can handle all possible complex topologies. Secondly, expandability on the

Chapter 6 NSC and Target Architecture 105

number of PEs is obtained by simply plugging new PEs onto the bus. Finally, scalability is
attained since increasing the number of PEs integrated into the same chip does not affect
its pin count. Moreover, to improve the bus performance, the system can be further
expanded into several busses (Figure 6.4b), clustering together into the same bus PEs that
receive the same data input.

Control Address Data
Bus Bus Bus

Bus1 Bus
2

Bus
3

Bus
4

Central
Controller

PE,

in P E ,

PE,

in P E .

Hidden
Layer 1

in PE

in P E

oulj"»

—»

in P E

Hidden
Layer 2

In P E out

in P E OUI

In P E oui

Output
Layer

in P E out —*

In P E out

In P E out

(a)

Backward Connections

(b)

Figure 6.4 — Processing Elements Interconnection: (a) Single Bus; (b) Multi-busses

The PEs are commanded by the central controller through three busses
(Figure 6.4a): data, address, and control. The data bus is used in two basic situations: (i)
initialisation phase, during which the central controller loads into the PE’s internal memory
all necessary data values, including algorithm-dependent parameters and
architecture-dependent parameters; and (ii) execution phase, when PEs send states and
error values to other PEs in the network.

The address bus carries an identification of the PE that has exclusive access to the
data bus. This arbitration is performed by the central controller in conjunction with the
control bus according to a polling mechanism. Through this mechanism, the central
controller waits for a ready signal from the PE, after which a new value is placed onto the
address bus (the address of the PE in question). Therefore, the central controller can only
modify the contents of the address bus after the PE has processed its output data (state or
error value), and has activated the ready control signal.

The control bus contains all significant signals that direct the network’s behaviour.
It comprises signals from the central controller to each PE and vice-versa. These include
signals such as reset, forward/backward phase definition, the PE’s ready signal, etc.

106 A/SC and Target Architecture Chapter 6

6.4. Processing Element Organisation

Based upon the definition of the Generic Neuron model, the hardware
implementation of the processing element (PE) can be organised into three units: memory,
communication, and execution. Figure 6.5 shows the PE’s internal structure and the
following sub-sections examine each unit individually.

Input
Address Control Data

Bus Bus Bus

Output
Data
Bus

Communical
Unit

Addres$
Module Memory

Execution
Unit

Figure 6.5 — Processing Element’s Internal Organisation

6.4.1. Communication Unit

The purpose of the communication unit is to control the flow of data between a
particular PE and the rest of the network. This unit is responsible for the following basic
functions:

• initialise the PE’s parameters, including initial weight values, target output patterns
(for supervised learning), and some architecture-specific parameters;

• read and store input data into the appropriate memory block at specific instants, and
issue control signals to the execution unit indicating when a state or error calculation
should start; and

• transmit to the output data bus the calculated value from the execution unit, which can
be either a state or an error value. In this case, the communication unit should also
signal the rest of the network (and the central controller) that a legal value is being
written onto the data bus.

The communication unit performs the above functions by interfacing with the
off-chip broadcast busses, which are: the two data busses (input and output) that can be
externally connected by a single bus (see Figure 6.4a); the address bus, and the control

Chapter 6 NSC and Target Architecture 107

bus, both driven by the central controller. To perform these functions, the communication
unit is divided into two modules: datapath and control, as illustrated in Figure 6.6.

Datapath Module cZw' Control Moduler ~f= — I Bus f ---- --------------------------------- ----
Off-Chip I Address'̂

Bus

I my_addrê1'
I prev laycf }“

n»»t_layf }
Combinational

Logic

cs/rdy

Off-ChIp from States Weights Internal
Data Bus exec Bus Bus Address

unit Bus

Figure 6.6 — Communication Unit’s Internal Structure

The datapath module implements the PE’s external bus arbitration. It is basically
composed of comparators and registers, which determine when an output value (state or
error) should be broadcasted onto the data bus, and verify when a valid data on the bus is
addressed to the PE.

The control module generates all command lines to regulate the data transmission
between the specific PE and the rest of the network. The control module is implemented
by a FSM, which can be realised by a PLA, or random logic, according to the technique
adopted by the low level synthesis tool used in conjunction with the NSC.

6.4.2. Memory Unit

The purpose of the memory unit is to store all relevant data required to execute
neural network models. This data is accessed either externally or internally. External
access is controlled by the communication unit to store all incoming data related to the PE.
Internal access is controlled by the execution unit to perform the appropriate mathematical
operations upon its stored data values.

Memory access can be done by the communication unit and the execution unit
simultaneously. This is generally the case when the PE starts reading state values from
other PEs, and as soon as at least one data set is obtained, the execution unit can start
manipulating further data to perform the sum of products To achieve this
parallelism, two-phase clock mechanism is employed.

The memory unit’s internal structure is depicted in Figure 6.7. It comprises two
major modules: the storage module and the addressing module.

108 NSC and Target Architecture Chapter 6

Control signals from
communication and
execution units

;; I Total of mpul PE*

W eights
Address Data

Bus Bus

Control signals from States
communication and Data

execution units Bus

Counter

trolal o f output PEsj

Addressing Module

- backw

to execution unit

FOTMMTt S lo ck s

Wp
block

s
block

i I

lalodM
We

blocki ____ , block iT T
^Stqlylge Mo^ufe____j

Figure 6.7 — Memory Unit’s Internal Organisation

The storage module holds the basic data values required by the vast majority of
neural models: input states and their associated synaptic weights. Although this module
depends upon the neural algorithm and application being implemented, the Generic
Neuron model identifies four basic blocks: a forward block, which stores the input states
(S) and their weight values (Wp); and a backward block, which stores the backward flow
of data, the input errors (E) and their related weights (Wg). Therefore, there are up to four
blocks of memory, which contain the necessary data information to accomplish the recall
and learning phase of the majority of neural models (see Table 6.1). Applications that do
not require the learning phase, or back propagation of errors, can have the backward block
excluded from the implementation of the storage module by the NSC.

The addressing module provides the mechanism to access all memory blocks
integrated into the PE, according to the adopted neural algorithm. It consists of a counter,
for controlling the sequential memory addressing, and up to two comparators, to
determine when all relevant input values have been processed. One comparator is
associated with the forward phase, and embodies a register that contains the total number
of inputs. A second comparator, present only when learning with back propagation of
errors is defined by the neural model, holds the number of backward inputs needed to
implement the backward phase of such a neural model.

6.4.3. Execution Unit

The execution unit deals with the actual computation of the neural functions. It is
responsible for executing all the three basic neural functions — / j , / 2 , and — of the
Generic Neuron model (see Figure 6.3), according to the high level description provided
by the application designer. The basic framework of this unit is depicted in Figure 6.8,
which consists of two major modules: datapath module and control module.

The datapath module contains all the necessary blocks to perform the
mathematical operations required by neural models. This module is ultimately configured

Chapter 6 NSC and Target Architecture 109

by the NSC, although some basic units can be identified. This includes: an ALU, which
executes the basic operations such as addition and subtraction; an Accumulator!Shifter

module, required to store intermediate results to perform the multiplication operation in
conjunction with the ALU; some registers, to hold the algorithm-dependent parameters,
such as the output state (sj) and the output error (ej); a lookup table ROM, responsible for
implementing the activation function; a multiplicand register, a special register used to
implement the multiplication algorithm; and finally, some auxiliary registers, required to
store some intermediate results, which are used to process the neural function.

un* un*
Inlem al

Bus

Combinational
Logic

multiplier

FSM
ALU

I ! EccüinüiëiôÂLI-------

I ; j ROM I7— >

*JOatapaÿiJitlpduJe___ ICpnttpLModule _ _

Figure 6.8 — Execution Unit’s Internal Structure

The control module provides the necessary commands to execute all operations
that are specific to the neural network algorithm. These include the propagation function
followed by the activation function, the error calculation, and the weight update function.
These commands are sent to the execution unit’s data path, which effectively performs the
computation. In addition, this module implements the multiplication operation, according
to the Booth’s algorithm [55].

6.5. VHDL Implementation of a Back Propagation Neural Chip

In this section, the design of a Back Propagation neural chip is coded in VHDL.
This design is manually written in accordance to the Generic Neuron architecture and its
PE’s organisation, described above. The purposes of this implementation include:

• implementation of the basic PE corresponding to the Generic Neuron architecture;

• simulation and assessment of the effectiveness of the Generic Neuron model in
realising the neural computation;

110 A /sc and Target Architecture Chapter 6

• assessment of the VHDL’s suitability to specify neural chips;

• identification of the level of description at which the VHDL specification should be
generated by the NSC; and

• building of an appropriate set of optimised VHDL library cells, which will be used by
the NSC.

Clearly, these tasks represent the basis towards the automatic synthesis of neural
chips. In addition, they also serve as a benchmark for assessing the quality of these chips,
an issue that is analysed in chapter 8. The Back Propagation model has been chosen as the
benchmark since it embodies enough complexity, in particular during the learning phase, to
test the capabilities of the Generic Neuron architecture.

Rule/Layer Hidden Layer Output Layer

Propagation Rule
k

Sj=Y^Si.Wy
i

Error Calculation
j

Weight Update
(forward)

= ^ki w[j=Wy+t\.Si.ej

Weight Update
(backward)

wlj = wy +^.Si.eJ X

Table 6.2 — PE Functionality for Hidden and Output Layers

Table 6.2 shows the basic computation required by each PE in the hidden and
output layers of a Back Propagation neural network. It can be noted that, diuing the
learning phase, PEs in the hidden layer perform different computations from PEs in the
output layer. The basic difference relies on: (i) the error calculation; and (ii) on the extra
weight update (backward) calculation performed by the PEs in the hidden layer. The
difference between the error calculation function for neuron in the hidden and output
layers is defined by the Back Propagation algorithm [161]. However, the calculation of
backward weights is implementation-specific, being required for performance reasons. This
is because the error calculation needs the weights from the connections between the PE in
question and the PEs in the succeeding layer. Therefore, rather than broadcasting those
weights, each PE in the hidden layer performs exactly the same weight update computation
of the PEs in the next layer [190].

Chapter 6______________________ A/SC and Target Architecture_____________________________111

6.5.1. Communication Unit

As discussed in section 6.4.1, the communication unit is responsible for controlling
the flow of data among PEs. The VHDL implementation of this unit is shown in
Figure 6.9. It comprises the definition of the comm_unit entity, which specifies the input-
output relation of signals flowing among the communication unit, the other two units, the
other PEs in the network, and the central controller. This entity is described by a structural
architecture comprising two components, namely cu_datapath and cu_control.

ENTITY comm unit IS PORT(-- input-output pin specification (see Appendix D for full details)) ÎEND communit;
ARCHITECTURE structure OF comm unit IS COMPONENT cu datapath PORT(-- input-output pin specification (see Appendix D for full details)

END COxi-ONENT;

COMPONENT cu control PORT(-- input-output pin specification (see Appendix D for full details)
END COM^NENT;
SIGNAL a,b,c,d,e,f,g: BIT;
FOR b2: cu control USE ENTITY WORK.cu control(structure);FOR bl: cu~datapath USE ENTITY WORK.cu_datapath(behaviour);

BEGIN-- Components' instantiation and interconnection (see Appendix D for full details) END structure;

Figure 6.9 — VHDL Implementation of the PE’s Communication Unit

Data Path Module

This module performs two simple functions: (i) by using comparators, registers,
and tri-state ports, the data path module analyses if the data circulating in the input bus is
assumed to be read by its PE; if so, the appropriate internal busses are activated to write
the incoming data into the PE’s internal memory; and (ii) determines when the PE is
allowed to broadcast its state or error value into the off-chip data bus, which is
accomplished by comparing the incoming address bus data value with the my_address
register (see Figure 6.6). Figure 6.10 shows the VHDL implementation of the
communication unit’s data path entity, called cu_datapath. This entity is implemented by a
behavioural description of its architecture, which comprises the execution of seven
concurrent processes. The first three processes (test_my__add, test_prevjay, test_nextjay)
can be realised through simple comparators at the structural domain, while the four
remaining processes (drive_addr, drive_out__bus, drive_weights_bus, and drive_states__bus)
describe the function of a tri-state buffer.

The three comparators analyse the external address bus and activate appropriate
signals to the control module when certain conditions are detected. For instance, the
process test_my_address monitors the address bus and activates the signal ls_my_add

112____________________________ NSC and Target Architecture______________________ Chapter 6

when the central controller has loaded its address onto the external address bus, indicating
that it is time to broadcast the results.

- * 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ’
- * 0000* ;
- * 0 0 1 0 * ;

ENTITY CU datapath IS PORT(-- input-output pin specification (see Appendix D for full details)
END cudatapath;
ARCHITECTURE behaviour OF cu datapath ISCONSTANT my address: mvl vector<16 DOWNTO 1)CONSTANT prev layer: mvl~vector(4 DOWNTO 1)CONSTANT next layer: mvl~vector(4 DOWNTO 1)BEGINtest my add : PROCESS (add bus)BEGIN “IF (add bus - my address) THEN IS my add <- ’"I ' ;ELSE “ -is my add <- '0';END IF; - END PROCESS testmyadd;

test prev lay: PROCESS (add bus)BEGINIF (add bus(16 DOWNTO 13) - prev layer) THEN prev~lay <- '1';ELSEprev lay <- 'O' ;END IF;"END PROCESS test_prev_lay ;
test next lay: PROCESS (add bus)BEGINIF (add bus(16 DOWNTO 13) - next layer) THEN next-lay <- '1'; “ELSEnext lay <- 'O' ;END IF;~END PROCESS testnextlay;
drive addr: PROCESS (en mem add, add bus)BEGIN- - -IF (enmem add - '1') THEN mem add-bus <- add bus;ELSE - -mem add bus <- ’ZZZZZZZZZZZZZZZZ*;END IFT END PROCESS driveaddr;
drive out bus: PRCXZESS (en outbus, z bus)BEGIN" - - -IF (en outbus - '1') THEN out"bus <- z bus;ELSE -out bus <- ’ZZZZZZZZZZZZZZZZ*;END I FT END PROCESS driveoutbus;
drive weights bus: PROCESS (en weightbus, in bus)BEGIN" " - -IF (en weightbus - '1') THEN weights bus <- in bus;ELSEweights bus <- ’ZZZZZZZZZZZZZZZZ*;END IF;END PROCESS driveweightsbus;
drive states bus : PROCESS (en staerrbus, in bus)BEGIN" - - -IF (en staerrbus - '1') THEN states bus <- in bus;ELSEstates bus <- "ZZZZZZZZZZZZZZZZ*;END IF; "END PROCESS drive states bus;END behaviour; " "

Figure 6.10 — VHDL Implementation of the Communication Unit’s Data Path

The tri-state buffers are commanded by the control module. They simply arbitrate
the use of the busses to implement the communication protocol among PEs and to avoid
bus conflicts. For example, when an external address corresponds to the memory location
of data in the memory unit, then the communication unit’s control module activates the
en_mem_add signal. In this case, the process drlve_addr inputs the external address bus
into the PE. Otherwise, the internal bus mem_add_bus remains in tri-state logic.

Finally, the implementation of the my_address register requires some important
considerations. Rrstiy, its content cannot be specified at silicon compilation time, since
this would jeopardise the yield of identical chips. Secondly, it cannot be fully specified
during initialisation time (as happens with other parameters), because the PEs must have a
priori unique identification to avoid conflicts on the data bus. Therefore, this register

Chapter 6_____________________ A/SC and Target Architecture____________________________113

employs a hardwired technique, combined with configurable and fixed fields, as shown in
Figure 6.11.

|L ay erl\P E 's Unique Address!

Hardwired intemaK
Address\

Figure 6.11 — Specification of the PE’s my_address Register

The address of any PE in the network is composed of two fields: Layer and PE’s

Unique Address. The former identifies PEs in a particular layer, while the latter identifies

PEs uniquely in the entire network, which comprises PEs inside a single chip as well as

PEs among several identical chips. The PE’s Unique Address field is further sub-divided in

two fields: Hardwired and Internal Address. The former distinguishes PEs in different chips,

while the latter distinguishes PEs inside a chip. The number of bits represented in the
Hardwired field defines the maximum number of chips. Similarly, the number of bits
represented by the Internal Address field defines the maximum number of PEs integrated in

the same chip.

In this implementation, the my_address register is defined by a 16-bit register,

where four bits are used by the Layer field, thus allowing a maximum of 16 layers, 8 bits

are defined for the hardwired logic, thus allowing a maximum of 256 chips, and 4 bits are

reserved for the Internal Address field, thus allowing a maximum of 16 PEs in each chip.

The implementation of the Back Propagation model requires two extra 4-bit

registers: p re v ja y e r and n e x tja y e r. In a fully connected network, data sent from PEs in

preceding layers are to be read by all PEs in the next layer. Similarly, errors sent from PEs

in succeeding layer are to be read by all PEs in the previous layer. The Layer field of

my_address register, the registers p re v ja y e r, and n e x tja y e r are all specified during the
initialisation phase.

Control Module

The VHDL implementation of the control module is shown in Figure 6.12 and

comprises the definition of the cu_control entity. This entity is described by a structural

architecture composed of two components, namely c u jsm and cu_combinationai. The

former is the communication unit’s FSM, which receives inputs from its data path module,

from the execution unit, and from external control signals. It generates output control
signals that are driven to the memory unit (to control data movements to memory blocks).

114_________________________ A/SC and Target Architecture______________________ Chapter 6

to the execution unit (to control operations to be performed by this unit), and to the other
PEs, either inside or outside the same chip.

ENTITY CU control IS PORT(“ -- input-output pin specification (see Appendix D for full details)
END cucontrol;
ARCHITECTURE structure OF cu control IS COMPONENT cu fSTO PORT (-- input-output pin specification (see Appendix D for full details)

END COMPONENT;
COMPONENT CU combinational PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;
SIGNAL a, b, c: BIT;

BEGIN
fsra block: cu fsm PORT MAP (~ -- input-output pin specification (see Appendix D for full details)
comb logic: cu combinational PORT MAP (-- input-output pin specification (see Appendix D for full details)

) ;END structure;

Figure 6.12 — VHDL Implementation of the Communication Unit’s Control Module

The operations performed by this module can be classified in two groups:
initialisation and execution. During initialisation time, which is signalled by the central
controller, the memory counter (see section 6.5.2) is initially reset. Then the PE should
read the forward weights and store them into the appropriate memory block. The central
controller must send initial weight values sequentially, according to the addressing
mechanism employed by the memory unit. Some additional parameters, such as learning
rate, number of inputs, etc., are also sent by the central controller during the initialisation
phase. This phase depends upon the neural algorithm, and its implementation should be
adjusted by the NSC for each specific case. However, this adjustment only affects the
implementation of the communication unit’s control module. Therefore, the NSC is bound
to synthesise different FSMs for each distinct implementation, while the core of the data
path module remains unchanged.

During execution time, the control unit’s data path is continuously monitoring the
external address and data busses to decide when the data is assumed to be read by the PE.
In this case, pertinent control lines are activated to instruct the writing of data into the
appropriate memory block (forward or backward), in which the address is obtained by the
external address bus. Furthermore, the control module signals to the execution unit the
start of a data acquisition phase. After receiving this signal, the execution unit starts
computing the appropriate neural computation (e.g., state or error calculation) in parallel
with the communication unit. After finishing the computation, the execution unit sends a
signal back to the communication unit, which waits for a specific moment to broadcast the
value onto the output data bus. This moment is determined by the central controller
through the polling mechanism mentioned earlier in this chuter.

Chapter 6______________________ A/SC and Target Architecture____________________ 115

The control module indicates to the central controller when the PE is ready to
write data onto the data bus, which is done through the bi-directional ready signal. After
the PE has calculated its output state the ready signal is activated. The central controller
and the other PEs in the network also monitor this signal to decide whether the data being
broadcasted into the bus is to be read by them. After the central controller has received
this signal, it passes the control of the data bus to another PE.

6.5.2. Memory Unit

As mentioned before, the two-phase clock mechanism allows the memory to be
accessed in parallel by both communication and execution units. In the Back Propagation
prototype, during <|)j the communication unit has access to the memory, while the
execution unit accesses the memory during (|)2 . Therefore, as soon as the communication
unit starts storing input states (sent by PEs in the previous layer), the execution unit can
immediately initiate the necessary calculation, without having to wait for the remaining
input values to be collected. The communication unit carries on storing input states, while
the execution unit is calculating the propagation rule (Es.w).

ENTITY mem unit IS PORT (- -- input-output pin specification (see Appendix D for full details)
END memunit;
ARCHITECTURE structure OF mem_unlt IS

COMPONENT storage module PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;
CCaiPONENT addressing module PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;

-' Definitions of internal signals (see Appendix D for full details)
BEGIN-- Components instantiation and interconnection (see Appendix D for full details)
hilD structure;

Figure 6.13 — VHDL Implementation of the Processing Element’s Memory Unit

The VHDL implementation of this unit, shown partially in Figure 6.13, comprises
the definition of the mem_unit entity. This entity comprises a structural representation of
its architecture built by two components: the storage_module and the addressing_module.

Storage module

The four memory blocks necessary to implement the Back Propagation learning,
have their control signals coming from the execution unit and communication unit. Two
independent (internal) data busses are available to afford maximum parallelism: one for the
weights (forward and backward) and another for the neuron states and errors. These
busses are then connected to the execution unit, as described later. This is shown in Figure

116____________________________ NSC and Target Architecture______________________ Chapter 6

6,14, through the port definition inside the storage_module entity. Note that states and
errors share the same bus (state_bus), while forward and backward weights share the other
bus (weight_bus), without compromising the overall performance. This is possible because
the network is either executing the forward path (recall phase) or the backward path
(learning phase).

The storage_m odule entity is defined by a structural architecture comprising the
component ram, which is instantiated four times for each memory block. Weights and
states are stored in pairs (in the same physical address). Therefore, a single address is able
to load the required operands simultaneously onto the two busses. This simplifies
enormously the addressing circuitry. In addition, the control of which memory block
should be activated (weights forward or weights backward at one bus, and states or errors
at the other bus) is defined either by the communication unit or the execution unit,
according to their respective clock phases.

ENTITY Storage module ISPORT (mem add busweight BusstatesTjuscs wgt frwrd'wr wgt frwcs'wgB bkwrd wr wgt bkwcs~sta frwrd~wr sta frwcs'sta bkwrd'wr sta bkw
~ ~ ~END storagemodule;

ARCHITECTURE Structure OF storage module IS COMPONENT ram PORT (addr data rdwr

IN wire vector(reun addr lines DOWNTO 1); INOUT wire vector(data Bus lines DOWNTO 1); INOUT wire~vector(data~bus~lines DOWNTO 1); IN BIT; - -IN BIT IN BIT IN BIT IN BIT IN BIT IN BIT IN BIT

IN wire vector (ram addr lines DOWNTO 1); INOUT wïrevector(dataBuslines DOWNTO 1);

END COMPONENT;

IN BIT; IN BIT

BEGINweights forward : r«un PORT MAP(addr -> mem add bus, data -> weight bus, rd wr -> rd wr wgt frw, cs -> cs wgt frw); weights“backward; ram PORT MAPI addr -> mem add bus, data -> weight bus, rd wr •> rd wr wgt bkw, cs -> cs~wgt“bkw) ; states forward: ram PORT MAP (addr -> mem add bus, data -> states bus, rd wf -> rd wf sta frw, cs »> cs sta frw) ; 8tates~backward: r«um PORT MAP(addr -> mem add bus, data -> states bus, rd wr -> rd wf sta bkw, cs -> cs sta bkw); END structure; “ “ - -

Figure 6.14— VHDL Implementation of the Memory Unit’s Storage Module

Addressing Module

Given the simplicity in which memory blocks are organised, the addressing module
consists of a sequential pointer (counter) for each memory block: forward and backward.
A comparator is given for each block, which compares the counter’s value with an internal
parameter containing the total number of inputs. The value for this parameter is defined
during initialisation time.

Figure 6.15 shows partially the VHDL implementation of this module, which is
defined by the addressing_m odule entity. This entity describes a structural architecture
encompassing the following components: comparator, counterl, tri__state_ram_addr, and
or2gate. The description of these components is given in Appendix D.

Chapter 6 NSC and Target Architecture____________________________ 117

ENTITY addressing module IS PORT (
END addressing_moduIe;
ARCHITECTURE structure OF addressing module IS COMPONENT comparator ~PORT (-- input-output pin specification

END COMPONENT;COMPONENT counterl PORT (-- input-output pin specification
END COMPONENT;COMPONENT tri State ram addr PORT (- --- input-output pin specification
END COMPONENT;COMPONENT or2gate PORT (-- input-output pin specification
END COMPONENT;

-- Internal signals and interconnection (see Appendix D for full details)BEGIN-- Components' instantiation and interconnection (see Appendix D for full details) END structure;

Figure 6.15 — VHDL Implementation of the Memory Unit’s Addressing Module

The addressing module circuitry is connected to a tri-state port, tri_state_ram _addr,

since the memory blocks can also be accessed externally through the external address bus,
which is controlled by the communication unit. Whenever a PE broadcasts a state onto the
data bus, the sender’s unique identification is loaded onto the address bus. Thereby, the
communication unit can directly associate the incoming data with its correct memory
location. This sijtnplifies considerably the mechanism for loading data into the memory, and
permits parallel access of the memory by the communication unit, using the external
address bus (during <l)i), and by the execution unit, using the internal addressing circuitry
(during <1)2).

6.5.3. Execution Unit

The VHDL implementation of the execution unit is shown in Figure 6.16, and
comprises the definition of the exec_unit entity. The structure of this entity includes an
architecture composed of two components: eu_datapath and eu_control.

ENTITY exec unit IS PORT (--- input-output pin specification (see Appendix D for full details)
END execunit;
ARCHITECTURE Structure OF exec unit IS COMPONENT eu datapath PORT (- ■-- input-output pin specification (see Appendix D for full details)

END OPPONENT;COMPONENT eu control PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;

-- Internal signals specification (see Appendix D for full details)
BEGINbl: eu_datapath PORT MAP (-- input-output pin specification (see Appendix 0 for full details)

b2; eu control PORT MAP (^'“-- input-output pin specification (see Appendix D for full details)
eu resetptr <- reset auxl;END structure; ~

Figure 6.16 — VHDL Implementation of the Processing Element’s Execution Unit

118____________________ NSC and Target Architecture______________________ Chapter 6

Data Path Module

The VHDL implementation of this module describes a structural architecture
composed of several components, as shown in Figure 6.17. These components comprise:
multi-port register, an ALU, a shifter, a ROM, tri-state buffers, and gates.

ENTITY eu datapath ISPORT (“-- input-output pin specification (see Appendix D for full details)
END eudatapath;
ARCHITECTURE Structure OF eu datapath ISCOMPONENT tri state data Bus PORT ("-- input-output pin specification (see Appendix D for full details)

END COMPONENT;COMPONENT tri state ram addr PORT ("-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT tri state rom addr PORT (--- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT reglxl PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT reglx2 PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT reglx3 PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT regOxlPORT (a : OUT wire vector (data bus lines DOWNTO 1));END COMPONENT; “ “ “COMPONENT regZxl PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT regZxlmr PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT reg3x3 PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT alu PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT shift n PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT rom PORT {-- input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT one 16PORT (one“16 : OUT wire vector(16 DOWNTO 1));END COMPONENT?COMPONENT gnd 16PORT (gnd“16 i OUT wire vector(16 DOWNTO 1));END COMPONENT?COMPONENT latch db PORT { input-output pin specification (see Appendix D for full details)
END COMPONENT;COMPONENT or2gate PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;-- Internal signals specification (see Appendix O for full details)BEGIN— Instantiation and interconnection (see topendix D for full details)END structure;

Figure 6.17 — VHDL Implementation of the Execution Unit’s Data Path Module

The basic component of the data path module is the ALU, since it is responsible for
operations like multiplication, addition, and subtraction, which are commonly found in
neural algorithms. Associated with the ALU, several registers are used to hold
intermediate results. All registers are multi-port, since this optimises considerably the

Chapter 6______________________ NSC and Target Architecture_____________________________11^

design of the data path. Regarding sihcon compilation, the NSC should analyse the data
flow of the nC program and define the number of ports each register should have.

Control Module

The VHDL implementation of this module describes a structural architecture
composed of two components: eu_fsm and eu_combinationai. A counter, necessary to
implement the Booth’s multiplication algorithm is incorporated into the eu_combinational
component. Like the communication unit’s control module, the FSM is also implemented
by a behavioural architecture, while the combinational logic of the module is described in
the structural domain.

ENTITY eu control IS PORT (--- input-output pin specification (see Appendix D for full details)
END eucontrol;
ARCHITECTURE Structure OF eu control IS COMPONENT eu fsm PORT {-- input-output pin specification (see Appendix D for full details)

END COMPONENT;
COMPONENT eu combinational PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;

-- Internal signal definitions (see Appendix D for full details)
BEGINfsmblock: eufsm PORT MAP (-- input-output pin specification (see Appendix D for full details)

comb block: eu combinational PORT MAP (“ -- inpuT-output pin specification (see Appendix D for full details)
reset acc mptr <- int reset mptr;END structure; “

Figure 6.18 — VHDL Implementation of the Execution Unit’s Control Module

6.6. Processing Element

Considering that all three units have been designed, the construction of a single PE
is accomplished by instantiating the appropriate units into a single entity, which for a
neuron in the hidden layer is called GN_hidden (see Figure 6.19).

The VHDL GN__hidden entity is described by a structural architecture comprising
three components, namely comm_unit, mem_unlt, and exec__unit, which are described
before.

120____________________________ NSC and Target Architecture______________________ Chapter 6

IN mvl_vector(data bus lines DOWNTO 1);OUT mvl vector(data“bus lines DOWNTO 1);IN mvl“vector(ram addr lines DOWNTO 1);IN BIT7IN BIT; -- 0-Initialisation; 1-Execution IN BIT;INOUT wire;IN BIT;IN BIT;IN BIT

ENTITY GN hidden IS PORT (“in bus out bus addTjus reset load frwbkw cs rdy Irn rcl phiT phi2
END GN_hldden;
ARCHITECTURE Structure OF GN hidden IS COMPONENT comm unit PORT (-- input-output pin specification (see Appendix D for full details)

END COMPONENT;
COMPONENT mem unit PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;
COMPONENT exec unit PORT (-- input-output pin specification (see Appendix D for full details)

) ;END COMPONENT;
SIGNAL a bus, b_bus : wirevector(databuslines DOWNTO 1);

-- Internal signals specification (see Appendix D for full details)
SIGNAL endfrw ph, end_bkw_ph : BIT;

BEGIN
cu hidden; comm unit PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

);
muhidden: mem unit PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

) ;
euhidden: exec unit PORT MAP (-- Instantiation and interconnection (see Appendix D for full details));

END S tr u c tu r e ;

Figure 6.19 — VHDL Implementation of a Hidden Layer Processing Element

6.7. Back Propagation Neural Chip

Finalising the design of the Back Propagation neural chip, Figure 6.20 presents the
design comprising 3 PEs from the hidden layer and 5 PEs from the output layer.

Although the preceding sections have described only a hidden layer PE, clearly the
design of an output layer PE is very similar. The description of the output layer PE would
represent a repetition of the description above. Therefore its complete design will be
omitted. It is assumed that a VHDL entity called GN_output has been defined.

The VHDL implementation of the Back Propagation neural chip comprises de
description of a structural architecture composed of two components: GN_hldden and
GN_output. The instances of these two components are then created and interconnected
among them forming a network of PEs connected through busses, according to the
definition of the Generic Neuron architecture.

Chapter 6_________ NSC and Target Architecture_____________________________121

IN mvl vector(data bus lines DOWNTO 1);OUT mvl vector(data“bus lines DOWNTO 1);IN mvl vector(ram addr lines DOWNTO 1);IN BIT?IN BIT; -- 0-Initialisation; 1-Execution
IN BIT;INOUT wire;IN BIT;IN BIT;IN BIT

ENTITY BP neural chip IS PORT (in bus' out bus add'bus reset load frw bkw cs rdy Irn rcl

END BPneuralchip;
ARCHITECTURE Structure OF BP neural chip IS COMPONENT GN hidden PORT (-- input-output pin specification (see Appendix D for full details)

END COMPONENT;
COMPONENT GN output PORT (-- input-output pin specification (see Appendix D for full details)
END COMPONENT;
SIGNAL abus, bbus : wirevector(databuslines DOWNTO 1);

-- Internal signals specification (see Appendix D for full details)
SIGNAL end_frw_ph, endbkwph : BIT;

BEGIN
gn hiddenl: GN hidden PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

) ;
gn hidden2: GN hidden PORT MAP (“ -- Instantiation and interconnection (see Appendix D for full details)

);
gn hidden]: GN hidden PORT MAP (“ -- Instantiation and interconnection (see Appendix D for full details)

) ;
gn outputl: GN output PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

) ;
gn output2: GN output PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

) ;
gn output]: GN output PORT MAP (-- Instantiation and interconnection (see Appendix D for full details)

) ;
gn output4: GN output PORT MAP (~ -- Instantiation and interconnection (see Appendix D for full details)

) ;

gn outputs: GN output PORT MAP (~ -- Instantiation and interconnection (see Appendix D for full details)
);

END Structure;

Figure 6.20 — VHDL Implementation of a Simple Back Propagation Chip

6.8. Summary

This chapter has proposed a general framework for the NSCy built upon existing
neural network programming environments. This proposal maintains these environments
unchanged, and adds a hardware route aiming the automatic synthesis of ASNNCs. The
hardware route is made technology independent by using VHDL. Therefore, potential new
technologies or different techniques can be later incorporated into the system.

A prototype of the NSC*s target architecture, the Generic Neuronj has been coded
in VHDL for the Back Propagation network. The design has been developed at the RTL
representation, following a mixed approach of behavioural and structural domains. In
particular, FSMs, memories, and counters are implemented in the behavioural domain,
while the remainder of the design is implemented in the structural domain. This is
compatible with the state of the art low level CAD tools, which will ultimately generate the
mask layout of the neural chips.

122____________________________ NSC and Target Architecture__________ Chapter 6

Most of the hardware structures designed are parameterised, so that they can be
used as part of the VHDL library, which will be utilised by the NSC.

This mixed approach is greatly favoured by the richness offered by VHDL,
permitting the description of a hierarchical design, in which several architectures for the
same entity can be defined, each with a different degree of detail. This also permits the
simulation of the design, thus providing a way to test the entire approach.

Chapter 7

NSC Implementation

This chapter describes in detail the implementation o f the NSC. The necessary
translation steps are described, starting from a high level o f abstraction,
represented in nC, and going to the actual hardware structure. This approach
focuses on the high level synthesis part o f the silicon compilation process. The
synthesised hardware structure is specified in VHDL, the IEEE standard
hardware description language, from which commercial low level synthesis tools
can be applied to generate the final layout.

7.1. Overview

The design of modem software compilers is carried out according to standard
techniques [11], which are adopted by well-known compilers [172]. These techniques are
generally organised in two logical activities:

• front-end— composed of lexical and syntactic analysis, the creation of a symbol table,
semantic analysis, and the generation of an intermediate code. These phases primarily
depend upon the source language and are largely independent of the target code.

• back-end — includes code optimisation and code generation. These phases are
generally independent of the source language; they basically depend upon the target
code and the intermediate language.

Equally, the design of the NSC can also be divided in two main activities: software
analysis of the nC language followed by the generation of an intermediate representation;
and hardware synthesis of ASNNCs starting from this intermediate representation.

A clear correspondence can be made between the design of software compilers and
the design of the NSC. The software analysis task of the NSC corresponds to the software
compiler’s front-end, since both are implemented using basically the same techniques.
Similarly, the NSC's hardware synthesis task corresponds to the software compilers’
back-end. In this case, however, the techniques employed are veiy distinct. Hardware
synthesis involves the creation of structures that implement a particular function. Such a

123

124_____________________ NSC Implementation___ _____________Chapter 7

task has no similar in software compiler’s techniques. This has several imphcations, which
are analysed throughout this chapter.

The NSC's front-end is divided into the following tasks:

• nC compilation and transformation steps — involves parsing the nC rules, constructing
syntax trees for the nC language, and applying transformations upon the nC data
structures and the syntax trees;

• construction of the intermediate code representation (ICR) — a graph-based structure
incorporating control and data flow information (a CDFG);

The NSC's back-end is hardware-oriented, being implemented by the tasks below:

• transformations upon the ICR — includes partitioning the ICR graph structure into
simpler sub-graphs, and applying optimisations that carry out constant propagation and
storage elimination;

• definition of a target architecture — involves choosing a suitable architecture (the
Generic Neuron [190]) and making assumptions about its internal organisation,
clocking scheme, etc., which are paramount to drive the hardware synthesis
algorithms;

• hardware synthesis — comprises the synthesis of the processing element’s (PE) data
path structure (performed by hardware allocation of storage elements, operators, and
interconnections, and definition of the scheduling) and synthesis of the PE’s control
structure;

• module generation — builds an instance of a particular functional unit or storage
element according to the hardware structure synthesised before; and

• generation of a VHDL description — completes the design by providing a complete
specification of the neural chip, according to the modules required to implement a
particular PE, and according to the neural network partitioning strategy for mapping
specific neurons onto PEs.

The NSC's front-end and back-end, briefly introduced above, are thoroughly
described in the following sections.

Chapter 7__________________________ NSC Implementation_____________ 125

7.2. nC Compilation and Transformation Steps

The compilation of the nC program consists of two basic tasks: parsing its input,
which creates a syntax tree representation entirely conforming with the nC syntax; and
transformation of the nC syntax tree into simpler structures.

The primary goal in transforming nC at early stages of the compilation process is to
analyse the tree structure and eliminate some unnecessary tree nodes, which are in
principle independent of its structure, but can introduce large overheads after the hardware
has been synthesised. These superfluous tree nodes are created either from the user’s
specification or from the language’s structure itself. In either case, these redundancies
result in more complex control units (since more clock cycles are required), resulting in
larger and slower circuits.

Some of the transformations performed are very similar to the ones performed by
optimising compilers [11]. Some are very specific to the nC language definition.

7.2.1. nC Parsing

The first task for creating a hardware structure of a particular neural network is to
analyse the nC program and extract every relevant piece of information regarding the
network’s interconnection topology and neurons’ functionality. As discussed in section
4.3, a nC program consists of several components, in which some of them are not possible
to synthesise into hardware structures. Although these components are required for
simulation purposes, they are not important for hardware synthesis. Therefore, the analysis
of what part of the nC language is relevant or not for hardware synthesis is made at the
early stages of the parsing phase.

By analysing the nC application control definition (see section 4.2.2), it is seen that
one of the first actions is to initialise the system data structure through the connect and
build_rules routines. Due to the complexity involved in these functions, a compilation step
would lead to unnecessary and extremely inefficient hardware structures. Therefore, it is
required to envisage an effective mechanism that selectively compiles only the important
characteristics of a neural network described in nC.

Two alternative mechanisms which, applied at run time, are provided: generation
of the nCjcode [131], and direct compilation. The first involves the transformation of the
initialised system data structure into a nC-based program, called nC_code. This program is
a special version of nC, in which the information about the network is held as explicit flat
data structures. Essentially, it is an image of the memory in the form of a nC program, thus

126____________________________ NSC Implementation__________ Chapter 7

eliminating the need for the two initialisation routines, i.e., connect and build_rules. In this
case, the actual compilation starts from nC code rather than nC. The second mechanism
simply reads the system data structure held in memory and compiles the necessary nC
rules. Both mechanisms have been implemented and are seen as conceptually equivalents.
Therefore, throughout this chapter, the discussions of the compiler will make no
distinction upon which of these two mechanisms are employed.

Before nC is parsed, several preliminary steps are undertaken. These basically
involve the initialisation of several internal data structures to conform with the nC syntax.
Basically, the nC syntax tree is constructed and initialised with default values which
correspond to all pre-defined nC statements (the subset of C), built-in functions (such as
dp, lookuptbl, thr_tbl, etc.), and data types (including the system data structure).

Parsing is done selectively, based on the analysis of the system data structure.
According to the rules defined by the user at the network, layer, cluster, and neuron levels,
the specific functions are parsed to extract data and control flow. Neurons with identical
functionality — typically neurons that are grouped into the same cluster or layer — are
compiled only once and instantiated several times. However, rules defined at the network
level are not compiled, since they are usually directed to the control of the entire network.
An example includes the function that calculates the tolerance of a particular model to
decide when the algorithm should stop. This function is not performed by the PE. Instead,
the central controller is responsible for commanding the entire network of PEs (see
chapter 6).

Figure 7.1 shows a simplified version of the algorithm for the selective parsing of
nC rules. The processing of generic and extended parameters consists in performing local
transformations upon these data, and is described in the next sub-section. If rules are not
defined at the neuron level, then the same procedure is performed at the cluster level. In
this case, rules defined for a particular cluster are applied for every neuron in this cluster.

foreach neuron do
foreach RULE do

process (generic_jparameters)
process (extended_parameters)
compile RULE
Incr (neuron_ruIes)
If (neuron_rules - 0) do

(repeat procedure for cluster level and layer level)
end

end
end

Figure 7.1 — nC Compilation at the Neuron Level

Chapter 7 NSC Implementation 127

Data type analysis is also performed during the parsing phase. Each generated nC
tree node has an associated code specifying its type, which can be a data type, a variable,
an expression, or a statement. For each of these elements, the tree node holds specific
information of the type. For example, a data type node for strings includes a pointer to the
data stream and its length, while a statement node for the clause contains links to other
tree nodes corresponding to the condition branch, the then branch, and to the else branch.
Figure 7.2 illustrates the syntax tree structure for a simple assignment statement of a
generic parameter in nC. Note that the tree represents directly the syntactic structure of
the language. Even for a simple statement such as an assignment, the complexity involved
in the manipulation of the nC data structures is evident. This poses a severe penalty for a
direct mapping of nC variables onto hardware structures. Therefore, a simplification
mechanism becomes extremely important.

p[i]->value.i = dp(p+3)

Figure 1.2 — Example of a nC Syntax Tree Structure for an Assignment Operation

7.2.2. nC Data Structure Transformations

The inherent complexity of the nC tree syntax, suggested by Figure 7.2, is resulted
from the nC data structure definition. In particular, the RULE data structure along with its
parajist structure requires the definition of every nC rule (or function) following a strict
premise: they must manipulate data defined over a linear array structure (see
section 4.2.1). Therefore, in order to avoid every data or parameter in nC being

128________________________________ NSC Implementation____________ Chapter 7

represented by an array (which would lead to a single memory structure in hardware), the
following transformations rules are performed upon the parajist structure:

• Any generic parameter, associated with either the neurons’ states (such as the output,
error, accumulation, and target states), synapses, or with any model-dependent
parameter (such as learning rate), is mapped onto a variable of sub-type register type.
During data path synthesis, these parameters are generally bound to register structures.

• The first item in the extended parameter field refers to its size, and therefore contains a
constant value for each specific rule. If the constant is a non-zero value, then it is
mapped onto a constant type, which can be bound, during data path synthesis, to a
signal, counter, or register structure. However, if the constant is zero, it means that the
rule in question does not require extended parameters, and the size parameter will be
automatically eliminated during data path synthesis.

• The rest of the extended parameters are mapped onto a variable type, which are
generally bound to memory structures.

It is important to note that the implementation of these transformations are only
possible due to the tag mechanism incorporated into the RULE data structure (see Figure
4.4). Equally important is that these transformations permit a closer relation between the
nC data and data path structures defined during the development of the VHDL neural
chip, described in the previous chapter.

7,2.3. nC Syntax Tree Transformations

Following the transformations performed upon the nC data structures, there are
several possible local transformations at the syntax tree level that not only optimise the
behavioural level described in nC, but also sinq)lify the synthesis of a hardware structure.
In both cases, the result is a more compact circuit synthesised from the specified behaviour
described in nC.

Nodes defined in the syntax tree are first checked against the use of some special
cases. For instance, if the user specifies that the activation function is accomplished
through a lookup table, then the correspondent variable is mapped onto a ROM structure,
in which values are obtained by the user’s activation function definition. Similarly, a
built-in function call is automatically transformed into its appropriate code, and may or
may not be compiled. For instance, a call to the function lookuptbl is not compiled, but
simply transformed into an array reference. Conversely, a call to the built-in function dp
results in compilation of this function.

Chapter 7__________________________ NSC Implementation________________________________ 129

The transformations consist in visiting every node and applying a set of heuristic
rules that try to simplify the mapping of nC into the hardware structure that implements it.
The set of heuristics are defined below:

• If a RAM type is added to a constant (which results from a pointer reference, indexed
by a constant in nC, such as p[1]), then the whole forest is simply transformed in a
register node as shown in Figure 7.3.a. According to the constant and to the tag
defined by this parameter, an appropriate name (which has been defined previously) is
assigned to the register.

• If a ROM type is added to a register (which results from a pointer reference, indexed
by a variable in nC, such as lookuptbl(p[1]), then the whole forest is simply transformed
in the ROM node (used as operand) indexed by the register, as shown in Figure 7.3.b.
In this case, the register is simply used to address the ROM memory, and the add
operation is eliminated.

• If a RAM type operation is added to a register (which results from an array indexed by
a variable in nC, such as p[i]), then the whole forest is simply transformed in the RAM
node indexed by the register, similar to the previous transformation rule and as shown
in Figure 7.3.d.

• Another transformation strategy looks for the nC construct such as p[i+1], which is
parsed as a partial tree as shown in Figure 7.3.C and replaced by a simple RAM node
addressed by the variable i. This is an immediate consequence of the way extended
parameters in nC are arranged, that is, as pairs or group of data (i.e.,
num_of_ext_parm = 2; see for example Figure 4.5). The exact RAM name is obtained
again through the tag mechanism employed in all nC data structure.

• A more complex transformation strategy looks for the nC statement for and checks
whether a control variable has been defined. If so, it checks what kind of statement has
been defined and carries out an analysis on the whole loop, so that a/or statement like:

f o r (i = 3 ; i < (2 * s i z e) + 3 ; i += 2)

is transformed in an equivalent loop such as:

f o r (1 = 0 ; 1 < s i z e ; i += 1)

which is necessary to comply with the two previous transformation steps. In other
words, the original loop performs calculation upon a parajist structure (see
Figure 4.5), in which the head of the list is the fourth element (i = 3) and data are

130 NSC Implementation Chapter 7

processed two-by-two (I += 2). Since these structure has been transformed by the
above mechanisms, this loop must be adjusted accordingly, resulting in the second loop
above.

nC: p[1]

(a)
nC: lookuptbl([p{1])

(b)

nC. p[i+1]

(c)

nC: p[i] /

(d)

Figure 7.3 — Transforming Memory References into Registers

The success of the above high level transformations in every nC program can be
guaranteed due to the rigid way (which is defined by the sy s tem data structure) that the
algorithm (and application) designer must follow to correctly implement a particular neural
network application in nC.

Along with the above optimisations, during the parsing of the syntax tree level
some software-like optimisations are performed, such as, constant folding, and global
transformations.

Constant folding is done at compile time by making local and global
transformations. Local transformations include the replacement of constant expressions by
its evaluated result. For example, the statement r.=5*2 is replaced by the value 10, while
statements like y 4-0 and y*l are simply replaced by y. Global transformations involve the
analysis of the data flow. In the above examples, every time x appears in the program, its
reference is replace by the pre-calculated value 10, as long as x is not assigned elsewhere
between the first and the last assignment of x.

Finally, in-line subroutine expansion is performed, which comprises replacement of
function calls by their code. This transformation creates more opportunities for hardware

Chapter 7____________________ NSC Implementation ___ 131

optimisations, since operations and storage elements can be merged, which also permits
the exploitation of parallelism.

In summary, the first part of the NSC's front-end is devoted to the development of
several transformation rules, which are closely related to the intrinsic nC syntax and
semantic definition. Without all these transformations described above, the hardware
synthesis tools would tend to create a complex hardware structure, particularly because of
the way nC rules are defined and data is manipulated (i.e., as array elements).

The second part of the NSC's front-end involves the transformation of the nC
syntax tree into a graph-based structure.

7.3. Intermediate Code Representation

The intermediate code representation (ICR), which is constructed from the nC
syntax tree, constitutes the instrument for the hardware synthesis steps that follow. It is
essentially a control and data flow graph (CDFG), represented by a directed graph with
predecessor-successor information. The ICR graph is defined as:

ICR = (V, E)

where V = {v̂ , Vg , v ^ } is the set of vertices (or nodes), and A = {a.,, ag, is a set of
directed arcs between two nodes.

A vertex v = {Type, Inps, Out, Attr} consists of:

• a Type field, which can represent either an operation or a storage element. Operations
include add, subtract, multiply, assign, compare, increment, etc. Storage elements can
be either a register, RAM, ROM, or counter;

• a set of input arcs Inps, which can be none, one or two arcs, according to the Type
field in question;

• an output arc Out, which can be none or a single arc; and

• an attribute field Attr, which includes several sub fields according to the node’s Type
field. Examples include the number of bits in a storage element, number of clock cycles
to accomplish a determined operation, etc.

An arc a = (Src, Dst} comprises:

• a single source node Src; and

• a single destination node Dst.

132________________________________ NSC Implementation__________________________ Chapter 7

The intermediate code representation (ICR), in its textual form, is a low level
format for the specification of neural networks aimed to be mapped into hardware. In its
simplest form, the ICR describes the network at the neuron level of the nC system data
structure, since, at the hardware level, this is the only useful information concerning the
implementation of processing elements. The format also provides an optional part that
describes the network with layers, clusters, neurons, and synapses, similar to the nC
system data structure. Since this data structure provides every possible information about
the neural network, it may also be used to synthesise the functionality of the central
controller. This can lead to a possible extension of the NSC, in which a system level
synthesis can be designed (see chapter 3).

The syntax of the ICR is formally presented in Figure 7.4. It is a very simple format
consisting of three basic parts:

• Explicit specification of the network’s topology and the neurons’ connectivity — The
network’s topology specification is optional (not shown in Figure 7.4), while the
neuron’s connectivity is compulsory. In this case, each neuron defines the neurons it is
linked from, and the neurons it is linked to. Note that for fully connected networks, a
special keyword FullyConnected is reserved to specify that neurons in a certain layer
are fully connected to neurons in the previous and in the following layer;

• specification of each neuron’s internal variables and constants that are required to
implement the neural algorithm; and

• description of the neuron’s computation, which is given by a control and data flow
graph, defining the implementation of each neuron’s rule.

In the ICR definition shown in Figure 7.4, constants and variables are first defined.
The neurons’ functionality is next defined by a CDFG including information on
predecessors and successors.

The aim of the ICR is to serve as a bridge between the neural network high level
languages (HLLs) and the hardware synthesis. The HLL is translated to the ICR through
front-end compilation techniques, as described before with the nC language. The hardware
synthesis tool reads the ICR format for a particular neural network and applies the
required algorithms to create a hardware structure. Therefore, this intermediate format
separates completely the front-end processing from the back-end, the hardware compiler.
As a consequence, the NSC approach is not committed to any particular neural
programming environment nor language. Its use can be widened to several neural network

Chapter 7__________________________ NSC Implementation________________________________ 133

systems, as long as the front end processing is able to generate correctly the ICR
specification.

