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Despite their small size, insect brains are able to produce robust and efficient navigation

in complex environments. Specifically in social insects, such as ants and bees,

these navigational capabilities are guided by orientation directing vectors generated

by a process called path integration. During this process, they integrate compass

and odometric cues to estimate their current location as a vector, called the home

vector for guiding them back home on a straight path. They further acquire and

retrieve path integration-based vector memories globally to the nest or based on

visual landmarks. Although existing computational models reproduced similar behaviors,

a neurocomputational model of vector navigation including the acquisition of vector

representations has not been described before. Here we present a model of neural

mechanisms in a modular closed-loop control—enabling vector navigation in artificial

agents. The model consists of a path integration mechanism, reward-modulated

global learning, random search, and action selection. The path integration mechanism

integrates compass and odometric cues to compute a vectorial representation of the

agent’s current location as neural activity patterns in circular arrays. A reward-modulated

learning rule enables the acquisition of vector memories by associating the local food

reward with the path integration state. A motor output is computed based on the

combination of vector memories and random exploration. In simulation, we show that

the neural mechanisms enable robust homing and localization, even in the presence

of external sensory noise. The proposed learning rules lead to goal-directed navigation

and route formation performed under realistic conditions. Consequently, we provide a

novel approach for vector learning and navigation in a simulated, situated agent linking

behavioral observations to their possible underlying neural substrates.

Keywords: path integration, artificial intelligence, insect navigation, neural networks, reward-based learning

1. INTRODUCTION

Social insects, including ants and bees, have evolved remarkable behavioral capabilities for
navigating in complex dynamic environments, which enable them to survive by finding vital
locations (e.g., food sources). For example, desert ants are able to forage and find small, sparsely
distributed food items in a featureless environment, and form stereotyped and efficient routes
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between their nest and reliable food sources (Collett, 2012;
Mangan and Webb, 2012; Collett and Cardé, 2014; Cheng et al.,
2014). These navigational behaviors not only rely on sensory
information, mainly from visual cues, but also on internal
memories acquired through learning mechanisms (Collett et al.,
2013). Such learned memories have shown to be based on
orientation directing vectors, which are generated by a process
called path integration (PI) (Wehner, 2003).

1.1. Vector Navigation in Social Insects
In PI, animals integrate angular and linear ego-motion cues over
time to produce an estimate of their current location with respect
to their starting point. This vector representation is called the
home vector (HV) and is used by social insects to return back
to the home on a straight path. Many animals have been shown
to apply PI, including vertebrate (Etienne and Jeffery, 2004) and
invertebrate species (Srinivasan, 2015). While PI has mainly been
observed in homing behavior, it can also serve as a scaffold
for spatial learning of food sources (Collett et al., 1999, 2013).
Indeed, experiments have shown that desert ants are capable of
forming such memories by using their path integrator (Schmid-
Hempel, 1984; Collett et al., 1999). Such memory is interpreted
as a so-called global vector (GV), because the vector origin is
fixed to the nest (Collett et al., 1998). If the ant is forced to
take a detour during a foraging trip, the deviation from the GV
is compensated by comparing the GV with the current PI state
(Collett et al., 1999). Another example of vector memory is the
waggle dance of honeybees (De Marco andMenzel, 2005; Menzel
et al., 2005), in which the distance and direction to a goal are
encoded by the duration and direction of the dance, respectively.
After returning from a successful foraging run, insects re-apply
this vector information in subsequent foraging runs (Capaldi
et al., 2000; Wolf et al., 2012; Fernandes et al., 2015).

Although PI plays a key role in navigating through
environments where visual cues, such as landmarks, are
abundant, it also influences navigational behaviors in cluttered
environments (Bühlmann et al., 2011). If an ant follows a
learned GV repeatedly, it learns the heading directions at local
landmarks along the path (Collett and Collett, 2009). These
heading directions are view-based from the visual panorama
surrounding the ant (Graham and Cheng, 2009; Narendra et al.,
2013), and vector-based with additional information about the
path segment length (Collett and Collett, 2009, 2015). The latter
vector memories are also termed local vectors, because their
retrieval is linked to local landmarks instead of global location
with respect to the nest (Collett et al., 1998). Besides spatial
learning of locations and routes, searching patterns of desert ants
have also shown to be influenced by PI (Bolek and Wolf, 2015;
Pfeffer et al., 2015).

1.2. Neural Substrates of Social Insect
Navigation
Neural substrates of social insect navigation have yet to
be completely identified, but previous findings of neural
representations of compass cues and visual sceneries may provide
essential information about how PI and vector learning is
achieved in neural systems (Duer et al., 2015; Plath and Barron,

2015; Seelig and Jayaraman, 2015; Weir and Dickinson, 2015).
In particular, neurons in the central complex, a protocerebral
neuropil in the insect brain, have shown to be involved in visually
guided navigation.