NeuronTypeDe«<=̂
HcuronTypeDeacr^j^^gyQpt. connectivity DataPart Code

DataPart NeuronOataOpt Connective yOp

TlmeOpt INT_VALUE

HeuronSo Name INSTANCES INT_VALOE

,.o„ ™

ROM Name INT_VALU -
intvalueopt^^^y^yj,

ContentaOpt^^^ LiatOfIntValues RIGHT_BRK

ListOflnputa^y^g ListOfNeurons

listOfOutputSp^ LlatOfNeurons

LlatOfNeuron.^^^ INT.VALUE
ListOfNumbers

XNT_VALOE
RuleNaae Name

NODE INT_VALDE
Operation ̂ pg^^TION Operator
operator ^ggjg^

INCRDECRADD

is?!®ISZEBO

■°"” “̂îSSSÎIÎâSS««»t.
INT VALUE

LEM_EEK Name RIGHT.BRK
HodeOutputa^^ MixData

rredeceaaor^gj,ggSORS tletOflntValues

Sncceaaor.g^^ggggQgg LlatOllntValuea

Figure 7.4— The ICR Syntax Definition

7.4. /C/7 Transformations

Before the actual synthesis of the hardware is undertaken, further transformations
simplify even more the behaviour of the input description. The two basic optimisations

134 NSC Implementation Chapter 7

employed are: graph partitioning and elimination of storage elements after constant

propagation is accomplished.

7.4.1. Graph Partitioning

The original ICR graph, generated from the nC syntax tree, is partitioned into

several sub-graphs according to the control information specified. The partitioning of a

graph into several simple sub-graphs permits an easier manipulation of the graph, by
explicitly describing its data and control flow. However, extra nodes are created to hold

temporary variables. Nevertheless, the creation of the extra nodes does not pose a

problem, because they can later be merged with others during the hardware synthesis. For
example, a temporary variable, being mapped onto a register may be merged with another

register, resulting in a multi-port structure, which minimises busses’ resources and

maximises parallelism.

The partitioning is carried out through analyses of all nodes in the entire graph.

Operation nodes are isolated representing a unary or binary operation. Whenever an

operation node outputs its result to another operation node in the original graph, another
node is created to hold the intermediate result. Figure 7.5 illustrates the partitioning

process.

D = (A + B) * c tmp = A + B D = 0 * tmp

Partitioning

Figure 7.5 — Example of Graph Partitioning

7.4.2. Constant Propagation and Storage Elimination

Initially, all storage elements in the graph are visited to perform their lifetime

analysis. On the basis of this analysis, an initial optimisation is accomplished, consisting of

merging storage elements with disjoint lifetimes. The lifetime information is kept in

memory as an activity list. This list is used throughout the synthesis process for every
storage element in the design. This list is constructed for every variable and each element

Chapter 7 NSC Implementation 135

in the list corresponds to the variables’ activity during a specific control step. This activity

is defined by five possible values :

A ctiv ity List = {dead, idle, rd, wr, rdwr, wrrdi

where each element represents the status of a storage element in each particular control

state. The five possibilities are: dead, where no activity is performed in the variable; id le, in

which the variable is idle but still alive, meaning that its data previously written is needed

in a future state; and rd, w r, rdw r, or w rrd , meaning that the storage element is being read,

written, read followed by a write operation, or written followed by a read operation in the

same state, respectively.

Figure 7.6 gives a graphical interpretation for the registers’ lifetime and its

correspondence with the activity list. For example, it can be seen that the variable _tm p_1

is dead during the control states 1, 2, 3, and 4; _tm p_0 is idle in cycles 2, 3, and 4;
neu state is being read (rd) in control states 1 and 6; tm p acc has a rdw r operation in
cycle 3; and finally, _tm p_0 and neu_error are being written in states 1 and 6, respectively.

neu state _tm p_0 _tm p_acc _tmp_dp _tmp_1 neu_error

neu slate

_tm p_acc

States_BacktiJ Welghts_BackP]

_tmp_dp

_tm p_acc _tmp_dp

_tmp_acc

_tm p_acc _tmp_0

neu_8tate

Notation: ▼ Write Operation
__________ A Read Operation

Figure 7.6 — Graphical View of Variables Lifetime

136 NSC Implementation__________________________ Chapter 7

The resulted data flow graph is analysed, so that some useful optimisations can be
performed. If a constant value is assigned to a storage element, then its lifetime is
determined in the ICR. If this storage element is never assigned again, then the constant
can be propagated to every instance of the storage element As a consequence, the storage
element can be eliminated.

The merging of storage elements of the same type can be achieved through the
information provided by the activity list. In Figure 7.6, it is easy to see that registers
_tmp_dp and _tmp_1 can be merged. The algorithm for automatically merging variables is
defined as follows:

For each variable Do
«r Read its entire activity list (every row in Figure 7.6)
Loop

Get next variable
or Read its entire activity list

Find any intersection between the two activity lists
intersection - Null Then

=» Merge
End Loop

End For

Each time a variable is merged, its activation list is updated and the merged
variable is eliminated. This allows the algorithm to carry on the process with the remaining
variables from the same iteration where the merging has occurred. This algorithm turns out
to be very similar to the well-known bubble sort algorithm for sorting elements in a
list [164].

7.5. Target Architecture

One of the most important goals of this dissertation is to automatically generate an
efficient hardware structure for the neural chips. To achieve this objective, a target
architecture is adopted to restrict the design space and guarantee good results by providing
guidelines to the hardware synthesis steps.

The adopted target architecture is based upon the Generic Neuron model [190],
explained in section 6.3. While this model has proved to be flexible enough for realising a
large class of neural models, its VLSI architecture has shown to be very efficient in terms
of speed and silicon area. The VLSI architecture of the Generic Neuron model defines a
rigid structure for the data path and control module of the three basic internal units:
memory, execution, and communication unit. The automatic generation of these structures
is the ultimate goal of the NSC.

Chapter 7__________________________ NSC Implementation________________________________ 137

According to the experience acquired during the development of the VHDL Back
Propagation neural chip (see chapter 6), a few assumptions are made regarding the target
architecture and the synthesis algorithms. These assumptions concern basically the
interconnection mechanism, the clocking scheme, and the type of storage elements.

The interconnection structure of the data path is based upon multiple busses, which
are allocated on demand according to the bus allocation algorithm explained in
section 7.6.3. The use of multiple busses allows simultaneous data movements across the
busses. In addition, two-phase non-overlapping clocking scheme is adopted, thus
permitting the execution of operations in parallel, which saves several clock cycles and
allows the design of a smaller controller. Finally, storage elements are multi-port
structures, allowing them to be connected onto virtually any bus. These three
characteristics exploit extremely well the type of computation usually employed in neural
algorithms. The Generic Neuron architecture plays an important role towards the synthesis
of the three PE’s units.

The memory unit consists basically of RAM blocks, which are arranged by pairs
(one block for the states, and other for weights). There may be one or two blocks of
RAM, depending upon the necessity of having backward connections. For each block, one
RAM is connected to one main bus {Bus A), while the other is connected to another main
bus {Bus B). The addressing mechanism comprises the definition of a counter, to address
the memories sequentially, and a set of register and comparator to determine the end of
memory access. There is one such a set for each block of RAM. The number of RAM
blocks is determined through synthesis, described in the next section.

The execution unit comprises a data path module and a control module. Both
modules are fully synthesised by the NSC. This varies significantly from application to
application. Depending upon the user’s specification, a predominantly sequential data path
is created, or a highly parallel one is generated. The synthesis of the control module
consists in creating a FSM, in which sequence of operations varies from algorithm to
algorithm.

Finally, the communication unit embodies dedicated structures, which provided the
PE with abilities for controlling the other two units and for controlling the activities of the
PE across the entire network. The input-output pins are pre-defined, having variations
from one application to other concerning only with the length of busses. The data path
depends upon the network’s topology and interconnectivity (specified by the DataPart of
the ICR — see Figure 7.4). Tri-state buffers, for handling data movements, and one
register, for holding the PE’s address, are always present. This last register must have its

138 NSC Implementation Chapter 7

lower significant part pre-set by the NSC, in order to uniquely possess a valid address.
Each PE in the same chip must have a different address, as explained in section

Rule/Layer Hidden Layer Output Layer

Propagation Rule
k

S j
i

Error Calculation
j

e j = (t j - S j) . S j (l - S j)

Weight Update
(forward)

w'y = Wij + X] . S i . e j

Weight Update
(backward)

w ; j = W i j + 7] . S i . e j X

Table 7.1 — PE Functionality for Hidden and Output Layers

Table 7.2 shows the basic computation required by each PE in the hidden and
output layers of a Back Propagation neural network. It can be noted that, during the
learning phase, PEs in the hidden layer perform different computations from PEs in the
output layer. The basic difference relies on: (i) the error calculation; and (ii) on the extra
weight update (backward) calculation performed by the PEs in the hidden layer. The first
is according to the Back Propagation algorithm [161]. However, the second is
implementation-specific, and it is required for performance reasons. This is because the
error calculation needs the weights from the connections between the PE in question and
the PEs in the succeeding layer. Therefore, rather than broadcasting those weights, each
PE in the hidden layer performs exactly the same weight update computation of the PEs in
the next layer [190].

6.5.1. For fully connected multilayer networks, two extra registers are required:
one to identify data coming from the previous layer, and other to identify data coming
from the succeeding layer. For sparsed connected networks, however, and with very low
degree of interconnectivity\ more registers and comparators may be necessary to identify
a valid data in the bus. The control module varies very little, depending basically upon the
need for the learning phase or not, and upon the initialisation phase.

7.6. Data Path Synthesis

The synthesis of the hardware structure starts by reading the partitioned ICR graph
and allocating storage elements, functional units, and busses to the three PE’s units. The
synthesis of the memory and execution unit is performed directly from the functionality of

^Sparsed connected networks with high degree of interconnectivity may be considered as fully connected
networks, in which some synapses have a null weight

Chapter 7__________________________ NSC Implementation________________________________ 1 ^

the ICR's CDFG specification (CodePart in Figure 7.4), since they are directly related to
the computation of the neural algorithms. However, the synthesis of the communication
unit cannot be synthesised from the ICR's CDFG. Instead, its synthesis is driven by the
ICR’s DataPart, since this unit deals with the network’s connectivity, and from the resulted
memory and execution units synthesised before, since the communication unit commands
operations on the other two units.

Two main busses are initially provided, namely Bus A and Bus B. The operations in
the graph are then read and all three hardware structures are allocated in the same
iteration. In addition, control data is stored in memory to feed the control synthesis with
enough information of the sequencing and signal activations necessary to create the FSM.

During data path synthesis, the entire graph is visited to perform allocation and
scheduling. Since the graph implicitly contains a schedule which is derived from the initial
description in nC, a straightforward sequential scheduling is initially accomplished. The
data path synthesis algorithm is basically as presented below:

For every operation type node in the graph Do
allocate functional unit (if necessary)

rar allocate storage elements
allocate extra busses (if necessary);
schedule the operation to the current control state
Increment control state

End For

It must be noted that at this stage the number of storage elements has been already
optimised by the previous transformation’s steps. All temporary variables have been
eliminated, except those that are essential to the correct computation. The number of
functional units is minimum, that is, only one unit for each different operator. Although
this sequential approach does not exploit parallelism as other scheduling algorithms, such
as ASAP, it generates a highly optimised data path in terms of silicon area.

Furthermore, the straightforward sequential scheduling can be further improved
providing two modes of operation: default mode and user-driven mode. The default-mode
is employed when nothing has been specified by the user concerning time and area
constraints, or when the constraints given are exclusively related to the area. The
user-driven mode is performed to meet a timing constraint specified by the user that could
not be met by the default mode.

In greater detail, the general algorithm for data path synthesis includes: allocation
of storage elements, functional units, and busses; and scheduling of operations to control

140_________________________ NSC Implementation___________________ Chapter 7

steps. The allocation and scheduling algorithms are performed simultaneously, as shown
below:

State := 0
For each operation in the graph Do

I f operation = Assignment Then
I f input - Constant and output - Counter Then

«• Allocate a Counter;
M- Create Reset Logic;
«• Decrement (State);

Else I f input = Constant and output = register Then
<ar Create input port;

Connect lines to GND and VCC;
<«• Decrement (State);

End If
Else / / ‘operation = Binary operation Then

«■ Allocate storage for inputs;
«• Allocate storage for output,
w Allocate functional unit;
rar Create input port (output), and
«a- Connect port into functional unit’s output;
ra- Create output ports (inputs);
«a- Connect inputs into the two main busses;

End If
Increment (State);

End For

The allocation of hardware units is described in the following sub-sections. The
algorithm above also considers the allocation of consecutive operation nodes in a single
control state — denoted by the ‘Decrement (State)’ operation, meaning that the next
operation will be performed in the same cycle. Thus, the algorithm is able to perform two
or more assignments in the same control state, since two main busses are initially allocated,
as described in sub-section 7.6.3, If more busses are created after the preliminary synthesis,
then a mechanism to merge operations in consecutive control states is employed.

7.6.1. Allocation of Storage Elements

In the graph, a storage type node is allocated as a storage element in hardware,
which can be either a register, a counter, a RAM, or a ROM. Each of the storage elements
carries important information during the synthesis of the data path. The same information
is also used to generate the controller.

An important feature of the storage elements in the NSC is the multi-port
characteristic, which can be employed for registers, RAM, ROM, and counters in the NSC.
The multi-port structure presents the advantage of reducing the number of cycles. This is
possible because storage are made multi-purpose, thus eliminating the need for loading

Chapter 7_______ ___________________ NSC Implementation________________________________ 141

operands into dedicated registers. By making storage elements connected to as many
busses as necessary, virtually every element can be the input or output of any operation. In
addition, a storage element is allowed to be read and written simultaneously in the same
cycle. This is usually required for operations that have a particular storage element as input
and output at the same time, which is resulted from operations like a := a + b. Although
more busses are generally used, this approach tends to require a smaller number of storage
elements.

A register type holds the following fields:

number of input ports;

which bus each input port is connected to;

number of output ports;

which bus each output port is connected to;

a boolean value indicating whether or not tri-state logic is required; and

number of bits for the register.

The number of ports (both input and output) and the bus connection information
indicate that a multi-port register is required. Consequently, the number of control signals
(necessary to access data to and from the busses) is determined. For each port, a boolean
value indicates the need for a tri-state logic. If the port is connected to a bus, then tri-state
logic is required. If the port is connected directly to a single hardware component (storage
element or functional unit), then tri-state logic is not required, and the control signal for
this port is eliminated.

A memory type (RAM or ROM), requires the following fields:

number of input ports;

which bus each input port is connected to;

number of output ports;

which bus each output port is connected to;

memory size;

data width;

data bus; and

address bus.

The first four fields are required for the same reason described above for registers.
The memory size determines the number of lines for addressing the memory data. Data bus
and address busses are explicitly specified. The control signals for ROMs include the chip

142___________________________ NSC Implementation______________________ Chapter 7

select and read signals, which must be provided by the controller in a correct way. RAMs
include the same control signals, except that read/write control logic is required.

For a counter type, the fundamental fields include:

number of input ports;

which bus each input port is connected to;

number of output ports;

which bus each output port is connected to;

a boolean value that indicates the need for a load pin;

a boolean value that indicates the need for a reset pin;

input bus; and

output bus.

The load pin is required only if there is an assignment to a counter type node.
However if the assignment refers to a constant 0, then a reset pin is used instead,
indicating that the counter must have logic for resetting every internal flip-flop. If the load
pin is present, then the specification of an input bus is provided. The need for an output
bus is also optional, and is only specified if the intermediate results from the counter are
required. This is often the case when a counter is used as an index for memory references.
Conversely, a counter used in a single loop does not require intermediate values, and
therefore output bus is not needed. Instead, an output pin is provided, which indicates end
of counting.

A constant type defines the following necessary fields:

• output bus;

• number of bits for the constant.

A constant may be bound to a bus or directly to a specific storage or functional
element. In the first case tri-state logic is needed. In both cases, the bit range specification
must be provided to avoid aliasing problems.

7.6.2. Allocation of Operators

The NSC assumes a small set of functional units in its hbrary. This set is chosen
based upon the VHDL implementation described in the previous chapter. Operators in this
library include VHDL templates for ALUs, comparators and shifters. These templates are
used by the module generator (see section 7.7), which actually builds the necessary
functional units.

Chapter 7__________________________ NSC Implementation_________ 143

Certain operations require the allocation of functional units, such as the operator
‘+’. However, operations like ‘:=’, an assignment, do not require any allocation of
operators. Instead it requires the allocation of busses. Yet, operations like ‘<’, a
comparison, may or may not require allocation. In its simplest form, a comparison
operation is implemented by the control module. For example, an operation 'c <96% where
‘c’ is a counter not connected to an output bus, does not require any functional unit nor
bus allocation. The control module tests directly the counter’s output pin for a true
boolean value. Conversely, if the counter has an output bus, a comparator may be
implemented instead, which involves the allocation of a comparator unit, or an ALU.

Arithmetic and logic operations are all performed by a single ALU, which is also
capable of performing multiplication (in conjunction with a shifter and an accumulator).
This assumption is based upon the premise that a simple add function implemented by a
general-purpose ALU is more cost-effective, for VLSI area, than the implementation of
random logic [115]. Nevertheless, other types of ALU can be included in the library to
support, for example parallel multiplication, which could be used for critical real-time
applications.

7.6.3. Allocation of Interconnections

As mentioned before, interconnection between the elements in the data path is
accomplished by busses. A bus type node comprises the following fields:

• storage elements or functional units that write data onto the bus; and

• storage elements or functional units that read data from the bus.

The allocation of busses follows the approach usually taken by hardware designers. For the
Generic Neuron architecture, two main busses are initially allocated.

During the functional unit allocation, which takes two operands and generates an
output, such as an add operation, a local bus is created for one of its inputs. In this case,
one operand loads the input data onto one of the main busses, the other loads the input
data onto the operator’s local bus, and the result is loaded in the second main bus by the
functional unit. Thus, during data path synthesis, the following heuristic is used:

144________________________________NSC Implementation__________________________ Chapter 7

//operation has a storage element as one of its inputs and output Then
«• Link input onto the local bus created for operator and the

output onto one of the two main busses; Link the other
input to the other main bus;

oar Operator reads inputs from one main bus and its local bus
and writes the result onto the other main bus;

End If

The heuristic above indicates that the storage element in question is read and
written in the same cycle, and therefore it must be transformed into a multi-port structure.
Note that during the allocation of the functional unit, a new bus is created, which is local
to one of its inputs. Therefore, the output port of the storage element is linked to the local
bus, while the input port is linked to one of the main busses. This rule must be
accomplished to respect one of the basic rules in a synchronous digital system: only one
source can load a data value onto the bus at a specific time.

After the allocation of all three hardware units (storage, operation, and busses) is
finished, more busses can be created to meet some timing constraints. This approach
differs considerably from the one adopted in the Cathedral-II system [152], in which
busses are allocated on demand for each operation, which results in a structure with
several redundant busses. A final phase of bus merging is thus accomphshed in the
Cathedral-n to eliminate the redundant ones. In the NSC^ two main busses are the
minimum configuration. This focuses on the VLSI area aspect of the design. However, if
necessary, extra busses can be created, either to allocate functional units or to use fewer
control cycles.

The main difference between the Cathedral-II and the NSC is that the former
creates as many busses as required, thus exploring parallelism, and then applies a bus
merging algorithm to eliminate the redundant busses. Conversely, the NSC works in a way
similar to the one used by hardware designers. A minimum number of busses is initially
used, and during data path synthesis more busses are allocated as required. A bus merging
algorithm is not required because the optimal number is obtained by construction, which
trades VLSI area against parallelism. This approach guarantees better use of VLSI area,
and yet employing some degree of parallelism, and therefore allows more PEs in a single
chip. Parallelism is already inherent in the neural network, in which PEs for each layer
function in parallel. Better parallelism can be obtained through the ASAP scheduling
algorithm. This may be required to meet some timing constraints not met before (see next
sub-section), then full parallelism is explored, but the silicon area is sacrificed.

Chapter 7__________________________ NSC Implementation________________________________ 1 ^

7.6.4. Scheduling

As described before, a straightforward sequential scheduling is initially performed.
Then this scheduling is improved to provide some degree of parallelism, which is
accomplished by merging operations with no bus activity into the same state. In addition,
operations can also be merged if any idle bus is detected during a particular state.

ScheduHng involves reading the graph and assigning each operation to one control
state. Note that this algorithm is developed having in mind a FSM that implements the
sequence of operations. Therefore, control states are the basic unit, instead of control
steps. Since each control state can be performed in one or more control steps, the timing
information is still available during the synthesis. For example, a multiplication employing
the Booth’s algorithm is executed in a number of control steps.

Some operations take zero number of control steps to be executed, or can be done
in parallel with any other operation. This is the case of resetting a counter and loading a
constant value onto a register. These operations can be performed in parallel because of
the multi-port structure of the storage elements. During scheduling these possibilities are
explored, which niinimises considerably the FSM, thus resulting in a faster implementation
of the neural computation by the PEs.

The algorithm operates as presented in section 7.6. It provides the minimum
possible implementation with respect to hardware resources. Duplication of functional
units is not allowed, which guarantees very compact designs, but slower FSMs, since more
cycles are required to perform the computation. This approach focuses on the maximum
possible number of PEs per chip. However, if the users specifies timing constraints in nC,
which is not met by sequential scheduling, then an ASAP algorithm is employed.

The ASAP scheduling algorithm in the NSC starts from the sequential schedule
done before, and modifies the graph in such a way that a certain function is performed in
the fastest possible way allowed by the algorithm. The ASAP is performed as presented
below:

146 NSC Implementation Chapter 7

For each control state Do
Get Opl = operation in control state;
Increment (state);
Get Op2 = operation in control state;

I f output (Opl) = inputs (Op2) Then
next control state;

«T Continue',
Else I f output (Opl) •= output (Op2) Then

«■ next control state;
Continue',

Else
M erge operations in the same control step;

End I f
End For

The above algorithm implements the ASAP strategy by reading the entire ICR
graph from top to bottom. If the successive operations (Opl and Op2) do not violate any of
the rules above, which are: (i) writing to same storage element; and (ii) Op2 does not need
the output of Opl to compute, then these two operations can be merged into a single state,
and therefore can execute in parallel. However, after the ASAP scheduling is performed,
the allocation of new busses is necessary. Therefore, the allocation procedures are
executed once more to provide the required resources to explore the parallehsm enforced
by the ASAP strategy.

7.7. Module Generation

After the data path has been synthesised, every necessary module is explicitly
specified in the graph as a generic, parameterised cell structure. For example, a register
can have one or more ports, a counter can have a load pin or not, etc. Thus, this
information is used by the module generator to create a hardware structure for each of the
required cells.

This task is dependent upon the technology and style used for the final chip design.
A library of VHDL modules is thus created for each cell in the graph. The automatic
generation is based on standard templates for each module, which are parameterised
regarding several issues. Figure 7.7 shows the structure of a generic register, which is
created and configured automatically for each allocated register, after the number of input
and output ports have been calculated during data path synthesis.

Chapter 7 NSC implementation 147

ndOn rdOj rdO,

wri

Latch_N

wrI,
FF N

O,

O.

Figure 7.7 — A Generic Multi-Port Template for Registers

The procedure that generates multi-port registers requires six arguments that
specify: (i) the number of input and (ii) output ports; (iii) the need or not for the reset
function (which writes zero in every flip-flop of the register); (iv) the need for tri-state
logic on each output port; (v) the number of data lines; and finally (vi) the name of the
module.

Similarly, a procedure to generate RAM and ROM modules requires five
arguments: (i) the number of input and (ii) output ports; (iii) the number of address lines;
(iv) the number of data lines; and (v) the name of the module. If more than one port is
required for a particular memory block, then the same structure for generating multiple
ports in a register is employed here. Finally, a counter module (see Figure 7.8) is generated
by taking five parameters that describe: (i) the need for a reset logic; (ii) the need for a
preset logic; (iii) the number of input and (iv) output data lines; and (v) the name of the
module.

Id Counter

Latch_N

end

Out

Figure 7.8 — The Counter Module

An ALU module has a rigid structure and besides the number of data lines for its
inputs and output, and the name of the module, the only information required concerns the
need or not of a multiply function. If a multiply operation is specified, then a shifter and a
register are added to the ALU module to perform the Booth’s algorithm for two’s

148 NSC Implementation Chapter 7

complement numbers [55]. Figure 7.9 shows the ALU structure, including the

multiplication operation. Note that the multiplier register (MR) is generated from the same

template used for registers, but added with two output lines (Isb and lsb_-|), which are

required by the Booth’s algorithm. If the multiply operation is not required, the unit is

restricted to the add-subtract module.

The ALU performs an add or subtract operation by taking its inputs from Bus A

and Bus B, and producing an output onto Bus C. The multiplication is a special operation,

in which one input is the register MR (which must be loaded a priori), the other input

comes from any storage element connected to Bus A, and the result goes to any register

connected to Bus B, which must be set to zero before the operation begins.

In summary, a module is constructed from the graph specification after data path

synthesis has been performed. Since possible merging of storage elements and functional

units is done during synthesis, one module per element is generated. For example, if two

memories are defined, thus two memory modules, with different names, are generated.

Each generated module is saved as a VHDL file, which is named with the same name used

for the module.

Add/Sub

Bus C

C Id

B_rd

cklsfa.Mi

Figure 7.9 — ALU Module for Implementing Typical Neural Network Computation

7.8. Control Synthesis

As described before, during scheduling a list containing all signals that should be
activated are explicitly kept updated during the data path synthesis process. This list

Chapter 7 ______________________ NSC Implementation__________________ 149

comprises every control state generated by the scheduling algorithm, each containing
explicit information regarding control signals.

Therefore, the control synthesis task starts analysing this list and then builds a FSM
that controls the allocated modules. This is already performed in conformity with the
VHDL syntax.

An important issue during the synthesis of the Generic Neuron's PEs is the
synchronisation among the three internal units. As explained in the previous chapter, the
memory unit is accessed by both the communication and execution unit. To achieve full
parallelism, the communication unit uses one phase of the two-phase clock cycle ((|)i)
while the execution unit uses the other phase (<j)2). The memory and execution unit need to
have some internal parameters initialised, such as the memory blocks and the
algorithm-dependent variables, like the learning rate for the Back Propagation network.
This is controlled by the initialisation phase of the communication unit’s FSM, since this
unit is responsible for the interface with other PEs as well as with the central controller.

The parameters that should be initiahsed are not explicitly defined in the ICR, nor
in nC. Nevertheless, this information is implicitly specified in the graph and can be easily
obtained by searching the activity hst of all variables. The following proposition defines
what variables need to be externally (to its own unit) initialised, and when this should
happen:

For each variable Do
/ / “variable’s activity list - d e a d state Then

Do nothing;
continue’,

E n d lf
y variable’s activity list - rd state Then

Inform control synthesis the need for initialisation;
Else

Variable does not need initialisation
E n d lf

End For

The above algorithm employs a search in the activity list for every variable. If the
first element of a variable begins with a read operation, then this variable must receive a
value. The choice of when the scheduling takes place must not exceed the control state by
which the read operation occurs. This proposition can be seen gr^hically by looking for
the symbol ‘A’ as the first occurrence for any variable. For instance, in Figure 7.6, it is
shown that neu_state needs to be initialised externally.

150________________________________NSC Implementation__________________________ Chapter 7

Similarly, PEs must send some values to other PBs, and again this is not expHcitly
specified in the graph. A similar proposition, however, can be made, which is shown
below:

For each variable Do
If last element in the variable’s activity list = w r state Then

Inform control synthesis the need for sending out;
End I f

End For

This can also be interpreted graphically (see Figure 7.6) by looking for the last cycle in
each neural rule represented in the graph. If the last symbol for a particular variable is ‘T ’
before it crosses the boundary of the graph, then a value has been written and not read yet,
which means that this data must be sent out to the other PBs in the network. In Figure 7.6,
neu_error register is written in cycle 6 and crosses the boundary without a further read
operation.

The above propositions are very general and they reflect faithfully the way a nC
neural network program works. It must be noted that if the user writes a function that
defines an internal variable and then reads its contents in an expression evaluation, without
initiahsing it before, then the NSC will tend to incorrectly mitiahse this variable externally.
However, to read a value that has never been written before is a serious programming
error. Conversely, if the user defines a variable and initialises it, but never uses it
throughout the program, then the NSC would tend to incorrectly send this data outside the
PB. In fact, this situation can never present itself because during the nC compilation,
redundant variables are automatically eliminated. The only variables that survive are the
ones originated from the generic and extended parameter lists. Since these lists are
initialised a priori by the main part of the nC program, the two propositions are by
construction correct.

The only exception is when these circumstances occur inside a loop or a
conditional loop path of the graph. The algorithms are developed to cope with these
conditions by keeping updated the data flow and, in particular, the control flow graph.

The task of the control synthesis is therefore to generate a FSM, written in VHDL,
according to the scheduling strategy described before. For every control state, the control
synthesis collects the list of actions to be realised. The information regarding the next state
is obtained through the ICR graph, in particular from the part that describes the control
flow. Figure 7.10 shows the template for a finite state machine, in VHDL, which basically
consists of a case clause with several possible states which define the list of actions to be

Chapter 7__________________________ NSC implementation 151

performed, during a particular phase of the clock ((1)2). The test for jumping to the next
state, according to the logic, is performed in the other phase of the clock ((|)i).

ARCHITECTURE behaviour of FiniteStateMachine IS SIGNAL current_state CHARACTER :- 'A'; SIGNAL next_state CHARACTER 'A';BEGIN
Synch: PROCESS BEGINWAIT UNTIL phi2'event AND phl2 - current_state <- next_state;END PROCESS Synch;
FiniteStateMachine: PROCESS VARIABLE ...

PROCEDURE ...BEGIN

BEGINWAIT UNTIL phil'event AND phil - '1';
CASE current_3tate IS WHEN 'A' ->IF (cond - '!') THEN

— List of actions next_3tate <- 'C';
ELSIF (..) THEN

— List of actions next_state <- 'D';

ELSE— List of actions next_state <- 'A' ; END IF;
WAIT UNTIL phi2 - —List of Actions;

END CASE;END PROCESS FiniteStateMachine; END behaviour;

Figure 7.10 — A Finite State Machine Template in VHDL

7.9. VHDL

The generation of VHDL code for the synthesised circuit is a straightforward
operation, which uses the designs developed in Chapter 6 as templates for most of the
mcxiules used by the NSC. The data path is fully composed of VHDL structural
components and behavioural descriptions. Examples of structural descriptions include
registers, gates, busses, and ALU. Behavioural descriptions include flip-flops, memories,
and FSMs (see Figure 7.10).

Therefore, the generated VHDL code is described in a mixed mode. For some
parts of the design a structural representation is generated; for others a behavioural one is
produced. Those that are in the structural level do not require any further synthesis step.
Instead, a technology mapping can be directly employed. These include primitive
components such as logic gates, flip-flops, and some macro cells such as the ALU, which
is composed of those primitive structural cells. For behavioural level descriptions, a
synthesis step may or may not be required. For example, the description of the RAM and
ROM does not require synthesis. However the description of the FSM needs to be fed into

152___________________ _____________NSC implementation_________________ _________ Chapter 7

a FSM compiler. Such a tool can be easily found in several commercial and educational
tools.

It is important to note that this approach tries to meet a compromise on what is
available and what is required. The data path synthesis performed by the NSC is crucial for
the compactness of the circuits. Conversely, the control synthesis, which consists in
generating a controller for a given scheduling strategy, has been done by several other
projects. Therefore, it is assumed that the VHDL description of the controller can be fed
into one of these available tools and integrated into the NSC easily. If these tools do not
support VHDL, then it is necessary to design a translation between VHDL and the tool’s
native input description.

The produced VHDL code in the NSC is guaranteed to work as shown through
simulations (using the Cadence software). It is not however guaranteed that the NSC's
VHDL output can be further fully synthesised with no modifications by lower level
synthesis tools. This final test has not been done due to lack of appropriate tools in the
Department. Nevertheless, the design philosophy undertaken throughout this work
conforms with the current state of CAD tools, which implies in a smooth path towards the
integration of the NSC and these low level tools. Finally, since the Cadence software does
not fully implement the VHDL language, some modifications may still be necessary to
make the output description compatible with the VHDL low level synthesis tool.

7.10. Neural Network Partition

The synthesis process developed in the NSC has concentrated on the design of the
processing elements. To implement a complete neural chip, these PEs must be connected
according to the bus strategy presented in chapter 6.

The problem of partitioning the neural network into several neural chips is posed
by the difficulty of integrating large neural networks into a single chip. A mapping strategy
must be envisaged without compromising the generation of identical chips. As mentioned
before, the Back Propagation network has different neurons between hidden and output
layers.

The adopted strategy integrates hidden neurons and output neurons into the same
chip according to the proportion of neurons in each layer. For the optical character
recognition (OCR) example (see chapter 5), in which 24 neurons are present in the hidden
layer, and 96 in the output layer, there are 4 output neurons for each hidden neuron.
Therefore, according to the space occupied by PEs, the partitioning strategy would result

Chapter 7__________________________ A/SC implementation______________________________ 153

in 24 chips of 1 hidden neuron plus 4 output neurons, or 12 chips of 2 hidden neurons plus
8 output neurons, and so on.

Note that this partition can only be applied if a single bus is used to connect PEs. If
a multi-bus strategy is adopted, then depending upon the partition strategy, more pins may
be required to provide the correct connection of PEs onto the appropriate busses. This is
because in a multi-layer network PEs compute differently according to the layer they
belong to. In this case, a multi-bus connection means that PEs in a single chips must be
connected to different busses. However, this does not mean that scalabihty is affected. If a
particular neural chip has several PEs of only two layer, then two busses are provided,
regardless the number of PEs in the chip.

The final VHDL chip description comprises instantiations of several PEs. Each PE
is, in turn, composed of instantiations of the three basic units: communication, memory,
and execution (See appendix C for details).

7.11. Summary

In this chapter, a thorough description of the development of the NSC is given. The
approach is based on the high level synthesis of the sihcon compilation process. Much of
the effort is concentrated on the high level transformations of the nC language, which
ensures synthesis of optimised hardware structures.

Some important results obtained through the techniques developed during the
design of the NSC include:

• development of several optimisations at different level of the NSC, which has produced
a synthesis tool that creates very compact hardware structures; and

• development of the activity list, which serves as the basis for the data path synthesis; in
addition, several interesting algorithms are developed upon this technique, including
verification of the correctness for the synthesised hardware;

• design of two modes for hardware synthesis to create structures that meet the user’s
specification: default mode and user-driven mode;

• development of an automatic mechanism for discovering which variables need to be
initialised;

• development of an automatic strategy to determine which variable should have its
result sent to other PEs in the network;

154________________________________ NSC Implementation________ __________________Chapter 7

• development of a module generation tool, which automatically creates a VHDL
hardware module based upon parameterised templates.

Chapter 8

From nC to VHDL Neural Chips

This chapter presents the complete cycle o f generating VHDL neural chips from
a behavioural description o f the neural network in nC. A Back Propagation
neural network is used to show all steps toward the automatic synthesis o f
hardware, according to the algorithms developed in the previous chapter. In
addition, the synthesised design is compared with the one manually developed in
chapter 6.

8.1. Overview

The primary aim of this chapter is to show the entire process of compiling a nC
program and synthesising neural chips that implement the functionality specified by the
user. The design starts with a nC description of the Back Propagation neural network
implementing the same OCR application used by the simulations developed in chapter 5.
Then, all steps involved in the NSCs high level synthesis are stressed. The final design of
the VHDL neural chip is compared with the one manually developed in chapter 6.

8.2. nC Description of a Back Propagation Network

As described in chapter 4, a nC program involves the specification of two sections:
application and algorithm.

8.2.1. Appiication Definition

The application definition of the OCR problem involves the specification of the
config data structure, precisely as shown in Figure 8.1, and the specification of the
function main.

The config structure specifies only the network’s topology, which defines a
network of three layers composed of one cluster in each layer, each cluster comprises 96,
24, and 96 neurons, respectively.

The application control, implemented by the main function must be written
according to the chosen algorithm and following a sequence of function calls that control

155

156 From nCio VHDL Neural Chips Chapter 8

the flow of the entire application. Typically, this is performed by a loop that calls the

function learn for every input pattern followed by the function recall. Furthermore,

connect and build rules must be called in advance, so that the system data structure is

correctly configured.

«define NETS «define LAYERS «define CLUSTERS
struct {int nets;struct (int layers;struct (int clusters;struct { int neurons;) cluster (CLUSTERS];) layer (LAYERS);) net (NETS);} config -1, { 3,

lii im |:

/* One network of three layers •//* Layer 1 - One cluster of 96 neurons *//* Layer 2 - One cluster of 96 neurons *//* Layer 3 - One cluster of 96 neurons */

Figure 8.1 — The config structure for the OCR Application

8.2.2. Algorithm Definition

The algorithm definition consists of initially deciding what functions are required

and what parameters these functions neede to manipulate. According to the Back

Propagation algorithm (see Table 6.2), there are four basic functions to be defined:

State_Update and Welght_Update, which are standard for neurons in the hidden and output

layers, Err_Cal_Hldden for neurons in the hidden layer, and finally Err_Cal_Output, for

neurons in the output layer. In addition, the connectivity of the network must be specified

through the connect function, and the functionality of each element in the network must be

defined through the function build_rules, which defines the exact contents of the important

RULE data structure.

Rule Class_type Function
••r_0_1_0_0.0" / function -----

"neuron_state_upd" / "State_Update"
class ' num_of_gen_parm = 2

para jist num_of_ext_parm = 2

s ta te Update (p)
TAG\AL**p ;

pf1p»value.i = d p (p + 2):
p{0}->value.i = lookuptbKp(ir>vakje.i));
return (0);

state I acc {size = 96 |s,|w ,|sJw J - | s_ |w .|
j je n e r ic

p a ra m e te rT
extended
param eter#

= num _ofj9 en_parm

= num_of_ext_parm * size + 1

Figure 8.2 — State_Update Rule Definition

Figure 8.2 exhibits the complete RULE data structure for the State_Update

function. This structure defines a nC rule named as “neuron_state_upd” (for the purposes of

graphic monitoring) and identified as rule 0 o f the neuron 0, in the network 0, layer 1

(hidden layer), cluster 0. This is represented by the tag field “r_0_1_0_0.0” (see

Chapter 8 From nCto VHDL Neural Chips 157

section 4.2.1). This rule corresponds to a class which is specified by the State_Update

function implementing its computation based upon the list o f parameters (p a ra jis t) . This
list comprises two parts: generic parameters and extended parameters. The generic
parameters’ part is composed of two values (num _of_gen_parm = 2): the neuron’s state and
its accumulator value (required to compute the sum of products performed by the built-in
function dp). The extended parameters’ part comprises a constant value (size = 96),
followed by 96 pairs of values (since num _of_ext_parm = 2) composed of states and
weights.

Rule
"r 0 1 0 0.1"

"Error Calc Hidden"
class

parajist

Class_type Function
function

"Err cal hidden"

num_of_jgen_parm = 2
num_of_ext_parm = 2

Err cal_hidden (p)
TAGv a l - p ;

p[0>>value,i = dp (p + 2) ' (1 - p|1)->value.i) * p[1]->value.i;
 ̂ return (0);

|error|state|size = 96|e,|w JeJw J ••• le « |w j
1 generic , extended 1
1 param eters 1 param eters 1

p a r ^ ^ e r e = n u m _ o f_ ^n _ p arm

extended
param eteni = num _of_ext_pann * size > 1

Figure 8.3 — Err_cai_hidden Rule Definition

The next rule to be programmed is Err_cai_h!dden, which is responsible for
computing the error values of the neurons in the hidden layer during the learning phase.
Figure 8.3 presents the code for the function, as well as the complete configuration of the
RULE data structure. The parameters manipulated by this function are the neuron’s state
and its associated error, plus the pair of backward connection weights and error states
coming from the subsequent layer.

Figure 8.4 shows the equivalent error calculation function for the neurons in the
output layer (Err_cal_output rule). In this case, there are no backward states and weights
to manipulate. Instead, this rule computes the error based upon the difference between the
target value and the neuron’s output state. Consequently, the list of parameters comprises
only the generic parameters.

Rule Class_type Function
"r_0_2_0_01" / function ----- Err cal output (p)

TAGVAL“ p;

p(0]->value.l = (p{1]->value.l - p[2]->value.l) * (1 - p(2}->value.l} • p(2]->value.l;
 ̂ return (0);

"Error_Calc_Output" "Err_cal_output"
class > num_of_jgen_parm = 3

parajist num_cf_ext_parm = 0

errorttarget|state|
fleneric
p â râ m ë lë i ï"

p a ,^ % k % = nufti_ofjBen_parm

= num_of_«sxt_pann * size +1

Figure 8.4— Err_cal_output Rule Definition

158 From nC\o VHDL Neural Chips Chapter 8

The last function required to perform the Back Propagation algorithm is the
Welght_Update rule. Figure 8.5 shows its code and respective RULE structure for a neuron
in the output layer. The same function applies to neurons in the hidden layer, differing only
on the number of paired elements in the list of extended parameters.

Rule
"r 0 2 0 0.2"

"Weight_Update"
class

para_!ist

Class_type Function
function

"Weight_Update"
num_of_gen_parm = 2
num_of_ext_parm = 2

lerrorl T| |size = 24js,|wJsJwJ • U^lwl]

W eighLupdate (p)
TAGVAL **p;

int I. size;
size = *(lnt *) p(2];

PAR for (I = 3; i < (2 * size ♦ 3); i += 2) {
p[i] += (p{0}^value.i * p(1]->value.i) * pp+1]->vaiue.i;

retum(O);

genenc extended
^ ra m e te r* param eters

p a ra m e te r “ "u,„_of_jgen_parm
extended , . .

param eters = num_of_ext_parm * size + 1

Figure 8.5 — Welght_Update (Forward) Rule Definition for the Output Layer

As explained before, the Back Propagation algorithm involves bi-directional
connections among neurons between two consecutive layers. To avoid having to broadcast
the weighted values of the backward connections, the user should supply an extra rule that
duplicates the weight updating rule of a particular layer in its preceding layer. For example,
neurons in the hidden layer should implement the same Welght_update rule realised in the
output layer. Thus, backward connections in the hidden layer are identical to forward
connections in the output layer. This redundant, but necessary step for performance
reasons, is shown in Figure 8.6.

Rule Class_type Function
"r_0_1_0_0.r / function -----

"Weight_UpdateBack" / "Weigtit_UpdateBack"
class ' num_ofjgen_parm = 2

parajist num_of_ext_parm = 2

State! n |slze = 24|e,|wJe,|wJ-|e,,|wJ

W eighl_Update_Output_Backward (p)
TAGVAL-p:

Int I. *lae:
size » "(Int *) p{2];

PAR for (i * 3; i < (2 * size + 3); i ♦= 2) {
p(i] ♦= (p(0}j»value.i * p[1]->^lue.i) * p(i+11->value.l;

 ̂ rBtum(O):

genenc
param eters

extended
param eters

p a n 2 ^2 S % = num_of_gen_parm

p a m m ^ r s = num_of_ext_parm * size + 1

Figure 8.6 — Welght_Update (Backward) Rule Definition

Note that the tag field in the RULE data structure of the rule definitions above
defines the order each function is executed. Thus, for neurons in the hidden layer, the
execution order is State_Update, Weight_Update_Backward, Err_Cal_Hidden, and
Welght_Update.

Chapter 8 From nCXo VHDL Neural Chips 159

8.3. nC Compilation and Syntax Tree Transformations

As explained in the previous chapter, the system data structure is read either
directly from the memory, at run time, or from the nC code program, which is generated
during simulation. In either case, the data structure provides all the information required
for the high level synthesis.

Each time a certain rule is compiled, its RULE data structure is analysed to identify
the elements of the generic and extended parameters. On the basis of these parameters.
Table 8.1 shows all transformation steps realised upon the five rules specified for the Back
Propagation network. These transformations correspond to the ones developed in sections
7.2.2 and 7.2.3. They also include the transformation of the iookuptbi function into an
array, which is further transformed into a ROM structure, and the transformations
performed in the loop statements (not shown in the Table), since the generic and extended
parameters have been modified.

Rule nC Parameter New Internal Name Type Hardware
p[0]->value.i neu_state R eg ister Register
p[1]->value.i neu_acc R eg ister Register

State_Update p[2]->value.i size_State_Update Constant Signal
(Hidden and p[i]->value.i States_Forward[l] Variable RAM
Ouput Layer) p[i+1]->value.i Welghts_Forward[i] Variable RAM

iookuptbi (...) iookup_tbi [neu_acc] Variable ROM
p[0]->vaiue.l neu_error Register Register
p[1]->vaiue.i neu_state Register Register

Err cal hidden p[2]->vaiue.l size_Err_caLhidden Constant Signal
(Hidden Layer) p[i]->vaiue.i States_Backward[i] Variable RAM

p[i+1]->vaiue.i Weights_Backward[i] Variable RAM
Err_cal_output p[0]->vaiue.l neu_error Register Register

(Output Layer) p[1]->vaiue.l neujarget Register Register
p[2]->vaiue.i neu_state Register Register
p[01->vaiue.l neu_error Register Register

WeIght_Update p[11->vaiue.i iearn_rate_of_net_0 Register Register
Forward p[2]->vaiue.l size_Welght_Update Constant Signal

(Hidden and p[i]->vaiue.l States_Forward[i] Variable RAM
Output Layer) p[i+1]->vaiue.l Weights_Forward[G Variable RAM

p[0]->vaiue.i neu_state Register Register
Welght_Update p[1]->vaiue.i leam_rate_of_net_0 Register Register

Backward p[2]->vaiue.i size_Weight_UpdateBack Constant Signal
(Hidden Layer) p[i]->vaiue.l States_BackwardIi] Variable RAM

p[i+1]->vaiue.i Welghts_Backward[i] Variable RAM

Table 8.1 — Transforming Generic and Extended Parameters

160 From nCto VHDL Neural Chips____ Chapter 8

Also shown in Table 8.1 is the mapping of internal variables and constants into
hardware. The new names created for the generic and extended parameters are used in the
data definition part of the ICR format.

In-line expansion is performed during the conversion of the syntax tree into graph.
This is done by visiting every tree node and replacing every call node by its correspondent
code. The function dp(p) is expanded in State_Update and Err_cal_hidden functions. As
described before, dp(p) is a built-in function that operates on the extended parameter Ust.
Again, since this list has been modified, the code of the function must be adjusted
accordingly.

8.4. Hardware Synthesis

8.4.1. Graph Generation and /C/7 Transformations

The next step is the generation of the ICR for the application in question. The ICR
format consists of a data section, which represents the storage elements required to
implement the algorithm, and a code section, which is a textual format for the control and
data flow, thus representing the neuron’s functionality. Figure 8.7 shows the ICR format
for a PE belonging to the hidden layer.

Hardware synthesis actually starts from the ICR format. After the tree structure has
been converted into the ICRy an internal CDFG is created, which is partitioned into several
simple data flow graphs comprising only one operation node, which has up to two input
nodes and one output node. This is equivalent to decomposing assignment statements in a
programming language to form statements that have only two operands on the right side of
the statement.

The partitioning of the entire graph into simple expressions, generally results in the
proliferation of temporary variables for holding intermediate results (see Figure 7.5).
Although this might seem to complicate the design, in fact, it does not, because temporary
variables are eliminated during data path synthesis. Those that remain are compulsory,
representing intermediate values for storage, which are necessary for the computation.

Chapter 8 From nCto VHDL Neural Chips 161

Neuron: NeuLey 1 Instances: 24
Const; size State update 19 . • 0]
Const: size Err cal hidden 19 • 01
Const: size Weight update 19 .. 0]
Const: size Weight updateBack 19 .. 0]
Reg : neu state 115 .. 01
Reg: neu acc U S . . 01
Reg : neu error U S .. 01
Reg : learn rate of net 0 U S . . 01
Counter: i 19 .. 01
ROM: lookup tbl US .. 01

2048 2111 2175 2239 2302 2365 2427 2488 2549 2609
2667 2725 2781 2837 2890 2943 2994 3044 3092 3138
3183 3227 3269 3309 3348 3366 3422 3456 3489 3521
3551 3580 3607 3633 3658 3682 3705 3726 3747 3766
3765 3602 3819 3835 3849 3863 3877 3889 3901 3912
3923 3933 3943 3952 3960 3968 3975 3983 3989 3995
4001 4007 4012 4017 73 78 83 88 94 100 106 112 120
127 135 143 152 162 172 183 194 206 218 232 246
260 276 293 310 329 348 369 390 413 437 462 488
515 544 574 606 639 673 709 747 786 826 868 912
957 1003 1051 1101 1152 1205 1258 1314 1370 1428
I486 1546 1607 1668 1730 1793 1856 1920 1984

1
RAM: WelghtsForvard
RAM: StatesPorward
RAM: StatesBackvard
RAM: HelgbtsBackward
Rule: State update

Operation:
Inputs :
Output:
Predecessors :
Successors :
Operation:
Inputs:
Output:
Predecessors :
Successors :
Operation:
Output :
Predecessors :
Successors :
Operation:
Output:
Predecessors :
Successors:
Operation:
Predecessors :
Successors :
Operation:
Predecessors :
Successors :
Operation:
Output :
Predecessors :
Successors :
Operation:
Output :
Predecessors :
Successors:

Time: 1000

(IS .. 01
(15 .. 01
(15 .. 01
(15 .. 01

4 dp -- Start

StatesPorward[i] HeightsForward(i]

i size State update

Weight updateBack
Operation: m

24 • Generated :
Output: #ize Height updateBack
Predecessors ; 0
successors : 2
Operation: .

Output : i
Predecessors : 1
Successors : 3
Operation : *
Inputs : neu etate learn rate of net 0
Output: t m p 2
Predecessors : 2 7
Successors : 4
Operation: *

tmp2 StateaBackward
Output: tmp3
Predecessors : 3
Successors : 5
Operation: +

HeightsBackvard (1] tmp3
Output: HeightaBackward (1]

Predecessors :
Successors :
Operation: Incr
Inputs:
Predecessors : 5
Successors :
Operation: <
Inputs: 1 size Weight update 1
Predecessors :
Successors:
hidden Time : 100000
Operation: -
Inputs: 1 neu state
Output:
Predecessors :
Successors : ̂ , dp
Operation:
Output:
Predecessors :
Successors : 3
Operation: .

0
Output: i
Predecessors : 2
Successors : 4
Operation: *

StatesBackvard(il Heig
Output:
Predecessors : 3 7
Successors : 5
Operation: +

tuf acc trap dp
Output:
Predecessors :
Successors :
Operation :

i
Predecessors : 5
Successors : ’ , dp
Operation:

i size Err cal hidden
Predecessors :
Successors:
Operation: *
Inputs : tmp acc tmpO
Output:
Predecessors :
Successors :
Operation: *

tmpl neu state
Output: neu error
Predecessors :
Successors :

Height update
Operation:

96 • Generated from p(2]
Output: size Height update
Predecessors : 0
Successors : 2
Operation: -

0
Output: i
Predecessors : 1
Successors : 3
Operation: *

neu error learn rate of nei
Output: tmp2
Predecessors : 2 7
Successors : 4
Operation: *

tmp2 StatesPorward
Output : tfflp3
Predecessors: 3
Successors : 5
Operation: +

HeightsPorward [i] tmp3
Output : HeightsForward (i]
Predecessors :
Successors :
Operation: Incr

i
Predecessors : 5
Successors: 7
Operation: <

i size Height update
Predecessors : 6
Successors : 3 0

Figure 8.7 — ICR Format for a Hidden Layer Neuron

Figure 8.8 shows graphically the CDFG for each of the four rules used in the Back
Propagation network for neurons in the hidden layerL It is upon this graph structure that
the hardware synthesis takes place. However, before the hardware synthesis is employed,
some local and global transformations on the graph are performed.

^In fact, this CDFG is resulted after some transformations have been performed. Note that it is the initial
sequential graph, improved by implementing some simple operations in parallel.

162 From nC to VHDL Neural Chips Chapter 8

neu_state

_tm p_acc_tmp_0

States_Forw(q Weights_Forw(i]
fstatea_Back[il Welghfs_Back[i]

_tmp_dp

n e u e m o r leam _rateneu_state le a m ra te

_tm p_acc _tmp_dp
_tm p_acc _tmp_dp

_tmp_4_tmp_2

J m p _ a c c

_tmp_4_tmp_2

96

_tmp_5_tmp_3

_tmp_5_tmp_3
_tm p_acc _tm p_acc _tmp_0

Weights_Back(i]

96
neu_8taleloeikup_lbl[neu_acc]

neu_state

(a) State_Update (b) Weight UpdateBack (c) Err_Cal_Hidden (d) Weight_UpdatePorw

Figure 8.8 — The CDFG for the Hidden Layer’s Rules

After the graph is partitioned, an activity list for each variable is created, so that
lifetime analysis can be performed. Figure 8.9 presents a graphical representation for the
activity list.

This graphical view is computed internally by the synthesis algorithms through the
activation list, which is an adequate representation used throughout the allocation and
scheduling algorithms. The activation list for some of the storage elements in Figure 8.9 is
computed as shown in Table 8.2.

Chapter 8 From nC to VHDL Neural Chips 163

S ta tes W eights S tates W eights
_ tm p_acc I Forw _Forw tmp dp neu acc neu_sta te _ttnp_0 _tmp_1 neu_error _Back Back _tmp_2 tmp 3 tmp 4 _tm p_5

S.
s.
S3 t
s.
SsJ,
S « _
S7
S a 2
S g _

S„

Si4 ^
s,.

S,s

Sgo_
S21

s j

S,

Notation: Write Operation
Read Operation

53

54

Sz

S,s
S,e

1 S„

_lm p_acc j S ta te s W eights _tmp_dp neu_acc neu_sta te _tm p_0 _tmp_1 neu_emor S tates W eights_tm p_2 _tm p_3 _tmp_4 _tm p_5
_Forw Forw _Back Back

Figure 8.9 — Lifetime Analysis for Variables in the Back Propagation Example

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
_tmp_acc 2, 5, 3, 5, 1, 0, 0, 0, 0, 0, 0, 2, 5, 3, 5. 1, 0. 0, 0, 0, 0, 0

i 2, 1, 5, 4, 0, 0, 2, 5. 1. 1. 4, 2, 1, 5. 1, 0, 5, 2, 5, 1. 1. 4
States_Forw 5, 1, 5, 5, 5, 5, 5, 5. 5, 5, 5. 5. 5, 5, 5, 5, 5, 5, 5. 1, 0, 0

neu_state 0, 0, 0, 0, 0, 2, 5, 1, 5, 5, 5. 1. 5, 5, 5, 5, 1, 0, 0, 0, 0, 0
Obs: dead = 0, rd “ 1, wr = 2, rdwr - 3 , , wrrd - 4, idle - 5.

Table 8.2 — Activity List for Some Storage Elements

Based upon the activation list, several optimisations’ steps are possible. For
example, by employing the algorithm described in section 7.4.2, it can be seen that the
following registers can be merged:

• _tm p_acc, neu_error, _tm p_2 neu_error.

• _tm p_dp, neu_acc, _ tm p_1, tm p_3, and _tm p_4;

• neu_state and _tm p_5.

164 From nCto VHDL Neural Chips Chapter 8

Note that _tm p_5 could not be merged with neu_error because both registers are used
inside the same loop (see Figure 8.8.d). Therefore, neu_state is later merged with _tm p_3.

In addition, the registers Size_state_update, Size_err_cal and Size_W eight_UpdateB,

declared in the ICR's DataPart shown in Figure 8.7, have been eliminated. This is because
they are written just once with a constant value. Therefore, a simple replacement of these
registers by the correspondent constant value each time they are read gives an equivalent
effect. Figure 8.10 shows the result obtained after the transformations performed in the
graph presented in Figure 8.8.

neu_stafe 0

m
_tmp_0

^States_Forw(i] Weights_Fotw(i]
rstate8_Back{i) We(ghts_Back[i]

neu sla te leam _rate neu_erm r leam _rate

neu_state

neu_error States_Back[l]

96

neu sta te

Weights_Back|i] neu_state ▼ Weighls_Fonw(i]

neu_error _tmp_0

96 96
k»olcup_tbl[neu_acc] neu_8tate

neu_error
neu_8tate

(b) Weight (c) EiT_Cal_Hidden (d) Weight UpdateFonv

Figure 8.10 — The Transformed CDFG for the Hidden Layer’s Rules

As a result, only four registers (neu_acc, neur_error, neu_state, and _tmp_0) are
necessary to implement the whole Back Propagation computation, namely the learning and
recall phases. This corresponds to fewer registers than used in the manual prototype
developed in chapter 6, in which 7 registers were used. This saving in the number of

Chapter 8_____________________ From nC to VHDL Neural Chips________________________ 165

registers is a result of the approach taken by the synthesis algorithms described in the
previous chapter.

8.4.2. Data Path Synthesis

The synthesis of the hardware structure starts by reading the internal graph
(obtained from the transformation steps performed upon the ICR) and allocating storage
elements, functional units, and busses, as explained in section 7.7.6. Two main busses are
initially provided, namely Bus A and Bus B. The operations in the graph are then read and
all three hardware structures are allocated in the same iteration. In addition, control
information is stored in memory to feed the control synthesis with enough information on
the sequencing and signal activations necessary to run the FSM.

It must be noted that at this stage the number of storage elements has been
optimised by the previous transformation steps. All temporary variables have been
eliminated, except those that are essential to the correct computation. The number of
functional units is minimum, i.e., only one unit for each different operator is provided.
Although this approach exploits parallelism in a hmited way, it generates a highly
optimised data path structure in terms of silicon area.

To illustrate the hardware allocation process. Table 8.3 shows the steps taken by
the algorithm to allocate registers and bind them into appropriate busses. The allocation of
other storage elements is performed in a similar way.

In State 1 three operations can be performed in parallel (see also Figure 8.9).
Firstly, the counter i and the register neu_error are both assigned with the constant zero.
Secondly, because neu_acc is the output of a multiplication, it is initially loaded with the
constant zero (see section 7.7).

In State 2, an input port is created for neu_acc, and connected to Bus B, since it is
the result of a multiplication.

In State 3, register neu_error is read and written in the same cycle. This is possible
due to the multi-port structure of the registers (see Figure 7.7). In this case, one output
port is created to read the current data into Bus A, and one input port is created to write a
new value from Bus C, which is computed by the adder.

166 From nCXo VHDL Neural Chips Chapter 8

State Register Type of Port Bus

Si neu_error Input local to constant 0
neu_acc Input local to constant 0

S2 neu_acc Input Main Bus B

neu_error Output Main Bus A

S3 neu_acc Output Main Bus B
neu_error Input ALU local Bus C

S4 X X X

S5 neu_error Use Output Main Bus A

neu_acc Input Main Bus A

S6 neu_acc Use Input Main Bus A
neu_state Input Main Bus B

Table 8.3 — Allocation and Binding of Registers in the Data Path

State 4 does not involve any activity in the registers. It is only used by the FSM to
decide which next state should be executed.

In State 5 the same output port created before for register neu_error is used, and an
input port is created to register neu_acc.

Finally, in State 6 the input port previously created to register neu_acc is used,
while an input port is created to the register neu_state.

This process continues until all states are computed. Since several registers have
been merged, the entire structure is simplified. Figure 8.11 shows the data path for the
execution and memory units automatically created during data path synthesis, according to
the algorithm described in the previous chapter. It is essentially the same structure
developed manually in chapter 6. However, some minor differences arise due to the
characteristics of the synthesis algorithm. For example, a local bus at the output of the
ALU is created and shared by the registers. This strategy creates smaller FSMs, since a
reduced number of cycles is employed. This is possible because any register can share the
output of the ALU. In the manual design, a load cycle of the operands into the ALU is
required before the operation can be accomplished.

The scheduling performed upon these allocated structures is shown in Figure 8.10.
It is essentially the sequential schedule in which simple assignment operations are executed
in parallel. This reduces the number of states necessary to build the FSM. Assuming that
this design does not meet a particular timing constraint provided by the user, then the
ASAP scheduling algorithm is performed. In this case, the algorithm cannot start from the

Chapter 8 _____________________From nC to VHDL Neural Chips___________________________ W

previous schedule and allocation strategy, because registers have been merged. Therefore,
the ASAP algorithm is applied upon the graph presented in Figure 8.8.

The ASAP algorithm, as defined in section 7.6.4, can only be effectively applied if
the output of a particular state is not the input of the subsequent state. Figure 8.8 shows
clearly that the ASAP algorithm would not improve this design, because the CDFG is fully
sequential. In fact, the obtained design can be considered optimal in the sense that no extra
parallelism can be added to it.

After hardware allocation and scheduling have been accomplished, all hardware
structures are established, and therefore the module generation tool can be executed. This
comprises a set of function calls to the components supported in the VHDL hbrary. This
tool searches the entire graph and for each storage element and functional unit the
appropriate function is called, which generates the actual module from the parameters
defined by the data path.

The creation of the communication unit’s data path is straightforward, resulting in
a structure identical to the one presented in section 6.5.1. The ICR's DataPart contains
information regarding the networks topology. Therefore, the NSC knows that a fully
connected network containing three layers have been defined, and creates the necessary
registers to hold the previous layer and next layer address registers, in addition to the PE’s
own address register. Then the next step is to create busses. Two initial busses are
provided (Bus A and Bus B) to provide communication between this unit and the other
two units. A third bus is provided to send the execution unit’s results (state and error
values) outside the PE. A fourth and last bus is needed to address the PE and its internal
memory.

168 From nCto VHDL Neural Chips Chapter 8

R A M

S ta teaF o rw

R A M

S tatesB acfc

R A M

WeighUForw

R A M

W eightsBack

latch db

D

A_wr B_rd

B 1x1 Reg

_ tm p_0 ck

1x1 Rag

N au a c c

B wr

A

ck

A_rd B_wr

2x1 R eg /

N e u _ s ta te d

A_rd B_wr C_rd

A 1x2Reg C

B N e u ^erro r ck

ALU
sub/add

mput_l

output_1

[

addrsaa
ROM

rd

0x1 rag
leam _m ta

A_wr B _rd C _rd

. c
* 2x1M RBag ^ mr_lab

mr

Ck CkVm

Ck tmp O:

RdNsu stateD:

WrNeu staleB

RdNau errorO:
W m eu e m x e
RdNeu enorC:

«hlftjctr:

rd rrx «htfti

Figure 8.11 — Synthesised Data Path for the Execution and Memory Units

Chapter 8 From nCio VHDL Neural Chips 169

8.4.3. Control Synthesis

The control synthesis task follows the data path synthesis. It consists of creating a
FSM, which can be implemented by, for example, a PLA. The result of the scheduling is
explicitly stored in a specific data structure, in which elements represent the control states
in the FSM. In each of these states, a hst of signal activations is specified. The task of the
control synthesis is to read this list and generate the control signals as well as the next state
information.

Figure 8.12 presents the list of actions to be performed by the FSM in each of the
given control states, according to the register allocation shown in Table 8.3.

State Variable Action

s,
neu_error
_tmp_dp

Activate Awr
Activate Awr

S2

_tmp_dp
i

States_Forw
Weights_Forw

_tmp_dp

Activate Bwr
Activate PtrRd

Activate RdState and CsState
Activate RdWeight and CsWeight

Activate Bwr

S3 neu_error
_tmp_dp

Activate Ard and Bwr
Activate Crd

S4 i Activate IncrPtr and Test EndCount:
True: Jump False: Jump S5

S5 neu_error
neu_acc

Activate ARd
Activate AWr

S6 neu_acc
neu_state

Activate BRd
Activate AWr

Figure 8.12 — Generated List of Actions for the FSM

The list of actions is fed into the control synthesis tool, which is enough to create a
FSM. However, to correctly generate a controller, some assumptions are made, such as
whether a particular signal is active either on ‘1’ or ‘O’, and if memories, counters, and
flip-flops are edge triggered or level sensitive.

After the execution and memory units have been synthesised, the communication
unit’s can be created. The structure of the communication unit’s control module is
identical to the one developed in section 6.5.1. The FSM obtained through synthesis is
created according to the necessary actions, which are obtained through the algorithms
described in section 7.8. These actions are divided in two phases: initialisation and
execution.

The initialisation phase consists in initialising registers, holding parameters, and
memories, holding the initial weight values needed to start the neural algorithm. The

170___________________________ From nCto VHDL Neural Chips_____________________ Chapter 8

information concerning which storage element should be initiahsed is implicitly provided
by activity hst (see Figures 8.9 and Table 8.2). Clearly, all four memory block (StatesForw,
WeightsForw, StatesBack, and WeightsBack) plus the registers neu_acc and leam_rate must
be initialised, since they are first read without having been previously written. Therefore,
the control states necessary to read these initial values are built into the FSM. The
execution phase is fixed, and consists of commanding the other two units and sending
results to other PEs, as described in section 6.5.1.

8.5. VHDL Description

The VHDL description of the entire chip is created in almost every phase of the
NSC. After data path synthesis, the module generation function is invoked. The data path
structure is then created according to the definition of the storage elements, functional
units, and busses.

The module generation phase simply consists in the construction of a VHDL entity
for each component in the design according to the algorithms defined in the previous
chapter. The interconnection structure created before is then used to instantiate these
modules and build VHDL entities that link the lower level components among them. This
hierarchical design is exactly the same one used in chapter 6 , and is greatly favoured by the
use of VHDL.

8.6. Summary

This chapter has provided a step-by-step introduction of all actions performed by
the NSC during the synthesis of a Back Propagation Neural Network. This in-depth study
has demonstrated the strengths anticipated in the previous chapter. In particular, it has
been shown that the design developed in chapter 6 could be further optimised through the
techniques employed by the NSC.

The immediate consequence of the techniques developed in the previous chapter is
that the number of registers used to implement the execution unit has been reduced from
seven, in the manual design, to four, in this automatic design. In addition, it has been
shown that a lower number of cycles is needed to implement the execution unit’s
controller.

These improvements in the chip design are possible due to the data path synthesis
algorithms developed in the previous chapter. Moreover, the transformations on the nC
data structure are fundamental for the success of this operation.

Chapter 8_____________________ From nC\o VHDL Neural Chips _____________________ 171

Finally, it must be stressed that the final design conforms fully with the Generic
Neuron target architecture. This conformity is based upon the heuristics developed during
the synthesis algorithms.

Chapter 9

Assessment

This chapter assesses the work developed in this thesis in each o f its principal
investigation topics, which are centred in the integration between software and
hardware tools for neurocomputing. This includes the hardware extensions
implemented in the Pygmalion system and the design o f the neural silicon
compiler.

9.1. Software and Hardware Integration

As stated in Chapter 1, the neural computing research area requires two specialised
tools for executing artificial neural models: firstly, a flexible software tool that permits
experimentation with different aspects of neural networks, thus providing a framework to
execute existing as well as new algorithms; secondly, a massively parallel
application-specific neurocomputer, which properly explores the intrinsic parallehsm of
neural networks, hence granting the necessary high performance for the neural application
execution.

Several software simulators and several ASNNCs have been designed, with many
commercial products already available. However, these products have been designed
independently, with no integration between software and hardware tools. The
incompatibility between these two tools has had as a consequence that a neural network
application tested in the software environment has to be fuhy re-designed from scratch if
high performance VLSI neural chips are required for the computation of the particular
application.

Therefore, a neural network programming environment encompassing integrated
software and hardware tools, with the capacity of automatically generating ASNNCs from
a high level specification of the neural network application, is demanded. Such a complete
programming environment permits a neural network application to be described and tested
using the software tool. After all optimal parameters (both algorithm-specific and
hardware-specific) have been chosen, ASNNCs can be automatically produced without
requiring from the user any knowledge of VLSI design.

173

174____________________________________ Assessm ent______________________________ Chapter 9

The main goal of this thesis focuses precisely on the issue of software and
hardware integration for neural computing, in which automatic generation of ASNNCs is
achieved from a high level description of a neural network application. This involves the
adoption of an existing neural network programming environment, namely the Pygmalion
system, and the extension of this environment to encompasses a hardware route.
Therefore, the research developed in this thesis has concentrated on the extension of the
Pygmalion environment as a whole, and the development of the neural silicon compiler.

The extension of the Pygmalion system includes the following stages:

• extensions of the nC neural network language;

• incorporation of a hardware library for neural models, which represents the hardware
counterpart of the software library; and

• introduction of a simulation tool for neural networks’ hardware, which uses the
hardware library to mimic the exact way neural networks are executed in hardware.

The design of the neural silicon compiler represents the essence of this dissertation,
and basically includes the following tasks:

• development of high level transformations performed upon the nC input specification;

• design of a hardware-specific intermediate code representation for neural networks,
namely ICR^ which dissociates the neural network environment from the NSC, thus
allowing the usage of the NSC in any neural network programming environment; and

• development of the hardware synthesis tools, comprising basically data path and
control synthesis.

The following sections provide an evaluation of all these components according to
the established goals.

9.2. Pygmalion Extensions

Following the basic proposal of this research, there are some extensions to this
software environment that are clearly necessary. The principal reason is that the
Pygmalion environment (and the vast majority of existing neural network software
simulation tools) has been conceived as a software-oriented tool, in which the user can
experiment with several different applications and neural models. After the neural network
is fuUy configured and tested in this environment, there is no guarantee that the
computation performed in hardware will be exactly the same as the one employed in

Chapter 9 ____________________________ A ssessm ent __________________________________ 175

software. While the Pygmalion software components employ floating-point calculation,
digital hardware generally uses fixed-point arithmetic. Along with the type of calculation
performed in hardware, several other constraints are imposed in the design, as analysed in
chapter 5.

Therefore, the simple provision of a neural silicon compiler to the Pygmalion
environment is clearly not sufficient. Several hardware-specific extensions needed to be
carried out in the Pygmalion system. Firstly, the neural network language needed to be
extended to provide the same type of computation (during simulation) employed by the
hardware’s target architecture (during hardware execution). Secondly, the algorithm
library needed to be replicated and modified to include all particularities present in the
hardware’s target architecture. Finally, the simulation tool needed to be expanded to
provide an assessment of the neural network’s target architecture, considering that finite
precision arithmetic is carried out by the hardware.

These extensions have been developed with the following design goals previously
established:

• The functionality of the original Pygmalion software environment should not be
modified — the existence of every module should be maintained, and their
functionality preserved;

• The new features should complement the environment — hardware extensions are
incremental^ i.e., none of the original functions are lost; instead, new features are
added to the functionality of the environment; and

• The philosophy of the system should be maintained — this assumes that the user
continues to use the system regardless of the new hardware features. Therefore, nC
continues to be used to program neural algorithms and applications, and the simulation
environment is used to test the particular application.

The next sub-sections provide an evaluation of the extensions performed in the
Pygmalion system according to the established objectives.

9.2.1. nC Extensions

As discussed in section 4.3, nC is a software-oriented language, which is adequate
for programming a neural network. However, nC does not support any hardware construct
that permits the user to guide the process of generating ASNNCs. Therefore, the language
is extended to support such features. Nevertheless, to keep the design philosophy, in which
hardware details are hidden as much as possible from the user, the adopted extensions to

176____________________ Assessm ent______________________________ Chapter 9

the language include only the introduction of fixed-point arithmetic, as discussed in chapter
5, and the incorporation of new fields in the system data structure, presented in chapter 4.

The introduction of fixed-point computation is done internally in every built-in
function defined in the language. The user’s task concerns only the specification of the
type of data handled throughout the simulation of the neural network. Conversely, the
incorporation of hardware-specific fields in appropriate parts of the system data structure
provides the user with the required flexibility to choose hardware constraints.

It must be noted that the introduction of hardware-specific parameters does not
defeat the original philosophy of keeping hardware issues transparent to the user, since
these new parameters are kept at a high level of abstraction. Hence, the user may specify
that the State_Update function must be accomplished within a certain time, or that the
whole recall or learning procedure should not exceed a determined amount of time.
Similarly, the user may wish to have its entire neural network implemented in not more
than a given number of chips. The decision of how these restrictions should be met is made
by the NSC.

Another important issue for neural algorithms is the activation function. The
language is extended to support a lookup table mechanism, which is commonly used in
digital implementations of neural chips. The extension includes the definition of an
additional built-in function, called lookuptbl, which when invoked, performs the table’s
indexing mechanism according to its size (specified by the user). The activation function is
specified by a function that contains the actual description of the activation function to be
performed by each neuron. This macro is then used to build the contents of the digitised
table for the specified activation function. No provision was made to implement an
activation function directly in hardware, since this represents high cost in terms of silicon
area. However some activation functions, such as the hard limiter (which only requires a
comparator in hardware) are more cost effective than lookup tables. In this case, the
system permits the definition of macros that specify threshold values.

9.2.2. Hardware-Specific Aigorithm Library

The Pygmalion system includes a library of the most popular neural network
models. This library was expanded to include hardware-specific features, which are defined
by the target architecture of the ASNNCs. The expanded library, named hardware library,
is functionally identical to the software counterpart, but internally it is modified to perform
calculations according to the defined target architecture. This library was built because
software simulations (generally employing floating-point calculations) differ considerably

Chapter 9______________________________ Assessm ent____________________________________ 177

from hardware simulations (performed in fixed-point). The differences between the results
obtained through software and hardware simulations were analysed in chapter 5.

Although this approach is opened to several different target architectures, for the
purposes of this dissertation, only the Generic Neuron target architecture was
implemented. However, the hardware library of neural algorithms can be gradually
expanded. This is done in conjunction with the extensions performed upon the NSC to
support the synthesis of ASNNCs based upon different target architectures.

The hardware-specific algorithm hbrary is used during simulations of the neural
network, as well as during the synthesis of the ASNNCs through the NSC. This approach
guarantees that the simulated network is executed in the same way as the neural network
in hardware, thus yielding an a priori measure of the actual performance of the hardware.

9.2.3. Simulation of Neural Networks Hardware

The incorporation of a simulation tool for the actual hardware is extremely
important for two basic reasons. Firstly, it provides a way of assessing if the user’s choice
for the hardware parameters, in particular the data precision, is adequate to correctly
perform the neural computation. Since hardware constraints are often employed in digital
implementations, such as the ones discussed in chapter 5, correct calculations are not
guaranteed. Secondly, it permits the tuning of the ASNNCs both in terms of speed and
area. By experimenting with several different configurations, the user may find a set of
hardware parameters that correctly implement the particular application in an optimal
fashion.

The implemented simulation tool is fully parameterised, so that several different
experiments can be performed by the user. This includes, for example, the experimentation
with different data precision, several different sizes for the lookup table, different schemes
for realising the activation function, and various mechanisms for dealing with overflows
during calculations. As a consequence, the tool proved to be a useful platform to
investigate the influence of basic hardware-related parameters upon the neural
computation. Such investigation has been developed in chapter 5 for the Back Propagation
neural network algorithm.

9.2.4. Summary

It is believed that all main objectives have been achieved by incorporating the
above extensions in the Pygmalion environment. The new system has gained a new
dimension, which permits that, after the network has been configured, tested, and satisfied

178________________________________ Assessm ent__________________________ Chapter 9

the user regarding the solution of the final application, a hardware route can be taken to
yield neural chips that provide extremely high performance during the two phases of
neurocomputing.

The functionality of the system is maintained, meaning that the original approach
for designing a neural network application has not been changed by the introduction of
hardware-related extensions. Therefore, if the user decides to take a hardware route after
the network has been fully configured and tested, then all that is needed is:

• to specify the employment of fixed-point calculation — the present implementation
considers only digital architectures for the hardware;

• to specify what target architecture is envisaged for the final chips — the present system
supports only the Generic Neuron architecture;

• to define the hardware parameters — this involves the definition of the data precision,
the chosen method for realising activation functions, etc.;

• to run the hardware simulator until the obtained results are satisfactory — this involves
simulating the recall and learning (if required by the application) phases of the specified
neural model according to the adopted target architecture; and

• to run the NSC — this results in the synthesis of a set of neural network chips,
according to the specified application and the hardware-related parameters.

Finally, the hardware simulator can also be used to find the best target architecture
(if more than one is supported by the NSC) for the particular application.

9.3. Neural Silicon Compiler

The design of the neural silicon compiler concludes the extension of the Pygmalion
environment, and indeed, represents the core of this research. It effectively provides the
hardware route needed to implement massively parallel neurocomputing systems. The
development of the NSC followed the goals stated below:

• High level synthesis — it should start from the high level neural network programming
language nC and create a hardware structure for the neural chips at the register
transfer level;

• Independence — from any particular neural network programming system, meaning
that its design should be flexible enough to be integrated into several different existing
software environments for neural networks;

Chapter 9________________ Assessm ent______ _____________________________ 179

• Target Architecture — the synthesised hardware structure should conform to a
pre-defined target architecture, which is held in the hardware hbrary of the Pygmalion
environment. Data path and control synthesis algorithms should be capable of
generating a structure that conforms with the target architecture; and

• VHDL chips — to allow an easy integration of the NSC with commercial low level
synthesis tools (which ultimately generate the layout mask for the chips) the register
transfer level of the synthesised chips should be described in a standard format. For this
reason the IEEE standard hardware description language (VHDL) was chosen.

According to the above design goals, the following sub-sections evaluate the major
components of the NSC: the high level transformations performed upon the nC input
specification; the definition of the hardware-specific ICR\ the adoption of the Generic
Neuron target architecture; the development of the data path and control synthesis; and the
final generation of VHDL neural chips.

9.3.1. nC High Level Transformations

As discussed throughout this work, the nC language was extended to include
hardware-related parameters. However, nC was not transformed into an HDL.
Consequently, special mechanisms to efficiently map a nC program into a compact
hardware structure are required.

Therefore, this research concentrated much of its efforts into the high level
transformations performed at the nC level. Parts of these transformations are
software-like, but the most important ones are hardware-like optimisations that basically
transform the complex (regarding hardware implementation) nC system data structure into
a simpler data representation for mapping variables into efficient hardware structures.

As explained in chapter 7, the tag mechanism incorporated into the RULE data
structure is paramount for these transformations. Therefore, generic and extended
parameters, held in the memory as a string of data values can be extracted as actual named
variables.

The importance of this approach is that each element in the generic and extended
parameters’ list can be assigned to a particular type of storage, which eases enormously
the task of the NSC's hardware allocation algorithm.

180_________________________ A ssessm ent____________________ Chapter 9

9.3.2. intermediate Code Representation

To attain a complete separation between the NSC and the neural network
programming environment, the ICR was defined. It is a very simple format for describing a
neural network at the hardware level. It is not, however, supposed to be the users’ input
language.

By using such a representation, virtually any existing neural network programming
environment can be extended to get the benefit of a hardware route to the neural network
application.

The ICR proved to be an effective format for the specification of complete neural
networks including their data and functions to be performed by hardware. Its definition is
in conformity with neuron-based architectures [190], such as the Generic Neuron, which
emulates the neuron’s functionality in each processor. Its suitability for weight-based
architectures, which focus on the synapse functionality by providing a matrix of
multipliers, remains to be investigated.

9.3.3. Target Architecture

One of the requirements defined during this work is that the target architecture for
the neural chips should be capable to implement the vast majority of the existing neural
models. The final implementation of these chips should be, however, targeted to a
particular neural model, as specified by the neural network’s apphcation designer.
Nevertheless, the target architecture should be flexible enough to allow the synthesis of
different chips according to new neural models specified by the user.

The Generic Neuron model was conceived for this purpose [190], being a natural
choice for the NSC's target architecture. Indeed, in chapter 5 this architecture was
assessed and proved to be effective for designing neural chips. Furthermore, a VLSI
prototype implementation was fabricated in 2 pm CMOS technology, as part of another
PhD thesis [190].

The basic strengths of the Generic Neuron are:

• Flexibility — the PE’s functionality is able to perform several different learning
algorithms, and the bus interconnection strategy permits the implementation of a wide
spectrum of network topologies used by neural models;

Chapter 9______________________________ Assessm ent____________________________________ 181

• Scalability — the internal architectural framework allows that, in view of the constant
improvements in VLSI processing technology, the number of PEs per integrated circuit
be increased without affecting the number of pins; and

• Simplicity versus High Performance — by employing simple design alternatives, veiy
compact structures are obtained for the PEs, and high parallelism is explored, yielding
the required performance.

The Generic Neuron achieves this features by dividing its internal organisation in
three distinct units: communication, memory, and execution. The task of the NSC is to
synthesise ASNNCs based upon a hardware structure composed of these three units.

The execution and memory units are responsible for the execution of the neural
algorithm. Their synthesis comes directly from the functionality defined in the neural
algorithm. The communication unit controls the activities in the PE and commands data
exchange among the PE, the rest of the network, and the central controller. Its synthesis is
derived from the implicit information held in the ICR’s CDFG, and performed after the
other two units have been synthesised.

9.3.4. Data Path Synthesis

To achieve the user’s requirements regarding the hardware-related parameters
specified in the extended nC input language, the algorithms for allocation and scheduling
are performed in two basic forms. Firstly, the default mode attempts to produce the most
possible compact structure. This is achieved by focusing the synthesis on the hardware
allocation. The scheduling is greatly simplified, consisting of a simple sequential strategy,
which is derived from the nC input description. Parallelism is explored in a limited way,
where simple assignment operations are grouped together into a single control state.
Nevertheless, since hardware components are not duplicated, the goal of compactness is
achieved. Secondly, the user-driven mode implements the ASAP scheduling algorithm to
explore parallelism, so that timing constraints defined by the user can be met. Scheduling is
thus the focus of the synthesis algorithms. As a consequence, the produced structure may
lead to larger silicon area.

The implementation of such approach increases greatly the power of the NSC
regarding the user’s specified constraints. However, it is felt that a further investigation is
necessary, in particular for the user-driven mode. For the purposes of this dissertation,
only extreme cases have been realised. If the user does not specify timing constraints, but
specifies area constraints, then the default mode is activated, which results in minimal
hardware resources and slower execution. Conversely, if timing constraints are specified.

182___________________ Assessm ent______________________________ Chapter 9

than the opposite approach is followed, i.e., the ASAP strategy is implemented resulting in
a faster circuit, but larger in terms of area. An alternative for the above strategy is to
employ a trade-off between the two modes.

Concerning the internal algorithms employed by the synthesis tools, it is believed
that the heuristic approach has contributed massively to obtain a result that it is virtually
identical to that developed manually. The activity list, which provides important
information on the data flow and hfetime of every variable in the nC program, is extremely
important during the execution of these algorithms. Similarly, the activity list provides
information upon which variable should send values to other PEs and when this should
occur.

9.3.5. Control Synthesis

The task of generating a controller for the PE’s execution and communication units
is performed after the data path is constructed. This already involves the scheduling of
operations to specific control states. Therefore, the control synthesis’ role is to generate a
finite state machine that accurately implements the desired schedule.

The communication unit’s controller is synthesised as the last step in the synthesis,
since its controller is heavily dependent upon the number of initiahsations’ steps required
by the storage elements allocated in the execution unit’s data path. Again, the activity list
plays an important role in deciding which variables need to be initiahsed. This initialisation
is monitored by the communication unit that takes data from the outside of the PE. The
data is supplied by the central controller, which is responsible for commanding the PE’s
initialisation phase.

9.3.6. VHDL Description of Neurai Chips

The generation of the VHDL code for the PEs employing the Generic Neuron
model permits that a complete simulation of the neural network hardware is attained.
Special attention has been taken to produce a code that is easy to synthesise by current
low level synthesis tools based on VHDL.

However, it cannot be guaranteed that the VHDL output will be input into these
low level tools without any modifications, since tests could not be performed due to the
lack of such tools in the Department.

Nevertheless, the whole design has been simulated and proved to work
satisfactorily, according to the targets established for this research.

Chapter 10

Conclusions and Future Work

This final chapter presents some general conclusions o f the work accomplished
in this thesis. It starts by summarising the results and main contributions o f the
research and then outlines potential future work.

10.1. Summary

The primary goal of this thesis was to investigate the integration between software
and hardware tools for neurocomputing. The integration consists of incorporating a neural
silicon compiler into existing neural network programming environments. The motivation
for developing such an integrated system has been the ultimate goal for producing a
complete neural programming system that provides the user with two complementary
tools: a software tool to investigate neural network algorithms and applications; and a
hardware design tool to automatically generate ASNNCs from a high level specification of
the user’s neural apphcation.

This thesis concentrated on the design of the high level synthesis of the neural
sihcon compiler. Nevertheless, as discussed throughout this thesis, a complete and
integrated system requires further components in the environment This included basically
the addition of a hardware hbrary and a simulator for the neural network hardware.
Furthermore, for performance reasons, the input language had to be expanded, so that the
hardware synthesis tools could be supplied with some guidance from the user.

The nC language was specified as part of the Pygmalion project [24]. The
language’s design was focused upon the software aspects of the neural network’s
execution. This execution could be either in sequential or parallel machines. However, nC
was not conceived to be the input language for a sihcon compiler. The implications of this
lack of hardware-related features are that the sihcon compiler is left with very httle
information of how efficient hardware structures are created.

The extensions performed in nC addressed the issue of hardware-specific
parameters, and simultaneously preserved the basic characteristics of the language. This
approach guarantees that the user wiU require very httle or no knowledge of VLSI design.

183

184__________________________ Conclusions and Future Work ________________ Chapter 10

The introduction of a hardware library into the Pygmalion environment permits the
functionality of the neural models to be described at the software and hardware level
separately, thus providing simulation facilities for both end applications. While the
software simulation is used to configure the application and test the learning of the neural
model adopted, the hardware simulation gives an accurate prediction of the hardware
performance.

The design of the parameterised simulator for neural networks’ hardware provides
an important tool to investigate the influence caused by hardware constraints during the
execution of the neural network.

The neural silicon compiler was developed with the primary goal of automatically
generating highly optimised neural chips from the high level language nC. The use of
heuristic procedures during the hardware synthesis, aiming at the construction of the
Generic Neuron framework for the processing elements, guaranteed that designs virtually
identical to the ones expected from a skilful hardware designer are successfully achieved.

The implemented high level synthesis algorithms demonstrated their effectiveness
in producing optimised hardware structures according to the Generic Neuron definition.
The high level transformations performed at the nC level of the specification play an
important role, since they remove every redundancy introduced by the user and during the
compilation of the nC. The definition of an activity list proved to be extremely important,
and it is used throughout the remaining phases of the hardware synthesis process.

The adopted strategy for data path and control synthesis showed the ability to
produce very optimised neural chips, both in terms of area and speed. The use of multiple
busses along with the two-phase clock mechanism and multi-port storage structures, which
are used in the prototype of the Generic Neuron^ proved to be very effective. Although
some investigation is still required to analyse the possibility of further improvements in the
quality of the circuits, the implemented algorithms have completely fulfilled the goals of
this research.

10.2. Research Contributions

In pursuing the research described in this thesis, the prime consideration was to
investigate the possibility of expanding neural network environments to allow an easy, fast,
and reliable process to generate high performance ASNNCs. It is believed that such a
design framework proved feasible. In particular, this thesis provided a simple, yet
powerful, hardware environment for the implementation of neural chips. In summary, it is
felt that the basic research contributions of this thesis are:

Chapter 10_____________________Conclusions and Future Work________________________________ _1̂

• Extension of the Pygmalion Environment — A methodology for extending the
Pygmalion system to provide a hardware path from the nC language was proposed and
implemented. Considering the generality of the adopted approach, the same extensions
can be introduced to other neural network environments.

• Simulation of Neural Networks Hardware — The implemented simulator for
assessing the hardware performance during execution of neural network models
demonstrated to be a useful tool for studying the effects caused by hardware
constraints. In this respect, exhaustive simulations of the Back Propagation learning
and recall procedures were accomplished for digital implementations employing fixed-
point calculation, such as the Generic Neuron architecture. The results obtained
validated the feasibility of the target architecture in realising the learning algorithm.
Moreover, bounds for hardware parameters were identified and used as the basis for
the implementation of the neural chips. An important characteristic of the simulation
tool is its generality, meaning that the tool can be used to assess the hardware
performance of any neural model previously specified.

• Intermediate Code Representation — The definition of a hardware-related
intermediate representation for neural networks provides a complete separation
between software and hardware tools. This permits a general system to be constructed
following a many-to-many approach. In this case, the system would support many
software environments at the top and many target architectures at the bottom.

• VHDL Implementation of Neural Chips — The development of a Generic Neuron
prototype of the Back Propagation neural network in VHDL confirmed the results
anticipated during the hardware simulation. Furthermore, it served as the basis for the
definition of the output specification to be generated by the NSC. In developing such a
prototype, a library of VHDL modules been built, which is used during the high level
synthesis of the NSC.

• Neural Silicon Compiler — The design of the NSCy which ultimately creates the
hardware structure for the neural chips, follows a heuristic approach, which guarantees
that designs close to the ones specified by expert hardware designers are successfully
obtained. The development of several rules for transforming nC’s internal data
structure into simpler ones demonstrated its importance in reducing complex and time
consuming operations into concise and effective ones, thus allowing the synthesis of
compact and fast circuits.

Finally, this hardware exploitation of neural networks was fully integrated with the
software environment. It has been pointed out that this integrated system represents the

186 ______________________ Conclusions and Future Work_____________________ Chapter 10

current trend in the development of neural network applications, which has a well-defined
design cycle. Firstly, the user specifies the application, configures the neural network, and
submits the network to the learning procedure. After this phase has been finished, the
network can be directly mapped onto hardware. However to tune the design of the neural
chips, a further simulation step is accomplished, taking into consideration hardware-
specific parameters. Then, the NSC is finally executed to produce the specified integrated
circuits.

10.3. Future Work

Regarding the development of a system that automatically produces ASNNCs at
the layout level of the integrated circuits, there are still a number of tasks to be carried out.
Some of the most interesting ones are listed below;

• Integration of the Low Level Synthesis Tools — To achieve a complete route to the
fabrication of ASNNCs, the output of the NSC's high level synthesis should be input
into one of the several existing low level tools. This integration should be such that a
complete feedback from the low level tools is provided to the high level synthesis
tools, so that an accurate decision can be made at the high level of the process, which
considers the adopted technology process.

• Investigation of More Elaborated Data Path and Control Synthesis — Although the
algorithms implemented in this research proved to be simple and efficient, a further
investigation is required to accurately evaluate the quality of the final integrated
circuits.

• Expansion of Possible Target Architectures — Further investigation is needed to
assess the suitabihty of the development of a generic neural silicon compiler, where
multiple target architectures are allowed. In particular, when different techniques, such
as analogue neural network chips, and even novel technologies, such as optical and
opto-electronics are envisaged, the entire development of the NSC should be revised.

• Mapping Virtual Neurons onto PEs — It is interesting to investigate the Generic
Neuron architecture’s suitability in mapping more than one neuron (virtual neuron)
onto a single PE. This task is extremely appropriate for sihcon compilation. Based
upon the mapping strategy, the silicon compiler could create different structures, which
would encompass the extra control logic and additional storage elements to PEs
implementing more than one neuron.

Chapter 10_____________________ Conclusions and Future Work___________________________ 187

• System synthesis — As briefly discussed in chapter 7, the DataPart of the ICR may
include information about the hierarchy of a neural network. Then, this information
may be used to implement a system synthesis tool, which would be capable of not only
synthesising neural chips, but also a complete neurocomputer system, comprising the
network of PEs, the central controller, and additional circuitry to execute a particular
application.

Other future work, based on the scope of this research comprises: firstly, different
neural network programming environments can be added to the present system, so that a
multi-environment system is obtained, as proposed in this dissertation and illustrated in
Figure 6.2; secondly, the expansion of the hardware simulation studies to other neural
network models can be accomplished, which will represent a broader analysis in executing
neural network in hardware.

Finally, with the experience achieved during this work, another interesting
investigation is the adaptation of the NSC to different paradigms, such as genetic
algorithms and fiizzy logic systems. This would produce a silicon compilation system
capable of synthesising intelligent chips, according to the paradigm specified by the user.

References

[1] “80170NX Electrically Trainable Analog Neural Network”, Intel Data Sheet, June
1991

[2] “Directory of Silicon Compilers”, VLSI Systems Design, pp. 52-56, March 1988

[3] “Draft Standard VHDL Language Reference Manual”, IEEE P1076-1992!A, 1992

[4] “Electronic Design Interchange Format Version 2 0 0 - EIA Interim Standard No.
44”, Electronic Industries Association, Engineering Department, May 1987

[5] “HardwareC - A Language for Hardware Design - Version 2.0”, Technical Report
Stanford University, Technical Report CSL-TR-90-419, pp. 1-50, April 1990

[6] “IEEE Standard VHDL Language Reference Manual”, IEEE Std 1076-1987,
March 31,1988

[7] “UDL/I Language Reference - Version 1.0m”, Japan Electronic Industry
Development Association, May 15,1992

[8] Abu-Mostafa, Y. S. and Psaltis, D., “Optical Neural Computers”, Scientific
American, vol. 256, no. 3, pp. 66-73, March 1987

[9] Ackley, D.H., Hinton, G.E., and Sejnowski, T.J., “A Learning Algorithm for
Boltzmann Machines”, Cognitive Science, vol. 9, pp. 147-169, 1985

[10] Acosta, R.D., Alexandre, M., Imken, G., and Read, B., “The Role of VHDL in the
MCC CAD System”, 25th ACMilEEE Design Automation Conference, pp. 34-39,
1988

[11] Aho, A.V. and Ullman, J.D., Principles o f Compiler Design, Addison-Wesley
Series, 1977

[12] Aleksander, I. and Morton, H., An Introduction to Neural Computing, Chapman
and Hall, 1990

[13] Aleksander, I., “Adaptive Pattern Recognition Systems and Boltzmann Machines:
A Rapprochement”, Pattern Recognition Letters, vol. 6 , no. 2, pp. 113-120, July
1987

[14] Aleksander, I., Thomas, W.V., and Bowden, P.A., “WISARD - A Radical Step
Forward in Image Recognition”, Sensor Review, pp. 120-124, July 1984

[15] Alippi, C. and Nigri, M.E., “Hardware Requirements for Digital VLSI
Implementation of Neural Networks”, Proceedings o f the IJCNN*91, pp. 1873-
1878, Singapore, November 18-21,1991

[16] Alippi, C. and Storti-Gajani, G., “Simple Approximation of Sigmoidal Functions:
Realistic Design of Digital Neural Networks Capable of Learning”, Proceedings o f
the International Symposium on CIRCUITS AND SYSTEMS, Singapore , 11-14
June 1991

[17] Alippi, C., “Weight Representation and Network Complexity Reductions in the
Digital VLSI Implementation of Neural Nets”, Department of Computer Science,
University College London, Research Note RNI9II22, pp. 1-20, February 1991

189

190________________ References

[18] Anderson, C.W., “Learning to Control an Inverted Pendulum Using Neural
Networks”, IEEE Control Systems Magazine^ pp. 31-37, 1989

[19] Angeniol, B. and Treleaven, P., “PYGMALION - Neural Network Programming
& Applications”, ESPRIT II - Project 2059, 1989

[20] Angeniol, B. et al., “The Galatea Project”, Proceedings o f the NeuroNimes’92,
1992

[21] Angeniol, B., “Pygmalion: ESPRIT II Project 2059, Neurocomputing”, IEEE
Micro, pp. 28-31,99-102, December 1990

[22] Asanovic, K. and Morgan, N., “Experimental Determination of Precision
Requirements for Back-Propagation Training of Artificial Neural Networks”,
Proceedings o f the 2nd International Conference on Microelectronics for Neural
Networks, pp. 9-15, Munich, Germany, October 16-18, 1991

[23] Athale, R. A., Friedlander, C. B., and Kushner, B. G., “Attentive Associative
Architectures and their implications to optical computing”, The BDM Corporation,
Proc. SPIE Optical Computing, vol. 625, pp. 179-185,1986

[24] Azema-Barac, M., Hewetson, M., Recce, M., Taylor, J., Treleaven, P., and
Vellasco, M., “PYGMALION Neural Network Programming Environment”,
International Neural Network Conference, Paris, France, July 9-13,1990

[25] Bailey, J. and Hammerstrom, D., “Why VLSI implementations of Associative
VLCNs Require Connection Multiplexing”, IEEE International Joint Conference
on Neural Networks, vol. II, pp. 173-180, San Diego, 1988

[26] Balakrishnan, M., Majumdar, A.K., Banerji, D.K., and Linders, J.G., “Allocation of
Multi-Port Memories in Data Path Synthesis”, IEEE Transactions on Computer-
Aided Design, vol. 7, no. 4, pp. 536-540, April 1988

[27] Batchman, T.E. and Parrish, E.A. Jr., “Integrated Optical Computing”, IEEE
Computer, pp. 7-8,1987

[28] Bell, T.E., “Optical Computing: a Field in Flux”, IEEE Spectrum, vol. 23, no. 8 ,
pp. 34-57, August 1986

[29] Brayton, R.K. et al., “MIS: A Multiple-Level Logic Optimization System”, IEEE
Transactions on Computer-Aided Design, vol. CAD-6 , no. 6 , pp. 1062-1081,
November 1987

[30] Brayton, R.K. et al., “The Yorktown Silicon Compiler System”, in Silicon
Compilation, ed. D.D. Gajski, Addison-Wesley Publishing Company, Inc., pp. 204-
310, University of California at Irvine, 1988

[31] Brayton, R.K., Hachtel, G.D., and Sangiovanni-Vincentelli, A.L., “Multilevel
Logic Synthesis”, Proceedings o f the IEEE, vol. 78, no. 2, pp. 264-300, February
1990

[32] Burich, M.R., “The Role of Logic Synthesis in Silicon Compilation”, Semicustom
Design Guide, pp. 56-61,1988

[33] Camposano, R. and Tabet, R.M., “Design Representation for the Synthesis of
Behavioural VHDL Models”, Elsevier Science Publishers, Proceedings o f the
CHDU89,1989

References___1 ^

[34] Camposano, R., “Design Process Model in the Yorktown Silicon Compiler”, 25th
ACM!IEEE Design Automation Conference, pp. 489-494, 1988

[35] Camposano, R., “From Behavior to Structure: High-Level Synthesis”, pp. 8-19,
October 1990

[36] Camposano, R., Bergamaschi, R.A., Haynes, C.E., Payer, M., and Wu, S.M., “The
IBM High-Level Synthesis System”, in Trends in High-Level Synthesis, ed. R.
Camposano and Wayne Wolf, Kluwer Academic Publishers, pp. 79-104,1991

[37] Camposano, R., Saunders, L.F., and Tabet, R.M., “VHDL as Input for High-Level
Synthesis”, IEEE Design & Test o f Computers, pp. 43-49, March 1991

[38] Carlson, S., Introduction to HDL-Based design using VHDL, Synopsis, Inc., 1991

[39] Carpenter, G. A. and Grossberg, S., “The ART of Adaptive Pattern Recognition by
a Self-Organizing Neural Network”, IEEE Computer, pp. 77-88, March 1988

[40] Carre, B., Graphs and Networks, 1979

[41] Cheng, E.K. and Mazor, S., “The Genesil Silicon Compiler”, in Silicon
Compilation, ed. D.D. Gajski, Addison-Wesley Publishing Company, Inc., pp. 361-
405, University of California at Irvine, 1988

[42] Collins, E., Ghosh, S., and Scofield, C., “An Application of a Multiple Neural
Network Learning System to Emulation of Mortgage Underwriting Judgements”,
IEEE International Joint Conference on Neural Networks, vol. II, pp. 459-466,
1988

[43] Corbin, V. and Snapp, W., “Design Methodologies of the Concorde Sihcon
Compiler”, in Silicon Compilation, ed. D.D. Gajski, Addison-Wesley Pubhshing
Company, Inc., pp. 406-445, University of California at Irvine, 1988

[44] Dayhoff, I.E., Neural Network Architectures: An Introduction, Van Nostrand
Reinhold, New York, 1990

[45] Dettmer, R., “ELLA - A Language for VLSI”, Electronic & Power, pp. 517-522,
July 1986

[46] Devadas, S. and Newton, R., “Algorithms for Hardware Allocation in Data Path
Synthesis”, IEEE Transactions on Computer-Aided Design, vol. 8 , no. 7, pp. 768-
781, July 1989

[47] Dewey, A., “VHDL and Next-Generation Design Automation”, IEEE Design &
Test o f Computers, pp. 6-7, June 1992

[48] Dillinger, T.E. et al., “A Logic Synthesis System for VHDL Design Descriptions”,
IEEE International Conference on Computer-Aided Design, pp. 66-69,1988

[49] Durfee, D.A. and Shoucair, F.S., “Comparison of Floating Gate Neural Network
Memory Cells in Standard VLSI CMOS Technology”, IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 347-353, May 1992

[50] Dutt, N.D., Handley, T., and Gajski, D.D., “An Intermediate Representation for
Behavioural Synthesis”, Proceedings o f the 27th Design Automation Conference,
pp. 14-19, Orlando, Florida, June 1990

192____________________________ References

[51] Dutta, S. and Skekar, S., “Bond Rating: A Non-Conservative Application of
Neural Networks”, IEEE International Joint Conference on Neural Networks, vol.
II, pp. 443-450, 1988

[52] Farhat, N.H., Psaltis, D., Prata, A., and Paek, E., “Optical Implementations of the
Hopfield Model”, Optics, vol. 24, no. 10, pp. 1469-1475, 15 May 1985

[53] Feldman, M.R. and Guest, C.C., “Computer Generated Holographic Optical
Elements for Optical Interconnection of Very Large Scale Integrated Circuits”,
Applied Optics, vol. 26, no. 20, pp. 4377-4384,15 October 1987

[54] Forrest, J. and Edwards, M.D., “The Automatic Generation of Programmable
Logic Arrays from Algorithmic State Machine Descriptions”, VLSI 83 Elsevier
Science Publishers B. V. (North-Holland), pp. 183-193, 1983

[55] Foster, C. and Iberall, T., Computer Architecture, Van Nostrand Reinhold Co., 3rd
Edition, 1985

[56] Fukushima, K., “A Neural Network for Visual Pattern Recognition”, IEEE
Computer, pp. 65-75, March 1988