The main sensory cue for PI in social insects is derived from
the linear polarization of scattered sunlight (Homberg et al.,
2011; Lebhardt et al., 2012; Evangelista et al., 2014). Specialized
photoreceptors in the outer dorsal part of the insect eye detect
certain orientations of linear polarization, which depend on
the azimuthal position of the sun. A distinct neural pathway
processes polarization-derived signals leading to neurons in the
central complex, which encode azimuthal directions of the sun
(Heinze and Homberg, 2007). In a recent study, Seelig and
Jayaraman (2015) placed a fruit fly tethered on a track ball setup
in a virtual environment and measured the activity of neurons
in the central complex. They demonstrated that certain neurons
in the ellipsoid body, which is a toroidal subset in the central
complex, encode for the animal’s body orientation based on
visual landmarks and angular self-motion. When both visual and
self-motion cues are absent, this representation is maintained
through persistent activity, which is a potential neural substrate
for short-term memory in insects (Dubnau and Chiang, 2013).
A similar neural code of orientations has been found in the
rat limbic system (Taube et al., 1990). These so-called head
direction (HD) cells are derived from motor and vestibular
sensory information by integrating head movements through
space. Thus, neural substrates of allothetic compass cues have
been found in both invertebrate and vertebrate species. These
cues provide input signals for a potential PI mechanism based on
the accumulation of azimuthal directions of the moving animal
as previously proposed by Kubie and Fenton (2009).

1.3. Computational Models of
Vector-Guided Navigation
Because spatial navigation is a central task of biological as well
as artificial agents, many studies have focused on computational
modeling of such behavioral capabilities (see Madl et al., 2015
for review). Computational modeling has been successful in
exploring the link between neural structures and their behavioral
function, including learning (Bienenstock et al., 1982; Oja,
1982), perception (Salinas and Abbott, 1995; Olshausen and
Field, 1997), and motor control (Todorov and Jordan, 2002). It
allows for hypotheses about the underlying mechanisms to be
defined precisely and their generated behavior can be examined
and validated qualitatively and quantitatively with respect to
experimental data.

Most models of PI favor a particular coordinate system
(Cartesian or polar) and reference frame (geo- or egocentric)
to perform PI based on theoretical and biological arguments
(Vickerstaff and Cheung, 2010). While some models (Müller and
Wehner, 1988; Hartmann and Wehner, 1995) include behavioral
data from navigating animals in order to argue for their proposed
PI method, others (Wittmann and Schwegler, 1995; Haferlach
et al., 2007; Kim and Lee, 2011) have applied neural network
models to investigate possible memory mechanisms for PI.
Despite the wide variety of models, only a few of these models
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have been implemented on embodied artificial agents (Schmolke
et al., 2002; Haferlach et al., 2007) and in foraging tasks similar
to the ones faced by animals in terms of distance and tortuosity
of paths (Lambrinos et al., 1997, 2000). Furthermore, while some
vertebrate-inspired models (Gaussier et al., 2000; Jauffret et al.,
2015) offer underlying spatial learning mechanisms based on
place and view cells, many insect-inspiredmodels have not linked
PI and navigational capabilities to spatial learning and memory.
A notable exception is a recent model based on the Drosophila
brain show impressive results to generate adaptive behaviors in
an autonomous agent, including exploration, visual landmark
learning, and homing (Arena et al., 2014). However, the model
has not been explicitly shown to be scalable for long-distance
central-place foraging as observed in social insects.

Kubie and Fenton (2009) proposed a PI model based on
the summation of path segments with HD accumulator cells,
which are individually tuned to different HDs and hypothesized
to encode how far the animal traveled in this direction. These
summated path vectors are then stored in a fixed memory
structure called shortcut matrix, which is used for navigating
toward goals. Although this model is based on HD cells
and therefore presented as for mammalian navigation, recent
findings inDrosophila melanogaster (Seelig and Jayaraman, 2015)
demonstrate that similar HD accumulator cells can also be
hypothesized for insect navigation. Similar HD accumulator
models have been applied for chemo-visual robotic navigation
(Mathews et al., 2009) and PI-based homing behavior (Kim and
Lee, 2011).

Cruse and Wehner (2011) presented a decentralized memory
model of insect vector navigation to demonstrate that the
observed navigational capabilities do not require a map-like
memory representation. Their model is a cybernetical network
structure, which mainly consists of a PI system, multiple memory
banks and internal motivational states that control the steering
angle of a simulated point agent. The PI system provides the
position of the agent given by euclidean coordinates, which
are stored as discrete vector memories when the agent finds
a food location. To our knowledge, this model is the first
and only modeling approach which accounts for behavioral
aspects of insect vector navigation. However, although they
introduce a learning rule for so-called quality values of stored
vectors in a more recent version of the model (Hoinville
et al., 2012), their model does not account for how the
navigation vectors are represented and learned in a neural
implementation.