[57] Fukushima, K., “Neural Networks for Visual Pattern Recognition”, lEICE
Transactions, vol. E.74, no. 1, pp. 179-190, January 1991

[58] Gajski, D.D. and Thomas, D.E., “Introduction to Silicon Compilation”, in Silicon
Compilation, ed. D.D. Gajski, Addison-Wesley Publishing Company, Inc., pp. 1-
48, University of California at Irvine, 1988

[59] Gajski, D.D., “Module Generation and Silicon Compilation”, in Physical Design
Automation o f VLSI Systems, ed. B. Preas and M. Lorenzetti, The
Benjamin/Cummings Publishing Company, Inc., pp. 283-345,1988

[60] Gebotys, C.H. and Elmasry, M.I., “A Global Optimization Approach for
Architectural Synthesis”, Proceedings of the International Conference on
Computer-Aided Design*90, pp. 258-261, Santa Clara, CA, November 1990

[61] Geus, A.J. de, “Logic Synthesis Speeds ASIC design”, IEEE Spectrum, pp. 27-31,
August 1989

[62] Ghosh, S., “Using ADA as an HDL”, IEEE Design & Test, pp. 30-42, February
1988

[63] Graf, H.P. and deVegar, P., “A CMOS Implementation of a Neural Network
Model”, in Advanced Research in VLSI, ed. P. Losleben, Proc. of the 1987
Stanford Conferece, 1987

[64] Graf, H.P., Hubbard, W., Jackel, L.D., and deVegvar, P.G.N., “A CMOS
Associative Memory Chip”, Proc. IEEE First Int. Conf. on Neural Networks, vol.
m, pp. 461-468, June 1987

[65] Graf, H.P., Jackel, L.D., and Hubbard, W.E., “VLSI Implementation of a Neural
Network Model”, IEEE Computer, pp. 41-49, March 1988

[6 6] Graf, H.P., Jackel, L.D., Howard, R.E., Straughn, B., Denker, J.S., Hubbard, W.,
Tennant, D.M., and Schwartz, D., “VLSI Implementations of a Neural Network
Memory with Several Hundreds of Neurons”, American Institute of Physics, pp.
182-187,1986

References_______________________________ 193

[67] Graf, H.P., Sackinger, E., Boser, B., and Jackel, L.D., “Recent Developments of
Electronic Neural Nets in the US and Canada”, Proceedings o f the 2nd
International Conference on Microelectronics for Neural Networks, pp. 471-488,
Munich, Germany, October 16-18, 1991

[68] Greenwood, D., “An Overview of Neural Networks”, Behavioral Science, vol. 36,
pp. 1-33, 1991

[69] Gutschow, T., “AXON: The Researchers Neural Network Language”,
Proceedings o f the international Neural Network Symposium INNS'88, 13-17
September 1988

[70] Gyrczyc, E.F., Buhr, R.J., and Knight, J.P., “Apphcability of a Subset of ADA as
an Algorithmic Hardware Description anguage for Graph-Based Hardware
Compilation”, IEEE Transactions on CAD, vol. CAD-4, no. 2, April 1985

[71] Hafer, L.J. and Parker, A.C., “A Formal Method for the Specification, Analysis
and Design of Règister-Transfer Level Digital Logic”, IEEE Transactions on
Computer-Aided Design, vol. CAD-2, no. 1, pp. 4-18, January 1983

[72] Hall, D.G., “Survey of Silicon-Based Integrated Optics”, IEEE Computer, pp. 25-
32, December 1987

[73] Hall, D.G., “The Role of Silicon in Integrated Optics”, Optics News, pp. 12-15,
February 1988

[74] Hamilton, A., Murray, A.F., Baxter, D.J., Churcher, S., Reekie, H.M., and
Tarassenko, L., “Integrated Pulse Stream Neural Networks: Results, Issues, and
Pointers”, IEEE Transactions on Neural Networks, vol. 3, no. 3, pp. 385-393, May
1992

[75] Hammerstrom, D., “A VLSI Architecture for High-Performance, Low-Cost, On-
Chip Learning”, IEEE International Joint Conference on Neural Networks, vol. H,
pp. 537-544, San Diego, California, June 17-21,1990

[76] Handbook o f Neural Computing Applications, ed. A.J. Maren, C.T. Harston, and
R.M. Pap, Academic Press, Inc., 1990

[77] Hayati, S. and Parker, A., “Automatic Production of Controller Specifications from
Control and Timing Behavioral Descriptions”, 26th lEEElACM Conference on
Design Automation Conference, pp. 75-80, 1989

[78] Hebb, D., The organization o f Behaviour, New York Whiley , 1949

[79] Hecht-Nielsen, R., “Counterpropagation Networks”, IEEE First International
Conference on Neural Networks, vol. 2, pp. 19-32,1987

[80] Hecht-Nielsen, R., “Neurocomputing: Picking the Human Brain”, IEEE
SPECTRUM, vol. 25, no. 3, pp. 36-41., 1988

[81] Hecht-Nielsen, R., “Performance Limits of Optical, Electro-Optical, and Electronic
Neurocomputers”, Proc. SPIE Optical and Hybrid Computing SPIE, vol. 634, pp.
277-306,1986

[82] Hecht-Nielsen, R., Neurocomputing, Addisson-Wesley Publishing Company, 1990

194_________________________ References

[83] Hirai, Y., “Hardware Implementatin of Neural Networks in Japan”, Proceedings o f
the 2nd International Conference on Microelectronics for Neural Networks, pp.
435-446, Munich, Germany, October 16-18,1991

[84] Holler, M., Tam, S., Castro, H., and Benson, R., “An Electrically Trainable
Artificial Neural Network (ETANN) with 10240 "Floating Gate" Synapses”, Intel
Corporation, Technology Development, Proc, IEEE First International Joint
Conference on Neural Networks - IJCNN 89, vol. II, pp. 191-196, June 18-22
1989

[85] Holt, J.L. and Hwang, J.N., “Finite Precision Error Analysis of Neural Network
Hardware Implementations”, Department of Electrical Engineering, University of
Washington, Internal Report, FT-10, pp. 1-29, Seattle, March 1991

[86] Hopfield, J.J., “Neural Networks and Physical Systems with Emergent Collective
Computational Abilities”, Proc. Nat. Acad. Sci. USA, vol. 79, pp. 2554-2558, April
1982

[87] Howard, R.E., Schwartz, D.B., Denker, J.S., Epworth, R.W., Graf, H.P.,
Hubbard, W.E., Jackel, L.D., Straughn, B.L., and Tennant, D.M., “An Associative
Memory Based on an Electronic Neural Network Architecture”, IEEE
Transactions on Electron Devices, vol. ED-34, no. 7, pp. 1553-1556, July 1987

[88] Hubbard, W., Schwartz, D., Denker, J., Graf, H.P., Howard, R., Jackel, L .,
Straughn, B., and Tennant, D., “Electronic Neural Networks”, American Institute
o f Physics, pp. 227-234, 1986

[89] Hutcheson, L.D., “Integrated Optics: Evolution and Prospects”, Optics News, p. 7,
February 1988

[90] Jackel, L.D., Graf, H.P., and Howard, R.E., “Electronic Neural Network Chips”,
Applied Optics, vol. 26, pp. 5077-5080, December 1987

[91] Jelemensky, J. et al., “The MC68332 Microcontroller”, IEEE Micro, vol. 9, no. 4,
pp. 31-50, August 1989

[92] Johannsen, D., “Bristle Blocks: A Silicon Compiler”, Proc. I6th Design
Automation Conf, pp. 310-313,1979

[93] Jones, R.D., Lee, Y.C., Barnes, C.W., Flake, G.W., Lee, K., Lewis, P.S., and
Qian, S., “Function Approximation and Time Series Prediction with Neural
Networks”, Center for Non Linear Studies, Los Alamos, 1989

[94] Josin, G., Chamey, D., and White, D., “Robot Control Using Neural Networks”,
IEEE International Joint Conference on Neural Networks, vol. II, pp. 625-631,
1988

[95] Karatsu, O., “VLSI Design language Standardization Effort in Japan”, 26th
IEEE!ACM Conference on Design Automation Conference, pp. 50-55, 1989

[96] Kemighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice Hall,
1978

[97] Kim, J.J., Kurdahi, F.J., and Park, N., “Automatic Synthesis of Time-Stationary
Controllers for Pipelined Data Paths”, IEEE Conference on Computer-Aided
Design, pp. 80-83,1991

References___ ^

[98] Kitayama, K. and Yoshinaga, H., “Experiments of Learning in Optical Perceptron-
Like and Multilayer Neural Networks”, International Joint Conference on Neural
Networks, 1989

[99] Kohonen, T., “The Self-Organizing Map”, Proceedings o f the IEEE, vol. 78, no. 9,
pp. 1464-1480, September 1990

[100] Kowalski, T.J., “The VLSI Design Automation Assistant: An Architecture
Compiler”, in Silicon Compilation, ed. D.D, Gajski, Addison-Wesley Publishing
Company, Inc., pp. 122-152, University of California at Irvine, 1988

[101] Krishnamoorthy, A.V., Yayla, G., and Esener, S.C., “A Scalable Optoelectronic
Neural System Using Free-Space Optical Interconnects”, IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 404-413, May 1992

[102] Kuh, E.S. and Ohtsuki, T., “Recent Advances in VLSI Layout”, Proceedings o f
the IEEE, vol. 78, no. 2, pp. 237-263, February 1990

[103] Kyuma, K. et al., “Optical Neural Networks: System and Device Technologies”,
SPIE - Optical Computing, vol. 963, pp. 475-484, 1988

[104] Lee, J., Hsu, Y., and Lin, Y., “A new Integer Linear Programming Formulation for
the Scheduhng Problem in Data-Path Synthesis”, Proceedings o f the International
Conference on Computer-Aided Design*89, Santa Clara, CA, November 1989

[105] Ling, E.R. Khan ., “Systolic Architectures for Artificial Neural Nets”, Proceedings
o f the IJCNN* 91, pp. 620-627, Singapore, November 18-21, 1991

[106] Lippmann, R.P., “An Introduction to Computing with Neural Nets”, IEEE ASSP
Magazine, pp. 4-22, April 1987

[107] Lippmann, R.P., “Review of Neural Networks for Speech Recognition”, Neural
Computation, vol. 1, pp. 1-38,1989

[108] Man, H. De, Rabaey, J., Meerbergen, J. van, and Huisken, J., “Silicon Compilation
of DSP Systems with Cathedral H”, Proceedings o f the 4th Annual ESPRIT
Conference, pp. 207-217, Brussels, September 28-29,1987

[109] Man, H. et al., “CATHEDRAL-II: A Silicon Compiler for Digital Signal
Processing”, IEEE Design and Test, pp. 13-25, December 1986

[110] Marcade, E., Canut, F., Revault, N., and Moulinoux, C., “N: A Language
Dedicated to Neural Algorithms Design”, Thomson CSF/DSE, Esprit II -
Pygmalion 2059, Formal HLL Definition - Release 1 D-IIO-2, October 8,1990

[111] Martinetz, T.M., Hitter, H.J., and Schulten, K.J, “3D Neural Net for learning
Visuomotor coordination of a robot arm”, IEEE International Joint Conference on
Neural Networks, vol. H, pp. 351-356,1989

[112] Mauduit, N., Duranton, M., Gobert, J., and Sirat, J., “Lneuro 1.0: A Piece of
Hardware LEGO for Building Neural Network Systems”, IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 414-422, May 1992

[113] McFarland, M.C., “The Value Trace: A Data Base for Automated Digital Design”,
Department o f Electrical Engineering Camegie-Mellon University RC-OI-04-80,
pp. 1-49, December 1978

1 9 6 __ References

[114] McFarland, M.C., Parker, A.C., and Camposano, R., “The High-Level Synthesis of
Digital Systems”, Proceedings o f the IEEE, vol. 78, no, 2, pp. 301-319, February
1990

[115] Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley
Publishing Company, Inc., 1980

[116] Mead, C., Analog VLSI and Neural Systems, Addisson-Wesley Pubhshing
Company, 1989

[117] Meyer, E.L., “On Module Generatation”, VLSI Systems Design, pp. 48-63, March
1987

[118] Micheh, D. De et al., “A Deisgn System for PLA-Based Digital Circuits”,
Advances in Computer-Aided Engineering Design, vol. 1, pp. 285-364, 1985

[119] Micheli, G. De and Ku, D., “HERCULES - A System for High-Level Synthesis”,
Proceedings o f the 25th ACMIIEEE Design Automation Conference, Anaheim,
pp. 483-488, 1988

[120] Micheh, G. De, “High-Level Synthesis of Digital Circuits”, IEEE Design & Test o f
Computers, pp. 6-7, October 1990

[121] Micheh, G. De, Ku, D., Mailhot, F., and Truong, T., “The Olympus Synthesis
System”, IEEE Design & Test of Computers, pp. 37-53, October 1990

[122] Minsky, M. and Papert, S., Perceptrons an Introduction to Computational Theory,
MTT Press, Cambridge MA, 1969

[123] Morton, S.G., “Electronic Hardware Implementations”, in Handbook o f Neural
Computing Applications, ed. A.J. Maren, C.T. Harston, and R.M. Pap, Academic
Press, Inc., pp. 251-269,1990

[124] Murray, A.F. and Smith, A.V.W., “Asynchronous VLSI Neural Networks using
Pulse Stream Arithmetic”, IEEE Journal o f Solid-State Circuits and Systems, pp.
1-24, 1988

[125] Murray, A.F., “Analogue Neural VLSI: Issues, Trends and Pulses”, in Artificial
Neural Networks, ed. I. Aleksander and J. Taylor, Elsevier Science Publishers
B.V., vol. 2, pp. 35-43,1992

[126] Murray, A.F., “Pulse Arithmetic in VLSI Neural Networks”, IEEE Micro, pp. 64-
74, December 1989

[127] Myers, D.J. and Hutchinson, R.A., “Efficient Implementation of Piecewise Linear
Activation Function for Digital VLSI Neural Networks”, Electronics Letters, vol.
25, no. 24, pp. 1662-1663, 23rd November 1989

[128] Nagasamy, V., Berry, N., and Dangelo, C., “Specification, Planning, and Synthesis
in a VHDL Design Environment”, IEEE Design & Test o f Computers, pp. 58-68,
June 1992

[129] Nigri, M., “Folding software: A Preliminary Analysis and Implementation”,
University College London, Galatea Internal Report REP-C21-M18,1992

[130] Nigri, M., “Hardware Emulation of Back-Propagation Neural Networks”,
Research Note RNI9H21, Department o f Computer Science, University College
London, pp. 1-12, February 1991

References___1 ^

[131] Nigri, M., “nC_code Machine intependent Neural Network Specification
Language”, Pygmalion Documentation, April 1990

[132] Nigri, M., Treleaven, P., and Vellasco, M., “Silicon Compilation of Neural
Networks”, Proceedings o f the IEEE CompEuro'91, pp. 541-546, Bologna, Italy,
May 13-16, 1991

[133] Nigri, M.E., Rocha, P.V., and Treleaven, P., “An Integrated Neurocomputing
System”, Proceedings o f the IEEE/INNS IJCNN-91-SEATTLE, pp. 547-552, July
8-12, 1991

[134] Obrebska, M., Chuquillanqui, S., and Derantonian, H., “PLA and Custom Design”,
in Design Methodologies, ed. S. Goto, North-Holland, pp. 83-122, 1986

[135] Ohta, J. et al., “Optical Implementation of an Associative Neural Network Model
with a Stochastic Process”, Applied Optics, vol. 28, no. 12, pp. 2426-2428, 15
June 1989

[136] Orailoglu, A. and Gajski, D.D., “Flow Graph Representation”, 23rd IEEE!ACM
Conference on Design Automation Conference, pp. 503-509, 1986

[137] Ouali, J. and Saucier, G., “Sihcon Compiler for neuro-ASICs”, IEEE International
Joint Conference on Neural Networks, vol. n, pp. 557-561, 1990

[138] Ouali, J., Saucier, G., and TriUe, J., “A Flexible, Universal Wafer Scale Neural
Network”, Proceedings o f the 3rd Workshop on Wafer Scale Integration, Como,
Italy, June 1989

[139] Ousterhout, J.K., “The Magic VLSI Layout System”, IEEE Design & Test, pp. 19-
30, February 1985

[140] Pacheco, M. and Treleaven, P., “A VLSI Word-Shce Architecture for
Neurocomputing International Symposium on Computer Architecture and Digital
Signal Processing”, pp. 29-34, Hong Kong, October 1989

[141] Palmer, R., “High Performance Digital Neural Network Implementation for Small-
Scale Portable Applications”, Proceedings o f the 2nd International Conference on
Microelectronics for Neural Networks, pp. 207-216, Munich, Germany, October
16-18,1991

[142] Pangrle, B.M. and Gajski, D.D., “Design Tools for Intelligent Sihcon
Compilation”, IEEE Transactions on Computer-Aided Design, vol. CAD-6, no. 6,
pp. 1098-1 111, November 1987

[143] Papachristou, C.A. and Konuk, H., “A Linear Program Driven Scheduhng and
Allocation Method FoUowed by an Interconnect Optimisation Algorithm”,
Proceedings o f the 27th ACMilEEE Design Automation Conference, pp. 77-83,
Orlando, Florida, June 24-28,1990

[144] Parker, A.C. et al., “Unified System Construction (USC)”, in High Level VLSI
Synthesis, Kluwer Academic Publishers, 1991

[145] Parker, A.C., Pizarro, J., and Mlinar, M., “MAHA: A Program for Datapath
Synthesis”, Proceedings o f the 23rd Design Automation Conference, pp. 461-466,
1986

198 _____________________________ References

[146] Paulin, P.G. and Knight, J.P., “Force-Directed Scheduling for the Behavioral
Synthesis of ASIC’s”, IEEE Transactions on Computer-Aided Design, vol. 8, no.
6, pp. 661-679, June 1989

[147] Paulin, P.O., Knight, J.P., and Girczyc, E.F., “HAL: A Multi-Paradigm Approach
to Automatic Data Path Synthesis”, 23rd lEEEIACM Conference on Design
Automation Conference, pp. 263-270, 1986

[148] Peng, Z., “Synthesis of VLSI Systems with the CAMAD Design Aid”, 23rd
IEEE!ACM Conference on Design Automation Conference, pp. 278-284, 1986

[149] Poechmueller, W. and Glesner, M., “Evaluation of State-of-the-art Neural
Network Customised Hardware”, Elsevier, Neurocomputing, no. 2, pp. 209-231,
1991

[150] Psaltis, D. and Farhat, N., “Optical Information Processing based on an
Associative-Memory Model of Neural Nets with Thresholding and Feedback”,
Optics Letters, vol. 10, no. 2, February 1985

[151] Psaltis, D., “Optical Realizations of Neural Network Models”, SPIE -
International Optical Computing Conference, vol. 700, pp. 278-282, 1986

[152] Rabaey, J., “Sihcon Compilation and Design Synthesis for Digital Systems”,
Proceedings o f the CERN European Organisation for Nuclear Research, pp. 234-
259, Oxford, United Kingdom, 15-26 August 1988

[153] Ramacher, U., “SYNAPSE-X: A General-Purpose Neurocomputer Architecture”,
Proceedings of the IJCNN’91, pp. 2168-2176, Singapore, November 18-21, 1991

[154] Recce, M., Rocha, P.V., and Treleaven, P.C., “Neural Network Programming
Environments”, in Artificial Neural Networks, ed. I. Aleksander and J. Taylor,
Elsevier Science Publishers B.V., vol. 2, pp. 1237-1244,1992

[155] Rocha, P.V., “A Fully Integrated Neural Computing System”, University of
London, PhD Thesis, Department of Computer Science, University College
London, July 1992

[156] Roth, M.W., “Survey of Neural Network Technology for Automatic Target
Recognition”, IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 28-43,
March 1990

[157] Roy, J., Kumar, N., Dutta, R., and Vemuri, R., “DSS: A Distributed High-Level
Synthesis System”, IEEE Design & Test of Computers, pp. 18-32, June 1992

[158] Rudell, R., Sangiovanni-Vincentelli, A.L., and Micheh, G. De, “A Finite State
Machine Synthesis System”, Proc. ISC AS, 1985

[159] Rumelhart, D.E. and McClelland, J.L., Parallel Distributed Processing -
Explorations in the Microstructure of Cognition, vol. 1 & 2,1986

[160] Rumelhart, D.E. and Zipser, D., “Feature Discovery by Competitive Learning”, in
Parallel Distributed Processing, vol. 1, pp. 151-193,1986

[161] Rumelhart, D.E., Hinton, G.E., and A^hhiams, RJ., “Learning Internal
Representations by Error Propagation”, in Parallel Distributed Processing, vol. 1,
pp. 318-362,1986

References___ 1 ^

162] Sangiovanni-Vincentelli, A., “Towards Automatic Synthesis and Verification of
Complex Electronic Systems”, Proceedings o f IEEE CompEuro’9 f pp. 888-893,
Bologna, Italy, May 13-16, 1991

163] Saucier, G., Paulet, M. De, and Sicard, P., “ASYL: A Rule-Based System for
Controller Synthesis”, IEEE Transactions on Computer-Aided Design, vol. CAD-
6, no. 6, pp. 1088-1097, November 1987

164] Sedgewick, R., Algorithms, Addison-Wesley Publishing Company, 1988

165] Sejnowski, T.J. and Rosenberg, C.R., “Parallel Networks that learns to Pronounce
English Text”, Complex Systems, vol. 1, pp. 145-168, 1987

166] Shahdad, M., “An Interface between VHDL and EDIF”, 24th IEEE!ACM
Conference on Design Automation Conference, pp. 472-478, 1987

167] Shepherd, G., “Synaptic Organisation of the Brain”, John Wiley & Sons

168] Sivilotti, M.A., Emerling, M.R., and Mead, C.A., “VLSI Architectures for
Implementation of Neural Networks”, Proceedings o f the American Intitute o f
Physics Conference, pp. 408-413, 1986

169] Sluss, J.J. Jr., Veasey, D.L., Batchman, T.E., and Parrish, E.A. Jr., “An
Introduction to Integrated Optics for Computing”, IEEE Computer, pp. 9-23,
December 1987

170] Smith, S.D., “Optical Bistability, Photonic Logic, and Optical Computation”,
Applied Optics, vol. 25, no. 10, pp. 1550-1564, 15 May 1986

171] Southard, J.R., “MacPitts: An Approach to Silicon Compilation”, Computer, vol.
16, no. 12, pp. 74-82, December 1983

172] Stallman, R.M., Using and Porting GNU CC - Version 1.39, Free Software
Foundation, Inc., January 1989

173] Stoll, A. and Duzy, P., “High-Level Synthesis from VHDL with Exact Timing
Constraints”, 29th ACM!IEEE Conference on Design Automation Conference, pp.
188-193,1992

174] Szu, H.H., “Optical Neuro-Computing”, in Handbook o f Neural Computing
Applications, ed. A.J. Maren, C.T. Harston, and R.M. Pap, Academic Press, Inc.,
pp. 271-293,1990

175] Tanaka, T., Kobayashi, T., and Karatsu, O., “HARP: Fortran to Silicon”, IEEE
Transactions on Computer-Aided Design, vol. 8, no. 6, pp. 649-660, June 1989

176] Thomas, D.E., “Chapter 13 - Automatic Data Path Synthesis”, in Design
Methodologies, ed. S. Goto, North-Holland, pp. 401-439,1986

177] Thomas, D.E., Lagnese, E.D., Walker, R.A., Nestor, J.A., Rajan, J.V., and
Blackburn, R.L., Algorithmic and Register-Transfer Level Synthesis: The System
Architect* s Workbench, Kluwer, 1990

178] Thomsen, A. and Brooke, M.A., “A Low-cost Application-specific Neural
Network Implementation with Folating Gate Weights”, Proceedings o f the
IJCNN*92, vol. n, pp. 565-570, Baltimore, Maryland, June 7-11,1992

200__________________________ References

[179] Tomlinson, M.S. Jr., Walker, D.J., and Sivilotti, M.A., “A Digital Network
Architecture for VLSI”, International Joint Conference on Neural Networks^ vol.
II, pp. 545-550, 1990

[180] Treleaven, P., Pacheco, M., and Vellasco, M., “VLSI Architectures for Neural
Networks”, IEEE Micro, pp. 8-27, December 1989

[181] Treleaven, P.C, “PYGMALION Neural Network Programming Environment”,
Proceeding o f the International Conference on Artificial Neural Networks
(ICANN-91), pp. 569-578, Espoo, Finland, 24-28 June, 1991

[182] Treleaven, P.C., “Parallel Architectures for Neurocomputers”, European Seminar
on Neural Computing, February 1988

[183] Treleaven, P.C., Recce, M., and Wang, C., “Neural Network Programming
Environments: a Review”, The 4th European Seminar on Neural Computing -
Putting Neural Nets to Work, London Marriott Hotel, February 21-22, 1991

[184] Trickey, H., “Flamel: A High-Level Hardware Compiler”, IEEE Transactions on
Computer-Aided Design, vol. CAD-6, no. 2, pp. 259-269, March 1987

[185] Tseng, C. and Siewiorek, D.P., “Automated Synthesis of Data Path in Digital
Systems”, IEEE Transactions on Computer-Aided Design, vol. CAD-5, no. 3, pp.
379-395, July 1986

[186] Tseng, C. et al., “Bridge: A Versatile Behavioral Synthesis System”, 25th
ACM!IEEE Design Automation Conference, pp. 415-420, 1988

[187] Turnbull, K.W., “An Overview of High Level Synthesis Technologies for Digital
ASICs”, in Algorithmic and Knowledge Based CAD for VLSI, ed. G. Taylor and
G. Russel, pp. 47-75, 1992

[188] Vanhoof, J., “Architecture Synthesis for Application-Specific Medium-Throughput
Digital Signal-Processing Chips”, Katholieke Universiteit Leuven, PhD Thesis,
Département Elektrotechniek, Fakulteit Toegepaste Wetendchappen, February
1992

[189] Vellasco, M. and Treleaven, P., “A Neurocomputer Exploiting Silicon
Compilation”, Proc. Neural Computing Meeting, The Institute o f Physics, London,
April 1989

[190] Vellasco, M., “High-Level Silicon Compiler”, University College London, Galatea
Internal Report REP-C21-M12,1991

[191] Vellasco, M., “The nC Neural Network Programming Language - Manual (Version
1.02)”, University College London, Pygmalion Project 2059,1990

[192] Verleysen, M. and Jespers, P.G.A., “An Analog VLSI Implementation of
Holpfield’s Neural Network”, IEEE Micro, pp. 46-55, December 1989

[193] Verleysen, M., Sirletti, B., and Jespers, P., “A New VLSI Architecture for Neural
Associative Memories”, Proceedings of the nEuro* 88, pp. 692-700, Paris, France,
June 6-9,1988

References____________________________________ 201

[194] Verleysen, M., Sirletti, B., Vandemeulebroecke, A.M., and Jespers, P.G.A.,
“Neural Networks for High-Storage Content-Addressable Memory: VLSI Circuit
and Learning Algorithm”, IEEE Journal o f Solid-State Circuits, vol. 24, no. 3, pp.
562-569, June 1989

[195] Wagner, K. and Psaltis, D., “Multilayer optical learning networks”. Applied Optics,
vol. 26, no. 23, pp. 5061-5076, 1 December 1987

[196] Waibel, A., “Consonant Recognition by Modular Construction of Large Phonemic
Time-Delay Neural Networks”, in Neural Information Processing Systems,
Kaufman Publishers, pp. 215-223,1988

[197] Waibel, A., Hanazawa, T., Hinton, G., Schikano, K., and Lang, K., “Phoneme
Recognition Using Time-Delay Neural Networks”, IEEE Transactions on
Acoustics, Speech, and Signal Processing (ASSP), no. 37, March 1989

[198] Walker, R.A. and Camposano, R., A Survey o f High-level Synthesis Systems,
Kluwer Academic Publishers, 1991

[199] Wasserman, P.D., Neural Computing Theory and Practice, Van Nostrand
Reinhold, 1989

[200] Webb, A.R., “Applications of Neural Networks in Military Systems”, Military
Microwaves’90, pp. 356-361, London, July 11-13, 1990

[201] White, H., “Economic Prediction Using Neural Networks: The Case of IBM Daily
Stock Returns”, IEEE International Joint Conference on Neural Networks, vol. II,
pp. 451-458, 1988

[202] Widrow, B. and Lehr, M.A., “30 Years of Adaptive Neural Networks: Perception,
Madaline, and Backpropagation”, Proceedings o f the IEEE, vol. 78, no. 9, pp.
1415-1442, September 1990

[203] Yatagai, T., “Optical Computing in Japan”, Future Generation Computer Systems,
vol. 4, pp. 177-187,1988

Appendix A

Published Work

[1] Alippi, C. and Nigri, M.E., “Hardware Requirements for Digital VLSI
Implementation of Neural Networks”, in Proc. IJCNN’91 Singapore, November
18-21 1991, IEEE, pp. 1873-1878, New York, N.Y., 1991

[2] Nigri, M., Treleaven, P., and Vellasco, M., “Silicon Compilation of Neural
Networks”, Proceedings o f the IEEE CompEuro'91, pp. 541-546, Bologna, Italy,
May 13-16,1991

[3] Nigri, M.E., Rocha, P.V., and Treleaven, P., “An Integrated Neurocomputing
System”, Proceedings o f the IEEE!INNS IJCNN-91-SEATTLE, pp. 547-552, July
8-12,1991

[4] Nigri, M.E. and Treleaven, P.C., “High Level Synthesis of Neural Network Chips”,
(To be published) the International Workshop on Artificial Neural Networks,
Sitges (Barcelona), Spain, June 9-11, 1993

203

Appendix B

nC Language Syntax and Example

This appendix presents the syntax o f the nC language. This syntax definition is
used to implement the parser o f the NSC, upon which the compilation process
starts. In addition, the implementation o f the Back Propagation network in nC is
given, which is used throughout this dissertation to assess its execution in
hardware.

nC Syntax Definition

The following syntax definition is used for parsing a nC rule. The parser is called
after the entire nC system data structure is read. Then, for each neural algorithm rule
defined by the user, the NSC parses these rules according to the syntax presented below.

rules
func_def_list

£unc_dey^rt
oldc _ . _ _

§lii-lïâ&î5L_de£
oldc_func_de f

one_of_types func_def
func_def

£unc_de£
function_name PAREN_OPEN arg_list

arg_list
oldc_arg_list_opt PAREN_CLOSE

oldc_arg_list_opt
identifier
oldc_arg_list_opt COMMA identifier

oldc_arg_decl
typed_spec var_name SEMI_COLON
oldc_arg_decl typed_spec var_name SEMI_COLON

typed_spec
type_specifier

var_name
declarator

205

206 nC Language Syntax and Example Appendix B

compound_stat:
CBRK_OPEN decl_list_opt stat_list_opt CBRK_CLOSE

decl_list_opt
decl_list

decl_list
declaration
decl_list declaration

declaration
typed_spec init_decl_list SEMI_COLON

init_decl_list
init_declarator
init_decl_list COMMA init_declarator

init_declarator
var_name
var_narae EQUAL initializer

declarator
dir_declarator
STAR dir_declarator
STAR STAR dir_declarator

dir_declarator
identifier
PAREN_OPEN declarator PAREN_CLOSE
dir_declarator BRK_OPEN int_const_opt BRK_CLOSE
dir_declarator PAREN_OPEN PAREN_CLOSE

initializer
additive_expr
CBRK_OPEN initializer_list CBRK_CLOSE

initializer_list
initializer
initializer_list COMMA initializer

stat_list_opt
stat_list

stat_list
statement
stat_list statement

statement
expr_statement
selection_stat
iteration_stat
j ump_stat
control stat

ezpr_statement
SEMI_COLON
assign_expr SEMI_COLON

expression
assign_expr

assign_expr
logic_or_expr
unary_expr EQUAL logic_or_expr
unary_expr ASSIGN_OPERATORS logic_or_expr

logic_or_expr
logic_and_expr
logic_or_expr LOGIC_OR logic_an<i_expr

logic_and_expr
incl_or_expr
logic_and_expr LOGIC_AND incl_or_expr

incl_or_expr
excl_or_expr
incl_or_expr OPERATOR_OR excl_or_expr

Appendix B__________________ nC Language Syntax and Example 207

excl_or_expr
and_expression
excl_or_expr OPERATOR_XOR and_expression

and_expression
equality_expr
and_expression AMPERSAND equality_expr

equality_expr
relational_expr
equality_expr EQDAL_COMPARE relational_expr

relational_expr
shift_expr
relational_expr LOGIC_LESS shift_expr
relational_expr LOGIC_GREATER shift_expr
relational_expr LOGIC_LESS_EQUAL shift_expr
relational_expr LOGIC_GREATER_EQUAL shift_expr

shift_expr
additive_expr
shift_expr LEFT_SHIFT additive_expr
shift_expr RIGHT_SHIFT additive_expr

additive_expr
multipl_expr
additive_expr PLUS multipl_expr
additive_expr MINUS multipl_expr

multipl_expr
cast_expr
multipl_expr STAR cast_expr
multipl_expr DIVIDE cast_expr
multipl_expr MOD cast_expr

cast_expr
unary_expr
PAREN_OPEN type_name PAREN_CLOSE cast_expr

unary_expr
postfix_expr
STAR cast_expr UNARY
unary_operator cast_expr UNARY
SIZEOF unary_expr

unary_operator
PLUS
MINUS
PLUS_PLUS
MINUS_MINUS
AMPERSAND
NOT
TILDA

postfix_expr
primary_expr
postfix_expr BRK_OPEN additive_expr BRK_CLOSE
postfix_expr PAREN_OPEN arg_expr_list PAREN_CLOSE
postfix_expr PAREN_OPEN PAREN_CLOSE
postfix_expr DOT identifier
postfix_expr POINTER identifier
postfix_expr PLUS_PLUS
postfix_^expr MINUS_MINUS

primary_expr
any_constantl
AMPER_IDENT
PAREN_OPEN expression PAREN_CLOSE

arg_expr_llst
assign_expr
arg_expr_list COMMA assign_expr

type_name
typed_spec abstr_decl_opt

abstr_decl_opt
abstract_decl

abstract_decl
pointer

208______________ nC Language Syntax and Example_______ Appendix B

pointer dir_abstr_decl
dir_abstr_decl

double__star
STAR STAR

pointer
STAR
double_star

dir_abstr_decl
PAREN_OPEN abstr_decl_opt PAREN_CLOSE
dir_abstr_decl BRK_OPEN const_expr_opt BRK_CLOSE
BRK_OPEN const_expr_opt BRK_CLOSE
dir_abstr_decl PAREN_OPEN PAREN_CLOSE

const_expr_opt
constant_expr

constant_expr
additive_expr

selection_stat
IF PAREN_OPEN cond_expression PAREN_CLOSE body_statement IF
IF PAREN_OPEN cond_expression PAREN_CLOSE body_stateraent ELSE body_statement

iteration_stat
for_loop

for_loop
FOR PAREN_OPEN opt_assign_expr SEMI_COLON opt_cond_expr SEMI_COLON opt_assign_expr

PAREN_CLOSE body_statement
body_statement

CBRK_OPEN stat_list CBRK_CLOSE
statement

opt_assign_expr
assign_expr

opt_cond_expr
cond_expres s ion

cond_expression
logic_or_expr

opt_ret_expr
expression

jump_stat
RETURN opt_ret_expr SEMI_COLON
CONTINUE SEMI_COLON
BREAK SEMI_COLON

control_stat
PAK_CONTROL CBRK_OPEN stat_list CBRK_CLOSE
PAR_CONTROL for_loop

any_constant:l
int_constant
FL0AT_C0NSTANT1
FL0AT_C0NSTANT2
STRING
CHAR_CONSTANT

one_of_types
TYPESPEC
CADDR_T
TAGVAL

one_of_strucs
TYPENAME

int_cons tant
INT_CONSTANT
HEX_CONSTANT
identifier

int_cons t_opt
int_constant

Appendix B__________________ nC Language Syntax and Example 209

identifier
UPPER_IDENT
LOWER_IDENT
PARA_LIST
SYS

function_name
UPPER_IDENT

type_speci f ier
one_of_strues
one_of_types

Back Propagation Network

The following code is the nC specification of the Back Propagation neural network
used throughout this thesis. The first part of this specification shows the functions that are
required to program an algorithm in nC. The second part shows the definition of a typical
application.

/* ... — V
/* Function bodies for the back-propagation rule classes - */
/ * * /
/* Silicon Compilation Version - Meyer 20/06/91 * /
/* .. - ... V

/* -V
float Learn()
{

EXEC(ssys->net[c_net]->rules[NET_R_learn]);
return(sys->net[c_net]->parameters[NET_P_score].parameter.value.UNION_MEMBER);

}

/* .. - - ... Vfloat Learn_o()
{

EXEC(ssys->net[c_net]->rules[NET_R_learn_o]);
return(sys->net[c_net]->parameters[NET_P_score].parameter.value.UNION_MEMBER);

}

/* - Vfloat Step_learn()
£

EXEC(&sys->nét[c_net]->rules[NET_R_step_learn]) ;
return(sys->net[c_net]->parameters[NET_P_score].parameter.value.UNION_MEMBER);

}

/* .. -- .. - Vfloat Step_learn_o()
£

EXEC(&sy8->net £ c_net]->rules f NET_R_step_learn_o]);
return(sys->net£c_net]->parameters£ NET_P_score].parameter.value.UNION_MEMBER);

)

/* .. - ... Vfloat Recall()
£

EXEC(&sys->net £c_net]->rules £ NET_R_recall]);
EXEC(ssys->net[c_net]->rules[NET_R_tol_test]);
return(sys->net£c_net]->parametersI NET_P_score].parameter.value.UNION_MEMBER);

}

210________________________ nC Language Syntax and Example__________________ Appendix B

/* ... V
int State_update (p)
TAGVAL **p; /* [*state, *acc, *SIZE, *statel, *weightl, ...] */
{

p[1]->value.UNION_MEMBER = dp(p + 2);
p[0]->value.UNION_MEMBER = lookuptbl (p[l]->value.DNION_MEMBER);
return(0);

]

/ * - Vint State_update_output (p)
TAGVAL **p; /* [*state, *acc, *SIZE, *statel, *weightl, ...] */
{

p[1]->value.ÜNION_MEMBER = dp(p + 2);
if (threshold) [

p[0]->value.UNION_MEMBER = lookuptbl (p[1]->value.UNION_MEMBER);
)

else {
p[0]->value.üNION_MEMBER = p[1]->value.UNION_MEMBER; /*no squashing*/

)
return(0);

1
/ * ---------------------- - ...- Vint Err_cal_output (p)
TAGVAL **p; /* [*err, *target, *state] */
[

if (threshold) {
p[0]->value.UNION_MEMBER = (p[1]->value.UNION_MEMBER -

p[2]->value.UNION_MEMBER) *
(1 - p[2]->value.UNION_MEMBER) *
p[2]->value.UNION_MEMBER;

]
else {

p[0]->value.UNION_MEMBER = p[1]->value.UNION_MEMBER -
p[2]->value.UNION_MEMBER;

]
return(0);

]

/ * V/* err_cal_hidden_class */
/* Meyer 8/11/90 - For the Generic Neuron Architecture ♦/
int Err_cal_hidden (p)
TAGVAL **p; /* [*err, *state, *SIZE, *errorl, *weightl, ...] */
{ p[0]->value.üNION_MEMBER - dp(p+2) * (1 - p[l]->value.UNION_MEMBER) *

p[l]->value.UNION_MEMBER);
return(0);

}
/ * - ... -- V/* veight_update_class */
/* Meyer 8/11/90 - For the Generic Neuron Architecture */
int Weight_update (p)
TAGVAL **p; /* [*error, *learn_rate, *SIZE, *weightO, *stateO, ... */
{

register int i, size, patterns;
register DATA_TYPE f;
size - *(int *)p[2];
PAR for (1 - 3 ; i < (2 * size +3); i +- 2) {

p[i]->value.DNION_MEMBER +- p[0]->value.UNION_MEMBER *
p[l]->value.UNION_MEMBER) *
p[i+l]->value.UNION_MEMBER;

)
}
/ * ..- ...-V
int Tolerance (p)
TAGVAL **p; /* [*tolerance, *net.score, *net.measure, *SIZE, ...] */
{

register int size, control;
register DATA_TYPE toi, *score;
toi - (*p++)->value.DNION_MEMBER;
score - &(*p++)->value.üNION_MEMBER;

Appendix B nC Language Syntax and Example 211

control = (int) (*p++)->value.ÜNION_MEMBER;
if (control == MERR) {

*score = max_err_cal(p);
#ifdef DEBUG_BP

printf ("Tolerance test MERR : score %f tolerance %f\n", *score, toi);
tendif

if (*score < toi) {
return(TERM);

1
]
else if (control == HAM) {

size = *(int *)*p;
♦score = ham_dis_cal(p) ♦ adjust / (DATA_TYPE) size;

tifdef DEBUG_BP
printf ("Tolerance test HAM : score %f tolerance %f\n", ♦score, toi);

#endif
if (♦score < toi) {

return(TERM);
]

}
else if (control == EUCL) {

size = ♦(int ♦)^p;
♦score = eucl_dis_cal(p) ♦ adjust / (DATA_TYPE) size;

tifdef DEBUG_BP
printf ("Tolerance test EUCL : score %f tolerance %f\n", ♦score, toi);

tendif
if (♦score < toi) {

return(TERM);
)

}
else if (control == ANGL) {

♦score = angl_cal(p);
tifdef DEBUG_BP

printf ("Tolerance test ANGL : score %f tolerance %f\n", ♦score, toi);
tendif

if (♦score < toi) {
return(TERM);

]
]
else {

error("Illegal tolerance test control [%d]\n", control);
return(NOTOK);

]
return(OK);

/* ---
/ *
/*
/ *
/ *
tifndef OMIT_MAIN
main (argc, argv)
int argc;
char ♦argvE];
t

int
int
DATA_TYPE
pat_elem
int
int
int
int
int
char
FILE
char
int
int
DATA_TYPE
DATA_TYPE
int

Main body for the back-propagation rule classes
Silicon Compilation Version - Meyer 20/06/91

i, cycle_limit, n_fail, max_i;
wh[4] ;
e, max_e, sum_e;
*p;
load_flags;
pid, nolearn - FALSE, noshow - FALSE, show_save - FALSE;
save_freq - 10;
tolerance_rate - 0;
tolerance_limit - 0;
*c;
♦fd;
message_file[FILESIZE];
loop_count - 0;
pat_select;
learn_rate_low - LEARN_RATE;
learn_rate_high - (DATA_TYPE) 0;
first_message - TRUE;

/* save every 10 cycles ♦/
/♦ default : no automatic decrease ♦/
/♦ default : no lower limit ♦/

printf ("\nSIMPLE BP ALGORITHM\n");
/ * - ...
#if D_T " D_INT

2 1 2 ________________________ nC Language Syntax and Example Appendix B

if (getenv("BP_GENERIC_NEURON")) {
generic_neuron = TRUE;
printf ("GENERIC_NEURON EMULATION\n");

]
else

printf ("IDEAL FIXED-POINT EMULATION\n");
if (getenv("BP_USE_THR_TBL")) {

use_thr_tbl = TRUE;
printf ("THRESHOLD TABLE ACTIVATED\n");

]
else

printf ("IDEAL SIGMOID FUNCTION\n");
if (c = getenv("BP_INT_PART")) {

int_part = atoi(c);
}
else {

printf ("Enter number of Integer bits -> ");
scanf ("%d", &int_part);

]
if (c = getenv("BP_FRAC_PART")) {

frac_part = atoi(c);
]
else {

printf ("Enter number of fractionary bits -> ");
scanf ("%d", &frac_part);

}
printf ("BP_INT_PART set : %d\n", int_part);
printf ("BP_FRAC_PART set : %d\n", frac_part);
precision = frac_part + int_part;
adjust = (long) pow (2.0, (float) frac_part); /* Meyer 19/11/90 */
signal_bit = (int) pow (2.0, (float) int_part + frac_part - 1); /* Meyer 19/11/90 */
max_value = (int) pow (2.0, (float) int_part + frac_part); /* Meyer 27/04/91 */
int_mult = 2 * int_part;
frac_mult = (2 * frac_part) - precision;
adjust_mult = (int) pow (2.0, (float) precision - int_mult);
if (use_thr_tbl) {

if (c = getenv("BP_INT_INP_TBL")) {
int_input_tbl - atoi(c);

1
if (c = getenv("BP_FRAC_INP_TBL")) {

frac_input_tbl = atoi(c);
1
printf ("BP_INT_INP_TBL set : %d\n", int_input_tbl);
printf ("BP_FRAC_INP_TBL set : %d\n", frac_input_tbl);

#if VERSION -= 0
if (generic_neuron) {

if (frac_input_tbl > frac_mult) {
printf ("Error: frac_mult must be greater than frac_input_tbl\n");

exit (1);
)
if (int_input_tbl > int_mult) {

printf ("Error: int_mult must be greater than int_input_tbl\n");
exit (1);

1
}
else {

if (frac_input_tbl > frac_part*2) {
printf ("Error: frac_part must be greater than frac_input_tbl\n");

exit (1);
1
if (int_input_tbl > int_part*2) {

printf ("Error: int_part must be greater than int_input_tbl\n");
exit (1);

}
)

#endif
size_thr_tbl - (int) pow (2.0, (float) frac_input_tbl + int_input_tbl);
thr_tbl_gen(); /* Initialise threshold table */
/* for (i-0; i<size_thr_tbl; i++)
printf ("%d\n", thr_tbl[ij); * /
printf ("Threshold Table size - %d\n", size_thr_tbl);

}
fendif

/ * .. --— Vtolerance - TOLERANCE ♦ adjust;

Appendix B__________________ nC Language Syntax and Example__________________________213

learn_rate = LEARN_RATE * adjust;
input_scale = INPOT_SCALE * adjust;
target_scale = TARGET_SCALE * adjust;

measure = MEASURE;
if (argc > 2) {

printf ("\nBack propagation settings ; \n\n");
if (getenv("BP_THRESHOLD")) {

threshold = TRUE;
1
if (getenv("BP_LINEAR")) {

threshold = FALSE;
}
if (threshold) {

printf ("THRESHOLD function on output layer\n");
}
else {

printf ("LINEAR function on output layer\n");
)
if (c = getenv("BP_LEARN")) {

if (! lexequ (c, "Learn")) (
learn_flag = NET_R_learn;
printf ("learn rule : Learn\n");

}
else if (! lexequ (c, "Step_learn")) {

learn_flag = NET_R_step_learn;
printf ("learn rule : Step_learn\n");

]
else if (! lexequ (c, "Learn_o")) {

learn_flag = NET_R_learn_o;
printf ("learn rule ; Learn_o\n");

1
else if (! lexequ (c, "Step_learn_o")) [

learn_flag = NET_R_step_learn_o;
printf ("learn rule : Step_learn_o\n");

}
else {

printf ("Invalid value for environment variable LEARN : %s\n", c)
exit (1);

}
}
else {

learn_flag = NET_R_step_learn; /* default rule is Step_learn() */
printf ("default learn rule : Step_learn\n");

}
if (c - getenv("BP_CYCLE_LIMIT")) {

cycle_limit - atoi(c);
printf ("BP_CYCLE_LIMIT set : %d\n", cycle_limit);

}
else {

printf ("no cycle limit\n");
cycle_limit - -1;

}
if (c - getenv("BP_SAVE_FREQ")) {

save_freq - atoi(c);
printf ("BP_SAVE_FREQ set : saving every %d cycles\n", save_freq);
}
else {

printf ("saving every %d cycles\n", save_freq);
}
if (input_pattern_jnask - getenv("BP_INPUT_MASK")) {

printf < "BP_INPUT_MASK : %s\n", input_pattern_mask);
}
if (target_pattern_mask » getenv("BP_TARGET_MASK")) {

printf ("BP_TARGET_MASK : %s\n", target_pattern_mask);
}
if (getenv("BP_NOLEARN")) [

nolearn - TRUE;
printf ("BP_NOLEARN set : recall only\n");

)
if (getenv("BP_NOSHOW")) {

noshow « TRUE;
printf ("BP_NOSHOW set : states will not be displayed\n");

1
pat_select - FALSE;
if (getenv("BP_PAT_SELECT")) {

pat_select - TRUE;
printf ("BP_PAT_SELECT set : learning for selected patterns\n");

2 1 4 _________________________nC Language Syntax and Example_________ Appendix B

1
if (c = getenv("BP_SHOW_SAVE")) {

show_save = TRUE;
printf ("BP_SHOW_SAVE set\n");

)
if (c = getenv("BP_TOL_RATE")) {

tolerance_rate = atoi(c);
printf ("BP_TOL_RATE set : tolerance will automatically decrease by %d

%%\n", tolerance_rate);
]
if (c = getenv("BP_TOL_LIMIT")) {

#if D_T == D_INT
tolerance_limit = float2fix (atof(c));
printf ("BP_TOL_LIMIT set : termination after learning to %g\n", fix2float

(tolerance_limit));
#else

tolerance_limit = (float) atof(c);
printf ("BP_TOL_LIMIT set : termination after learning to %g\n",

tolerance_limit);
iendif

]

if (c = getenv("BP_TOLERANCE")) {
#if D_T — D_INT

tolerance = float2fix (atof(c));
printf ("BP_TOLERANCE set : %g\n", fix2float (tolerance));

#else
tolerance = (float) atof(c);
printf ("BP_TOLERANCE set : %g\n", tolerance);

tendif
]
else {

#if D_T == D_INT
printf ("default tolerance : %g\n", fix2float (tolerance));

telse
printf ("default tolerance : %g\n", tolerance);

tendif
}
if (c = getenv("BP_LEARN_RATE")) {

tif D_T == D_INT
learn_rate = float2fix (atof(c));
printf ("BP_LEARN_RATE set : %g\n", fix2float (learn_rate));

t e l s e

tendif
learn_rate - (float) atof(c);
printf ("BP_LEARN_RATE set : %g\n", learn_rate);

}
else {

tif D_T D_INT
printf ("default learn_rate : %g\n", fix2float (learn_rate));

telse
printf ("default learn_rate : %g\n", learn_rate);

tendif
J

if (c “ getenv("BP_LEARN_HIGH")) {
tif D_T — D_INT

learn_rate_high - float2fix (atof(c));
printf ("BP_LEARN_HIGH set : %g\n", fix2float (learn_rate_high));

telse

tendif
learn_rate_high. - (float) atof(c);
printf ("BP_LEARN_HIGH set : %g\n", learn_rate_high);
}
if (c - getenv("BP_MEASURE")) {

tif D_T =- D_INT
measure - float2fix (atof(c));
printf ("BP_MEASURE set : %g\n", fix2float (measure));

telse

tendif
measure - (float) atof(c);
printf ("BP_MEASURE set : %g\n", measure);

}
else {

tif D_T — D_INT
printf ("default measure : %g\n", fix2float (measure)) ;

telse
printf ("default measure : %g\n", measure);

tendif

Appendix B__________ nC Language Syntax and Example__________________________ 215

)
printf ("default: weight update for each pattern\n");
if (! getenv("BP_GO")) [

printf ("\nsettings correct (y/n) ? ");
if (! YES()) [

exit (1);
]

]
printf ("\n");

}
srandom(0xd5a4793c); /* Initialize drand48 */
srand48(random());
/* Construct the network */
if (rc_read ()) {

printf ("Problem with .pgmrc file\n");
exit (1);

]
printf ("local_user %s\n", rc [RC_local_user]);
printf ("local_host %s\n", rc [RC_local_host]);

#ifndef CODE_GENERATED /* Meyer 12/3/91 - This is compiled only under bp.c and not under
bp_nc_CODE.c which is generated by code_gen() */

if (argc == 1) {
if (system_connect(&system_config)) /* use internal configuration defaults */

exit(FAIL);
if (build_rules())

exit(FAIL);
)
else {

#endif
if (argc > 1)
strcpy(system_filename, argv(1]);

#ifndef CODE_GENERATED /* Meyer 12/3/91 - This is compiled only under bp.c */
/* load system file - if configuration not specified,
connect() and build_rules() must be called here */
if (! (load_flags = sys_load(system_filename)) & LD_CONFIG) {

if (system_connect(ssystem_config))/* use internal configuration defaults */
exit(FAIL);

if (build_rules())
exit(FAIL);

1
1

#endif
/* Set pattern_controls to loaded parameters. This is

necessary because for this algorithm, pattern types other
than BINARY may be specified - and the default may be
altered by editing the system_file */

input_pattern_control - (int) sys->net[c_net]->parameters[NET_P_input_control
].parameter.value.UNION_MEMBER;

target_pattern_control - (int) sys->net(c_net]->parameters[NET_P_target_control
].parameter.value.UNION_MEMBER;

sys->net[c_net]->parameters[NET_P_measure].parameter.value.UNION_MEMBER -
measure;

sys->net[c_net]->parameters[NET_P_tolerance].parameter.value.UNION_MEMBER =
tolerance;

sys->net[c_net]->parameters[NET_P_learn_rate].parameter.value.UNION_MEMBER =
learn_rate;

learn_rate_low - sys->net[c_net]->parameters[NET_P_learn_rate
] .parameter.value.UNI0N_>1EMBER;

if (learn_rate_high (DATA_TYPE) 0) {
learn_rate_high - learn_rate_low;

}
/ * Initialise patterns specified on command line */
if (argc > 2) {

i - init_patterns (argv [2));
printf ("init_patterns returns %d from %s\n", i, argv [2]);

)
if (pattern_list — NULL) /* new system - randomise the weights */

rand_weight();
/* ---------- Meyer 14/11/90 Convert all synapse weights to integer ---------- */

if (argc — 1) [
#if D_T " D_INT

{ int 1, c, n, s;

216_________________________ nC Language Syntax and Example__________________ Appendix B

for (1=1; l<sys->net[0]->layers; 1++)
for (0 =0 ; c<sys->net[0]->layer[l]->clusters; c++)
for (n=0; n<sys->net[0]->layer[l]->cluster[c]->neurons; n++)
for (s=0; s<sys->net[0]->layer[1]->cluster[c]->neuron[n]->synapses; s++)[

sys->net[0]->layer[1]->cluster[c]->neuron[n]->synapse[s]-
>weight.value.UNION_MEMBER = float2fix (sys->net[0]->layer[1]->cluster[c]->neuron[n]
>synapse[s]->weight.value.f); /* 12/3/91 UNION_MEMBER */

]
]

/* exit (1); */
#endif

] /* end if (argc ==1) * /
/ * ----------- Meyer 14/11/90 End of conversion */

if (argc == 1 || nolearn) {
printf ("\nsJcipping learn phase\n");

]
else [

while (cycle_lirait--) {
y*:.**
* Test phase **^******************/

n_fail = 0;
max_e = (DATA_TYPE) 0;
sum_e = (DATA_TYPE) 0;
tolerance = sys->net[c_net]->parameters[NET_P_tolerance

].parameter.value.UNION_MEMBER;
for (pattern_num = 0; pattern_num < pattern_count; pattern_rium++) {

current_pattern = indextop (pattern_num);
read_input (pattern_num);
scale_input (sys->net[c_net]->parameters[NET_P_input_scale

].parameter.value.UNION_MEMBER);
read_target (pattern_num);
scale_target (sys->net[c_net]->parameters[NET_P_target_scale

].parameter.value.UNION_MEMBER);
result = Recall ();
current_pattern->score = result;
if (result > tolerance) {

n_fail++;
e = result - tolerance;
sum_e += e;
if (e > max_e) {

max_e = e;
max_i = pattern_num;

1
)

J
if (1 n_fail && tolerance_rate) [

if (tolerance_limit 1- (DATA_TYPE) 0 &&
tolerance < tolerance_limit) {

printf("\nTolerance limit %f reached\n\n",fix2float(tolerance_limit

printf("\nTolerance limit %f reached\n\n", tolerance_limit);
break;

#if D_T == D_INT

)) ;
#else
fendif

}
#if D_T =“ D_INT

tolerance» (tolerance * ((l*adjust - (tolerance_rate) / 100) * adjust))
/ adjust;
*else

tolerance*- 1.0 - ((float) tolerance_rate) / 100.0;
tendif

sys->net[c_net]->parameters[NET_P_tolerance].parameter.value.üNION_MEMBER
- tolerance;

tif D_T — D_INT
printf("\nResetting TOLERANCE to %f\n\n", fix2float (tolerance));

telse
tendif

printf("\nResetting TOLERANCE to %f\n\n", tolerance);
1

Progress message
printf ("cycle [%4d] ", cycle_count)
switch (learn_flag) {

case NET_R_learn:

Appendix B nC Language Syntax and Example__________________________217

case NET_R_learn_o:
printf ("loops [%6.2f] ",(float) (loop_count)/pattern_count);
break;

case NET_R_step_learn:
case NET_R_step_learn_o:

break;
1
if (pat_select) [

#if D_T == D_INT
printf ("learn rate [%5.3f] ",

fix2float(sys->net[c_net]->parameters[NET_P_learn_rate
].parameter.value.UNION_MEMBER));
#else

printf("learn rate [%5.3f] ",
sys->net[c_net]->parameters[NET_P_learn_rate].parameter.value.f);

#endif
1
if (n_fail) {

printf ("%d of %d fail (%7.5f) : ave (%f] max [%d] by %f\n",
n_fail,
pattern_count,

#if D_T == D_INT
fix2float (tolerance),

telse
tolerance,

tendif
tif D_T == D_INT

fix2float (sum_e / n_fail),
telse

(sum_e/(float) n_fail),
tendif

max_i,
tif D_T == D_INT

fix2float (max_e)
telse

max_e
tendif

) ;
)
else {

printf ("\n");
1
/ * Vif (first_message) {

printf("\n");
first_message - FALSE;

1
else {

if (1 ((cycle_count) % save_freq)) {
printf("\n");
/* (void) set_interrupts(); * /
sys_save(system_filename);
/ * (void) clear_interrupts(); */

}
}
if (last_interrupt) {

printf ("\ninterrupt - exiting\n");
break;

1
if (1 n_fail) { /* none fail - exit */

break;
)
if (n_fail && pat_select) {

tif D_T ~ D_INT
sys->net[c_net]->parêuneters[NET_P_learn_rate

].parameter.value.ÜNI0N.J1EMBER - learn_rate_low + (l*adjust - ((DATA_TYPE) n_fail /
(DATA_TYPE) pattern_count)) * (learn_rate_high - learn_rate_low) / adjust;
telse

sys->net[c_net]->parameters[NET_P_learn_rate
].parcuneter.value.UNION_MEMBER - learn_rate_low + (1 - ((DATA_TYPE) n_fail / (DATA_TYPE)
pattern_count)) * (learn_rate_high - learn_rate_low);
tendif
tifdef DEBUG_BP

printf("Resetting LEARN_RATE to %f\n", sys->net[c_net]->parameters[
NET_P_learn_rate].parameter.value.f);
tendif

}

218_________________________ nC Language Syntax and Example__________________ Appendix B

Learn phase *^************^**/

loop_count =0; /* clear loop counter for sexec_r LEARN rules */
for (pattern_nura = 0; pattern_num < pattern_count ; pattern_nuir\++) {

current_pattern = indextop (pattern_num);
if (pat_select && (current_pattern->score != (DATA_TYPE) 0) &&

(current_pattern->score < sys->net[c_net]->parameters[
NET_P_tolerance].parameter.value.UNION_MEMBER)) {

continue;
]
read_input (pattern_num);
scale_input (sys->net[c_net]->parameters[NET_P_input_scale

].parameter.value.DNION_MEMBER);
read_target (pattern_num);
scale_target (sys->net[c_net]->parameters[NET_P_target_scale

].parameter.value.UNION_MEMBER);
switch (learn_flag) {

case NET_R_learn:
result = Learn();
loop_count += get_loop (&sys->net[c_net]->rules[NET_R_learn])

break;
case NET_R_learn_o:

result = Learn_o();
loop_count +” get_loop(&sys->net[c_net]->rules[NET_R_learn_o])
break;

case NET_R_step_learn:
result = Step_learn();
break;

case NET_R_step_learn_o;
result = Step_learn_o();
break;

1
] /* end for */
cycle_count++;

} /* end while (cycle_limit) * /
printf ("\nterminated at cycle [%d]\n", cycle_count);

} / * end if (nolearn) */
if (argc > 3) { /* may specify second test set in argv[3] */

i - init_patterns (argv [3]);
printf ("init_patterns returns %d from %s\n", i, argv [3]);

}
if (system_filename[0] == '\0') [

sys_save ("test");
}
else {

sys_save(system_filename);
}

#if D_T D_INT
if (argc >1) {

printf ("Total number of Underflows under learning and testing - %d\n",
underflow);

printf ("Total number of Overflows under learning and testing - %d\n",
overflow);

underflow ■» overflow - OL;
printf ("Total number of up-saturation learning and testing = %d\n",

highsaturate);
printf ("Total number of low-saturation learning and testing = %d\n",

lowsaturate);
lowsaturate - highsaturate - OL;

}
tendif

code_gen(0,"");/* generate debugging rule analysis IFF environment variable
PGMREPORT set */

if (getenv ("CODE_GEN")) {
printf ("\nGenerating bp_nc_CODE.c ...\n");
code_gen(l, "bp"); /* generate bp_nc_CODE.c */

}
if (getenv ("ICR_GEN")) { /* Meyer 05/06/91 */

printf ("\nGenerating Intermediate Code Representation for Silicon
Compilation,..\n");

gen_icr("bp.icr"); /* generate Intermediate Code Representation */
printf ("Done I\n\n");

}
if (I noshow) {

for (pattern_num - 0; pattern_num < pattern_count; pattern_num++) {
/'•

Recall phase

Appendix B__________________ nC Language Syntax and Example__________________________219

^***********************/
current_pattern = indextop (pattern_num);
read_input (pattern_num);
scale_input (sys->net[c_net]->parameters[NET_P_input_scale

].parameter.value.UNION_MEMBER);
read_target (pattern_num);
scale_target (sys->net[c_net]->parameters[NET_P_target_scale

].parameter.value.UNION_MEMBER);
Recall();
shownet();
if (show_save) {

sys_save(system_filename);
]

)
]
rc_write ();

#if D_T == D_INT
if (argc >1) {

printf ("Total number of Underflows under recalling = %d\n", underflow);
printf ("Total number of Overflows under recalling = %d\n", overflow);
underflow = overflow = OL;
printf ("Total number of up-saturation under recalling = %d\n", highsaturate)
printf ("Total number of low-saturation under recalling = %d\n", lowsaturate)
lowsaturate = highsaturate = OL;

]
#endif
)
#endif
/ * - - * /
void scale_input(factor)
DATA_TYPE factor;
(
#if D_T == D_INT

if (factor != (DATA_TYPE) l*adjust) {
#else

if (factor != (DATA_TYPE) 1) {
#endif

int i, input_size = sys->net[c_net]->fanin;
DATA_TYPE **f, **port = (DATA_TYPE **) sys->net[c_net]->input_port;
for (f = port, i=0; i< input_size; i++, f++) {

#if D_T =- D_INT
**f *= factor / adjust;

#else
**f *= factor;

#endif
]

)
}
/* -- ... Vvoid scale_target(factor)
DATA_TYPE factor;
{
#if D_T « D_INT

if (factor 1= (DATA_TYPE) l*adjust) {
#else

if (factor 1= (DATA_TYPE) 1) {
#endif

int i, target_size = sys->net[c_net]->fanout;
DATA_TYPE **f, **port - (DATA_TYPE **) sys->net[c_net]->target;
for (f - port, i-0; i< target_size; i++, f++) {

#if D_T — D_INT
* * f *» factor / adjust;

#else
**f *- factor;

tendif
}

}
}
/ * --------------- -------- - .. V

Appendix C

Hardware Simulation Results

This Appendix reports in depth the results obtained during the simulation o f the
Back Propagation neural network under the hardware constraints discussed in
the chapter 5.

Overview

The simulations of neural networks’ hardware carried out in this work, and
presented in chapter 5, are directed to the analysis of hardware constraints during the
neural computation. Several issues are considered, which have produced a large amount of
data during the simulation of the Back Propagation neural network for the Optical
Character Recognition (OCR) application. This large amount of data is fully presented in
this appendix through several tables, which are organised in a way to provide a clear
understanding about the obtained results. Additionally, to allow a clear analysis of each
issue and its own influence on the hardware execution of the algorithm, the remaining
sections of this appendix are organised according to the context by which the
investigations are developed.

The tables are organised as follows:

• Data Precision — determines the number of bits used for data (it is assumed that
every data has the same precision);

• Table Index — specifies how the result of the propagation rule is fed into table to
obtain the neuron’s output;

• Back Propagation Parameters — determine each parameter employed in the Back
Propagation neural model, in which, T| is the learning rule, £ is the error associated
with the learning algorithm, and p is the momentum term;

• Results — give the final assessment of the hardware performance by checking whether
learning and recall have been successfully achieved, and the number of cycles required
to train the network; and

221

222 Hardware Simulation Resuits Appendix C

• Data Saturation — assesses how the lack of enough number of bits in the integer part
of the data affects the results. Saturations occur when the result of the propagation
rule (Ss.w) is greater than the maximum value permitted. In this case, the result is
saturated to the maximum (or minimum) value.

Three special symbols are used in the tables to describe special situations, either for
the simulation inputs or the simulation results:

^ means that the current option applies (for example, that the Generic Neuron
architecture is fully simulated);

X means that either the options is not valid (for example, when the momentum term is not
used, this symbol is inserted in the appropriate column to indicate that the simple
version of the Back Propagation model is enforced), or the result of the simulation
indicates impossibility of being achieved (for example, when no learning is possible,
this symbol is used to indicate that after the number of cycles specified, the network
was unable to learn the patterns for the given tolerance e); and

0 indicates that although the network has not been successfully trained, the recall phase
has been possible for all characters except one or two, which are explained by special
comments.

Analysis of Data Precision

Data precision is analysed by fixing the number of bits in the integer part and
varying the number of bits in the decimal part, keeping all other parameters unchanged.
Table C.l shows the results for the data precision varying from 7 to 14 bits, and fixing the
number of bits for the integer part to 4, Lookup table is not employed, so that the analyses
can be focused on the data precision.

Data
. Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Leam / Recall)

Int Dec Int Dec e il Gen Neu Learn Recall Cycles Up-Satnration Low-Saturation
4 7 X X .3 .25 X ✓ X ✓ 800 0 /0 0 /0
4 8 X X .3 .25 X ✓ ✓ ✓ 196 0 /0 0 /0
4 9 X X .3 .25 X ✓ ✓ ✓ 197 0 /0 0 /0
4 10 X X .3 .25 X V ✓ ✓ 269 0 /0 0 /0
4 11 X X .3 .25 X ✓ ✓ ✓ 192 0 /0 0 /0
4 12 X X 3 .25 X ✓ ✓ ✓ 686 2.512/3 3,161/5
4 13 X X 3 .25 X ✓ ✓ ✓ 348 75/1 2.566/12
4 14 X X 3 .25 X ✓ X 800 2,656 /3 7,314/9

Table C.l — Data Precision Influence without Employing Lookup Table.

^Pattern 7 failed by just one neuron (pixel).

Appendix C Hardware Simulation Results 223

These results show that a minimum of 8 bits is required to achieve learning. Note
that with 7 bits, the network is said to have failed to perform learning. However, even after
failing to leam the ten patterns, the network has successfully recalled all patterns. This
means that the learning was not able to satisfy the tolerance parameter, but after 800
cycles, the weights had been adjusted to a point that allowed the use of the network. It is
clearly expected that the recall phase can be used with lower precision. This is discussed
later in this appendix.

Other interesting effects showed by Table C.l is that there is a minimum precision
value and beyond that, learning is no longer improved. In this case, 8 bits are enough to
guarantee perfect functioning of the network. The employment of greater precision
required more cycles to achieve convergence. This may be attributed to the fact that very
fine steps were taken during the learning phase. In addition, the saturation mechanism
started to be employed, which clearly diverted the convergence trajectory of the algorithm.

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Learn / Recall)

Int Dec Int Dec n £ Gen Neu Leam Recall Cycles Up-Saturation Low-Saturation
4 7 4 4 .3 .25 y 800 0 /0 0 /0
4 8 4 4 .3 .25 ✓ 162 0 /0 0 /0
4 9 4 4 .3 .25 V ✓ ✓ 186 0 /0 0 /0
4 10 4 4 .3 .25 V 210 0 /0 0 /0
4 11 4 4 .3 .25 ✓ y ✓ 199 0 /0 0 /0
4 12 4 4 3 .25 ✓ 456 537/1 8 6 9 /4
4 14 4 4 .3 .25 y ✓ ✓ 224 0 /0 144/2

Table C.2 — Data Precision Influence Employing Lookup Table

Table C.2 shows the same analysis, but employing the lookup table mechanism. It
may be observed that little effect was caused by the use of such a technique for realising
the activation function in hardware. The learning algorithm was badly affected when the
saturation mechanism started to be employed. Interesting to note is that for 14-bit
precision, only Low-Saturation has occurred, which represents a better result if compared
with 12-bit precision. This suggests that in the first case, the saturation mechanism has
benefited the algorithm, reducing the number of cycles to obtain convergence, while in the
second case, possible saturations have been prematurely performed.

Influence of the Table’s Size

Table C.3 presents the analysis of the influence caused by the Lookup Table
mechanism. It can be seen that little effect has been caused by varying the size of the table.
Table C.l showed that for the same data representation, 196 cycles were required to
achieve learning without the use of a lookup table. The results below show that the use of
a lookup table caused loss of precision in realising the activation function. As a

224 Hardware Simulation Results Appendix C

consequence, some steps were skipped, and therefore, fewer cycles were necessary to
obtain convergence.

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during Es.w due to data limited
precision (Learn / Recall)

Int Dec Int Dec n e Gen Neu Leam Recall Cycles Up-Saturation Low-Saturation
4 8 4 2 .3 .25 ✓ ✓ ✓ 168 0 /0 0 /0
4 8 4 3 .3 .25 ✓ ✓ y 140 0 /0 0 /0
4 8 4 4 .3 .25 X y ✓ ✓ 162 0 /0 0 /0
4 8 4 5 .3 .25 X / ✓ ✓ 163 0 /0 0 /0
4 8 4 6 .3 .25 X / ✓ ✓ 167 0 /0 0 /0
4 8 4 7 .3 .25 X y ✓ 191 0 /0 0 /0
4 8 4 8 .3 .25 X y 158 0 /0 0 /0

Table C.3 — Impact Caused by the Employment of the Lookup Table (12 bits data)

Table C.4 shows the same result observed before. Fewer cycles were necessary to
achieve learning. As an exception, when the saturation mechanism was used, the learning
trajectory was diverted, causing an increase in the number of cycles necessary to train the
network.

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Learn / Recall)

Int Dec Int Dec n £ Ge« Leam Recall Cycles Up-Saturation Low-Saturation
4 10 4 4 .3 .25 V ✓ ✓ 210 0 /0 0 /0
4 10 4 5 .3 .25 ✓ ✓ ✓ 229 0 /0 0 /0
4 10 4 6 .3 .25 X ✓ ✓ ✓ 235 0 /0 40/ 1
4 10 4 7 .3 .25 X y ✓ ✓ 274 284/ 1 756 /4
4 10 4 8 .3 .25 X ✓ ✓ ✓ 223 0 /0 0 /0
4 10 4 9 .3 .25 ✓ ✓ ✓ 235 0 /0 0 /0
4 10 4 10 .3 .25 ✓ X 0 ^ 800 0 /0 2,114/2

Table C.4— Impact Caused by the Employment of the Lookup Table (14 bits data)

The same effect is observed in Table C.5, where greater precision is used.
Comparisons with the result obtained in Table C.l shows that fewer cycles were needed to
obtain the learning convergence.

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during Zs.w due to data limited
precision (Leam / Recall)

Int Dec Int Dec n e Gen Wen Leam Recall Cycles Up-Saturation Low-Saturation
4 12 4 4 .1 .2 X ✓ ✓ 529 0 / 0 0 / 0
4 12 4 5 .1 .2 X ✓ ✓ ✓ 517 0 / 0 0 / 0
4 12 4 6 .1 .2 X ✓ ✓ ✓ 529 0 / 0 0 / 0
4 12 4 7 .1 .2 X ✓ ✓ ✓ 575 0 / 0 0 / 0
4 12 4 8 .1 .2 X ✓ ✓ ✓ 617 0 / 0 0 / 0
4 12 4 9 .1 .2 X ✓ V ✓ 507 0 / 0 0 / 0
4 12 4 10 .1 .2 X ✓ ✓ ✓ 534 0 / 0 0 / 0
4 12 4 11 .1 .2 X y ✓ ✓ 524 0 / 0 0 / 0
4 12 4 12 .1 .2 X ✓ ✓ ✓ 576 0 / 0 0 / 0

Table C.5 — Data Precision Influence Employing Lookup Table (16 bits Data)

^Pattern 7 failed by just one neuron (pixel).

Appendix C Hardware Simulation Results 225

Table C.6 shows the results for the expanded version of the Back Propagation
algorithm, in which a momentum term is introduced. According to the computation
involved in this version [158],, more multiplications are employed, and therefore the need
for greater precision should be expected. Nevertheless, for the precision used in the Table
C.6, the same influence of the lookup table shown before is observed.

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Learn / Recall)

Int Dec Int Dec n e Gen Neu Learn Recall Cycles Up-Saturation Low-Saturation
4 8 4 2 .3 .25 .5 ✓ ✓ ✓ 93 0 /0 0 /0
4 8 4 3 .3 .25 .5 ✓ ✓ y 106 0 /0 0 /0
4 8 4 4 .3 .25 .5 ✓ ✓ 83 0 /0 0 /0
4 8 4 5 .3 .25 .5 ✓ ✓ 78 0 /0 0 /0
4 8 4 6 .3 .25 .5 y / y 92 0 /0 0 /0
4 8 4 7 .3 .25 .5 V / 127 0 /0 0 /0
4 8 4 8 .3 .25 .5 ✓ / ✓ 87 0 /0 0 /0

Table C.6 — Data Precision Influence Employing Lookup Table (with p term)

Complex Computation

In this section the simple version of the Back Propagation model is compared with
the more complex version, which includes the momentum term. Since the latter involves a
considerable greater amount of multiplications than the former, it is interesting to analyse
the influence that this term has in hardware.

Table C.7 is organised as pair of rows, which have the same input parameters,
except that the first line has no momentum term and the second line uses p = 0.5.

The results given by Table C.7 show that for low precision data the simple version
has better performance than the complex version, while for higher precision, the effect of
the momentum term is effectively felt. This follows the theoretical predictions [158], in
which the momentum term is added to speed up the convergence of the Back Propagation
algorithm. However, since this involves a more intensive computation than the simple
version, greater precision was also required.

226 Hardware Simulation Results Appendix C

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Leam / Recall)

Int Dec Int Dec n e Gen Neu Leam Recall Cycles Up-Saturation Low-Saturation
3 8 3 4 .3 .25 ✓ ✓ ✓ 173 5,776 / 38 7,098 / 42
3 8 3 4 .3 .25 .5 ✓ 800 4,159,477 / 3,549 4,470,957 / 3,729
3 9 3 4 .3 .25 ✓ ✓ ✓ 276 80,361 / 229 74,348/261
3 9 3 4 .3 .25 .5 ✓ X 800 5,600,199/4,596 5,023,500 / 3,768
3 10 3 4 .3 .25 ✓ ✓ 800 652,891 / 1,074 918,221/ 1,350
3 10 3 4 .3 .25 .5 ✓ 800 7,502,939 / 5,429 12,741,356/6,180
3 12 3 4 .3 .25 ✓ 800 2,325,481 /2,687 2,211,466 / 2,639
3 12 3 4 .3 .25 .5 ✓ X X 800 7,763,730/5,186 10,997,677 / 5,056
3 14 3 4 .3 .25 V X X 800 3,074,253 / 2,850 3,511,016/3,791
3 14 3 4 .3 .25 .5 ✓ X X 800 4,331,969/2,332 15,394,788/ 11,462
4 9 4 4 .3 .25 y ✓ ✓ 186 0 /0 0 /0
4 9 4 4 .3 .25 .5 ✓ X 800 0 /0 0 /0
4 11 4 4 .3 .25 y V ✓ 199 0 /0 0 /0
4 11 4 4 .3 .25 .5 ✓ V ✓ 77 0 /0 0 /0
4 12 4 4 3 .25 ✓ ✓ ✓ 456 537/ 1 869 /4
4 12 4 4 3 .25 .5 ✓ ✓ ✓ 113 622/2 2 3 /0
4 14 4 4 .3 .25 y ✓ ✓ 224 0 /0 144/2
4 14 4 4 3 .25 .5 V ✓ ✓ 105 250 /3 462 /6
5 13 5 4 .3 .25 V V ✓ 246 0 /0 0 /0
5 13 5 4 .3 .25 .5 ✓ ✓ ✓ 79 0 /0 0 /0
6 10 6 4 .3 .25 ✓ ✓ ✓ 210 0 /0 0 /0
6 10 6 4 .3 .25 .5 ✓ ✓ 90 0 /0 0 /0
6 13 6 4 .3 .25 / ✓ ✓ 246 0 /0 0 /0
6 13 6 4 .3 .25 .5 y y ✓ 79 0 /0 0 /0
6 14 6 4 .3 .25 y V ✓ 224 0 /0 0 /0
6 14 6 4 .3 .25 .5 y ✓ 105 0 /0 0 /0

Table C.7 — Simple vs. Complex Back Propagation Computation

Effects of the Back Propagation Parameters

This section discusses how the parameters e and r\ influence the hardware
performance, in order to verify the theoretical studies held in chapter 5. Table C.8 shows
the results obtained for this study for a variety of configurations.

It can be noted that the choice of these parameters is important and has a direct
effect on the behaviour of the learning trajectory. These results are in accordance with the
theoretical prediction given in chapter 5, except when data saturation is employed, since
this has not been considered by the theoretical approach.

^Pattern 4 failed by just one neuron (pixel).
^Pattern 7 failed by just one neuron (pixel).

Appendix C Hardware Simulation Results 227

Data
Precision

Table
Index

Back Prop.
Parameters

Archi­
tecture Simulation Results

Errors during £s.w due to data limited
precision (Learn / Recall)

Int Dec Int Dec n e Gen Neu Leam Recall Cycles Up-Saturation Down-Saturation
3 10 3 7 .1 .1 El 800 562,363/ 1,086 202,010/379
3 10 3 7 .1 .2 ✓ El 2,000 5,755,089 / 3,087 2,466,505/ 1,468
3 10 3 7 .5 .2 V y 400 588,728 / 935 438,149/1,035
4 10 4 6 .1 .1 y 2,000 0 /0 0 /0
4 10 4 6 .5 .1 ✓ ✓ y 370 1,270/4 3,796/ 10
4 10 4 6 .1 .2 ✓ ✓ y 945 0 /0 0 /0
4 10 4 6 .5 .2 ✓ ✓ y 200 150/2 1,000 /5
5 10 5 5 .1 .1 X y 2,000 0 /0 0 /0
5 10 5 5 .5 .1 X ✓ y 307 0 /0 0 /0
5 10 5 5 .1 .2 X ✓ y 820 0 /0 0 /0
5 10 5 5 .5 .2 X ✓ y 142 0 /0 0 /0
5 13 5 5 .1 .1 X ✓ y 1,309 0 /0 0 /0
5 13 5 5 .5 .1 X ✓ ✓ y 851 0 /0 0 /0
5 13 5 5 .1 .2 ✓ ✓ y 500 0 /0 0 /0
5 13 5 5 .5 .2 ✓ y y 454 0 /0 0 /0
6 9 6 4 .1 .1 X y 2,000 0 /0 0 /0
6 9 6 4 .5 .1 X ✓ y y 316 0 /0 0 /0
6 9 6 4 ,1 .2 X ✓ y 800 0 /0 0 /0
6 9 6 4 .5 .2 X ✓ y y 120 0 /0 0 /0
6 10 6 4 .1 .1 X ✓ y 2,000 0 /0 0 /0
6 10 6 4 .5 .1 X ✓ y y 506 0 /0 0 /0
6 10 6 4 .1 .2 X V y y 1,096 0 /0 0 /0
6 10 6 4 .5 .2 X y y y 189 0 /0 0 /0
6 11 6 4 .1 .1 y X y 2,000 0 /0 0 /0
6 11 6 4 .5 .1 ✓ y y 396 0 /0 0 /0
6 11 6 4 .1 .2 ✓ y y 666 0 /0 0 /0
6 11 6 4 .5 .2 y y y 260 0 /0 0 /0

Table C.8 — Effects of the Back Propagation Parameters

Recall Phase

This section analyses the precision requirements for the recall phase. It is assumed
the weights were adjusted using high precision during the learning phase. It can be seen
from that at least 4 bits are required for the integer part and decimal part. This result
confirms initial predictions, in which a network executing only the recall phase can be
implemented with fewer bits than required by the learning phase.

Int Dec Int Dec Gen /Vc« Recall Up-Saturation Down-Saturation
2 8 2 4 y 1,573 4188
3 8 3 4 y y 484 384
4 8 3 4 y y 3 3
4 7 4 4 y y 3 3
4 6 4 4 y y 3 3
4 5 4 4 y y 2 2
4 4 4 4 y y G 0
4 3 4 4 y X 0 0

Table C.9 — Effects of the Back Propagation Parameters

Summary

The results given in this appendix for the simulation of the Back Propagation
neural network under several hardware constraints lead to some general conclusions:

228______________________Hardware Simulation Results________________ Appendix C

• There is a minimum number of bits in the integer part of the data from which no
saturation mechanism is needed — the results showed that at least 4 bits are needed;

• There is a minimum number of bits in the decimal part of the data from which enough
precision is given to correctly employ the computation — the result showed that at
least 8 bits are needed;

• The algorithm-dependent parameters have a direct impact on the required data
representation and precision;

• The results are completely dependent on the algorithm itself, as shown by differences
between simple and complex Back Propagation; this results in further simulations if the
neural model is modified;

• Implementation of the activation function through a lookup table is feasible and little
impact is felt on the results; even very small tables were reported to work well — the
results indicate that the size should be at least 64.

• Learning requires more precision than recall;

More importantly, these simulation results show clearly the feasibility of using
fixed-point computation with limited precision. This has a direct impact on the
effectiveness of neural networks’ hardware implementations. Furthermore, the parameters
(both hardware-dependent and algorithmic-dependent) can be tuned to the particular
application, thus producing cost-effective neural chips.

Appendix D

VHDL Description of Processing Elements

This appendix describes the design o f the processing element in VHDL fo r a
Back Propagation neural network. This includes the design o f the three basic
modules defined in the Generic Neuron model: memory unit, communication
unit, and execution unit.

Definition of Registers

The use of multi-port registers is extremely important for the Generic Neuron

architecture, since a particular variable can be read and written simultaneously in the same
cycle through the busses it is connected. Below are the VHDL entities for several

configurations of multi-port registers. These registers are used in the execution unit, as

part of its data path. The VHDL ARCHITECTURE for these registers is described at the

structural domain.

I F i l e Name : O x lre g .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : O S /1 2 /9 1
I L a s t D p d a te : 3 1 /1 2 /9 1

I D e s c r ip t i o n ;

I T h is e n t i t y Im p lem en ts t h e re g O x l b lo c k .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .g n _ d efln ltlo n .A L L ;

ENTITY re g O x I IS
PORT (a

END re g O x I;
OUT a iv l_ v e c to r (d a ta _ b u s _ l ln e s DOWNTO 1)) ;

ARCHITECTURE s t r u c t u r e OP re g O x I IS
COMPONENT l a tc h _ d b

PORT (d : IN m v l_ v e c to r (d a t a _ b u a _ l ln e s DOWNTO 1) ;
q : OUT m v l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;
c k : IN BIT) ;

END COMPONENT;

m v l_ v e c to r (d a t a _ b u 8 _ l ln e s DOWNTO 1) e t a ;
BIT ' 1 ' ;

s w _ ln p u t_ a : l a t c h _ d b PORT MAP (d -> v a lu e ,
q -> a ,
ck -> v c c

END s t r u c t u r e ;

I F i l e Name : I x l r e g .v h d
I A u th o r ! M eyer E. N lg r l
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t D p d a te : 3 1 /1 2 /9 1

- - I D e s c r i p t i o n :

- - I T h is e n t i t y Im ple
- - I

e n t s t h e r e g l x l b lo c k .

LIBRARY X l; USE x l . x l _ s t d . ALL;
USE W O R K .g n _ d efln ltlo n .A L L ;

ENTITY r e g l x l IS
PORT (a

c t r _ a _ w r
IN n n r l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;

OUT m v l_ v e c to r (d a ta _ b u s _ l ln e s DOWNTO 1);
e t r _ b _ r d : IN BIT;
c k : IN BIT) ;

END r e g l x l ;

ARCHITECTURE s t r u c t u r e OF r e g l x l IS
COMPONENT f f _ n

PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;
q : OUT s iv l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;

) ;
END COMPONENT;

COMPONENT la t c h _ d b
PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;

q : OUT B iv l_ v e c to r (d a ta _ b u s _ l ln e s DOWNTO 1) ;

) !
END COMPONENT;

COMPONENT t r i _ s t a t e _ d a t a _ b u s
PORT (i n p _ 3 _ s ta : IN m v l_ v e c to r (d a t a _ b u a _ l ln e s DOWNTO 1);

e n a b le i IN BIT;
o u t_ 3 _ s ta : OUT BVl_vector(data_bus_llnes DOWNTO 1));

END COMPONENT;

SIGNAL X, y : m v l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO 1) ;

BEGIN

r e g : f f _ n PORT MAP < d -> x ,
q -> y,
ck -> ck);

s w _ ln p u t_ a : latch_db PORT MAP { d -> a,

ck -> ctr_a_wr

229

230 VH D L Description of Processing Elements Appendix D

w _ o u tp u t_ b : t r i _ 8 t a t e _ d a t a _ b u a PORT MAP (in p _ 3 _ a ta -> y,
e n a b le -> c t r _ b _ r d ,
o u t_ 3 _ s ta -> b

END s t r u c t u r e ;

1 F i l e Name
I A u th o r
I D a te o f C r e a t i
t L a s t U pdate

lx 2 r e g .v h d
Meyer E. N ig r i
0 5 /1 2 /9 1
3 1 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts t h e re g lx 2 b l o c k .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .gn_defin ition .A L L ;

ENTITY r e g lx 2 IS
PORT (a : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);

c tr_ a _ w r : IN BIT;
b : OUT m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);
c t r _ b _ r d : IN BIT;
c : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
c t r _ c _ r d : IN BIT;
ck : IN BIT

) ;
END r e g lx 2 ;

ARCHITECTURE Structure OF re g lx 2 IS
COMPONENT f f _ n

PORT (d : IN m v l_ v e c to r (d a ta _ b u 8 _ l in e s DOWNTO 1);
q : OUT m v l_ v e c to r< d a ta _ b u a _ l in e s DOWNTO 1);
c k : IN BIT

) ;
END COMPONENT;

COMPONENT l a tc h _ d b
PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);
c k : IN BIT

) ;
END COMPONENT;

COMPONENT t r i _ s t a t e _ d a t a _ b u s
PORT (i n p _ 3 _ s ta : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);

e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT m v l_ v e c to r < d a ta _ b u s _ l in e s DOWNTO 1)

) ;
END COMPONENT;

SIGNAL X, y : m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);

re g : f f _ n PORT MAP (d -> x ,
q •> y ,
ck -> ck

) ;

3 w _ in p u t_ a : l a tc h _ d b PORT MAP (d -> a ,

ck -> c t r_ a _ w r
) ;

s w _ o u tp u t_ b : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> y ,
e n a b le -> c t r _ b _ r d ,
o u t_ 3 _ s ta -> b);

sw _ o u tp u t_ c : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> y,
e n a b le -> c t r _ c _ r d ,
o u t_ 3 _ # ta •> c

END s t r u c t u r e ;

I F i l e Name : lx 3 r e g .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 3 1 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m e n ts t h e r e g lx 3 b lo c k .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE WORK. g n _ d e f i n i t i o n . ALL;

ENTITY r e g lx 3 IS
PORT (1 IN m vl_i

c t r_ « _ w r : IN BIT;
b
c t r _ b _ r d ! IN B IT ;'

! DOT mvl
c t r _ c _ r d : IN BIT;
d 1 ODT mvl.
c t r _ d _ r d : IN BIT;
ck : IN BIT

IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;

OUT m v i_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
IN BIT;

: OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
IN BIT;
OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;

) ;
END r e g lx 3 ;

ARCHITECTURE s t r u c t u r e OF re g lx 3 IS
COMPONENT f f _ n

PORT (d : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
q : OUT m v l_ v e c to r (d a ta _ b u # _ l in e s DOWNTO 1) ;
c k ; IN BIT

) ;
END COMPONENT;

COMPONENT l a tc h _ d b
PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);
c k : IN BIT

);
END COMPONENT;

COMPONENT t r i _ a t a t e _ d a t a _ b u s
PORT (in p _ 3 _ s ta : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;

e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT a w l_ v c c to r (d a t a _ b u s _ l in e s DOWNTO 1)

) ;
END COMPONENT;

SIGNAL X, y : m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;

re g : f f _ n PORT MAP (d -> x.

w _ in p u t_ a ; l a tc h _ d b PORT MAP { d -> a ,

sw _ o u tp u t_ b : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> y ,
e n a b le -> c t r _ b _ r d ,
o u t_ 3 _ s ta -> b

w _ o u tp u t_ c : t r i _ s t a t e _ d a t a _ b u 9 PORT MAP (i n p _ 3 _ s ta -> y ,
e n a b le -> c t r _ c _ r d ,
o u t_ 3 _ s ta -> c

w _ o u tp u t_ d : t r i _ s t a t e _ d a t a _ b u 8 PORT MAP { in p _ 3 _ s ta -> y ,
e n a b le -> c t r _ d _ r d ,
o u t_ 3 _ s ta -> d

END s t r u c t u r e ;

I F i l e Name : 2 x lm rre g . vhd
1 A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 3 1 /1 2 /9 1

1 D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts th e r e g 2 x l b lo c k f o r th e MR.

LIBRARY X l; USE x l . x l . s t d . ALL;
USE W O R K .gn_defin ition .A L L ;

ENTITY re g 2 x lm r IS
PORT (a : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);

c tr_ a _ w r : IN BIT;
b : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
c tr_ b _ w r : IN BIT;
c : OUT w ir e _ v e c to r (d a ta _ b u a _ l in e s DOWNTO 1);
c t r _ c _ r d : IN BIT;
I s b : OUT m vl;
l s b _ l : OUT m vl;
ck : IN BIT

) ;
END re g 2 x lm r;

ARCHITECTURE s t r u c t u r e OF re g 2 x lm r IS
COMPONENT o r 2 g a te

PORT (i n p u t l : IN BIT;
in p u t2 : IN BIT;
o u tp u t : OUT BIT

) ;
END COMPONENT;

COMPONENT ff _ n
PORT < d : IN r a v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);

q : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
ck : IN BIT

) ;
END COMPONENT;

COMPONENT l a t c h .d b
PORT (d : IN w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
ck : IN BIT

);
END COMPONENT;

COMPONENT t r i _ s t a t e _ d a t a _ b u s
PORT (in p _ 3 _ s ta : IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);

e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1)

) ;
END COMPONENT;

SIGNAL X ; m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
SIGNAL y : m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
SIGNAL w : w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);
SIGNAL c t r _ o r : BIT;

c t r _ l o g i c : o r 2 g a te PORT MAP (i n p u t l -> c t r _ a _ w r ,
in p u t2 -> c t r_ b _ w r ,
o u tp u t -> c t r _ o r

8 w _ in p u t_ a : t r i _ s t a t e _ d a t a _ b u s PORT MAP { in p _ 3 _ s ta -> a ,
e n a b le -> c t r _ a _ w r ,
o u t_ 3 _ s ta -> w

8 w _ in p u t_ b : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> b ,
e n a b le -> c t r_ b _ w r ,
o u t_ 3 _ s ta -> w);

l a t c h _ i n p u t : l a tc h _ d b PORT MAP (d -> w,

ck -> c t r _ o r
);

r e g : f f _ n PORT MAP (d -> x ,
q -> y,
ck ■> ck

w _output_C ! t r i _ s t a t e _ d a t a _ b u 8 PORT MAP (in p _ 3 _ s ta -> y ,
e n a b le -> c t r _ c _ r d ,
o u t_ 3 _ s ta -> c

I s b < - y (2) ;
l s b _ l < - y (l) ;

END s t r u c t u r e ;

I F i l e Name ; 2 x l r c g .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n ; 0 5 /1 2 /9 1
(L a s t U p d a te : 3 1 /1 2 /9 1

I D e s c r ip t i o n ;

Appendix D VH D L Description of Processing Elements 231

** I T h is e n t i t y im p le m e n ts t h e r e g 2 x l b lo c k .
I

LIBRARY x l ; USE x l .x l_ s td .A L L ;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY re g Z x l IS
IN m v l_ v e c to r (d « t« _ b u s _ l in e s DOWNTO 1) ;

IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
IN BIT;
OUT w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

);
END r e g 2 x l ;

ARCHITECTURE s t r u c t u r e OF reg 3 x 3
re g 2 x l IS

COMPONENT o r 3 g a te
BIT; PORT (i n p u t l : B IT;
BIT; BIT;
BIT BIT;

o u tp u t :
>;

END COMPONENT;

BIT

COMPONENT c r 2 g a t e
PORT (i n p u t l :

o u tp u t :);
END COMPONENT;

COMPONENT f f _ n
PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);

q : OUT m v l_ v e c to r (d a t a _ b u s _ l ln e s DOWNTO I) ;
c k ; IN BIT) ;

END COMPONENT;

COMPONENT la tc h _ d b
PORT (d : IN w i r e _ v e c to r (d a t a _ b u 8 _ l ln e s DOWNTO 1);

q : OUT m v l_ v e c to r < d a ta _ b u s _ l in e s DOWNTO 1);
Ck: IN BIT):

END COMPONENT;

COMPONENT t r i _ s t a t e _ d a t a _ b u s
PORT < in p _ 3 _ s ta : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1);

e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT w i r e _ v e c t o r (d a t a _ b u s _ l i n e s DOWNTO 1)

) ;
END COMPONENT;

SIGNAL X, y ; m v l_ v e c to r { d a ta _ b u s _ l in e s DOWNTO 1);
SIGNAL w : w i r e .v e c t o r (d a t a _ b u s _ l i n e s DOWNTO 1) ;
SIGNAL c t r _ o r : BIT;

c t r _ l o g l c : o r 2 g a te PORT MAP (i n p u t l -> c t r _ a _ w r ,
i n p u t2 -> c t r_ b _ w r ,
o u tp u t -> c t r _ o r

w _ in p u t_ a : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> a ,
e n a b le -> c t r_ a _ w r ,
o u t_ 3 _ s ta -> w

sw _ in p u t_ b : t r i _ s t a t e _ d a t a _ b u s PORT MAP (i n p _ 3 _ s ta -> b,
e n a b le -> c t r_ b _ w r ,
o u t_ 3 _ s ta -> w

l a t c h _ i n p u t : l a t c h _ d b PORT MAP (d -> w.

r e g : f f _ n PORT MAP < d -> x ,
q -> y,
ck -> ck

a w _ o u tp u t_ c : t r i _ s t a t e _ d a t a _ b u s PORT MAP (i n p _ 3 _ s ta -> y ,
e n a b le •> c t r _ c _ r d ,
o u t_ 3 _ s ta -> c

END s t r u c t u r e ;

I F i l e Name : 3 x 3 re g .v h d
I A u th o r ; M eyer E. N ig r i
1 D a te o f C r e a t io n : 0 5 /1 2 /S l
I L a s t U p d a te : 3 1 /1 2 /9 1

I D e s c r i p t i o n :

I T h is e n t i t y im p le m e n ts t h e re g 3 x 3 b lo c k .

LIBRARY x l ; USE x l . x l _ s t d .ALL;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY re g 3 x 3 IS
PORT (a

c t r_ a _ w r
b
c tr_ b _ w r

c tr_ c _ w r
d
c t r _ d _ r d

c t r _ e _ r d
f
c t r _ f _ r d
ck

IN m v l_ v e c to r (d a t a _ b u s _ l i n e s DOWNTO 1) ;

IN m v l_ v e c to r (d a t a _ b u s _ l i n e s DOWNTO 1) ;

IN m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
IN BIT;
OUT w i r e _ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1)
IN BIT;
OUT w i r e _ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1)

OUT w i r e _ v e c to r (d a t a _ b u s _ l i n e s DOWNTO 1)
IN BIT;
IN BIT

COMPONENT ff _ n
PORT (d : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
c k : IN BIT);

END COMPONENT;

COMPONENT l a tc h _ d b
PORT (d : IN w i r e _ v e c t o r (d a t a _ b u s _ l i n e s DOWNTO 1) ;

q ; OUT r a v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
c k : IN BIT) ;

END COMPONENT;

COMPONENT t r i _ s t a t e _ d a t a _ b u s
PORT (in p _ 3 _ a ta : IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT w i r e _ v e c t o r (d a t a _ b u a _ l in e s DOWNTO 1));

END COMPONENT;

SIGNAL X, y : m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
SIGNAL w : w i r e _ v e c t o r (d a t a _ b u s _ l i n e s DOWNTO 1) ;
SIGNAL c t r _ o r : B IT;

c t r _ l o g i c : o r 3 g a te PORT MAP (i n p u t l -> c t r _ a _ w r ,
in p u t2 -> c t r_ b _ w r ,
i n p u t l -> c t r _ c _ w r ,
o u tp u t -> c t r _ o r) ;

s w _ in p u t_ a : t r i _ s t a t e _ d a t a _ b u s PORT MAP (i n p _ 3 _ s ta ->
e n a b le -> c t r _ a _ w r ,
o u t_ 3 _ s ta -> V

w _ in p u t_ b : t r i _ s t a t e _ d a t a _ b u s PORT MAP { in p _ 3 _ s ta ->
e n a b le -> c t r_ b _ w r ,
o u t_ 3 _ s ta -> V

sw _ in p u t_ c : t r i _ s t a t e _ d a t a _ b u s PORT MAP < in p _ 3 _ s ta ->
e n a b le -> c t r ^ c _ w r .
o u t_ 3 _ s ta -> w

r e g : f£ _ n PORT MAP (d -> x ,
q -> y,
ck -> ck

l a t c h _ i n p u t : l a t c h _ d b PORT MAP (d -> w,

ck -> c t r _ o r

sw _ o u tp u t_ d : t r i _ s t a t e _ d a t a _ b u s PORT MAP (i n p _ 3 _ s ta «> y ,
e n a b le -> c t r_ d _ r d <
o u t_ 3 _ s ta -> d);

sw _ o u tp u t_ e : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> y ,
e n a b le -> c t r _ e _ r d ,
o u t_ 3 _ s ta -> e);

sw _ o u tp u t_ £ : t r i _ s t a t e _ d a t a _ b u s PORT MAP (in p _ 3 _ s ta -> y,
e n a b le -> c t r _ f _ r d ,
o u t_ 3 _ s ta •> f

END s t r u c t u r e ;

Definition of Counters

Counters are used to implement the multiplication algorithm and to access memory

elements sequentially. Three VHDL entities are described below: count16, counter, and

counterl. count 16 counts 16 times, after which a signal is set to ‘1’, indicating end of count.

This is used in the multiplication o f 16-bit values. Its VHDL ARCHITECTURE is described

at the behavioural level, counter is also specified at the behavioural level and is used for the

232 VHD L Description of Processing Elements Appendix D

memory addressing mechanism, counterl is a structural description of a counter that has its
output data latched. It uses counter as one of its component.

I F i l e Narae ; c o u n t l6 .v h d
I A u th o r : M eyer E. N ig r i
1 D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te ; 3 1 /1 2 /9 1

I D e s c r ip t i o n ;

I T h is e n t i t y im p lem en ts
I h as c o u n te d to 16.

c o u n te r t h a t o u tp u t s *1* when i t

LIBRARY x l ; USE x l . x l _ s t d . ALL;

ENTITY c o u n t_ to _ 1 6 IS
PORT (r e s e t : IN BIT;

ck : IN BIT;
c o u n t_ e n d : OUT BIT)/

END c o u n t_ tO _ 1 6 ;

LIBRARY x l ; USE x l . x l . s t d . ALL;

c o u n t in g : PROCESS (c k , r e s e t)
VARIABLE re g : INTEGER 0 ;

IF (r e s e t - ' 1 ’) THEN

c o u n t_ e n d < - 'O ';
ELSIF (c k - ' 1 ') THEN

re g re g ♦ 1;
IF (r e g - 15) THEN

c o u n t_ e n d < - *1'

c o u n t_ e n d < - 'O '

END PROCESS c o u n t in g ;
END b e h a v io u r ;

- - On th e n e x t c lo c k , g o es t o z e ro

I F i l e Name
I A u thor
I D a te o f C r e a t io n
I L a s t U pdate

c o u n t e r . vhd
M eyer E . N ig r i
0 5 /1 2 /9 1
3 1 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts
I m odu le.

c o u n te r f o r t h e Memory A d d re s s in g

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .gn_defin ition .A L L ;

ENTITY c o u n te r IS
PORT (r e s e t ; IN BIT;

ck : IN BIT;
v a lu e : OUT BIT_VBCTO R(ram_addr_lir

} ;
END c o u n te r ;

LIBRARY x l ; USE x l .x l_ s td .A L L ;

ARCHITECTURE b e h a v io u r OF c o u n te r IS

c o u n t in g : PROCESS (c k , r e s e t)
VARIABLE re g : INTEGER 0;

IF (r e s e t - ' 1 ') THEN
FOR j IN 1 TO ra m _ a d d r_ l in e s LOOP

v a l u c (j) < - 'O ’ ;
END LOOP;

ELSIF (c k - ' 1 ') THEN
re g : - re g ♦ 1;
v a lu e < - t o _ b i tv (r e g) ;

END IF ;
END PROCESS c o u n t in g ;

END b e h a v io u r ;

I F i l e Name : c o u n te r l .v h d
I A u th o r : M eyer E. N ig r
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te ; 3 1 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts a c o u n te r w h ich i s c a p a b le o f
i in c re m e n t in g and re a d in g p r e v io u s v a lu e a t th e same t im e
I I t i s u se d in t h e A d d re s s in g M odule o f th e Memory U n i t .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .gn_defin ition .A L L ;

ENTITY c o u n t e r l IS
PORT (r e s e t : IN BIT;

ck : IN BIT;
t x : IN BIT;
v a lu e : OUT m v l_ v e c to r (ra m _ a d d r_ l in e s DOWNTO 1)) ;

END c o u n t e r l ;
ARCHITECTURE s t r u c t u r e OF c o u n te r l IS

COMPONENT c o u n te r
PORT (r e s e t : IN BIT;

ck : IN BIT;
v a lu e : OUT m v l_ v e c to r (ra m _ a d d r_ l in e s DOWNTO 1)) ;

END COMPONENT;

COMPONENT l a t c h r a b
PORT (d : IN m v l_ v e c to r (ra m _ a d d r_ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (ra in _ a d d r_ l in e s DOWNTO 1) ;
ck ; IN BIT

) ;
END COMPONENT;

SIGNAL X : m v I_ v e c to r (r a m _ a d d r_ l in e s DOWNTO 1);

b l : c o u n te r PORT MAP (r e s e t -> r e s e t ,

v a lu e -> X

b2 : l a t c h r a b PORT MAP (d

END s t r u c t u r e ;

Definition of Memories

The memories RAM and ROM are described at the behavioural level. The
memory’s size is defined in the top level configuration file gn_deflnltion. The ROM has its
contents defined in the file “rom.data”, which has been built during hardware simulation to
implement the neuron’s activation function.

1 F i l e Name : ram . vhd 1
1 A u th o r ! M eyer E. N ig r i 1
1 D a te o f C r e a t io n : O S /1 2 /9 1 1
1 L a a t D pda te : 3 1 /1 2 /9 1 1

- - 1 D e s c r ip t i o n : 1

1 T h is e n t i t y im p le m e n ts a RAM.
1

1
1

LIBRARY x l ; OSE x l . x l _ » t d . ALL;

OSE W O R K .gn_defin ition .A L L ;
OSE S T D .te x tlo .A L L , x l . x l _ l o . ALL;

ENTITY ram IS
PORT (a d d r : IN m v l_ v e c to r (ra m _ a d d r_ l in e a DOWNTO 1) ;

d a t a : INOOT m v l_ v e e to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
rd _ w r: IN BIT;
c a : IN BIT);

END ram ;

ARCHITECTORE b e h a v io u r OF ram IS

PROCESS - - (a d d r , c a , rd _ w r)
VARIABLE mem; mvl_16_»iemory (0 TO ra m _ a iz e - 1) ;
VARIABLE a d d r e a a i INTEGER;
VARIABLE 1 : l i n e ;

FOR j IN 1 TO d a ta _ b u a _ l in e a LOOP

Appendix D VHDL Description of Processing Elements 233

d a t a (j) < - -Z ‘ ;
END LOOP;
WAIT UNTIL C8 - '1 * ;
WAIT FOR 1 n s ;

rem ove t h e f o l lo w in g l i n e . T h is i s to t e s t o n ly low a d d r e s s e s .
a d d r e s s t o _ i n t e g e r (s e n s e (a d d r AND "0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 "));

- a d d r e s s to _ in te g e r (S E N S B (a d d r)) ;
IF (rd_w r - ' ! ') THEN - - i t i s a re a d command

d a ta < - d r iv e (m e m (a d d r e s a)) ;
w r i t e (1 , "Time i s -) ;
w r i t e (1 , NOW, RIGHT, 2) ;
w r i t e (1 , d r iv e (ro e m (a d d re s s)) , RIGHT, 2 2);
w r i t e (1 , " i s b e in g READ from RAM a d d r e s s ") ;
w r i t e (1 , a d d r , RIGHT, 2 2);
w r i t e l i n e (o u tp u t , 1) ;

ELSE - - i t i s a w r i t e command
m ero(address) s e n s e (d a t a) ;
w r i t e (1 , "Time i s ") ;
w r i t e (1 , NOW, RIGHT, 2) ;
w r i t e (1 , a e n s e (d a t a) . RIGHT, 2 2) ;
w r i t e (1 , " i s b e in g WRITTEN to RAM a d d r e s s ") ;
w r i t e (1 , a d d r , RIGHT, 2 2) ;
w r i t e l i n e (o u tp u t , 1) ;

WAIT UNTIL o s - 'O' ;
END PROCESS;

END b e h a v io u r ;

I P i l e Name : rom .vhd
I A u th o r : M eyer E. N ig ri
I D a te o f C r e a t io n ; 0 5 /1 2 /9 1
I L a s t U pda te : 3 1 /1 2 /9 1

1 D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts a ROM.

LIBRARY x l ; USE x l .x l_ s td .A L L ;
USE W O R K .gn_defin ition .A L L ;

GENERIC (r o n u f i l e : STRING . d a t -) ;

PORT (a d d r : IN m v l_ v e c to r (ro m _ a d d r_ l in e s DOWNTO 1);
d a t a : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
rd : IN BIT;
c a ; IN BIT);

END rom;

LIBRARY x l ; USE STD. t e x t i o . ALL, < l.x l_ io .A L L ;

ARCHITECTURE b e h a v io u r OF rom IS
PILE ro m _ c o n te n ts : t e x t IS IN ro m _ f i le ;

PROCESS (a d d r , r d , e s)
VARIABLE mem: mvl_16_memory (0 TO ro n L ,a iz e - l) ;
VARIABLE a d d r e s s : INTEGER;
VARIABLE r l i n e : l i n e ;
VARIABLE f i r s t . t i m e : BOOLEAN TRUE;

IF f i r s t _ t i m e THEN - - Read Rom F i l e D a ta
a d d r e s s : - 0;
WHILE NOT e n d f i l e (r o m ^ c o n te n t s) LOOP

r e a d l i n e (ro m _ c o n te n ts , r l i n e) ;
re a d (r l i n e , m e m (a d d re s s)) ;
a d d r e s s : - a d d r e s s + 1;

END LOOP;
f i r s t _ t i m e FALSE;

END IF ;

IF (c s - '1 ' AND r d - ' I ') THEN
a d d r e s s t o _ i n t e g e r (a d d r) ;

- - J u s t t o t e s t , rem ove th e 3 n e x t l i n e s . . .
IF (a d d r e s s > 10) THEN

a d d r e s s : - 10;
END IF ;

d a t a < - mem(a d d r e s s) ;

FOR j IN 1 TO d a t a _ b u s _ l in e s LOOP
d a t a (j) < - Z ';

END LOOP;
END IF ;

END PROCESS;
END b e h a v io u r ;

Basic Components

Several basic components are necessary to support the implementation of the PE’s
three units. Some of these elements are described in the structural domain. Some are
behavioural descriptions.

I P i l e Name : f f .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U pda te : 3 1 /1 2 /9 1

1 D e s c r ip t i o n :

I T h is e n t i t y i n ^ le e n t s a f l i p - f l o p o f 1 b i t .

LIBRARY x l ; USE x l . x l _ a t d . ALL;

ENTITY FF IS
PORT (d IN BIT;

OUT BIT;
OUT BIT;
IN BIT;
IN BIT;
IN BIT

ARCHITECTURE behaviour OF FF IS
PROCESS (ck, d, clear, preset)

VARIABLE flrst.time: BOOLEAN TRUE;
BEGIN

IF first.time THEN
q <- * O' ;
DOtq <- '1•;
first_time FALSE;

END IP;
IF (clear - *1' AND preset - *0') THEN

q <- 'O' ;
notq <- '1 * ;

ELSIF (clear - 'O' AND preset - *1') THEN
q <-
notq <- 'O' ;

ELSIF (clear • 'O' AND preset - O') THEN
IF (ck - *1') THEN

q <- d;
notq <- NOT d;

END IF;
ELSE

ASSERT (clear - '1') AND (preset - '!')
REPORT "Clear and Preset - 0 at the same tisie in ff"

SEVERITY WARNING;
END IP;

END PROCESS;
END behaviour;
-- I Pile Name : f f_n.vhd
-- I Author : Meyer E. Nigri
-- I Date of Creation : 05/12/91
-- I Last Update % 31/12/91

- - I D e s c r ip t i o n :

- - I T h is e n t i t y im p lem en ts f l i p - f l o p o f n b i t s .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE WORK. g n _ d e f i n i t i o n . ALL;

ENTITY f f _ n IS
PORT (d ; IN m v l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
c k ; IN BIT);

END f f _ n ;

ARCHITECTURE b e h a v io u r OF f f _ n IS
BEGIN

PROCESS (c)c, d)
VARIABLE f i r s t _ t i m e : BOOLEAN TRUE;

BEGIN
IF f i r s t . t i m e THEN

FOR i IN 1 TO d a t a _ b u s _ l in e s LOOP
q (i) < - 'O ';

END LOOP;
f i r s t . t i m e FALSE;

IF (c k - * 1 ') THEN

END PROCESS;
END b e h a v io u r ;

I F i l e Name : i n v e r t e r .v h d
) A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le e n t s a n i n v e r t e r g a t e .

LIBRARY x l ; USE x l . x l _ s t d . ALL;

ENTITY i n v e r t e r IS
PORT (in p u t ; IN BIT;

o u t p u t : OUT BIT);
END i n v e r t e r ;

ARCHITECTURE b e h a v io u r OF i n v e r t e r IS
BEGIN

PROCESS (i n p u t)
BEGIN

o u tp u t < - NOT i n p u t ;
END PROCESS;

END b e h a v io u r ;

234 VH D L Description of Processing Elements Appendix D

I F i l e Name : o r 2 g a te .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n ; 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r ip t i o n :

j T h is e n t i t y im p le m e n ts an g a t e o f 2 in p u ts

LIBRARY x l ; USE x l . x l _ s t d .ALL;
ENTITY o r 2 g a te IS

PORT (i n p u t l ; IN BIT;
in p u t2 : IN BIT;
o u tp u t : OUT BIT) ;

END o r 2 g a te ;

ARCHITECTURE b e h a v io u r OP o r 2 g a te IS
BEGIN

PROCESS (i n p u t l , in p u t2)
BEGIN

o u tp u t < - i n p u t l OR i n p u t l ;
END PROCESS;

END b e h a v io u r ;

I F i l e Name : o r l g a t e . vhd
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r ip t i o n :

1 T h is e n t i t y im p le m en ts g a t e o f 3 in p u t s

LIBRARY x l ; USE x l . x l _ s t d . ALL;

ENTITY o r l g a t e IS
PORT { i n p u t l : IN BIT;

i n p u t l : IN BIT;
i n p u t l : IN BIT;
o u tp u t : OUT BIT

) ;
END o r l g a t e ;

ARCHITECTURE b e h a v io u r OF

PROCESS (i n p u t l , i n p u t l ,

o u tp u t < - (i n p u t l OR i n p u t l) OR i n p u t l ;
END PROCESS;

END b e h a v io u r ;

o r l g a t e IS

I F i l e Name : t r i _ s t a t e . vhd
I A u th o r : M eyer E. N ig r i
j D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 1 1 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts t r i _ s t a t e p o r t .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .ram _defin ition .A L L ;

ENTITY b _ t r i _ s t a t e IS
PORT (i n p _ l _ s t a : IN B IT _V E C T O R (addr_lines DOWNTO 1);

e n a b le : IN BIT;
o u t _ l _ s t a : OUT m v l_ v e c to r (a d d r _ l i n e s DOWNTO 1)

);
END b _ t r i _ s t a t e ;

ARCHITECTURE b e h a v io u r OF b _ t r i _ s t a t e IS
BEGIN

PROCESS (e n a b le , i n p _ l_ a t a)
VARIABLE f i r s t _ t i m e : BOOLEAN : - TRUE;

IF f i r s t _ t i m e THEN
FOR i IN a d d r _ l i n e s DOWNTO 1 LOOP

o u t _ 3 _ a t a (i) < - ' I ' - ,
END LOOP;
f i r s t _ t i m e FALSE;

END IF ;

IF (e n a b le - ' I ') THEN
- - o u t _ l _ a t a < - D R IV E (to _ m v lv (in p _ l_ a ta)) ;
- - o u t _ l _ a t a < - in p _ 3 _ a ta ;
o u t_ 3 _ a ta < - t o _ m v lv (in p _ l _ s t a) ;

ELSE
FOR i IN a d d r _ l i n e s DOWNTO 1 LOOP

o u t _ 3 _ a t a (i) < - ;
END LOOP;

END IP ;
END PROCESS;

END b e h a v io u r ;

I F i l e Name : x o r l g a t e .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n i 0 5 /1 2 /9 1
I L a a t U p d a te : 2 0 /1 2 /9 1

I D e a c r ip t i o n :

I T h ia e n t i t y im p le m e n ta a n x o r g a t e o f 2 i n p u ta

LIBRARY X l; USE x l . x l _ a t d . ALL;

ENTITY x o r 2 g a te IS
PORT (i n p u t l : IN BIT;

i n p u t l : IN BIT;
o u tp u t : ODT BIT);

END x o r l g a t e ;

ARCHITECTURE b e h a v io u r OF x o r l g a t e IS
BEGIN

PROCESS (i n p u t l , in p u t2)
BEGIN

o u tp u t < - i n p u t l XOR i n p u t l ;
END PROCESS;

END b e h a v io u r ;

I P i l e Name : l a t c h _ d b . vhd
I A u th o r : M eyer B. N ig r i
I D a te o f c r e a t i o n : 0 5 /1 2 /9 1
I L a a t D p d a te : 3 1 /1 2 /9 1

I D e a c r ip t i o n :

I T h ia e n t i t y im p le m en ta a l a t c h o f n b i t a f o r t h e DATA BUS

LIBRARY X l; USE x l . x l _ s t d . ALL;
USE W O R K .gn_defln ition .A L L ;

ENTITY la t c h _ d b IS
PORT (d : IN m v l_ v e c to r <d a ta _ b u a _ l in e s

q : OUT m v l_ v e c to r (d a ta _ b u a _ l in e s
c k : IN BIT

DOWNTO
DOWNTO

1) ;
1) ;

END la tc h _ d b ;

ARCHITECTURE b e h a v io u r OF l a tc h _ d b IS
BEGIN

PROCESS (d , ck)
VARIABLE f i r s t . t i m e : BOOLEAN TRUE;
VARIABLE d a t a : io v l_ v e c to r (d a ta _ b u s_

BEGIN
IF f i r s t _ t i i o e THEN

FOR 1 IN 1 TO d a ta _ b u 8 _ lln e 8 LOOP
q < i) < - ‘ O’ ;
d a t a (l) 'O ' ;

END LOOP;
f i r s t _ t l r o e FALSE;

END IF ;

. l i n e s DOWNTO 1) ;

IF (c k - ' ! ’) THEN
d a ta : - d ;

END PROCESS;
END b e h a v io u r ;

- - 1 F i l e Name : l a t c h r a b .v h d
- - 1 A u th o r : M eyer E. N ig r i
- - 1 D a te o f C r e a t io n : 0 5 /1 2 /9 1
- - (L a a t U p d a te : 3 1 /1 2 /9 1

- - 1 D e s c r i p t i o n :

- - 1 T h is e n t i t y im p le m en ts a l a t c h o f n b i t s f o r
- - 1 ADDRESS BUS.

th e RAM

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY l a t c h r a b IS
PORT (d : IN m v l_ v e c to r (r a n u a d d r _ l in e s

q : OUT m v l_ v e c to r (ra m _ a d d r_ l in e s
c k : IN BIT

DOWNTO
DOWNTO

1) ;
1) ;

END l a t c h r a b ;

ARCHITECTURE b e h a v io u r OF l a t c h r a b IS
BEGIN

PROCESS (d , ck)
VARIABLE f i r s t _ t i m e : BOOLEAN TRUE;

IF f i r s t _ t i m e THEN
FOR i IN 1 TO r a o u a d d r _ l in e s LOOP

q (i) < - ’ 1 ' ;
END LOOP;

f i r s t _ t i m e FALSE;

IF (c k - ' 1 ') THENq < - d ;
END IF ;

END PROCESS;
END b e h a v io u r ;

- - 1 F i l e Name : aw_n vhd
- - (A u th o r % M eyer E. N ig r i
- • 1 D a te o f C r e a t io n : 0 5 /1 2 /9 1
- - 1 L a a t U p d a te : 3 1 /1 2 /9 1

- - 1 D e s c r i p t i o n :

- - 1 T h is e n t i t y im p le m e n ts a s w i tc h o f n b i t s .
- - 1

LIBRARY x l ; USE x l . x l _ a t d . ALL;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY aw_n
PORT (d IN m v l_ v e c to r (d a ta _ b u a _ l in e a DOWNTO 1) ;

ODT m v l_ v e c to r (d a t a _ b u a _ l in e s DOWNTO 1);
e n : IN BIT

);
END aw_n;

ARCHITECTURE b e h a v io u r OF aw_n IS
BEGIN

PROCESS (e n , d)
BEGIN

IF (e n - 1) THEN
q < - d ;

ELSIF (e n - ‘ O ') THEN
FOR i IN 1 TO d a t a _ b u a _ l in e a LOOP

q (i> < - ‘ E ‘ ;
END LOOP;

END IP ;
END PROCESS;

END behaviour;

Appendix D VHDL Description of Processing Elements 235

Communication Unit

This unit is implemented by the VHDL entity comm_unit, which is built upon the

entities cu_datapath and cu_fsm in the behavioural domain. The former is responsible for

uniquely identifying the PE ’s address. The latter implements the FSM for this unit, which

keeps looking for signals sent by cu_datapath and from the external control bus. The logic

for realising the cs/rdy function is done in the FSM by the component cs_rdy_logic.

I F i l e Name
I A u th o r
I D a te o f C r e a t i
1 L a a t U pda te

M eyer E. N ig r i
0 5 /1 2 /9 1
2 0 /1 2 /9 1

I D e a c r ip t i o n :

I T h ia e n t i t y im p le m e n ta t h e C om m unica tion U n it
I G e n e r ic N e u ro n 'a p r o c e a a in g e le m e n t .

LIBRARY x l , USE x l . x l _ 3 t d . ALL;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY com m _unit IS
m v l_ v e c to r (d a t a _ b u s _ l in e s

ou t_ b u « : m v l_ v e c to r (d a ta _ b u s _ l in e a
«dd_bus : m v l_ v e c to r (r a n u a d d r ^ l in e a

BIT;
lo a d : B IT ; - - 0 - I n i t i a l i s a t i o n ;
frw_bicv :
p h i l : IN
p h i2 : IN BIT;
C8_rdy INOOT w ire ;
mem_add_bua : m v l_ v e c to r(ra n% _addr_ lines
w e lg h t« _ b u s ; m v l_ v e c to r (d a ta _ b u 8 _ l in e 8
s t a t e s _ b u 9 : m v l_ v e c to r (d a ta _ b u a _ l in e s

ra v l_ v e c to r (d a ta _ b u a _ l in e a
cu _ C 8 _ w g t_ frv : BIT;
cu_ca_w gt_bkw : BIT;
c u _ c 8 _ » ta _ frw B IT;
c u _ c 8 _ 8 ta_ b k w : BIT;
c u _ rd _ w r_ w g t_ frw : BIT;
cu_rd_w r_w gt_bkw : BIT;
c u _ r d _ w r_ 8 ta _ f rw : BIT;
cu _ rd _ w r_ # ta_ b k w : BIT;
c u _ ln c _ j> tr : BIT;
c u _ r e 8 c t _ p t r % BIT;
e v a l _ 8 ta t e B IT;
e v a l ^ e r r o r : B IT;
8 t a t e _ r d y BIT;
e r r o r ^ r d y : BIT;
c u _ e rv _ c n tr_ a d d : B IT ;

BIT;
c u _ e n _ o u tb u 8 BIT

DOWNTO 1);
DOWNTO 1);

DOWNTO 1) ;
DOWNTO 1) ;
DOWNTO 1) ;

END com m _unit;

ARCHITECTURE a t r u c t u r e OF
COMPONENT c u _ d a ta p a th

PORT(in _ b u a
o u t_ b u »
a d d ^ b u s
ia_m y_add
n e x t_ l a y
p r e v _ l« y
en_BeiA_add
« n _ o u tb u »
en _ w e ig h tb u «
e n _ « ta e r r b u s
m em _add_bus
w e ig h ta _ b u a
a t a te a _ b u a
*_bua);

END COMPONENT;

com m _unit IS

IN m vl.
ODT m vl.
IN m vl.
OUT BIT:
OUT BIT;
OUT BIT;
IN BIT;
IN BIT;
IN BIT;
IN BIT;

OUT m vl.
IN m vl.

v e c t o r (d a t a _ b u a _ l in e a DOWNTO 1) ;
v e c t o r <d a ta _ b u a _ l ln e a DOWNTO 1) ;
,v e c to r (r a m _ a d d r_ l in e a DOWNTO 1) ;

v e c to r (r a m _ a d d r _ l in e a DOWNTO 1) ;
v e c t o r (d a t a _ b u a _ l i n e a DOWNTO 1) ;
.v e c to r (d a ta _ b u a _ l ln e a DOWNTO 1) ;
v e c t o r (d a t a _ b u a _ l in e a DOWNTO 1)

COMPONENT c u _ c o n t r o l
PORT(r e a e t

lo a d
frw _bkw
p h i l
p h i2
c a _ rd y

n e x t_ l a y
p re v _ la y
en_aem _add
e n _ o u tb u a
e n _ w e ig h tb u a
e n _ a t a e r r b u a
c u _ c a _ w g t_ frw
cu_ca_w gt_bkw
c u _ c a _ a ta _ f rw
cu _ c a _ a ta _ b k w
c u _ rd _ w r_ w g t_ frw ! OUT BIT;
cu_rd_w r_w gt_bkw ! OUT BIT;
c u _ r d _ w r_ a ta _ frw ! OUT BIT;
cu _ rd _ w r_ a ta _ b k w : OUT BIT;
c u _ t n c _ p t r I OUT BIT;
c u _ r e a e t _ p t r i OUT BIT;
e v a l _ a t a t e : OUT BIT;
e v a l _ e r r o r i OUT BIT;

BIT;
B IT ; - - 0 - I n l t i a l i a a t i o n ; 1 - E x e c u t io n
B IT;

IN BIT;
IN B IT;
INOUT w ir e ;
IN BIT;
IN BIT;
IN BIT;
OUT BIT;
OUT B IT ;
OUT BIT;
OUT BIT;

: OUT BIT;
: OUT BIT;

OUT BIT;

a t a t e _ r d y
e r r o r _ r d y :
c u _ e n _ c n tr_ a d d
c u _ tx _ p t r

BIT;
BIT;

OUT BIT;
OUT BIT

END COMPONENT;

SIGNAL a , b , c , d , e , f , g : BIT;

a _ c c n t r o l USE ENTITY WORK. c u _ c o n t r o l (a t r u c t u r e) ;
I . d a t a p a t h USE ENTITY WORK. c u . d a t a p a t h (b e h a v io u r) ;

reset,
load load.
frw_bkw f rw_bkw.
phil phil,
phi2 phi2.
cs_rdy cs_rdy,
is_my_add
next_lay b.
prev_lay
en_mem_add d,

e.
en_weightbus f,
en_ataerrbus g.cu_C8_wgt_frw cu_C8_wgt.
cu_C8_wgt_bkw cu_cs_wgt.

cu_C8_3ta.
cu_C8_sta.

u _ rd _ w r_ w g t_ frw
u_rd_w r_w g t_bkw
u _ rd _ w r_ a ta _ frw
u _ rd _w r_ata_bkw
u _ in c _ p t r
u _ r e a e t . p t i

-> c u _ rd _ w r_ w g t_ frw ,
-> cu_ rd _ w r_ w g t_ b k w ,
-> c u _ r d _ u r _ a ta _ f r w ,
-> c u _ rd _ w r_ a ta _ b k w ,
-> c u _ in c _ p t r ,
-> c u _ r e a e t j > t r .
-> e v a l . a t a t e

e v a l _ e r r o r
-> a t a t e _ r d y .

e r r o r _ r d y -> e r r o r _ r d y ,
c u _ e n _ c n tr_ a d d
c u _ tx _ p t r -> c u _ t x _ p t r

In bu s in b u s ,

a d d lb u a
ia_m y_add a .
n e x t_ la y b .
p re v _ la y
en_iaem_add d .
e n _ o u tb u a
en _ w e ig h tb u a f .
e n _ a ta e r r b u a g .
mem_add_bua mem _add_bua,
w e ig h ta _ b u a w e ig h ta .b u a ,
a t a te a _ b u a a t a t e a . b u a .

c u _ e n _ o u tb u a < - e ;
END a t r u c t u r e ;

I F i l e Name i c u . d a t a p a t h . vhd
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a a t U p d a te i 2 0 /1 2 /9 1

I D e a c r ip t i o n :

I T h ia e n t i t y im p le m e n ta t h e C om m unica tion U n i t o f t h e
I G e n e r ic N eu ro n a p r o c e a a in g e le m e n t .

LIBRARY x l ; USE x l .x l_ a td .A L L ;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY c u _ d a ta p a th IS
PORT< in _ b u a

o u t_ b u a
ad d _ b u a
ia_m y_add
n e x t_ l a y
p r e v _ la y
en_m eat_add
e n .o u tb u a
e n _ w e ig h tb u a
e n _ a t a e r r b u a
B>em_add_bua
w e ig h ta _ b u a
a t a te a _ b u a

) ;
END c u _ d a ta p a th ;

IN a iv l_ v e c to r (d a t a _ b u a _ l in e a DOWNTO 1) ;
OUT m v l_ v e c to r (d a ta _ b u a _ l in e a DOWNTO 1) ;
IN m v l_ v e c to r (r a m _ a d d r _ l in e a DOWNTO 1) ;
OUT BIT;
OUT BIT;
OUT BIT;
IN BIT;
IN BIT;
IN BIT;
IN BIT;
OUT m v l_ v e c to r (r a m _ a d d r _ l in e a DOWNTO 1) ;
OUT a iv l_ v e c to r (d a ta _ b u a _ l in e B DOWNTO 1) ;
OUT m v l_ v e c to r (d a ta _ b u a _ l in e a DOWNTO 1) ;
IN m v l_ v e c to r (d a ta _ b u a _ l in e a DOWNTO 1)

LIBRARY x l ; USE x l . x l _ a t d . ALL;
USE WORK. g n _ d e f in i t io n .A L L ;

ARCHITECTURE b e h a v io u r OF c u _ d a ta p a th IS

236 V H D L Description of Processing Elements Appendix D

L a y o u t: 4 b i t s f o r l a y e r ; 8 b i t s f o r h a r d w ire d ; 4 b i t s f o r PE
assu m in g t h a t a maximum o f 16 PEs p e r c h ip s i s p o s s i b l e .
L ay er d e te r m in e s t h e max. nund>er o f l a y e r s .
H a rd _ w ire d d e te r m in e s t h e max. num ber o f c a s c a d a b le c h ip s .
Number d e te r m in e s t h e max. num ber o f PEs in s id e e a c h c h ip .

L ay e r - l a y e r p o s i t i o n o f t h i s n e u r o n .
H ard _ w ire d - c h ip a d d r e s s o f t h i s n e u ro n
Number - N euron a d d r e s s i n s id e t h i s c h ip .

b i t s

I L ay e r | H ard _ w ire d | Number I

- - T h u s , t h i s i s t h e p r o c e s s in g e le m e n t 0 o f c h ip 0 in l a y e

T h is i s s e t up by th e s i l i c o n c o m p i le r .
CONSTANT m y _ a d d re s s : m v l_ v e c to r (16 DOWNTO 1)

* 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 " ;

- - S in c e m y_ ad d res3 t e l l s u s t h a t we a r e in l a y e r 1 ,
p r e v _ la y e r i s 0 .
T h is i s s e t up by th e s i l i c o n c o n ^ i l e r .

CONSTANT p r e v _ la y e r : m v l_ v e c to r (4 DOWNTO 1) "0 0 0 0 " ;

- - And n e x t l a y e r i s 2 .
- - T h is i s s e t up by t h e s i l i c o n c o m p i le r .
CONSTANT n e x t _ l a y e r : in v l_ v e c to r (4 DOWNTO 1) : - "0 0 1 0 " ;

te s t_ m y _ a d d : PROCESS (a d d .b u s)

IF (a d d _ b u s - m y _ a d d re ss) THEN
is_m y_add < - ’ 1 ' ;

is_m y_add < - 'O ';

END PROCESS test__m y_add;

t e s t _ p r e v _ la y : PROCESS (a d d _ b u s)

IP (a d d _ b u s (1 6 DOWNTO 13) - p r e v _ la y e r) THEN
p r e v _ la y < - ' 1 ' ;

ELSE
p r e v _ la y < • 'O ';

END IF ;
END PROCESS te s t_ p re v _ _ la y ;

t e s t _ n e x t _ l a y : PROCESS (a d d _ b u s)

IF { a d d _ b u s(1 6 DOWNTO 13) - n e x t_ l a y e r) THEN
n e x t_ la y <• ' 1 ’ ;

ELSE
n e x t_ la y <• 'O ' ;

END PROCESS t e s t ^ n e x t _ l a y ;

d r iv e _ a d d r : PROCESS (en_roem _add, ad d _ b u s)
BEGIN

IF (en_m enuadd - ' 1 ') THEN
menk_add_bu8 < - ad d _ b u s ;

mem_add_buy <« " Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z " ;
END IF ;

END PROCESS d r iv e _ a d d r ;

d r iv e _ o u t_ b u s : PROCESS (e n _ o u tb u s , z _ b u s)
BEGIN

IF (e n .o u tb u s - ' 1 ') THEN
o u t_ b u s < - z _ b u s ;

ELSE
o u t_ b u s < - " Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z " ;

END IF ;
END PROCESS d r iv e _ o u t_ b u s ;

d r iv e _ w e ig h ts _ b u s : PROCESS (e n _ w e ig h tb u s , in _ b u s)

IF (e n _ w e ig h tb u s - * 1 ') THEN
w e ig h ts .b u s < - in _ b u s ;

w e ig h t8 _ b u $ < - • Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ^ ;
END IF ;

END PROCESS d r iv e _ w e ig h t* _ b u » ;

d r iv e _ g ta te s _ b u 8 : PROCESS (e n _ # ta e r r b u 8 , in _ b u a)
BEGIN

IF (e n _ * ta e r r b u a - ' ! ') THEN
a ta te « _ b u « < - in _ b u # ;

ta te a _ b u # < - "ZZZZZ2ZZ2ZZ2ZZZZ” ;
END IF ;

END PROCESS d r i v e _ s t a t e s _ b u « ;

END b e h a v io u r ;

- - 1 P i l e Name : c u .f s m .v h d
- - 1 A u th o r : M eyer E. N ig r i
- - 1 D a te o f C r e a t io n ;! 0 5 /1 2 /9 1
- - I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m e n ts t h e C o m m in ic a tlo n U n i t ' s FSM
I o f th e G e n e r ic N e u ro n 's p r o c e s s in g e le s » e n t .

LIBRARY x l ; USE x l . x l _ s t d . ALL;
USE W O R K .g n ^d efin itio n .A L L ;
USE S T D .te x tlo .A L L , x l . x l _ i o . ALL;

.fsm IS
BIT;

lo a d : IN B IT;
frw .b k w : IN BIT;
p h i l : IN BIT;
p h i2 : BIT;
c s . r d y . f l a g : BIT;
c a . r d y . i n B IT;
c s . r d y . c t r OUT BIT;

: IN BIT;
n e x t . l a y : IN BIT;
p r e v . l a y : BIT;
en.m em _add OUT BIT;
e n _ o u tb u 8 : OUT BIT;
e n .w e ig h tb u s : OUT B IT;
e n _ s t a e r r b u s : B IT ;
c s .w g t . f r w : BIT;
c s .w g t.b k w : BIT;

BIT;
BIT;

rd Z w r .w g t . f rw : B IT ;
rd .w r.w g t_ b k w % BIT;
r d _ w r . s t a . f r w : BIT;

0 - I n i t i a l i s a t i o n ; 1 - E x e c u t io n

rd _ w r .8 ta .b k w : BIT;
BIT;

r e s e t _ p t r : BIT;
e v a l . s t a t e BIT;
e v a l . e r r o r : BIT;
s t a t e . r d y BIT;
e r r o r . r d y BIT;
e n . c n t r . a d d ; OUT BIT;
t x _ p t r : OUT BIT

LIBRARY x l ; USE
USE WORK. g n _ d e f i

l .x l_ s td .A L L ;
it io n .A L L ;

ARCHITECTURE b e h a v io u r OF cu _ fsm IS
- - ty p e s t a t e _ t y p e i s (A, B, C, D, E, F, G);
- • s i g n a l c u r r e n t _ s t a t e , n e x t _ s t a t e : s t a t e _ t y p e ;
SIGNAL c u r r e n t . s t a t e : CHARACTER 'A ' ;
SIGNAL n e x t . s t a t e : CHARACTER : - ' A ';

d e b u g .c u .f s m : PROCESS •- (p h i l , p h i2)
VARIABLE 1: l i n e ;

--WAIT UNTIL p h i l ’e v e n t OR p h i 2 'e v e n t ;
WAIT UNTIL phil'E V E N T AND p h i l - ' 1 ' ;
w r i t e (1 , "Time i s ") ;
w r i t e (1 , NOW, RIGHT. 2) ;
w r i t e (1 , • CU i s in S t a t e ") ;
w r i t e (1 , c u r r e n t . s t a t e , RIGHT, 2) ;
w r i t e l i n e (o u tp u t . 1) ;

END PROCESS d e b u g .c u .f s m ;

sy n c h : PROCESS
BEGIN

WAIT UNTIL phil'E V E N T AND p h i l - ' 1 ' ;
c u r r e n t . s t a t e < - n e x t . s t a t e ;

END PROCESS s y n c h ;

f i n i t e _ s t a t e _ m a c h i n e : PROCESS
VARIABLE 1: l i n e ;

BEGIN
- - E very t e s t i n t h i s p r o c e s s w i l l be ta k e n d u r in g p h i2 ,
- - w h i le th e
- - a c t i o n s p e rfo rm e d w i l l be ta k e n d u r in g p h i l .
WAIT UNTIL p h i 2 ’ EVENT AND p h i2 - ;
WAIT FOR 1 n s ; - - Ttmirog p ro b le m b e tw e en EU and CU.
CASE c u r r e n t . s t a t e IS

WHEN A' •>
IF (r e s e t - ' 1 ') THEN

*• R e s e t th e m em _ptr, and s t a y a t th e same s t a t e .
WAIT UNTIL p h i l - ' 1 ' ;
r e s e t . p t r < - ' 1 ' . 'O ' AFTER tpw ;
n e x t . s t a t e < - 'A ';

ELSIF (lo a d - *1 ' AND frw .b k w - ' 1 ' AND i s .m y .a d d - ' 1 ')

F o rw ard w e ig h ts
I t i s i n i t i a l i s a t i o n p h a s e . I t m ust re a d

- - from th e in _ d a t a _ b u s .
- - Do i t i n s t a t e F .
n e x t . a t a t e < - ' F ' /
WAIT UNTIL p h i l - '1* ;
e n . c n t r . a d d < - 'O ' AFTER tpw ;
t x . p t r < - ' 1 ' . 'O ’ AFTER tpw ;
e n .w e ig h tb u s < - ' I * . 'O ' AFTER tpw ;
cs_ w g t_ frw < - ' 1 ' , 'O ' AFTER tpw .
r d .w r .w g t . f r w <-
- - i n c _ p t r < -
r e s e t . p t r < -

•O' ;
'O ' AFTER Tpw;
'O ' AFTER tpw ;

ELSIF (lo a d - '1 ' AND frw .b k w - 'O ' AND is .m y .a d d - ' 1 ')

I t m ust re a d- - I t i s an i n i t i a l i s a t i o n
- - Backw ard w e ig h ts
- • from th e i n . d a t a . b u s .
- - Do i t i n s t a t e G .
n e x t . s t a t e < • G ' ;
WAIT UNTIL p h i l - ' ! ' ;
e n . c n t r . a d d < - ' 1 ' . 'O ' AFTER tpw ;
t x . p t r < - 'O ' AFTER tp w ;
e n _ w e ig h tb u s < - 'O ' AFTER tpw ;
c s .w g t.b k w < - ' 1 ' . 'O ' AFTER tpw ;
rd_w r_w gt.bkw < - 'O ';
- - l n c j) t r < - ' 1 ' . 'O ’ AFTER Tpw;
r e a c t . p t r < - ' 1 ' . 'O ' AFTER tpw ;

ELSIF (lo a d - 'O ' AND frw .b k w - 1 ' AND
p r e v . l a y • *1 ' AND c s . r d y . t n - ' 1 ') THEN

- - I t m eans t h a t a s t a t e i s i n t h e bus a n d m ust

- - Do i t i n t h e s t a t e B.
n e x t . s t a t e < - ' 8 ' ;
WAIT UNTIL p h i l - ' 1 ' ;
e n . s t a e r r b u s < - * 1 '. 'O ' AFTER tpw ;
en_m enuadd < - '1 * . 'O ' AFTER tpw ;
C 8 _ s ta _ frw < - '1 * . 'O ' AFTER tpw ;
r d . w r . s t a . f r w < - 'O ' ;
e v a l . s t a t e < - ' 1 ' , 'O ' AFTER tpw ;

END IP ;
WHEN P ' ->

- - I t i s a n i n i t i a l i s a t i o n p h a s e . I t m ust r e a d
- - F o rw ard w e ig h ts
- - fro m t h e i n _ d a t a _ b u s .
IP (lo a d - '1 ' AND frw .b k w - ' 1 ' AND

is_m y_add - '1') THEN
- - c a r r y on lo a d in g i n i t i a l w e ig h ts ,
n e x t . s t a t e < - ' P ' ;
WAIT UNTIL p h i l - 1 ' ;
e n . c n t r . a d d < - ' 1 ' . 'O ' AFTER tp w ;
t x . p t r < - 1 ' , 'O ' AFTER tpw ;
e n _ w e ig h tb u s < - * 1 '. 'O ' AFTER tpw ;
c s .w g t . f r w < - ' 1 ' . 'O ' AFTER tpw ;
r d .w r .w g t . f r w < - 'O ';
i n c j > t r < - ' 1 ' . 'O ' AFTER tpw ;

- • F in i s h e d i n i t i a l i s a t i o n o f i n i t i a l w e ig h ts ,
n e x t . s t a t e < - A ';

END IF ;
WHEN 'G ' ->

- - I t i s a n i n i t i a l i s a t i o n p h a s e .
- - I t m ust r e a d B ackw ard w e ig h ts
- - from t h e i n . d a t a . b u s .
IP (lo a d - ' 1 ' AND frw .b k w - 'O ' AND

in ^ m y .a d d - ' 1 ') THEN
- • c a r r y on lo a d in g i n i t i a l w e ig h t s .
n e x t . s t a t e < - 'O ';
WAIT UNTIL p h i l - ' 1 ' ;
e n . c n t r . a d d < - ' 1 ' . O' AFTER tpw ;
tx _ j> tr < - ' 1 ' , 'O ' AFTER tpw ;
e n .w e ig h tb u 8 < - ' 1 ' , 'O ' AFTER tp w ;
c s .w g t.b k w < - ' 1 ' , 'O ' AFTER tpw ;
rd .w r .w g t .b k w < - O ';
i n c j > t r < - ' 1 ' . 'O ' AFTER tpw ;

ELSE
- - F in i s h e d i n i t i a l i s a t i o n o f i n i t i a l w e ig h ts
n e x t . s t a t e < - 'A ';

Appendix D VHDL Description of Processing Elements 237

s t a t e com ing f r

O' AFTER tpw ;
AFTER tpw;
AFTER tpw;

AFTER tpw;

o f th e fo l lo w in g

a l c u la t e a

WHEN 'B ' ->
- - I t m eans t h a t t h e r e i s
- - th e p re v io u s
- - l a y e r , and i t m ust be re a d by t h i s PE.
- - The a c t io n s a r e :
- - Read s t a t e from th e in _ d a ta _ b u s and w r i t e i t

o n to th e S ta t e
-- Memory b lo c k . Once t h i s c o n d i t i o n i s t r u e ,
- - i t w i l l rem ain so
** f o r t h e number o f n eu ro n In th e p r e v io u s
- - l a y e r • c lo c k _ p e r io d ,
- - b e c a u se e v e ry n eu ro n in a c e r t a i n l a y e r f i n i s h e s

i t s c a l c u l a t i o n
- - a t th e same t im e .
IF (lo a d - 'O ' AND frw .bkw - '1 ' AND

p r e v . la y - ' 1 ' AND c a . r d y . i n - *1*) THEN
n e x t . s t a t e < - B ' ;
WAIT UNTIL p h i l -
e n . s t a e r r b u s <- '1
en_mem_add <- *1*,
c s . s t a . f r w < - ,
r d _ w r .s t a . f r w < - •
e v a l . s t a t e <-

ELSE
n e x t . s t a t e < - ' C ;

WHEN ' C - >
do n o th in g u n le s s <

- - c o n d i t i o n s i s t r u e .
- - Which m eans, w a it f o r E x e c u tio n U n it
- - T h re sh (S * W) and
- - a c t i v a t e s s t a t e . r d y . When t h i s happei
- - c s . r d y and send

S j . T h is means t h a t e v e ry n eu ro n from t h i s
- - l a y e r h a s f i n i s h e d
- - i t s e x e c u t io n . Then, w a it f o r c s . r d y from n eu ro n s
- • from th e n e x t
- - l a y e r t o i n i t i a t e backw ard p h a se .
IF (lo a d - 'O ' AND frw .bkw - ' 1 ' AND

is .m y .a d d - AND s t a t e . r d y - ’1*) THEN
n e x t . s t a t e < - ' C ;
WAIT UNTIL p h i l - •1* ;
c s . r d y . c t r < - *0* AFTER c lo c k _ p e r io d - t p s ;
c s . r d y . f l a g <- ' 1 ' , *0* AFTER c lo c k .p e r io d - t p s ;
e n .o u tb u s <- ' 1 ' , '0* AFTER tpw ;
w r i t e (1 , " G e n e ra tin g c s . r d y ... ") ;
w r i t e l i n e (o u tp u t , 1) ;
-- w a it f o r backw ard p h a se .

ELSIF (lo a d - O' AND frw .bkw - O' AND
n e x t . l a y - AND c a . r d y . i n - ‘ I ’) THEN

n e x t . s t a t e < - D ';
WAIT UNTIL p h i l - ’1 ’ ;
e n . s t a e r r b u s < - * 1 ', 'O ' AFTER tpw;
en .roenusdd < - ' 1 ' , 'O ' AFTER tpw ;
c s . s t a .b k w < - ' 1 ' , 'O ' AFTER tpw ;
rd _ w r .s ta .b k w <- 'O ';
e v a l . e r r o r <- ' 1 ' , 'O ' AFTER tpw ;

n e x t . s t a t e < - ' C ;

WHEN ' D ' - >
- - I t m eans t h a t t h e r e i s an e r r o r com ing from th e n e x t
- - l a y e r , and i t m ust be re a d by t h i s PE.
- - The a c t io n s a r e :
-• Read e r r o r from th e i n .d a t a .b u s and w r i t e i t

o n to t h e E r r o r
-* Memory b lo c k . Once t h i s c o n d i t i o n i s t r u e ,
• - i t w i l l re m a in so

f o r t h e number o f n e u ro n in th e
- - n e x t l a y e r • c l o c k .p e r io d ,

b e c a u s e e v e ry n e u ro n in a c e r t a i n l a y e r f i n i s h e s
i t s c a l c u l a t i o n a t t h e same t im e .

IF (lo a d - 'O ' AND frw .bkw • 'O ' AND
n e x t . l a y - AND c a . r d y . i n - ' 1 ') THEN

n e x t . s t a t e < - 'D ' ;
WAIT UNTIL p h i l -
e n . s t a e r r b u s < - *1
en.m env.add < - * 1 ',
c s . s t a .b k w < - ' 1 ' ,
r d .w r . s t a .b k w < - ' i
e v a l . e r r o r < - ' 1 ' ,

n e x t . s t a t e < - ’ E’ ;

WHEN *E' ->
- d o n o th in g u n t i l t h e fo l lo w in g c o n d i t i o n i s a c t i v e .

IF (lo a d - 'O ' AND frw .bkw - 'O ' AND
i#_m y_add - *1* AND e r r o r . r d y - ' 1 ') THEN

n e x t . s t a t e < - 'A ';
WAIT UNTIL p h i l - ;
c s . r d y . c t r < - 'O ' AFTER tpw ;
c s . r d y . f l a g < • * 1 ', 'O ' AFTER tpw ;
en_O Utbus < - ' 1 ' , 'O ' AFTER tpw ;

ELSE
n e x t . s t a t e < - ' E ' ;

END IF ;
END CASE;

END PROCESS f i n i t e . s t a t e . m a c h i n e ;
END b e h a v io u r ;

O' AFTER tpw ;
AFTER tpw ;
AFTER tpw ;

AFTER tpw ;

I F i l e Name : c u . c t r . v h d
i A u th o r ! M eyer B. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts t h e C om m unication U n i t 's c o n t r o l
I o f t h e G e n e r ic N e u ro n 's p ro c e s s in g e le m e n t .

LIBRARY x l ; USE x l . x l . s t d .ALL;
USE W O R K .gn_defin ition .A L L ;

ENTITY c u . c o n t r o l IS
IN BIT;

lo a d IN BIT; - -
frw_bkw IN BIT;
p h i l : IN BIT;
p h i2 : IN BIT;
c a _ rd y INOUT w ire ;
is_m y_add IN BIT;
n e x t_ la y : IN BIT;
p re v _ la y i IN BIT;
en_mem_add : OUT BIT;
en__outbus : OUT BIT;
e n _ w eig h tb u 3 OUT BIT;
e n _ s t a e r r b u s OUT BIT;
c u _ c a _ w g t_ frv ; OUT BIT;
cu_cs_w gt_bkw : OUT BIT;
c u _ c s _ s ta _ f rw ODT BIT;
cu_ca_sta_b)cw i OUT BIT;
cu _ rd _ w r_ w g t_ f rw ! OUT BIT;
cu_rd_w r_w gt_bkw : OUT BIT;
c u _ r d _ w r_ a ta _ f rw : OUT BIT;
c u _ rd _ w r_ a ta _ b k v : ODT BIT;
c u _ in c _ p tr : OUT BIT;

OUT BIT;
OUT BIT;

e v a l _ e r r o r : OUT BIT;
s t a t e _ r d y :
e r r o r . r d y
c u _ e n _ c n tr_ a d d : OUT BIT;
c u _ tx _ p t r : OUT BIT

END c u _ c o n t r o l ;

ARCHITECTURE s t r u c t u r e OF c u _ c o n t r o l
COMPONENT cu_fsm

PORT (r e s e t : IN BIT;
: IN BIT;

frw_bkw : IN BIT;
p h i l : IN BIT;
p h i2 :
c s . r d y . f l a g :
c a . r d y . i n :
c s . r d y . c t r :
ia .m y .a d d :

p r e v . l a y :

en_outbu3 :
en_weightbus :
en_staerrbu3 :
C3_vqt_frw :
C3_wgt_bkw :

cs_3ta_bkv :
rd_wr_wgt_£rw;
rd_wr_wgt_bkw:
rd_wr_sta_frw:
rd_ur_3ta_bkw:

r c 3 e t _ p t r
e v a l . s t a t e
e v a l _ e r r o r :
3 ta te _ r d y
e r r o r _ r d y :
e n _ c n tr_ a d d

OUT b i t !

IN BIT;
OUT BIT;

BIT;
BIT;

IN BIT;
INOUT w ire ;

END COMPONENT;

COMPONENT c u _ c o m b in a tio n a l
PORT (C 3 _ rd y _ fla g : IN

o 3 _ rd y _ in
c s _ r d y _ c t r
c s . r d y
p h i2

) ;
END COMPONENT;

SIGNAL a , b , c ; BIT;

--POR fsm _ b lo c k ; cu _ fsra USE ENTITY w o rk . c u _ £ sm (b e h a v io u r) ;
--FOR co m b _ lo g ic : c u _ c o m b in a tio n a l USE ENTITY

w o rk . c u _ c o m b in a t io n a l(s t r u c t u r e) ;

f rw_bkw -> frw .b k w .
p h i l
p h i2
c s _ r d y _ f la g -> a .

-> b .
c s _ r d y _ c t r -> c .

-> ia .m y .a d d ,
-> n e x t . l a y .
-> p r e v . l a y .

en_mem_add -> en_mem_add.
e n _ o u tb u s -> e n .o u tb u s ,
e n .w e ig h tb u s -> e n _ w e ig h tb u s .
e n . s t a e r r b u s -> e n _ s t a e r r b u a .

-> c u .c s .w g t . f r w .
c s .w g t.b k w -> c u .c s .w g t .b k w .
c s . s t a . f r w -> c u . c s . s t a . f r w .
c s . s t a .b k w -> c u .c s . s ta .b k w .
r d .w r .w g t . f r w -> c u _ rd _ w r.w g t.f rw ,
rd .w r .w g t.b k w -> c u .rd _ w r_ w g t.b k w ,
r d . w r . s t a . f r w -> c u _ r d _ w r .s ta . f r w .
r d .w r .s t a .b k w -> c u . r d .w r . s t a .b k w .

-> c u . i n c . p t r .
r e s e t j > t r -> c u . r e s e t j > t r .
e v a l . s t a t e -> e v a l . s t a t e .
e v a l . e r r o r -> e v a l . e r r o r .

-> s t a t e . r d y .
e r r o r . r d y -> e r r o r . r d y .
e n . c n t r . a d d “ > c u .e n _ c n t r .a d d .
t x j i t r -> c u . t x j i t r);

c o m b _ lo g ic : c u .c o m b in a t io n a l PORT MAP (c s _ r d y _ f la g -> a ,
c s _ r d y _ in -> b ,
c s _ r d y _ c t r -> c ,
c s _ r d y -> c s _ rd y ,
p h i2 -> p h i2

END s t r u c t u r e ;
);

I P i l e Nasie : c u _ c o i^ .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e a c r ip t i o n :

I T h is e n t i t y im p le m en ta t h e c o m b in a t io n a l l o g i c o f th e
I c o s s s u n ic a tio n u n i t ' s c o n t r o l p a r t .

LIBRARY x l ; USE x l .x l_ s td .A L L ;
USE WORK. gn_de f i n i t i o n . ALL;

ENTITY c u _ c o m b in a t io n a l IS
PORT (c a _ r d y _ f la g : IN m vl;

c s _ r d y _ ln ; OUT stv l;
c s _ r d y _ c t r i IN BIT;
c s _ r d y : INOUT m vl;
p h i2 ! IN BIT
- - S e e com m ents by th e end o f t h i s f i l e
- - t x _ p t r _ i n I IN BIT;
- - tx _ p t r _ o u t ! OUT BIT

) I
END c u _ c o m b in a t io n a l;

ARCHITECTURE b e h a v io u r OP c u ^ c o m b in a tio n a l IS
COMPONENT c u _ c s _ rd y _ lo g ic

PORT (c a _ r d y _ f la g i IN sn rl;
c s _ r d y _ in : OUT m vl;
c s _ r d y _ e t r : IN BIT;
c s _ r d y _ in _ o u t : INOOT mvl

);

238 VHDL Description of Processing Elements Appendix D

END COMPONENT;

c s _ lo g ic _ b k ; c u _ c s _ rd y _ lo g ic

T h is i s n o t need ed h e r e , s i r
- - l o g i c i s im p lem en ted

d i r e c t l y i n t h e FSM p r o c e s s .

PROCESS (p h i2 , t x _ p t r _ in)

t x _ p t r _ o u t < - t x _ p t r _ i n AND p h l2 ;
END PROCESS;

END b e h a v io u r ;

PORT MAP
(c s _ r d y _ f la g -> c s _ r d y _ f la q ,

C 8 _ rd y _ in -> c s _ r d y _ in ,
c s _ r d y _ c t r
c s_ rd y _ in _ o

) :

;e th e "and p h i2 "

j t -> c s_ rd y

1 F i l e Name
I A u th o r
I D ate o f C r e a t io n
1 L a s t U pda te

c u _ c s rd y .v h d
M eyer E. N ig r i
0 5 /1 2 /9 1
2 0 /1 2 /9 1

I D e s c r ip t i o n :
I ------------------
I T h is e n t i t y im p le m en ts t h e c s _ r d y l o g i c f o r th e
1 C om m unication U n i t ’ s c o n t r o l o f t h e G e n e r ic N e u ro n '
I p r o c e s s in g e le m e n t.

LIBRARY x l ; USE x l .x l_ 3 td .A L L ;
USE W O R K .gn_defin ition .A L L ;

ENTITY c u _ c s _ rd y _ lo g ic IS

PORT (c s _ r d y _ f la g : in m vl;
c s _ r d y _ in : OUT mvl;
c s _ r d y _ c t r : IN BIT;
C 8 _ rd y _ in _ o u t : INOUT mvl>;

u _ C 8 _ rd y _ lo g ic ;

ARCHITECTURE Structure OF cu_cs_rdy_l o g i c IS
COMPONENT tri_state_gate

PORT (in p _ 3 _ s ta : IN mvl;
e n a b le : IN BIT;
o u t_ 3 _ s ta : OUT mvl);

END COMPONENT;
COMPONENT i n v e r t e r

PORT (in p u t : IN BIT;
output: OUT BIT);

END COMPONENT;

SIGNAL t r i 2 _ C t r : BIT;

BEGIN
t r i _ s t a t c _ l : t r i _ s t a t e _ g a t e PORT MAP (in p _ 3 _ s ta -> c s _ r d y _ f la g ,

e n a b le -> c s _ r d y _ c t r ,
o u t_ 3 _ s ta -> c s_ rd y _ in _ o u t

) ;

t r i _ a t a t e _ 2 : t r i _ s t a t e _ g a t e PORT MAP (in p _ 3 _ s ta ->
c s _ r d y _ in _ o u t ,

e n a b le -> t r i 2 _ c t r ,
o u t_ 3 _ s ta -> c s _ r d y _ in

i n v e r t _ c t r :

END s t r u c t u r e ;

) ;

i n v e r t e r PORT MAP (in p u t -> c s _ r d y _ c t r ,
o u tp u t -> t r i 2 _ c t r

Memory Unit

This unit comprises RAM components for states and weights, which are

implemented by the storage module. The addressing module is necessary to address the

memories. Each block of states is connected to Bus A, while the block of weights arc

connected into Bus B. The addressing is made in such a way that the two blocks of

memory are accessed simultaneously.

I F i l e Name : m u.vhd
I A u th o r I M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a a t U p d a te : 3 1 /1 2 /9 1

I D e a c r ip t i o n :

I T h ia e n t i t y im p lem en ta t h e Memory U n it o f th e
I G e n e r ic N e u ro n 'a p ro c e a a in g e le m e n t .
I

LIBRARY x l ; DSE x l . x l_ a td .A L L ;
USE W O R K .gn_defin ition .A L L ;

ENTITY m em _unit IS
PORT (o u _ in c _ p t r

e u _ in c _ p tr
c u _ tx
e u _ tx
e u _ r e a e t _ p t r
e u _ r e a e t _ p t r
c u _en_c n t r_ a dd
e u _ e n _ c n tr_ a d d
en d _ frv _ p h
end_bkw_ph
mem_add_bua
w e ig h t_ b u a :
a ta te a _ b u a :
c u _ c s _ w g t_ frv
e u _c8_w gt_ frw
c u _ rd _ w r_ w g t_ f rw

: IN BIT;
: IN BIT;
: IN BIT;
: IN BIT;
: IN BIT;
I IN BIT;
: IN BIT;
: IN BIT;
: OUT BIT;
: OUT BIT;

INOUT w ire _ v e c to r (ra m _ a d d r_ l in e a DOWNTO 1) ;
INOUT w i r e _ v e c to r (d a ta _ b u a _ l in e a DOWNTO 1);
INOUT w i r e _ v e c to r (d a ta _ b u 8 _ l in e s DOWNTO 1) ;

: IN BIT;

e u _ rd _ w r_ w g t_ frv : IN BIT
cu_oa_w gt_bkw i IN BIT
eu_ca_w gt_bkw : IN BIT
cu_rd_w r_w gt_bkw : IN BIT
eu_rd_w r_w gt_bkw : IN BIT
c u _ c a _ a ta _ frw : IN BIT
e u _ c a _ a ta _ frw : IN BIT
c u _ rd _ w r_ a ta _ frw : IN BIT
eu _ rd _ w r_ a ta _ frw i IN BIT
cu _ c a_ a ta _ b k w : IN BIT
eu _ c a_ a ta _ b k w : IN BIT
cu _ rd _ w r_ a ta _ b k w : IN BIT
eu _ rd _ w r_ a ta _ b k w : IN BIT

END m em _unit;

ARCHITECTURE s t r u c t u r e OF m em _unit IS

COMPONENT c o m p a ra to r
PORT (v a l u e l : IN m v l_ v e c to r(ra m _ a d d r_ l in e a DOWNTO 1) ;

v a lu e 2 : IN m v l_ v e c to r(ra m _ a d d r_ l in e a DOWNTO 1) ;
r e s u l t : OUT BIT);

END COMPONENT;

COMPONENT c o u n te r l
PORT (r e s e t IN BIT;

IN BIT;
t x : IN BIT;
v a lu e I OUT m v l_ v e c to r (ra m _ a d d r_ l in e s DOWNTO 1));

END COMPONENT;

COMPONENT t r i_ 8 ta te _ r a m _ a d d r
PORT (in p _ 3 _ s ta : IN m v l_ v e c to r (ra m _ a d d r_ lin e s DOWNTO 1);

e n a b le : IN BIT;
o u t_ 3 _ a ta : OUT w i r e _ v e c to r (ra m _ a d d r_ lin e s DOWNTO 1));

END COMPONENT;

COMPONENT o r l g a t e
PORT (i n i : IN BIT;

in 2 : IN BIT;
o u tp u t I OUT BIT);

END COMPONENT;

COMPONENT a to ra g e _ m o d u le
PORT (»mm_add_bus : IN w ire _ v e c to r (ra s v _ a d d r_ l in e s DOWNTO 1) ;

w e lg h t_ b u s : INOUT w i r e _ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
s t a t e s _ b u a : INOUT w i r e _ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1);
c s _ w g t_ f rv I IN BIT;
rd _ w r_ w g t_ frw : IN BIT;
c s .w g t.b k w : IN BIT;
r d .w r .w g t.b k w : IN BIT;
c s . s t a . f r w : IN BIT;
r d .w r . a t a . f r w : IN BIT;
c s . s t a .b k w : in BIT;
r d .w r . s t a .b k w : IN BIT);

END COMPONENT;

SIGNAL c n t r . o u t p u t : m v l .v e c to r (r a a u a d d r . l i n e a DOWNTO 1);
- - T h ere a r e 2 n e u ro n s c o n n e c te d to t h i s one from
- - t h e p re v io u s l a y e r .
SIGNAL r e g l . o u t p u t : a w l .v e c t o r (ra m _ e d d r_ lin e a DOWNTO 1)

: - ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ' ;
- - T h is n e u ro n i s c o n n e c te d t o 2 n e u ro n s i n t h e n e x t l a y e r .
SIGNAL r e g l . o u t p u t : m v l_ v e c to r (r a m _ e d d r . l in e s DOWNTO 1)

: “ ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ' ;
SIGNAL i n c j i t r , t x , r e s e t j > t r : BIT;
SIGNAL e n .c n t r _ a d d : BIT;
SIGNAL c s .w g t . f r w , c s .w g t.b k w , c s . s t a . f r w , c s . s t a .b k w : BIT;
SIGNAL r d .w r .w g t . f rw , rd .w r .w g t.b k w , r d _ w r .s t a . f r w , r d .w r .s t a .b k w

: BIT;

--FOR b l : c o m p a ra to r USE ENTITY w o r k .c o s f a r a to r (b e h a v io u r) ;
--FOR b l : c o m p a ra to r USE ENTITY w o r k .c o m p a ra to r (b e h a v io u r) ;
--FOR b 3 : c o u n te r l USE ENTITY w o rk . c o u n t e r l (s t r u c t u r e) ;
-F O R b « : t r i . s t a t e . r a m _ a d d r USE ENTITY

Appendix D VHDL Description of Processing Elements 239

w ork . t r i _ s t a t e _ r a iR _ « d d r (b e h a v io u r) ;
-FOR bS: or2gate USE ENTITY w o r k .o r 2 g a t e (beha v i o u r) ;
-FOR b6: or2gate USE ENTITY w o r k . o r 2 g a te(behaviour);
-FOR b7: or2gate USE ENTITY w o r k .o r 2 g a t c (beha v i o u r);
-FOR b8: or2gate USE ENTITY w o r k - o r 2gate<behaviour);
-FOR b 9 : or2gate USE ENTITY work o r 2 g a t e (behaviour);
-FOR ba: or2gate USE ENTITY work.or2ga t e (b e h a v i o u r);
-FOR bb: or2gate USE ENTITY w o r k . o r 2 g a te(behaviour);
-FOR be: or2gate USE ENTITY work o r 2 g a t e (behaviour);
-FOR bd: or2gate USE ENTITY w o r k . o r 2 g a t e (b e h a v i o u r);
- FOR be: cr2gate USE ENTITY work or2gate(b e h a v i o u r) ;
-FOR bf: or2gate USE ENTITY w o r k . o r 2 g a t e (b ehav i o u r);
-FOR bg: or2gate USE ENTITY w o r k .or2gate(b e h a v i o u r);
•FOR st: 3torage_module USE ENTITY

w o rk . s to r a g e _ r a o d u l e (s t r u c t u r e) ;

b l : c o m p a ra to r PORT MAP (r e g l _ o u t p u t , c n t r . o u t p u t , e n d _ f rw _ p h) ;
b 2 : c o m p a ra to r PORT MAP (r e g 2 _ o u tp u t , c n t r . o u t p u t , en d _ b k w _ p h);
b3 : c o u n t e r l PORT MAP (r e s e t . p t r , i n c . p t r , t x , c n t r . o u t p u t) ;
b4 : t r i . 9 t a t e . r a n v _ a d d r PORT MAP (c n t r . o u t p u t , e n . c n t r . a d d ,

inem_add_bus) ;
b5 : o r 2 g a te PORT MAP (c u . i n c j > t r , e u . i n c . p t r , i n c . p t r) ;
b6 : o r 2 g a t e PORT MAP (c u . t x , e u . t x , t x) ;
b7 : o r 2 g a te PORT MAP (c u . r e s e t . p t r , e u . r e s e t . p t r , r e s e t . p t r) ;
b8 : o r 2 g a te PORT MAP (c u . e n . c n t r . a d d , e u . e n . c n t r . a d d ,

e n . c n t r . a d d) ;
b9 : o r 2 g a te PORT MAP (c u . c s .w g t . f r w , e u . c s .w g t . f r w , c s .w g t . f r w)
b a : o r 2 g a te PORT MAP (c u .c s .w g t .b k w , e u .c s .w g t .b k w , c s .w g t.b k w)
bb : o r 2 g a te PORT MAP (c u . c s . s t a . f r w , e u . c s . s t a . f r w , c s . s t a . f r w)
b e : o r 2 q a te PORT MAP (c u . c s . s t a . b k w , e u .c s ._ s ta .b k w , c s . s t a .b k w)
bd : o r 2 g a te PORT MAP (c u . r d .w r .w g t . f r w , e u . r d .w r .w g t . f r w ,

r d . w r .w g t . f r w) ;
b e : o r 2 g a te PORT MAP (C U .rd .w r .w g t.b k w ,

r d .w r .w g t .b k w) ;
b f : o r 2 g a te PORT MAP (c u . r d . w r . s t a . f r w ,

r d . w r . s t a . f r w) ;
b g : o r 2 g a te PORT MAP (c u . r d .w r . s t a .b k w , e u . r d . w r . s t a . b k w ,

r d . w r . s t a . b k w) ;

u .r d .w r .w g t .b k w ,

u . r d . w r . s t a . f rw ,

s t : s t o r a g e .m o d u le PORT MAP (m em _add_bus,
w e ig h t .b u s ,
s t a t e s . b u s ,
c s .w g t . f r w ,
rd .w r .w g t . f r w ,
c s .w g t.b k w ,
rd .w r .w g t .b k w ,
c s . s t a . f r w ,
r d . w r . s t a . f r w ,
c s . s t a .b k w ,
r d .w r . s t a .b k w

END s t r u c t u r e ;

I F i l e Name
I A u th o r
I D a te o f C r e a t i
I L a s t U p d a te

: m u . s to r a . vhd
: M eyer E. N ig r
: 0 5 /1 2 /9 1
: 3 1 /1 2 /9 1 I

I D e s c r i p t i o n : I

I T h is e n t i t y im p le m en ts t h e s t o r a g e m odule o f t h e |
I memory u n i t . I
I I t c o n s i s t s o f RAMS d iv id e d in 2 g r o u p s . One f o r th e |
I fo rw a rd p h a s e o f t h e b ac k p r o p a g a t io n a lg o r i t h m and o t h e r |
I f o r t h e back w ard p h a s e . T h e re a r e two d a t a bu s an d one |

- - I a d d r e s s b u s . The w e ig h t .b u s c o n n e c ts t o t h e two RAM o f |
- - I t h e g ro u p fo rw a rd , w h i le th e s t a t e s . b u s c o n n e c ts t o th e |
- - I g ro u p o f backw ard RAMs. I

LIBRARY x l ; USE X l . X1 .3 t d . ALL;
USE W O R K .g n .d e fin itio n .A L L ;

ENTITY s to ra g e .m o d u le IS
PORT (m em _add.bus : IN w i r e . v e c t o r (r a i^ _ a d d r . l i n e s DOWNTO 1);

w e ig h t .b u s : INOUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1);
s t a t e s . b u s : INOUT w i r e _ v e c t o r (d a t a . b u s . l i n e s DOWNTO 1);
c s .w g t . f r w : IN BIT;
rd .w r .w g t . f r w : IN BIT;
c s .w g t.b k w : IN BIT;
rd .w r .w g t .b k w : IN BIT;
c s . s t a . f r w : IN BIT;
r d . w r . s t a . f r w : IN BIT;
c s . s t a .b k w ; IN BIT;
r d .w r . s t a .b k w : IN BIT);

END s to r a g e .m o d u le ;

ARCHITECTURE s t r u c t u r e OF s to r a g e .m o d u le IS
COMPONENT ram

PORT (a d d r : IN w i r e . v e c t o r (r a in _ a d d r . l i n e s DOWNTO 1);
d a ta : INOUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1);
r d .w r : IN BIT;
c s : IN BIT) ;

END COMPONENT;

FOR w e ig h ts . f o r w a r d :
FOR w e ig h ts .b a c k w a r d :
FOR s t a t e s . f o r w a r d :
FOR s t a t e s .b a c k w a r d :

OBS: CANNOT u s e t h e ab o v e b e c a u s e I w ant t o i n s t a n t i a t e
- - — — e n t i t y ram a s p o r t s w i th w ire .VECTORE i n s t e a d o f MVL.VECTOR

a s i t i s d e f in e d t h e r e .

USE ENTITY w o rk . ra m (b e h a v io u r)
USE ENTITY w o rk . raraj b e h a v io u r)
USE ENTITY w o rk . ra m (b e h a v io u r)
USE ENTITY w o rk . ra m (b e h a v io u r)

BEGIN
w e ig h ts . f o r w a r d :

w e ig h ts .b a c k w a r d :

s t a t e s . f o r w a r d :

s t a t e s .b a c k w a r d :

END s t r u c t u r e ;

m PORT MAP { a d d r -> m em _sdd_bus,
d a t a -> w e ig h t .b u s ,
r d .w r -> r d .w r .w g t . f r w ,
c s -> c s .w g t . f r w);

am PORT MAP (a d d r -> m em _add.bus,
d a t a “> w e ig h t .b u s ,
rd .w r -> rd .w r .w g t .b k w ,
c s -> c s .w g t.b k w

) ;

PORT MAP (a d d r -> m em _add_bus,
d a t a -> s t a t e s . b u s ,
rd .w r -> r d . w r . s t a . f r w .
c s -> c s . s t a . f r w

) ;

tn PORT MAP (a d d r •> m em _add.bus,
d a ta -> s t a t e s . b u s ,
r d .w r -> r d .w r . s t a .b k w ,
c s -> c s . s t a .b k w

) ;

Execution Unit

The data path of this unit is entirely built of structural components, which are built
from mixed behaviour-structure components. The FSM is entirely behavioural.

I F i l e Name : e x e o _ u n i t . vhd
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a a t U p d a te : 2 0 /1 2 /9 1

I D e a c r ip t i o n ; |

I T h ia e n t i t y im p le m en ta t h e E x e c u t io n U n i t o f t h e G e n e r ic |
I N e u ro n 'a p r o c e a a in g e le m e n t . j
I I

LIBRARY x l ; USE x l . x l _ a t d . ALL;
USE W O R K .g n _ d efIn itio n .A L L ;

ENTITY e x e c _ u n i t IS
PORT (a_ h u a

i_ b u a
a t a te _ r d y
e r r o r _ r d y
e v a l _ a t a t e
e v a l . e r r o r
e u _ e n _ o u tb u a
e n d _ f rv _ p h
end_bkw _ph
e u _ e n _ c n tr_ a d d

e u _ in c _ p t r
e u _ tx _ p t r
e u _ c a _ w g t_ fr v
eu _ c a_ w g t_ b k v
e u _ c a _ a ta _ f rw
eu _ c a _ a ta _ b k w
eu _ rd _ w r_ w g t_ f rw

INOOT w i r e _ v e c to r (d a t a _ b u a _ l in e a DOWNTO 1) ;
INOOT w i r e _ v e c to r (d a ta _ b u B _ l in e a DOWNTO 1) ;
OUT m v l_ v e c to r (d a t a _ b u a _ l in e a DOWNTO 1) ;

u _ rd _ w r_ a ta _ f rw

B IT;
BIT;

IN B IT;
IN B IT;
IN B IT;
IN BIT;
IN BIT;

B IT;
BIT;
BIT;
BIT;
B IT;
B IT;
BIT;
BIT;

OUT B IT;
OUT BIT;
OUT BIT;

B IT ;--------------- + -----MU C o n tr ô la

« u _ rd _ w r.8 ta .b k w : OUT BIT;
lo a d : IN BIT;
r e s e t : IN BIT;
l r n _ r c l BIT;
p h i l % IN BIT;
p h l2 : IN BIT

END e x e c _ u n i t ;

ARCHITECTURE a t r u c t u r e OF e x e c _ u n i t IS
COMPONENT e u _ d a ta p a th

PORT (a_bua : INOOT w i r e _ v e c to r (d a t a _ b u a _ l in e a DOWNTO 1) ;
b_bua : INOUT w i r e _ v e c to r (d a t a _ b u a _ l in e a DOWNTO 1) ;
i_ b u a : OUT m v l_ v e e to r (d a ta _ b u a _ l in e a DOWNTO 1) ;
w r_ b u a_ a , rd _ b u a _ a : IN BIT;
w r_ b u a_ b , rd _ b u a _ b : IN BIT;
a u x l_ c k , w r _ a u x l_ a , r e a e t _ a u x l , rd _ a u x l_ b : IN B IT;
a u x 2 _ c k , w r_ au x 2 _ a , rd _ a u x 2 _ b i IN B IT;
e j_ c k , w r _ e j_ a , r d _ e j_ t , r d _ e j_ a : IN BIT;
a j_ c k , w r _ a j_ a , r d _ a j_ b , r d _ a j_ x , rd _ a j_ a : IN BIT;
•x _ c k , w r _ a x _ e ta , w r_ax_b , rd _ a x _ b : IN BIT;
a e c _ c k , w r_ a c c _ a , p r e a e t_ a c c , r e a e t _ a c c ,
r d _ a c c _ a , rd _ a c c _ b , rd _ a c c _ a lu _ 2 : IN BIT;
a l u _ c t r I IN BIT;
rd _ a lu _ a : IN BIT;
a h i f t _ c t r ! IN BIT;
r d _ a h i f t _ a : IN BIT;
mr_ck< w r_ « u r_ a h if t , w r_m r_a, r d _ m r _ a h i f t : IN BIT;
m r_ la b , m r_ la b _ l : OUT m vl;
ca_ ro m , rd _ ro m : IN BIT;
r d _ * e ro _ b : IN BIT);

END COMPONENT;

COMPONENT e u _ c o n t r o l
PORT (p h i l

p h i2
r e a e t
l m _ r c l
lo a d
a t a te _ r d y
e r r o r _ r d y
e v a l a t a t e

IN BIT;
IN BIT;
IN BIT;

OUT BIT;
OUT BIT;
IN BIT;

240 VHDL Description of Processing Elements Appendix D

e v a l _ e r r o r : IN BIT;
en _ o u tb u 3 : IN BIT;
end_frw _ph : IN BIT;
end_bkv_ph ; IN BIT;
e n _ c n tr_ « d d : OUT BIT;
i n c _ p t r : OUT BIT;
t x _ p t r : OUT BIT;
cs_ w g t_ frw : OUT BIT; - - + ------ MU C o n tr o ls
os_wgt_blcw : OUT BIT;
C S _ s t « _ f r w : OUT BIT;
C3_3t«_bl;w : OUT BIT;
rd_w r_w gt_ frw : OUT BIT;
rd_w r_w gt_bkw : OUT BIT;
rd _ w r_ s t« _ frw : OUT BIT;
rd _ w r_ sta_ b k w : OUT BIT;
w r_bu3_a, r d _ b u s _ a : OUT BIT;
w r_bu3_b, rd _ b u s_ b : OUT BIT;
w r_ a u x l_ a , r e s e t _ p t r _ a u x l , rd _ a u x l_ b : OUT BIT;
w r_aux2_a, rd_aux2_b : OUT BIT;
w r_ e j_ a , r d _ e j_ z , rd _ e j_ a : OUT BIT;
w r_ 3]_ a , r d _ s j_ b , rd _ 3 j_ z , r d _ s j_ a : OUT BIT;
w r_ a x _ e ta , w r_ax_b , rd _ a x _ b : OUT BIT;
w r_ acc _ a , p r e s e t_ a c c , r e 3 e t_ a c c _ m p tr ,
rd _ a c c _ a , rd _ a c c _ b , rd _ a c c _ a lu _ 2 : OUT BIT;
a l u _ c t r : OUT BIT;
rd _ a lu _ a ; OUT BIT;
3 h i f t _ c t r : OUT BIT;
r d _ s h i£ t_ a ; OUT BIT;
w r_ m r_ 3 h if t, w r_m r_a, r d _ m r _ s h i f t : OUT BIT;
m r_ l3 b , m r_ lsb _ I : IN m vl;
c3_rom , rd_ rom : OUT BIT;
rd _ z e ro _ b : OUT BIT

) ;
END COMPONENT;

SIGNAL w r_ b u s_ a , rd _ b u s_ a ; BIT;
SIGNAL W r _ b u 3 _ b , r d _ b u s _ b : BIT;
SIGNAL w r_ a u x l_ a , r c 3 e t_ a u x l , rd _ a u x l_ b : BIT;
SIGNAL w r_aux2_a, rd _ a u x 2 _ b : BIT;
SIGNAL w r_ e j_ a , r d _ e j_ z , rd _ e j_ a : BIT;
SIGNAL w r_ 3 j_ a , r d _ s j_ b , rd _ 3 j_ z , r d _ a j_ a : BIT;
SIGNAL w r_ a x _ e ta , w r_ax_b , rd _ a x _ b : BIT;
SIGNAL w r_ acc _ a , p r e s e t_ a c c , r e s e t_ a c c _ m p tr ,

rd _ a c c _ a , rd _ a c c _ b , rd _ a c c _ a lu _ 2 : BIT;
SIGNAL a l u _ c t r : BIT;
SIGNAL rd _ a lu _ a : BIT;
SIGNAL 3 h i f t _ c t r : BIT;
SIGNAL r d _ 3 h i f t_ a : BIT;
SIGNAL w r_ ra r_ sh i£ t , w r_m r_a, r d _ m r _ s h i f t ; BIT;
SIGNAL m r_ lsb , m r_ l3 b _ l : m vl;
SIGNAL cs_ rom , rd_rom : BIT;
SIGNAL rd _ z e ro _ b : BIT;

FOR b l ; e u _ d a ta p a th USE ENTITY WORK. e u _ d a t a p a t h (s t r u c t u r e);
-FOR b2 ; e u _ c o n t r o l USE ENTITY w o rk .e u _ c o n t r o l (s t r u c t u r e) ;

b l : e u _ d a ta p a th PORT MAP (a _ b u s ,
b_b u s,
z_ b u s,
w r_ b u s_ a , rd _ b u s_ a ,
w r_bus_b , rd _ b u s_ b ,
p h i l , w r_ a u x l_ a , r e s e t _ a u x l ,
rd _ a u x l_ b ,
p h i2 , w r_aux2_a, rd _ a u x 2 _ b ,
p h l2 , w r_ e j_ a , r d _ e j_ z , r d _ e j_ a ,
p h l2 , w r _ s j_ a , r d _ s j_ b , r d _ s j_ z ,
r d _ s j_ a ,
p h i2 , w r_ a x _ e ta , w r_ax_b , rd _ a x _ b ,
p h i l , w r_ a c c _ a , p r e s e t_ a c c ,
re s e t_ a c c _ m p tr ,
rd _ a c c _ a , rd _ a c c _ b , r d _ a c c _ a lu _ 2 ,
a l u _ c t r ,
rd _ a lu _ a ,
s h i f t _ e t r ,
r d _ s h i f t _ a ,
p h i l , w r_ m r _ s h if t , w r_m r_a,
rd _ m r_ « h i£ t ,
m r_ lsb , m r _ ls b _ l ,
cs_ rom , rd_ rom ,
rd _ z e ro _ b):

b2; e u _ c o n t r o l PORT MAP (p h i l ,
p h i2 ,
r e s e t ,

l o a d ,
s t a t e _ r d y ,
e r r o r . r d y ,
e v a l . s t a t e ,
e v a l . e r r o r ,
e u _ e n .o u tb u s ,
end.frw.pb,
eod.bkw.ph,
e u _ e n .c n t r .a d d ,
e u . i n c j) t r ,
e u . t x j) t r ,
e u .c s .w g t . f r w ,
e u .c s .w g t j jk w ,
e u _ c s . s t a . f r w ,
e u . c s . s t a .b k w ,
e u . r d .w r .w g t . f r w ,
e u _ rd .w r .w g t.b k w ,
e u .r d .w r _ s t a . f rw ,
e u _ r d .w r .s ta _ b k w ,
w r .b u s .a , r d _ b u s .a ,
w r .b u s .b , r d .b u s _ b ,
w r . a u x l . a , r e s e t . a u x l , r d . a u x l . b ,
w r .a u x 2 _ a , rd _ a u x 2 .b ,
w r . e j . a , r d . e j . x , r d . e j . a ,
w r . s j . a , r d . s j . b , r d _ s j_ z , r d . s j _ a ,
w r . a x . e t a , w r .a x .b , r d _ a x .b ,
w r .a c c .a , p r e s e t . a c c , r e s e t . a c c .m p t r ,
r d . a c c . a , r d _ a c c .b , r d . a c c . a l u . 2 ,
a l u . c t r ,
r d _ a lu . a ,
s h l f t . c t r ,
r d _ s h i f t . a ,
w r . m r . s h i f t , w r .m r .a , r d . m r . s b i f t ,
m r . l s b , m r . l s b . l ,
c s .r o m , rd_ rom ,
r d _ z e r o .b);

e u . r e s e t j > t r < - r e s e t . a u x l ;

END s t r u c t u r e ;

- - 1 F i l e Name 1 e u .d p a th vhd 1
- - 1 A u thor : M eyer E. N ig r i
- - 1 D a te o f C r e a t io n : 0 5 /1 2 /9 1
- - 1 L a s t U pdate I 2 0 /1 2 /9 1

I D e s c r ip t io n ;

I T h is e n t i t y im p le m en ts t h e E x e c u tio n U n i t '
I f o r t h e G e n e r ic N euron .

d a t a p a th

LIBRARY x l ; USE x l . x l . s t d . ALL;
USE WORK.g n .d e f i n i t ion.A LL;
--USE w o rk . ro sL d e f i n i t i o n a l l ;
- USE work e u .d e f i n i t i o n a l l ;

ENTITY e u .d a t a p a th IS
PORT (a .b u s : INOUT w i r e .v e c t o r (d a t a _ b u s . l i n e s DOWNTO)

b .b u s : INOUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO)
z .b u s : OUT m v l_ v e c to r (d a t a _ b u 3 . l i n e s DOWNTO 1) ;
w r .b u s .a , r d . b u s . a : IN BIT;
w r .b u s .b , r d .b u s .b : IN BIT;
a u x l .c k , w r .a u x l .a , r e s e t . a u x l , r d . a u x l . b : IN BIT;
au x 2 _ ck , w r . a u x l . a , r d . a u x l .b : IN BIT;
e j . c k , w r . e j . a , r d . e j . z , r d . e j . a : IN BIT;
s j . c k , w r . s j . a , r d . s j . b , r d . s j . z , r d . s j . a : IN BIT;
a x .c k , w r . a x . e t a , w r .a x .b , r d . a x . b : IN BIT;
a c c .c k , w r .a c c .a , p r e s e t . a c c , r e s e t . a c c ,
r d . a c c . a , r d . a c c .b , r d . a c c . a l u . l : IN BIT;
a l u . c t r ; IN BIT;
r d . a l u . a : IN BIT;
s h i f t . c t r : IN BIT;
r d . s h i f t . a : IN BIT;
m r .c k , w r .m r . s h i f t , w r .m r .a , r d . m r . s h i f t : IN BIT;
m r . l s b , m r . l s b . l : OUT m v l;
c s .ro m , rd .ro m : IN BIT;
r d . z e r o . b : IN BIT)l

END e u .d a t a p a th ;

ARCHITECTURE s t r u c t u r e OF e u .d a t a p a th IS
COMPONENT t r i . s t a t e . d a t a . b u s

PORT (i n p . I . s t a : IN w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
e n a b le : IN BIT;
o u t . I . s t a ; OUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1));

END COMPONENT;

COMPONENT t r i . s t a t e . r a m . a d d r
PORT (i n p . I . s t a : IN w i r e .v e c t o r (r a s L a d d r . l i n e s DOWNTO 1) ;

e n a b le ; IN BIT;
o u t . l . s t a : OUT w i r e .v e c t o r (r a m _ a d d r . l i n e s DOWNTO 1)

I ;
END COMPONENT;

COMPONENT t r i _ s t a t e . r o m . s d d r
PORT (i n p . l . s t a

e n a b le
o u t . J . s t a);

END COMPONENT;

COMPONENT r e g lx l
PORT (a

c t r . a . w r

w i r e _ v e c to r (r o s (_ a d d r . l i r
IN BIT;
OUT w i r e . v e c t o r { r o m .a d d r . l i

DOWNTO 1) ;

s DOWNTO 1)

IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
OUT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1);
IN BIT;
IN BIT

END COMPONENT;

COMPONENT r e g lx l
PORT (a

c t r . a . w r
b
c t r . b . r d

c t r . c . r d

; IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
: IN BIT;
: OUT m v l .v e c to r (d a t a . b u s . l i n e s DOWNTO 1) ;
; IN BIT;
: OUT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
: IN BIT;
: IN BIT

END COMPONENT;

COMPONENT r e g lx l
PORT (a

c t r . a . w r
b
c t r . b . r d

c t r . c . r d

c t r . d . r d
ck

) ;
END COMPONENT;

COMPONENT regO xI
PORT (a

END COMPONENT;

COMPONENT r e g l x l
PORT (a

c t r . a . w r
b
c t r . b . w r

c t r . c . r d

END COMPONENT;

COMPONENT r e g lx lm r
PORT (a

c t r . a . w r

: IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
: IN BIT;
: OUT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
: IN BIT;
! OUT a iv l .v e c to r (d a t a . b u s . l i n e s DOWNTO 1) ;

: ODT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
: IN BIT;
: IN BIT

C tr .b .w r

c t r . c . r d
I s b
I s b . l

END COMPONENT;

COMPONENT r e g l x l
PORT (a

c t r . a . w r

e t r . c . w r
d
c t r . d _ r d
e
c t r . e . r d
f
c t r . f . r d

END COMPONENT;

COMPONENT a l u
PORT (o p e r l

o p e r l
r e s u l t
c o n t r o l):

OUT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1)) ;

IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
OUT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN BIT

IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
ODT w ire v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
ODT m vl;
ODT m vl;
IN BIT

IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN w i r e .v e c t o r (d a t a _ b u s . l i n e s DOWNTO 1) ;
IN BIT;
ODT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
ODT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
ODT w i r e .v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT;
IN BIT

IN w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
ODT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
IN BIT

Appendix D VHDL Description of Processing Elements 241

END COMPONENT;
d i n t . b u s . a ,

COMPONENT s h i f t . n c t r . d . r d
PORT { d l : w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ; i n t . b u s . b ,

d3 : w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ; c t r . c . r d
q l : w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ; f a lu _ o p e r2 ,
q2 ; w i r e . v e c t o r (d a t a . b u s . l i n e s 1); c t r . f . r d r d . a c c . a l u .
c k :

) ;
BIT ck

);
END COMPONENT;

COMPONENT rom
PORT (a d d r

d a ta
IN w i r e _ v e c to r (r o m _ a d d r _ lin e s DOWNTO 1) ;
OUT w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;

OUT w ir e _ v e c to r (1 6 DOWNTO 1)) ;

END COMPONENT;

COMPONENT one_16
PORT (one_16

END COMPONENT;

COMPONENT gnd_16
PORT (gnd_16 : OUT w i r e _ v e c to r (1 6 DOWNTO 1)) ;

END COMPONENT;

COMPONENT la tc h _ d b
PORT (d : IN m v l_ v e c to r (d a ta _ b u s _ l in e 3 DOWNTO 1) ;

q : OUT m v l_ v e c to r (d a ta _ b u s _ l in e s DOWNTO 1) ;
c k ; IN BIT

) ;
END COMPONENT;

COMPONENT o r 2 g a te
PORT (i n p u t l : IN BIT;

I n p u t l : IN BIT;
o u tp u t I OUT BIT

) ;
END COMPONENT;

SIGNAL o n e _ b u s : w l r e _ v e c t o r (16 DOWNTO 1) ;
SIGNAL g n d _ b u s ; w i r e _ v e c to r (1 6 DOWNTO 1) ;
SIGNAL in t_ b u s _ a : w i r e _ v e c to r (d a t a _ b u s _ l in e a DOWNTO 1) ;
SIGNAL in t_ b u s _ b ; w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
SIGNAL e t a _ o u t : w i r e _ v e c t o r (d a ta _ b u s _ l in e * DOWNTO 1) ;
SIGNAL a lu _ c p e r 2 : w i r e _ v e c to r (d a ta _ b u » _ l in e a DOWNTO 1) ;
SIGNAL a l u _ r e s u l t : w i r e _ v e c t c r (d a ta _ b u a _ l in e s DOWNTO 1) ;
SIGNAL m s b _ a h i f t_ o u t : w i r e _ v e c to r (d a ta _ b u » _ l in e » DOWNTO 1) ;
SIGNAL l s b _ s h i f t _ o u t : w i r e _ v e c to r (d a t a _ b u s _ l in e s DOWNTO 1) ;
SIGNAL m u l t i p l i e r _ o u t : w i r e . v e c t o r (d a t a _ b u s _ l i n e s DOWNTO 1) ;
SIGNAL in t_ z _ b u s : m v l . v e c t o r (d a t a . b u s . l i n e s DOWNTO 1) ;
SIGNAL l a t c h . b u s . z : BIT;

t r i . a . i n : t r i . s t a t e . d a t a . b u s PORT MAP (i n p . l . s t a -> a .b u s ,
e n a b le -> r d . b u s . a ,
o u t . l . s t a -> i n t . b u s . a

) :

t r i . a . o u t ; t r i . s t a t e . d a t a . b u s PORT MAP (i n p . l . s t a -> i n t . b u s . a ,
e n a b le -> w r .b u s .a ,
o u t . l . s t a -> a .b u s

t r i . s t a t e . d a t a . b u s PORT MAP (i n p . l . s t a -> b .b u s ,
e n a b le -> r d .b u s .b ,
o u t . l . s t a -> i n t . b u s . b

t r i . b . o u t : t r i . s t a t e . d a t a . b u s PORT MAP (i n p . l . s t a -> i n t . b u s . b ,
e n a b le -> w r .b u s .b .
o u t . l . s t a -> b .b u s):

r e g . a u x l : r e g l x l PORT MAP < a -> i n t . b u s . a ,
c t r . a . w r -> w r . a u x l . a ,
b -> g n d .b u s ,
c t r . b . w r -> r e s e t . a u x l ,
c -> i n t . b u s . b ,
c t r . c . r d -> r d _ a u x l .b ,
ck -> a u x l .c k

r e g . a u x l : r e g l x l PORT MAP (a
c t r . a . w r

r e g . e j : r e g l x l PORT MAP (a

-> i n t . b u s . a ,
-> w r . a u x l . a ,
-> i n t . b u s J) ,
-> r d _ a u x l .b ,
-> a u x l .c k

l a t c h . » J j u s : l a t c h . d b PORT MAP < d -> i n t . z . b u s ,
-> z .b u s ,

ck -> l a t c h . b u s . z

l a t c h . l o g i c : o r l g a t e PORT MAP (i n p u t l -> r d . « j . z ,
i n p u t l -> r d . s j . z ,
o u tp u t -> l a t c h . b u s . z

r e g . a c c i r e g l x l PORT MAP (

alu.block: alu PORT MAP (operl -> int.bus.b,
operl -> alu.operl,
result -> alu.result,
control -> alu.ctr

) :

rd.alu.res: tri.state.data.bus PORT MAP (inp.l.sta ->
alu.result,

enable -> rd.alu.
o ut.l.sta -> int.bus);

shift.alu: shift.n PORT MAP (dl -> multiplier.out,
dl -> alu.result,
ql -> Isb.shift.out,
ql -> msb.shift.out,
ck -> shift.ctr

) ;

r d.s h i f t : tri.state.data.bus PORT MAP (inp.l.sta ->
s3b.shift.out,

enable -> rd.shift.
out.l.sta -> int.bus.a

r e g lx lm r PORT MAP (

):
-> I s b . s h i f t . o u t ,

.w r -> w r . m r . s h i f t ,
b -> I n t . b u s . a ,
c t r . b . w r -> w r .m r .a ,
c -> m u l t i p l i e r . o u t ,
c t r . c . r d -> r d . m r . s b i f t ,
I s b •> m r . l s b ,
I s b . l -> m r . l s b . l ,
ck -> m r.c k
);

ro m .b lo c k : rom PORT MAP (a d d r -> i n t . b u s . b ,
d a t a -> i n t . b u s . a ,
r d -> rd .ro m ,
c s -> c s .r o m

) ;

w r .z e r o .b u s .b : t r i . s t a t e . r o m . a d d r PORT MAP
(i n p . l . s t a -> g n d .b u s ,

e n a b le -> r d . z e r o . b ,
o u t . l . s t a -> i n t . b u s . b

) .
p u l lu p .b u s ; o n e . l 6 PORT MAP (one_16 -> o n e .b u s) ;

p u lld o w n _ b u s : g n d . l6 PORT MAP (g n d . l6 -> g n d .b u s) ;

END s t r u c t u r e ;

I F i l e Name
I A u th o r
I D a te o f C r e a t io n
I L a s t U pdate

M eyer E. N igr
O S /11 /91
1 0 /1 2 /9 1

I D e s c r ip t i o n :

I T h is e n t i t y im p le m en ts t h e E x e c u tio n U n i t 's FSM o f th e
I G e n e r ic N e u ro n 's p r o c e s s in g e le m e n t .

LIBRARY x l ; USE x l .x l . s t d .A L L , S T D .t e x t io . ALL, x l . x l . i o . ALL;
USE W O R K .g n .d e fin itio n .A L L ;

ENTITY e u .f s m IS
PORT (r e s e t

p h i l
p h i l
e v a l . e r r o r
e v a l . s t a t e
e r r . r d y
s t . r d y
e n .c n t r . a d d
e n d .f rw j> h
e n d .b k w .p h
l m . r c l
c s .w g t . f r w
c s .w g t.b k w
c s . s t a . f r w

a >> in t_ b u a _ a . cs_ s ta _ b k w ODT BIT; - - 1 1
c t r . a . w r -> w r_ e j_ a . rd_w r_w gt_ frw ODT BIT; - - 1 1
b in t_ z _ b u s . rd_w r_w gt_bkw ODT BIT; - - 1 1
c t r . b . r d r d _ e j_ z . rd _ w r_ s ta _ frw ODT BIT; - - 1 1

in t_ b u s _ a . rd _ w r_ sta_ b k w ODT BIT; - - 1 1
c t r . c . r d r d _ e j_ a . i n c _ p t r ODT BIT;
ck e j_ c k r e s e t _ p t r _ a u x l ODT BIT; -■ Mem A d d r e s s in g C n tr C o n tr o l s

in c _ m p tr ODT BIT; - - M u l t ip ly C o u n te r C o n tr o l s
re s e t_ a c c _ m p tr ODT BIT;

a in t_ b u s _ a . e n d _ m u lt ip ly IN BIT;
c t r . a . w r w r _ s j_ a . rd _ b u s_ a ODT BIT; - - +---B D S A C o n t r o l s - -+
b in t_ b u s _ b . w r_bus_a ODT BIT;
c t r . b . r d r d _ s j_ b . rd _ b u s_ b ODT BIT; - - +---- BUS B C o n t r o l s - - *
c in t_ z _ b u s , w r_bus_b ODT BIT;
c t r . c . r d r d _ s j_ z . w r_ a u x l_ a ODT BIT; - - + ---- ADXl C o n t r o l s - - - *
d in t_ b u s _ a . rd _ a u x l_ b ODT BIT;
c t r . d _ r d r d _ s j_ a . w r_ a u x l_ a ODT BIT; - - * ---- ADXl C o n t r o l s -----*
ck s j_ c k rd _ a u x 2 _ b ODT BIT;

w r . e j . a
r d . e j . z
r d . e j . a
w r . s j . a
r d . s j . b
r d . s j . z
r d . s j . a
w r . a x . e t a
w r .a x .b
w r .a c c .a

) ; p r e s e t . a c c : ODT BIT; - 1 1
r d . a c c . a BIT; - 1 1

; • ■> e t a _ o u t) ; r d . a c c . b BIT; - 1 1
r d . a c c . a l u . 1 BIT;

-> e t a _ o u t . a l u . c t r BIT;
c tr_ a _ w r -> w r_ a x _ e ta . m u l t i p ly BIT;
b -> in t_ b u s _ b . r d . a l u . a ! ODT BIT;
c tr_ b _ w r -> w r_ax_b. s h i f t . c t r : ODT BIT; * ---- SHIFT C o n t r o l - - *

-> in t_ b u s _ b . r d . s h i f t . a I ODT BIT;
c t r _ c _ r d -> rd _ a x _ b . w r j a r . s h i f t B IT;
ck -> ax _ ck w r .m r .a : ODT BIT;

r d j i r . s h i f t : ODT BIT;
c s .r o m : ODT BIT; * ---- ROM C o n tr o l s - - *

: a -> in t_ b u s _ a . ! ODT BIT
c tr_ a _ w r) ;
b -> o n e_ b u s . END e u .f s m ;
c tr_ b _ w r -> p r e s e t . a c c .
c -> g n d _ b u s . ARCHITBCTDRE b e h a v io u r OF e u .f s m IS

IN BIT;
IN BIT;
IN BIT;

OUT BIT;
ODT BIT;
ODT BIT;
IN BIT;
IN BIT;
IN BIT;
ODT BIT;
ODT BIT;
ODT BIT;

+ Mem. U n it C o n t r o l s +

OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;
OUT BIT;

Bj C o n t r o l * - - -

+ S j C o n tr o l* ----

♦ - - - #UC C o n t r o l* -

+---- ACC C o n tr o l* -

242 VHD L Description of Processing Elements Appendix D

SIGNAL c u r r e n t _ s t a t e j CHARACTER ' A * ;
SIGNAL n e x t _ s t a t e : CHARACTER 'A *;

debug_fsm : PROCESS - - (p h i l , p h l2)
VARIABLE 1: l i n e ;

--WAIT UNTIL p h i l 'e v e n t OR p h l 2 'e v e n t ;
WAIT UNTIL p h i 2 ’EVENT AND p h i2 -
w r i t e (1 . "Time i s ") ;
w r i t e (1 , NOW. RIGHT, 2) ;
w r i t e (1 , " EU i s in S t a t e ") ;
w r i t e (1 , c u r r e n t _ s t a t e , RIGHT, 2);
w r i t e l i n e (o u tp u t , 1) ;

END PROCESS d ebug_fsn i;

s y n c h : PROCESS
VARIABLE f l a g : BOOLEAN FALSE;

WAIT UNTIL phi2*EVENT AND p h i2 - ' 1 ' ;
c u r r e n t _ s t a t e < - n e x t _ s t a t e ;

END PROCESS sy n c h ;

f i n i t e _ s t a t e _ m a c h i n e : PROCESS
VARIABLE f l a g : BOOLEAN FALSE;
VARIABLE 1: l i n e ;

PROCEDURE c a rry _ o n _ m u lt_ m r_ a x IS

WAIT UNTIL p h i2 - *1*;
m u l t i p ly < - ' 1 ' , 'O ' AFTER tpw ;
r d _ a c c _ a lu _ 2 < - 'O ' AFTER tp w ; - - ALU(2)<- ACC
-- The 2 l i n e s below a r e now im p le m en ted i n t h e s t r u c t u r e

-- rd _ a x _ b < - (m r . l s b XOR m r . l s b . l) , 'O ' AFTER Tpw;
- ' rd _ z e ro _ b < - no t (m r . l s b XOR m r . l s b . l) , 'O ' AFTER T|
rd _ m r _ s h i f t <” '1 ' , 'O ' AFTER tpw ; - - s h i f t (l) <
s h i f t . c t r < - ' 1 ' , ' 0 ' AFTER tpw ;
in c _ m p tr < ' ’ 1 ’ , ' O' AFTER tpw ;
- - Do t h i s d u r in g th e n e x t p h i l :
r d _ s h i f t _ « < - '1 ' AFTER tp w + tp s .

O' AFTER tp w + tp s + tp w ;- - A C C < -s h if t (2)
w r_ acc _ a < • AFTER tp w + tp s , 'O ' AFTER tp w + tp s+ tp w ;
u r _ m r _ s h i f t < - ' ! ' AFTER tp w + tp s .

' 0 ' AFTER tp w + tp s + tp w ; - M R < - s h i f t (l)

t e s t o n ly , rem ove t h i s . . .
--w r_ b u s_ a < - ' 1 ' , 'O ' AFTER Tpw+Tps+Tpw;
--w r_ b u s_ b < - ' 1 ' , 'O ' AFTER Tpw;

END c a rry _ o n _ m u lt_ m r_ ax ;

BEGIN
-- E very t e s t i n t h i s p r o c e s s w i l l be ta k e n d u r in g p h i l .
- - w h i le t h e a c t i o n s p e r fo rm e d w i l l b e ta k e n d u r in g p h l2
WAIT UNTIL phil'EV EN T ' AND p h i l - ' 1 ' ;
WAIT FOR 1 n s ; -- Tiraimg p ro b le m b e tw e e n EU ai
CASE c u r r e n t _ 3 t a t e IS

WHEN 'A ' ->
IF (r e s e t - ' 1 ') THEN

- 'A ' ;
e n _ c n tr_ a d d < - ’ 0 • ;
cs_ w g t_ frw < - O ' ;
rs_wgt_b)cw < - O' ;

c s . s t a .b k w < - O' ;
rd _ w r_ w g t_ fr■w <- 'O ' ;
rd_w r_w gt_bkw < - O ';
rd _ w r_ s ta _ f r w < - 'O ' ;
rd _ w r_ s ta_ b k w < - ' 0 ' ;

< - 'O ’ ;
X l< - 'O ';

< - 'O ';
r e s e t_ a c c _ m p tr < - 'O ';
rd _ b u s_ a < - 'O ' ;
w r_bus_a < - 'O ' ;
rd _ b u s_ b < - 'O ’ ;

< - 'O ';
w r_ a u x î_ a < - ’ O’ ;
rd _ a u x l_ b < - 'O ’ ;
w r_ au x J_ a < - 'O ’ ;
rd _ a u x 2 _ b < - 'O ';
w r_ e j_ a < - 'O ’ ;
rd _ e j_ z < - 'O ' ;
rd _ e j_ a < - 'O ' ;
w r _ s j_ a < - 'O ’ ;
r d _ s j_ b < - 'O ' ;
rd _ s j_ z < - 'O ';
r d _ s j_ a < - 'O ' ;
w r_ a x _ e ta < - 'O ';
w r_ax_b < - 'O ';
w r_ acc _ a < - 'O ';
p r e s e t_ a c c < - 'O ' ;

< - O ';
rd _ a c c _ b < - 'O ' ;
rd _ a c c _ a lu _ 2 < - 'O ';
a l u _ c t r < - 'O ';
m u l t i p ly < - 'O ';
rd _ a lu _ a < - 'O ';
s h i f t . c t r < - 'O ' ;
r d . s h i f t . a < - O' ;
w r .B i r . s h i f t < - 'O ';
w r .m r .a < - 'O ';
r d . m r . s h i f t < - 'O ';

< - 'O ’ ;
< - 'O ';

ELSIF (e v a l . s t a t e - ' 1 ') THEN
n e x t . s t a t e <- B ';
WAIT UNTIL p h l2 -
r e s e t j > t r . « u x l < - '1 * ,

n e x t . s t a t e < - 'A *;
END IF ;

•O' AFTER tp w ; AUXl < 0

- - P r e p a r e r e g i s t e r s f o r

A d d re s s i s 0

WHEN 'S ' ->
m u l t i p l i c a t i o n

n e x t . s t a t e < - 'C * ;
WAIT UNTIL p h i2 - ' I * ;
r e s e t . a c c . m p t r < - *1’ , 'O' AFTER tpw ;
e n . c n t r . a d d < - 1 ' , 'O ' AFTER tpw ;
c s . s t a . f r w < - AFTER 1 n s , 'O' AFTER tp w ; - - MR <- Sf
r d . w r . s t a . f r w < - '1 * , 'O' AFTER tpw ;
r d . b u s . a < - 'O' AFTER tpw ;
w r .m r .a < - ' 1 ' , 'O' AFTER tpw ;
c s .w g t . f r w < - 'O' AFTER tp w ; - - AX < Wf
r d .w r .w g t . f r w < - 'O' AFTER tpw ;
r d . b u s . b < - * 1 ', 'O' AFTER tpw ;
w r .a x .b < - ' 1 ' , 'O’ AFTER tpw ;

WHEN 'C ->
IF (e n d .m u l t i p ly - ' ! ') THEN

n e x t . s t a t e <:• 'D ' ;
ELSE

c a r ry .o n _ m u 1t . m r . a x ;
n e x t . s t a t e < - 'C ;

- - M u l t ip ly MR • AX

WHEN D' ->
f l a g FALSE;
IF (e n d .f r w .p h -

n e x t . s t a t e <-

n e x t . s t a t e < - '
f l a g TRUE;

END IF ;
WAIT UNTIL p h i2 -
IF f l a g THEN

i n c . p t r < - ' 1 ' ,
END IF ;
r d . a u x l . b < - ' 1 ' ,
r d .a c c .a l u _ 2 < - ']
r d . a l u . a < - ‘ 1*, '
w r .a u x l .a < - ' 1 ' ,

- t e s t o n ly , rem ove t h i a . . .

- - A c cu m u late S • W

1 ') THEN
E ' ;

■O' AFTER tpw ;

O' AFTER tpw ;
, O' AFTER tp v
' AFTER tpw ;
O' AFTER tpw ;

- - AUXl <- AUXl

- - w r .b u s .a < - ' 1 ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , *0* AFTER Tpw;

C a l c u l a t e T h re s h o ld

- - T h is t e s t i s done in p h i l ,
- - T h a t 's why we n ee d a f l a g .

WHEN ' E ' ->
f l a g FALSE;
IF (l r n . r c l - '1') THEN

n e x t . s t a t e < - ' F ' ;
f l a g TRUE;

n e x t . s t a t e < - A ';
END IF ;
WAIT UNTIL p h i2 -
IF f l a g THEN

p r e s e t . a c c < - ' 1 ' ,
•O' AFTER tpw ; - - P re p a re ACC t o do 1 - S j

r e s e t . p t r . a u x l < - ' 1 ' ,
•O' AFTER tpw ; - - th e n e x t s t a t e . . .

END IF ;
r d . a u x l . b < - ' 1 ' ,

'O ' AFTER tpw ;
c s .r o m < - 1 ' , 'O ' AFTER tpw ;
rd .ro m < - '1', 'O ' AFTER tpw ;
w r . s j . a < - '1', 'O ' AFTER tpw ;
r d . s j . z < - '1', 'O ' AFTER tpw ;
s t . r d y < - 'O ' AFTER tpw ;

- - S j <- th r e s h o ld (<

- - se n d S j o u t

- - t e s t o n ly , rem ove t h i s

- w r . b u s . a < - ' 1 ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw,

WHEN ' P ' ->
n e x t . s t a t e < - ' f ' ;
WAIT UNTIL p h i2 - '1 * ;
r d . a c c . a l u . 2 < - ' 1 ' , 'O ' AFTER tpw ;
r d . s j . b < - ' 1 ' , 'O ' AFTER tpw ;
r d . a l u . a <- 'O ' AFTER tpw ;
w r .a c c .a <- ' 1 ' , 'O ' AFTER tpw ;
a l u . c t r < - '1 *,

•O' AFTER tpw ; - - I n d i c a t e s i t

- - ACC <- 1 - S j (ACC - 1)

3 n ly , rem ove th i a

•O' AFTER Tpw;
•O' AFTER Tpw;

WHEN ' f -> - - P re p a re r e g i s t e r s f o r m u l t i p l i c a t i
n e x t . s t a t e < - G’ ;
WAIT UNTIL p h i2 - *1 ' ;
r e s e t . a c c . m p t r < - * 1 ', 'O ' AFTER tpw ; - - ACC < 0
r d . a c c . b < - ' 1 ' , 'O ' AFTER tpw ;
w r .a x .b < - ' 1 ' , 'O ' AFTER tpw ;
r d . s j . a < - ' 1 ’ , 'O ' AFTER tpw ;
w r .m r .a < - ' 1 ' , 'O ' AFTER tpw ;

- - t e s t o n ly , rem ove t h i a . . .

- - w r .b u s .a < - ' I ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - '1 * , 'O ' AFTER Tpw;

- - AX < ACC (o ld)

- - MR < Sj

WHEN 'G ' ->
IF (e n d .m u l t i p ly - ' 1 ') THEN

n e x t . s t a t e < - 'H ';
ELSE

c a r r y . o n__mu 1 t .m r . a x ;
n e x t . s t a t e < - 'G ';

WHEN H' ->
n e x t . s t a t e < - ' I ' ;
WAIT UNTIL p h i2 - * 1 ';
r d . a c c . a < - ' 1 ' , 'O ' AFTER tpw ;
w r . e j . a < - ' 1 ' , 'O ' AFTER tpw ;

- - M u l t ip ly S j * AX (A X -l-S j)

E j < ACC

- - t e s t o n ly , rem ove t h i s .

- - w r .b u s .a < - '1 *
- - w r .b u s .b < - '1 '

AFTER Tpw;
AFTER Tpw;

WHEN ' I ' -> - - P re p a re r e g i s t e r s f o r m u l t i p l i c a t i o n
n e x t . s t a t e < • ' J ' ;
WAIT UNTIL p h i2 - ;
r d . s j . a < - ' 1 ' , 'O ’ AFTER tpw ; - - MR <- S j
w r .m r .a < - 'O ' AFTER tpw ;
w r . a x . e t a < - ' 1 ' , 'O ' AFTER tp w ; AX < e t a
r e s e t . a c c . m p t r < - ' 1 ' , 'O ' AFTER tpw ; - - ACC < 0

- - t e s t o n ly , re o t h i s .

- - w r .b u s . a <- ' 1 ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw;

WHEN ' J ' ->
IF (e n d .m u l t i p ly - ' 1 ') THEN

n e x t . s t a t e < • ' L ' ;
ELSE

c a r r y _ o n .m u lt_ m r .a x ;
n e x t . s t a t e < - ' J ' ;

WHEN *L' ->
IP (e v a l . e r r o r - ' ! ') THEN

n e x t . s t a t e < - M ';
ELSE

n e x t . s t a t e < - * L ';
END IF ;
WAIT UNTIL p h i2 -
r d . a c c . a < - 'O ’ AFTER tpw ;
w r .a u x 2 .a < • 'O ' AFTER tpw ;

- t e s t o n ly , rem ove t h i s . . .

- - w r .b u s .a <• '1 * , 'O ' AFTER Tpw;

- - M u l t ip ly e t a • S j

• • AUX2 < ACC

Appendix D VHDL Description of Processing Elements 243

O' AFTER Tpw;

WHEN 'M ' ->
m u l t i p l i c a t i o n

n e x t _ 3 t a t e < - ' N ' ;
WAIT UNTIL phi2 - '1';
en_cntr_add <- ' I ' , 'O ' AFTER tpw;
cs_sta_bkw <- ' 1 ' , 'O ' AFTER tpw;
rd_wr_ata_bkw < - ' 1 ' , 'O ' AFTER tpw;
rd_bu3_a <- ' 1 ' , 'O ' AFTER tpw;
wr_mr_a < - ' 1 ' , O' AFTER tpw;
rd_aux2_b <- 'O ' AFTER tpw;
wr_ a x _ b <- ' 1 ' , 'O ' AFTER tpw;
re3et_acc_mptr <- '1', 'O ' AFTER tpw

- - P r e p a r e r e g i s t e r s f o r

- - AX <- AUX 2

s ly , rem ove t h i s .

- -w r_ b u s _ b < - 'O ' AFTER T p w ;

WHEN ' N' ->
IF (e n d _ m u l t ip ly - ' 1 ') THEN

n e x t _ s t a t e < - 'O ';

c a rry _ o n _ m u lt_ m r_ a x
n e x t _ s t a t e < - ' N ';

- - M u l t ip ly (e t a * S j)

WHEN 'O ' ->
n e x t _ s t a t e < - ' P ' ;
WAIT UNTIL p h i2 - ' ! ' ;
e n _ c n t r _ a d d < - ' 1 ' , 'O ' AFTER tpw ;
rd_w r_w gt_bkw < - ' 1 ' , 'O ' AFTER tpw ;
cs_w gt_bkw < - ' 1 ' , 'O ' AFTER tpw ;
rd _ b u 3 _ b < - ' 1 ' , 'O ' AFTER tpw ;
rd _ a c c _ a lu _ 2 < - ' 1 ' , 'O ' AFTER tpw ;
rd _ a lu _ a < - 'O ' AFTER tpw ;
w r_ a c c _ a < - ' 1 ' , 'O ' AFTER tpw ;

- ACC <- ACC + Wb

- t e s t o n ly , r e n o v e t h i s . . .

- - w r_ b u s _ a < - ' 1 ' , •O ' AFTER Tpw;

- - P r e p a r e r e g i s t e r s f o r

- - Wb <- ACC (o ld)

WHEN ' P ' ->
u l t i p l i c a t i o n

n e x t _ s t a t e < - 'O ';
WAIT UNTIL p h i2 - ' 1 ' ;
e n _ c n t r _ a d d < - 'O ' AFTER tpw ;
cs_w gt_bkw < - ' 1 ' , 'O ' AFTER tpw ;
- - rd _ w r i s ZERO a l r e a d y
w r_ b u s_ b < - 1 ' , 'O ' AFTER tpw ;
rd _ a c c _ b < - ' 1 ' , 'O ' AFTER tpw ;
r e s e t_ a c c _ m p tr < - ' 1 ' , 'O ' AFTER tp w ; - - ACC <- 0
w r_ ax _ b < - ' 1 ' , 'O ' AFTER tp w ; AX < A CC(old)
rd_w r_sta_b)cw < - ' 1 ' , 'O ' AFTER tpw ;
c s _ s ta _ b k w < - ' 1 ' , O' AFTER tpw ; - - MR <- Sb
rd _ b u s _ a < - ' 1 ' , 'O ' AFTER tpw ;
w r_m r_a < - ' 1 ' , 'O ' AFTER tpw ;

WHEN 'O ' ->
IF (e n d _ m u l t ip ly - ' ! ') THEN

n e x t . s t a t e < - R' ;
ELSE

c a r r y .o n .m u 1t . m r . a x ;
n e x t . s t a t e < - o' ;

- M u l t ip ly E

WHEN 'R ' ->
f l a g FALSE;
IF (e n d .b k w .p h - ' 1 ') THEN

n e x t . s t a t e < - 'S ’ ;

n e x t . s t a t e < - M ';
f l a g TRUE;

END IF ;
WAIT UNTIL p h i2 - ' 1 ' ;
IF f l a g THEN

i n c _ p t r < - ' 1 ' , 'O ' AFTER tpw ;
END IF ;
r d . a u x l . b < - ’ 1 ' , 'O ' AFTER tp w ;
r d . a c c . a l u . 2 < - ' 1 ' , 'O ' AFTER tpw ;
rd _ a lu _ a < - 'O ' AFTER tp w ;
w r . a u x l . a < - ' 1 ' , 'O ' AFTER tpw ;

- - ADXl <- ADXl + ACC

" t e s t o n ly , r e s t h i s . .

- - w r . b u s . a < - ' 1 ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw;

WHEN 'S ' -> - - P r e p a r e r e g i s t e r s f o r m u l t i p l i c a t i o n
n e x t . s t a t e < - ' T ' ;
WAIT UNTIL p h i2 - 1 ' ;
r d . e j . a < - 1 ' . 'O' AFTER tp w ; - - MR <- E j IS • (1 - S)]
w r .m r .a < - ' 1 ' , 'O' AFTER tp w ;
r d . a u x l . b < - ' 1 ' , 'O ' AFTER tp w ; AX < AUXl
w r .a x .b < - ' 1 ' , 'O' AFTER tp w ;
r e s e t . a c c . m p t r < - ' 1 ' , 'O ' AFTER tp w ; - - ACC <- 0

s ly , rem ove t h i s . .

- - w r . b u s . a < - O' AFTER Tpw;
- w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw;

WHEN 'T ' -> - - M u l t i p ly I S (l - S) I sum(E.W)
IP (e n d .m u l t i p l y - ' 1 ') THEN

n e x t . s t a t e < - 'O ' ;
ELSE

c a r r y _ o n .m u l t .m r .a x ;
n e x t . s t a t e < - T ' ;

WHEN 'D ' ->
n e x t . s t a t e < - ' V ;
WAIT UNTIL p h i2 - 1 " ;
r d . a c c . a < - ' 1 ' , 'O ' AFTER tpw ;
w r . e j . a < - ' 1 ' , O' AFTER tp w ;
r e s e t . p t r . a u x l < - ' 1 ' , 'O ' AFTER tpw ;
e r r . r d y < - ' 1 ' , O' AFTER tp w ;
r d . e j . z < - ' 1 ' , O ' AFTER tp w ;

- - E j < - ACC

- - t e s t o n ly , rem ove t h i a . . .

- - w r .b u s . a < - ' 1 ' , O' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw;

WHEN 'V -
n e x t . s t a t e < -
WAIT UNTIL p h i2 -
r d . e j . a < - 1 ' , '
w r j u r . a < - ' 1 ' , '
w r . a x . e t a < - ' 1 ' ,
r e s e t . a c c . m p t r < -

- - P r e p a r e r e g i s t e r s f o r m u l t i p l i c a t i o n

AFTER tp w ; - - HR < - E j
AFTER tpw ;

O' AFTER tp w ; AX < e t a
1 ' , 'O ' AFTER tp w ; - - ACC <- 0

- - t e s t o n ly , rem ove t h i s .

- w r . b u s . a < - ' 1 ' , 'O ' AFTER Tpw;
- w r . b u s . b < - ' 1 ' , O' AFTER Tpw;

WHEN 'W' -> -- M u l t i p ly Ej
IF (e n d .m u l t i p ly - ' 1 ') THEN

n e x t . s t a t e < - X ';

c a r r y .o n .m u 1 t . m r . a x ;
n e x t . s t a t e < - ' W' ;

WHEN X ' - >
n e x t . s t a t e < - 'Y ';
WAIT UNTIL p h i2 - ' 1 ' ;
r d . a c c . a < - ' 1 ' , 'O ' AFTER tpw ;
w r . a u x l . a < - ' 1 ' , 'O ' AFTER tpw ;

- - AUX2 <- ACC

- t e s t o n ly , rem ove t h i s .

- - w r .b u s .a < - ' 1 ' , 'O ' AFTER Tpw;
- - w r .b u s .b < - ' 1 ' , 'O ' AFTER Tpw;

WHEN ' Y' - - P r e p a r e r e g i s t e r s f o r m u l t i p l i c a t i o n
n e x t . s t a t e < - ' Z ' ;
WAIT UNTIL p h i2 - ' 1 ' ;
e n . c n t r . a d d < - ' 1 ' , 'O ' AFTER tpw ;
c s . s t a . f r w < - ' 1 ' , 'O ' AFTER tp w ; - - MR <- Sf
r d . w r . s t a . f r w < - ' 1 ' , 'O ' AFTER tpw ;
r d . b u s . a < - ' 1 ' , O' AFTER tpw ,
w r .m r .a < - ' 1 ' , 'O ' AFTER tpw ;
r d . a u x l . b < - ' 1 ' , 'O ' AFTER tpw ; - - AX <- AUX2
w r .a x .b < - ' 1 ' , 'O ' AFTER tpw ;
r e s e t . a c c . m p t r < - ' 1 ' , 'O ' AFTER tp w ;

- t e s t o n ly , rem ove t h i s . .

- -w r .b u s b < - 'O ' AFTER Tpw;

WHEN 'Z ' -> - - M u l t i p ly S f * (J
I F (e n d .m u l t i p ly - '1') THEN

n e x t . s t a t e < - ' s ' ;

c a r r y .o n .m u l t .m r . a x ;
n e x t . s t a t e < - ' Z ' ;

WHEN ' a ' -> - - ACC <- ACC + Wf
n e x t . s t a t e < - ' b ' ;
WAIT UNTIL p h i2 - '1';
e n . c n t r . a d d < - '1', 'O ' AFTER tpw .
c s .w g t . f r w < - 1', 'O ' AFTER tpw ,
r d .w r .w g t . f r w < - '1', 'O ' AFTER tpw ;
r d . b u s . b < - '1', 'O ' AFTER tpw ,
r d . a c c . a l u . 2 < - '1', 'O ' AFTER tp w ;
r d . a l u . a < - '1', O' AFTER tpw ;
w r . a c c . a < - '1', 'O ' AFTER tpw ,

- t e s t o n ly , rem ove t h i s . . .

- - w r .b u s . a < - ' 1 ' , 'O ' AFTER Tpw;

WHEN 'b ' ->
f l a g I - FALSE;
IF (e n d . f r w .p h - ' 1 ') THEN

n e x t . s t a t e < - A ' ;

n e x t . s t a t e < - ' Y ' ;
f l a g TRUE;

END IF ;
WAIT UNTIL p h i2 - 1';
IF f l a g THEN

i n c . p t r < - '1', 'O ' AFTER tp w ;
END IF ;
e n . c n t r . a d d < - ' 1 ' , 'O ' AFTER tpw ;
c s .w g t . f r w < - ' 1 ' , 'O ' AFTER tpw ;
- - rd _ w r i s a l r e a d y 'O ' f o r w r i t e
w r .b u s .b < - ' 1 ' , O' AFTER tp w ;
r d . a c c . b < - ' 1 ' , 'O ' AFTER tpw ;

- t e s t o n ly , rem ove t h i s . . .

- w r . b u s . a < - ' ! ' , 'O ' AFTER Tpw;

- - Wf < - ACC

END CASE;
END PROCESS f i n i t e . s t a t e . B

END b e h a v io u r ;

I F i l e Name : e u . c t r . v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 2 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r i p t i o n :

I T h is e n t i t y im p le io e n ts t h e E x e c u t io n U n i t ' s c o n t r o l p a r t
I o f t h e G e n e r ic N e u ro n 's p r o c e s s in g e le m e n t .

LIBRARY X l; USE x l . x l .s td .A L L ;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY e u _ c o n t r o l IS
PORT (p h i l

p h i2
r e s e t
l r n _ r c l
lo a d

e v a l . s t a t e
e v a l . e r r o r
e n _ o u tb u s
e n d . f rw__ph
e n d .b k w j> h
e n . c n t r . a d d
i n c j » t r
t x j > t r
c s .w g t . f r w
c s .w g t.b k w

c s . s t a j) k w
rd _ w r .w g t . f r w
r d .w r .w g t .b k w
r d .w r . s t a _ f r w
rd _ w r .s ta j> k w

w r . a u x l . a , r e s e t j t r . a u x l , r d . a u x l . b
w r . a u x l . a , rd _ a u x 2 .b : OUT BIT;
w r . e j . a , r d _ e j . z , r d . e j . a : OUT B IT ;

IN BIT;IN BIT;IN BIT;BIT;BIT;OUT BIT;OUT BIT;IN BIT;IN BIT;IN BIT;IN BIT;IN BIT;BIT;BIT;OUT BIT;OUT BIT;OUT BIT;BIT;BIT;BIT;BIT;BIT;OUT BIT;OUT BIT;i_bt OUT BIT;

- - + Mem. U n i t C o n t r o l s +

244 VHDL Description of Processing Elements Appendix D

w r_ s j_ « , r d _ s j_ b , r d _ s j_ z , rd _ s j_ « : OUT BIT;
v /r_ « x _ e t« , w r_«x_b , rd _ « x _ b : OUT BIT;
w r_ « cc_ a , p r e s e t _ a c c , r e s e t_ « c c _ m p tr ,
rd _ a c c _ a , rd _ a c c _ b , rd _ a c c _ a lu _ 2 : OUT BIT;
a l u _ c t r : OUT BIT;
rd _ a lu _ a : OUT BIT;
s h x f t _ c t r : OUT BIT;
rd _ s h i£ t_ a : OUT BIT;
w r _ m r _ s h if t , w r_m r_a, r d _ m r _ s h i f t : OUT BIT;

END e u _ c o n t r o l ;

ARCHITECTURE

' . I s b , m r . l s b . l : IN BIT;
_rom , r d .r o m : OUT BIT;

i . z e r o . b : OUT BIT

- o l ;

s t r u c t u r e OF eu
e u .f s m

.c o n t r o l IS

r e s e t , IN BIT;
p h i l : IN BIT;
p h i2 : IN BIT;

IN BIT;

e r r . r d y : OUT BIT;
s t . r d y ; OUT BIT;
e n . c n t r . a d d : OUT BIT;
e n d .f r w .p h :
e n d .b k w .p h :
l r n . r c l :
c s .w g t . f r w OUT B IT ;-- + ---- Mem. U n it C o n t r o l s ------ +

OUT B IT ;- - 1 1
c s . s t a . f r w : OUT B IT ;- - 1 1

OUT B IT ; -- 1 1
OUT B IT ; -- 1 1

rd .w r .w g t .b k w : OUT B IT ;- - 1 1
r d . w r . s t a . f r w : OUT B IT ;- - 1 1
r d .w r . s t a .b k w : OUT B IT ;- - 1 1

OUT B IT ;- - 1 1
r e s e t j > t r . a u x l : OUT B IT ;- - Mem A d d re s s in g C n tr C o n tr o l s

OUT B IT ;- - M u l t ip ly C o u n te r C o n tr o l s
r e s e t . a c c . m p t r : OUT BIT;
e n d .m u l t i p ly :
r d .b u s . a : OUT BIT; - - BUS A c o n t r o l s

OUT BIT;
r d .b u s .b : OUT BIT; - - BUS B C o n tr o l s
w r .b u s .b : OUT BIT;

: OUT BIT; - - + — AUXl C o n tr o l s — +
OUT BIT; - - 1 1

- - r e s e t . a u x l : OUT BIT; - - 1 1
r d . a u x l . b OUT BIT;
- -c k .a u x 2 : OUT BIT; - - +---- AUX2 C o n t r o l s -----+

OUT BIT; - - 1 1
rd la u x 2 lb OUT BIT;
- - c k . e j : OUT BIT; - - + - - - Ej C o n t r o l s - --+
w r . e j . a : OUT BIT; - - 1 1
r d . e j . z OUT BIT; - - 1 1
r d . e j . a : OUT BIT;
- - c k . s j : OUT BIT; -- +--- sj C o n tr o l s - - - +
w r . s j . a : OUT BIT; - - 1 1
r d . s j . b : OUT BIT; - - 1 1
r d . s j . z : OUT BIT; - - 1 1
r d . s j . a : OUT BIT;
- -c k .a x : OUT BIT; - - + - - - AX C o n t r o l s - -

OUT BIT; - - 1 1
- - r d . a x . b : OUT BIT; - - 1 1
w r .a x .b ; OUT BIT;
- c k _ a c c : OUT BIT; - - + - - - ACC C o n tr o l s - - - +

OUT BIT; - - 1 1
p r e s e t . a c c OUT BIT; - - 1 1

ODT BIT; - - 1 1
OUT BIT; - - 1 1

r d . a c c . a l u . 2 : OUT BIT;
a l u . c t r : OUT BIT; - - + - - - ALU C o n tr o l s - -+
m u l t i p ly OUT BIT; - - 1 1
r d . a l u . a : OUT BIT;
s h i f t . c t r : Otrr BIT; - - + ---- SHIFT C o n tr o l - - *
r d . s h i f t . a OUT BIT;
- - m r . l s b : IN BIT;
- - m r . l s b . l : IN BIT;
- -c k .m r : OUT BIT; - - +---- MR C o n t r o l s ------ +
w r . m r . s h i f t : OUT BIT; - - 1 1
w r .m r .a : OUT BIT; - - 1 1
r d .D i r . s h i f t OUT BIT;

OUT BIT;

- - r d . z e r o . b : OUT BIT

END COMPONENT;

COMPONENT e u .c o œ b in a t io n a l
p h i l : IN BIT;
p h i2 : IN B IT;
lo a d BIT;
en _ o u tb u 8 BIT;

BIT;
e r r o r . r d y BIT;
s t . r d y BIT;
s t a t e . r d y : OUT B IT;
e n d .m u l t i p ly : OUT BIT;
r e s e t .m p t r I IN BIT;
in c .m p t r : IN BIT;
m u l t i p ly BIT;
a l u . c t r . i n BIT;
a l u . c t r BIT;
m r . l s b : IN BIT;
m r . l s b . l : IN BIT;
r d . z e r o . b : OUT BIT;
r d .a x _ b I OUT BIT;
t x _ p t r BIT

END COMPONENT;

SIGNAL l n t _ e r r _ r d y , i n t_ » t_ r d y : BIT;
SIGNAL in t_ in c _ m p tr : B IT ;
SIGNAL i n t _ r e a e t _ m p tr : B IT ;
SIGNAL ln t_ e n d _ ia u l t lp ly i BIT;
SIGNAL l n t _ a l u _ c t r : B IT;
SIGNAL i n t _ n m l t i p ly : B IT ;
--SIGNAL n r _ l« b _ £ f , m r_ ls b _ l_ £ f : B IT;

--FOR fa « _ b lo c k : eu _ fsm DSE ENTITY w o c k .e u _ fa m (b e h a v io u r) ;
-F O R com b_b lock : e u .c o m b in a t lo n a l DSE ENTITY

w o r k .e u _ c o m b ln a t io n a l (a t r u c tu r e) ;

-> r e s e t , END COMPONENT;
p h i l -> p h i l .
p h i2 -> p h i2 . COMPONENT FF
e v a l . e r r o r -> e v a l . e r r o r . PORT (d : IN BIT;
e v a l . s t a t e -> e v a l . s t a t e . q : OUT BIT;
e r r . r d y -> i n t . e r r . r d y . n o tq : OUT BIT;
s t . r d y -> i n t . s t . r d y . BIT;
e n _ o n t r .a d d -> e n . c n t r . a d d . p r e s e t : IN BIT;
e n d .f r w .p h “ > e n d . f r w .p h . c k : IN BIT
end.bkw__ph -> e n d .b k w j) h .) ;
l r n . r c l -> l r n _ r c l . END COMPONENT;
c s .w g t . f r w -> c s .w g t . f r w .
c s .w g t.b k w -> c s .w g t.b k w . COMPONENT a n d 2 g a te

c s . s t a . f r w ,
c s . s t a .b k w c s .s t a .b k w .
rd .w r .w g t . f r w r d .w r .w g t . f r w .
r d .w r .w g t.b k w rd .w r .w g t .b k w ,
r d . w r . s t a . f r w r d . w r . s t a . f r w .
r d .w r . s t a .b k w r d .w r . s t a .b k w .

r e s e t . p t r . a u x l r e s e t . p t r . a u x l .
in c .m p t r i n t . i n c . m p t r .
r e s e t . a c c .m p t r i n t . r e s e t . m p t r .
e n d .m u l t i p ly i n t . e n d . m u l t i p l y

r d .b u s .b .
w r .b u s .b .

-> a u x l .c k .
w r . a u x l . a ,

r d . a u x l . b r d . a u x l . b .
-> au x 2 _ c k .

r d la u x 2 _ b r d .a u x 2 .b .
- - c k . e j e j . c k .
w r . e j . a
r d . e j . z r d . e j . z .
r d . e j . a r d . e j . a .
- - c k . s j s j . c k .
w r . s j . a w r . s j . a .
r d . s j . b r d _ s j . b .
r d . s j . z r d . s j . z .
r d . s j . a r d . s j . a .
- - c k .a x a x .c k .
w r . a x . e t a w r . a x . e t a .
- - r d . a x . b -> r d . a x . b .
w r .a x .b w r .a x .b .
- - c k .a c c

p r e s e t . a c c p r e s e t . a c c .

r d . a c c . a l u . 2 r d . a c c . a l u . 2 .
a l u . c t r i n t . a l u . c t r .
m u l t ip ly i n t . m u l t i p l y .
r d . a l u . a r d . a l u . a .
s h i f t . c t r s h i f t . c t r .
r d . s h i f t . a r d . s h i f t . a .
- - m r . l s b m r . l s b . f f ,
- m r . l s b . l m r . l s b _ l . f f .
- -c k .m r m r.c k .
w r .m r . s h i f t w r . m r . s h i f t .

w r .m r .a ,
r d . m r . s h i f t r d . m r . s h i f t ,

- - r d . z e r o . b r d . z e r o . b

.c o m b in a t io n a l PORT MAP
p h i l p h i l .
p h i2 p h i2 ,
lo a d
e n .o u tb u s e n .o u tb u s .

i n t . e r r . r d y .
e r r o r . r d y e r r o r . r d y .
s t . r d y i n t . s t . r d y .
s t a t e . r d y s t a t e . r d y .
e n d .m u l t i p ly i n t . e n d . m u l t i p l y
r e s e t .m p t r i n t . r e s e t . m p t r ,
i n c .m p t r i n t . i n c . m p t r .
m u l t i p ly i n t . m u l t i p l y .
a l u . c t r . i n i n t . a l u . c t r .
a l u . c t r
m r . l s b
m r . l s b . l
r d . z e r o . b r d . z e r o . b .
r d . a x . b r d . a x . b .
t x . p t r t x _ p t r

r e s e t . a c c . m p t r < - I n t . r e s e t . m p t r ;

END a t r u c t u r e ;

I P i l e Name
I A u th o r
I D a te o f C r e a t io n
1 L a a t U pda te

eu .c o m b .v h d
M eyer E. N ig r i
0 5 /1 2 /9 1
2 0 /1 2 /9 1

- - I D e a c r ip t i o n :

- - I T h ia e n t i t y im p lem en ta t h e E x e c u t io n U n i t 's c o m b in a t io n a l
- - I l o g i c o f t h e G e n e r ic N e u ro n 's p r o c e s s in g e le m e n t .

LIBRARY x l ; DSE x l . x l . s t d , ALL;
USE W O R K .g n .d efin itio n .A L L ;

ENTITY e u .c o m b in a t io n a l IS
p h i l : IN BIT;
p h i 2 : IN BIT;
lo a d : IN BIT;
e n .o u tb u s : IN BIT;
e r r . r d y : IN BIT;
e r r o r . r d y : OUT B IT;
s t . r d y : IN BIT;
s t a t e . r d y BIT;
e n d j m i l t i p l y BIT;
r e s e t j s p t r : IN BIT;
i n c .m p t r : IN BIT;
m u l t i p ly : IN BIT;
a l u . c t r . i n : IN BIT;
a l u . c t r : OUT BIT;
m r . l s b BIT;
m r . l s b . l BIT;
r d . z e r o . b : OUT BIT;
r d . a x . b : OUT BIT;
t x . p t r : OUT BIT

END e u .c o m b in a t i o n a l ;

ARCHITECTURE s t r u c t u r e OF e u .c o m b in a t io n a l IS
COMPONENT o o u n t . t o . lS

PORT (r e a e t : IN BIT;
ck : IN BIT;
c o u n t .e n d i OUT BIT)t

Appendix D VHDL Description of Processing Elements 245

PORT (i n p u t l ; IN BIT;
i n p u t l ; IN BIT;
o u tp u t : OUT BIT

) ;
END COMPONENT;

COMPONENT o r l g a t e
PORT (i n p u t l ; IN BIT;

i n p u t l ; IN BIT;
o u tp u t : OUT BIT

) ;
END COMPONENT;

COMPONENT x o r l g a t e
PORT (i n p u t l : IN BIT;

i n p u t l : IN BIT;
o u tp u t : OUT BIT

) ;
END COMPONENT;

COMPONENT i n v e r t e r
PORT (i n p u t : IN BIT;

o u tp u t : OUT BIT
) ;

END COMPONENT;

COMPONENT p u lld o w n
PORT (gnd : OUT B IT) ;

END COMPONENT;

--COMPONENT p u l lu p
PORT (v c c : OUT B IT) ;

- -END COMPONENT;

SIGNAI, gnd ; BIT;
--SIGNAL v c c : BIT;
SIGNAL m r_ a n d _ ls b s , m r_ p h i2 ,
SIGNAL in t_ iD r _ ls b _ f f : B IT;
SIGNAL n o t_ lo a d : BIT;
SIGNAL m r _ l s b _ l_ f f : BIT;
SIGNAL i n t _ x o r : BIT;
SIGNAL i n t _ i n v j : BIT;

BEGIN

b l : c o u n t_ to _ 1 6 PORT MAP (r e s e t

j l t , n o t io r _ l s b _ l_ f f

);
-> r e s e t_ m p tr ,
-> in c _ m p tr ,

c o u n t_ e n d -> e n d _ in u l t ip ly

5 t a _ f f i FF PORT MAP (

e r r _ f f ; FF PORT MAP (

-> s t a t e _ r d y ,
-> OPEN,
-> e n _ o u tb u s ,

p r e s e t -> s t _ r d y ,
c)c -> gnd

3 tq

q -> e r r o r _ r d y ,
n o tq -> OPEN,
c l e a r “> e n _ o u tb u 3 ,
p r e s e t -> e r r _ r d y ,
clc -> gnd

l s b _ f f : FF PORT MAP (d
-> i n t _ i s r _ l s b _ f f ,

l s b _ l _ f f : FF PORT MAP (d

-> g n d ,
-> p h i l

-> mr_l3b_l,
-> n u r _ ls b _ l_ f f ,
-> n o tn u r _ ls b _ l_ f f ,

-> gnd ,
-> p h i l

x o r l : x o r l g a t e PORT MAP (i n p u t l -> i n t _ m r _ l s b _ f f ,
i n p u t l -> m r _ l s b _ l _ f f ,
o u tp u t -> i n t _ x o r

in v l : i n v e r t e r PORT MAP (i n p u t -> i n t _ x o r ,
o u t p u t -> i n t _ i n v l

a n d 4 : a n d lg a te PORT MAP (i n p u t l -> i n t _ i n v l ,
i n p u t l -> m u l t i p l y ,
o u tp u t -> rd _ z e ro _ b

) ;

andS : a n d lg a te PORT MAP (i n p u t l -> i n t_ x o r ,
i n p u t l -> m u l t i p l y ,
o u tp u t -> rd _ a x _ b

>-•

a n d l : a n d lg a te PORT MAP (i n p u t l •> i n t _ m r _ l s b _ f f ,
i n p u t l -> n o tm r _ ls b _ l_ f £ ,
o u tp u t -> m r_ a n d _ lsb s

a n d l : a n d lg a te PORT MAP < i n p u t l -> m r_ a n d _ ls b s ,
i n p u t l -> p h i l ,
o u tp u t -> m r_ p h il

a n d l : a n d l g a te PORT MAP < i n p u t l -> m r_ p h i l ,
i n p u t l -> m u l t i p l y ,
o u tp u t “ > m u lt

o r l : o r l g a t e PORT MAP (i n p u t l -> m u l t ,
i n p u t l -> a l u _ c t r _ i n ,
o u tp u t -> a l u _ c t r

n o t l o a d : i n v e r t e r PORT MAP (in p u t -> lo a d ,
o u tp u t -> n o t_ lo a d

n lo a d p h i l ; a n d lg a te PORT MAP (i n p u t l -> p h i l ,
i n p u t l -> n o t_ lo a d ,
o u tp u t -> t x _ p t r

- - v c c _ p u l lu p : p u l lu p PORT MAP (v cc ■> v c c) ;

g n d _ p u lld o w n : p u lld o w n PORT MAP (gnd -> g n d) ;

END s t r u c t u r e ;

Processing Element

The processing element is constructed from the three units above, by simply
instatiating each one and providing the necessary connections.

I F i l e Name : g n .v h d
I A u th o r : M eyer E. N ig r i
I D a te o f C r e a t io n : 0 5 /1 1 /9 1
I L a s t U p d a te : 2 0 /1 2 /9 1

I D e s c r i p t i o n :

I T h is e n t i t y im p le m e n ts t h e G e n e r ic N euron f o r t h e H idden
I l a y e r o f a Bac)c P r o p a g a t io n N e u ra l N e tw o rk .

LIBRARY x l ; USE x l . x l _ S t d . ALL;
USE W O R K .g n _ d efin itio n .A L L ;

ENTITY g n _ h id d e n IS
PORT (i n .b u s m v l . v e c t o r (d a t a . b u s . l i n e s DOWNTO c u . c s . s t a . f r w : OUT BIT;

1) ; c u . c s . s t a .b k w OUT BIT;
: OUT m v l .v e c t o r (d a t a . b u s . l i n e s c u . r d .w r .w g t . f r w : BIT;

1) : c u .r d .w r .w g t .b) c w : BIT;
ad d _ b u s : IN m v l .v e c t o r (r a m _ a d d r . l i n e s c u . r d . w r . s t a . f rw : BIT;

1) : e u . r d . w r . s ta .b k w : OUT BIT;
r e s e t : IN BIT; c u . i n c j t r : OUT BIT;

: IN B IT ; - - 0 - I n i t i a l i s a t i o n ; c u . r e s e t j J t r : OUT BIT;
1 -E x e c u t io n e v a l . s t a t e OUT BIT;

frw .b k w : IN B IT; e v a l . e r r o r OUT BIT;
c s . r d y I INOUT w ir e ; s t a t e . r d y IN BIT;
l r n . r c l : IN B IT; e r r o r . r d y : IN BIT;
p h i l ; IN BIT; c u . e n . c n t r . a d d : OUT BIT;
p h i l

) ;
BIT c u . t x j > t r :

c u . e n .o u t b u s : OUT
BIT;
BIT

END g n .h id d e n ;) ;

ARCHITECTURE s t r u c t u r e OP g n _ h id d e n IS
COMPONENT com m _unit

1) ;

1) ;

1)1

PORT (in _ b u s

o u t_ b u s

ad d _ b u s

1 -E x e c u t io n

1);

1) ;

1) ;

1) ;

f rw_b)cw
p h i l
p h i l
c s _ r d y
mem_add_bus

w e ig h t s .b u s

s t a t e s _ b u s

*_b u s

cu _ c s_ w g t_ frw

IN s tv l_ v e c to r (d a t a _ b u s _ l in e s DOWNTO

OUT m v l_ v e c to r (d a t a _ b u s _ l in e a DOWNTO

IN m v l_ v e c to r (r a m _ a d d r _ l in e s DOWNTO

IN BIT;
IN BIT; - - 0 - I n i t i a l i s a t i o n ;

IN BIT;
IN BIT;
IN BIT;
INOUT w ir e ;
ODT w i r e .v e c to r (r a m _ a d d r _ l in e s DOWNTO

OUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO

OUT w i r e . v e c t o r (d a t a . b u s . l i n e s DOWNTO

IN S T fl.v ec t o r (d a t a . b u s . l i n e s DOWNTO

OUT BIT;

END COMPONENT;

COMPONENT m em _unit

246 VHD L Description of Processing Elements Appendix D

DOWNTO 1)

DOWNTO 1)

DOWNTO 1)

c u _ in c _ p tr
e u _ in c _ p tr
cu _ tx
e u _ tx

e u _ r e s e t _ p t r
c u _ e n _ c n tr_ a d d
e u _ e n _ c n tr_ a d d
end_frw _ph
end_bkw _ph
mera_«dd_bus

w e ig h t_ b u s

s t a te s _ b u 3

IN BIT;
IN BIT;
IN BIT;
OUT BIT;
OUT BIT;
INOUT w ir e _ v e c to r (r a m _ a d d r _ I in e s

INOUT w ire _ v e c to r { d a ta „ b u s _ l in e 3

INOUT w l r e _ v e c to r (d a t a _ b u s _ l in e s

c u .c s .w g t . f r w IN BIT; c u _ r d .w r_ w g t .f rw .
e u . c s .w g t . f r w : IN BIT; e u .r d _ w r .w g t . f r w
c u . r d .w r .w g t . f r w : c u . r d .w r .w g t . f r w ,
e u . r d .w r .w g t . f rw : IN BIT; c u .c s .w g t .b k w -> c u .c s .w g t .b k w ,
c u .c s .w g t .b k w : IN BIT; e u .c s .w g t .b k w -> e u .c s .w g t .b k w ,
e u .c s .w g t .b k w IN BIT; c u .r d .w r .w g t .b k w
c u .r d .w r .w g t .b k w : IN BIT; c u .r d .w r .w g t .b k w ,
c u .r d .w r .w g t .b k w : IN BIT; c u .r d .w r .w g t .b k w ->
c u . c s . s t a . f r w : IN BIT; c u .r d .w r .w g t .b k w ,
c u . c s . s t a . f r w : c u . c s . s t a . f r w -> c u . c s . s t a . f r w ,
c u . r d . w r . s t a . f r w : IN BIT; c u . c s . s t a . f r w -> c u . c s . s t a . f r w ,
e u . r d . w r . s t a . f rw : IN BIT; c u . r d . w r . s t a . f r w
c u .c s . s t a .b k w : IN BIT; c u . r d . w r . s t a . f r w .
c u . c s . s t a .b k w : IN BIT; e u . r d . w r . s t a . f rw
e u . r d . w r . s ta .b k w : IN BIT; c u . r d . w r . s t a . f rw ,
e u . r d . w r . s ta .b k w : IN BIT c u .c s . s t a .b k w ->

END COMPONENT;

COMPONENT e x e c _ u n i t
PORT (a_bu3

DOWNTO 1) ;

DOWNTO 1) ;

DOWNTO 1) ;
z .b u s : OUT Invl_ve<

s t a t e . r d y : OUT BIT;
e r r o r . r d y : OUT BIT;
e v a l . s t a t e : IN BIT;
e v a l . e r r o r ; IN BIT;

: IN BIT;
e n d . f rw .p h : IN BIT;
e n d .b k w .p h : IN BIT;
e u _ e n .c n t r .a d d : OUT BIT;
e u . r e s e t j > t r BIT;
c u . i n c . p t r BIT;
c u . t x . p t r BIT;
e u . c s .w g t . f r w : OUT BIT;

e u .c s .w g t .b k w : OUT BIT;

e u . c s . s t a . f r w : OUT BIT;

c u .c s . s ta .b k w : OUT BIT;

c u . r d .w r .w g t . f rw : OUT BIT;

c u .r d .w r .w g t .b k w : OUT BIT;

e u . r d . w r . s t a . f r w : OUT BIT;

c u . r d .w r . s t a .b k w BIT;

lo a d BIT;
BIT;

l r n . r c l : IN BIT;
p h i l : IN BIT;
p h i l : IN BIT

INOUT w i r e _ v e c to r (d a ta _ b u s _ l in e 3

INOUT w ire _ v e c to r (d a ta _ b u 3 _ l in e 3

l _ v e c t o r (d a t a _ b u s _ l in e s

- - 1

- - I

- - I

I

END COMPONENT;

SIGNAL a _ b u s , b_bu3 i w l r e _ v e c to r (d a t a _ b u a _ l in e s DOWNTO 1) ;
SIGNAL z _ b u 3 : m v l_ v e c to r (d a ta _ b u s _ l in e a DOWNTO I) ;
SIGNAL I0enuadd_bua : w i r e . v e c t o r (ra » i_ a d d r_ l in e s DOWNTO 1) ;
SIGNAL e n .o u tb u s : BIT;
SIGNAL s t a t e . r d y , e r r o r . r d y , e v a l . s t a t e , e v a l . e r r o r : BIT;
SIGNAL c u .c s .w g t . f r w , e u _ c s .w g t . f r w : BIT;
SIGNAL c u . r d . w r . w g t . f rw , e u .r d _ w r_ w g t .f rw i BIT:
SIGNAL c u .c s .w g t .b k w , e u .c s .w g t .b k w : BIT;
SIGNAL c u .r d .w r .w g t .b k w , e u .r d .w r .w g t .b k w : BIT;
SIGNAL c u . c s . s t a . f r w , e u . c s . s t a . f rw i BIT;
SIGNAL c u . r d . w r . s t a . f r w , e u . r d . w r . s t a . f rw : BIT;
SIGNAL c u .c s . s t a .b k w , e u . c s . s t a .b k w : BIT;
SIGNAL c u . r d .w r . s t a .b k w , e u .r d _ w r_ s ta .b k w : BIT;
SIGNAL c u . r e s e t j p t r , e u . r e s e t . p t r i BIT;
SIGNAL c u . i n c j t r , e u . i n c j i t r : BIT;
SIGNAL c u . t x j > t r , e u . t x _ p t r : BIT;
SIGNAL o u . e n . c n t r . a d d , e u .o n _ c n tr_ a d d : B IT ;
SIGNAL e n d .f r w j> h , e n d .b k w j> h : BIT;

--FOR c u .h id d e n : c o m a .u n it USE ENTITY w o r k .c o n s n .u n i t (s t r u c tu r e) ;
- - FOR m u .h id d e n : m ea r.u n it USE ENTITY w o rk . m e s u u n lt(s t r u c t u r e) ;

-FOR e u .h id d e n : e x e c . u n i t USE ENTITY w o r k .e x e c _ u n i t (s t r u c t u r e) ;

c u .h id d e n : co im n .u n it PORT MAP (i n .b u s -> in .b u s ,
o u t .b u s ” > o u t .b u s ,
a d d .b u s -> a d d .b u s ,
r e s e t ■> r e s e t ,
lo a d -> lo a d ,
frw .b k w -> frw .b k w ,
p h i l -> p h i l ,
p h i l -> p h i l ,
c s . r d y -> c s . r d y ,
sK ia_add.bu8 -> m e n .a d d .b u s ,
w e ig h ts .b u s -> b .b u s ,
s t a t e s . b u s -> a . b u s ,
t . b u s -> t . b u s ,
c u . c s .w g t . f r w -> c u .c s .w g t . f r w ,
c u .c s .w g t .b k w -> c u .c s .w g t_ b k w ,
c u . c s . s t a . f r w -> c u . c s . s t a _ f r w ,
c u . c s . s t a .b k w -> c u . c s . s t a j) k w ,
c u .r d _ w r .w g t . f r w ->

c u .r d .w r .w g t . f rw ,

c u .r d .w r .w g t .b k w ,

c u . r d . w r . s t a . f rw ,

c u . r d .w r . s t a .b k w .

c u .r d .w r .w g t .b k w ->

c u . r d _ w r . s t a . f r w ->

c u .r d .w r _ a ta .b k w ->

c u . i n c j p t r -> c u . i n c . p t r ,
c u . r e s e t . p t r -> o u . r e s e t . p t r ,
e v a l . s t a t e -> e v a l . s t a t e ,
e v a l . e r r o r “> e v a l . e r r o r ,
s t a t e . r d y -> s t a t e . r d y ,
e r r o r . r d y -> e r r o r . r d y ,
c u . e n . c n t r . a d d -> c u . e n . c n t r . a d d ,
c u . t x . p t r -> c u . t x j J t r ,
c u .e n .o u tb u s -> e n .o u tb u s

u .h id d e n : m e n .u n i t PORT MAP (c u . i n c . p t r -> c u . i n c j t r ,
e u . i n c . p t r -> e u . i n c . p t r ,
c u . t x -> c u . t x . p t r ,
e u . t x -> e u . t x . p t r ,
c u . r e s e t . p t r -> c u . r e s e t . p t r ,
e u . r e s e t . p t r -> e u . r e s e t . p t r ,
c u . e n . c n t r . a d d -> c u . e n . c n t r . a d d ,
e u . e n . c n t r . a d d -> e u . e n . c n t r . a d d ,
e n d .f r w .p h -> e n d .f rw j> h ,
e n d .b k w .p h -> en d .b k w .p h ,
m en_add_bus -> m e n .a d d .b u s ,
w e ig h t .b u s -> b .b u s ,
s t a t e s . b u s -> a . b u s ,
c u . c s .w g t . f r w -> c u . c s .w g t . f r w ,
c u .c s .w g t . f r w -> e u . c s .w g t . f r w .

. r d . w r . s t a

. r d . w r . s t a

_bkw,

_bkw

u .r d .w r . s t a .b k w ->

u _ rd .w r_ s ta .b k w ->

e x e c .u n i t PORT MAP (a .b u s -> a .b u s ,
b .b u s -> b .b u s ,

u .rd . .w g t .

r d .w r .w g t .

r d . w r . s t a .

r d . w r . s t a .

END s t r u c t u r e ;

z .b u s -> z .b u s ,
s t a t e . r d y -> s t a t e . r d y ,
e r r o r . r d y -> e r r o r . r d y ,
e v a l . s t a t e -> e v a l . s t a t e ,
e v a l . e r r o r -> e v a l . e r r o r ,
c u .e n .o u tb u s -> e n .o u tb u s ,
e n d .f r w .p h -> e n d .f r w jp h ,
en d .b k w .p h -> end .b k w _ p h ,
e u . e n . c n t r . a d d -> e u . e n . c n t r . a d d ,
e u . r e s e t j t r -> e u . r e s e t . p t r ,
e u . i n c . p t r -> e u . i n c . p t r ,
e u . t x _ p t r -> e u . t x . p t r ,
e u . c s .w g t . f r w -> e u .c s .w g t . f r w ,
e u .c s .w g t .b k w -> e u .c s .w g t .b k w ,
e u . c s . s t a . f r w -> c u . c s . s t a . f r w ,
e u . c s . s t a .b k w -> e u . c s . s t a .b k w ,
e u . r d .w r .w g t . f rw ->

e u _ rd .w r .w g t.b k w ->

e u . r d . w r . s t a . f r w ->

c u . r d .w r . s t a .b k w ->

lo a d -> lo a d ,
r e s e t -> r e s e t ,
l r n . r c l -> l r n . r c l ,
p h i l -> p h i l ,
p h i l -> p h i l

Appendix E

List of Abbreviations

AFAP

ALAP

ASAP

ASIC

ASNNC

ATR

CDFG

CFG

DFG

DSP

EDIF

ETANN

FPGA

FSM

HDL

ICR

MSB

NSC

OCR

As Fast As Possible

As Late As Possible

As Soon As Possible

Application Specific Integrated Circuit

Application Specific Neural Network Chip

Automatic Target Recognition

Control and Data Flow Graph

Control Flow Graph

Data Flow Graph

Digital Signal Processing

Electronic Design Interchange

Electrically Trainable Analogue Neural Network

Field Programmable Gate Arrays

Finite State Machine

Hardware Description Language

Intermediate Code Representation

Most Significant Byte

Neural Silicon Compiler

Optical Character Recognition

247

248________________ List of Abbreviations Appendix E

PE Processing Element

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SIF Sequencing Intermediate Form

SLM Spatial Light Modulators

SSIM Sequential Synthesis In-Core Model

UDLII Unified Design Language for Integrated Circuits

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

VLSI Very Large Scale Integration

VML Virtual Machine Language

WSI Wafer Scale Integration

YIF Yorktown Internal Format

YSC Yorktown Silicon Compiler