1.4. Our Approach
Inspired by these findings, in this paper, we present a novel model
framework for PI and adaptive vector navigation as observed in
social insects. The framework is applied as closed-loop control to
an artificial agent and consists of four functional subparts: (1) a
neural PI mechanism, (2) a reward-modulated learning rule for
vector memories, (3) random search, and (4) an adaptive action
selection mechanism. Here, the artificial agent primarily enables
us to provide the necessary physical embodiment (Webb, 1995)
in order to test the efficacy of our adaptive navigationmechanism,
without a detailed reverse engineering of the insect brain.

Based on population-coded heading directions in circular
arrays, we apply PI by accumulating speed-modulated HD
signals through a self-recurrent loop. The final home vector
representation is computed by local excitation-lateral inhibition
connections, which projects accumulated heading directions
onto the array of output neurons. The activity of these neurons
encodes the vector angle as the position of maximum firing in the
array, and the vector length as the amplitude of the maximum
firing rate in the array. The self-localization ability of PI allows
social insects to learn spatial representations for navigation
(Collett et al., 1999). We design a reward-modulated associative
learning rule (Smith et al., 2008; Cassenaer and Laurent, 2012;
Hige et al., 2015) to learn vector representations based on PI.
This vector, called global vector, connects the nest to a rewarding
food location. Vectors are learned by associating the PI state and
a reward received at the food location given a context-dependent
state. This association induces weight changes in plastic synapses
connecting the context-dependent unit to a circular array of
neurons, which represents the vector. The context-dependent
unit activates the vector representation in the array, and therefore
represents a motivational state for goal-directed foraging. Using
the vector learning rule, the agent is able to learn rewarding
locations and demonstrate goal-directed navigation. Because of
the vector addition of global and inverted home vector in the
action selection mechanism, it can compensate for unexpected
detours from the original trajectory, such as obstacles (Collett
et al., 1999, 2001).

Taken together, our model is a novel framework for generating
and examining social insect navigation based on PI and vector
representations. It is based on plausible neural mechanisms,
which are related to neurobiological findings in the insect central
complex. Therefore, we provide a computational approach for
linking behavioral observations to their possible underlying
neural substrates. In the next section, we will describe the
proposed model for reward-modulated vector learning and
navigation. The results section will provide detailed descriptions
of our experimental setups and simulation results. Finally,
conclusions and implications of our model with respect
to behavioral and neurobiological studies are discussed in
Section 4.

2. MATERIALS AND METHODS

In this paper we propose an insect-inspired model of vector-
guided navigation in artificial agents using modular closed-
loop control. The model (see Figure 1A) consists of four
parts: (1) a neural PI mechanism, (2) plastic neural circuits
for reward-based learning of vector memories, (3) random
search, and (4) action selection. The neural mechanisms in our
model receive multimodal sensory inputs from exteroceptive
and proprioceptive sensors to produce a directional signal based
on a vector (see Figure 1B). This vector is represented by the
activity of circular arrays, where the position of the maximum
indicates its direction and the amplitude at this position indicates
its length. We evaluate our model in simulation using a two-
dimensional point agent as well as a hexapod walking robot (see
Supplementary Material for details).
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FIGURE 1 | Schematic diagram of the modular closed-loop control for

vector navigation. (A) The model consists of a neural path integration (PI)

mechanism (1), reward-modulated vector learning (2), random search (3), and

action selection (4). Vector information for guiding navigation is computed and

represented in the activity of circular arrays. The home vector (HV) array is the

output of the PI mechanism and is applied for homing behavior and as a

scaffold for global vector (GV) learning. These three vector representations and

random search are integrated through an adaptive action selection

mechanism, which produces the steering command to the CPG-based

locomotion control. (B) Spatial representation of the different vectors used for

navigation. The HV is computed by PI and gives an estimate for the current

location of the agent. In general, GVs connect the nest to a rewarding location.

Using vector addition, the agent is able to compute, how to orient from its

current location toward the feeder.

2.1. Path Integration (PI) Mechanism for
Home Vector (HV) Representation
The PI mechanism (Figure 2) is a multilayered neural network
consisting of circular arrays, where the final layer’s activity
pattern represents the HV. Neural activities of the circular
arrays represent population-coded compass information
and rate-coded linear displacements. Incoming signals are
sustained through leaky neural integrator circuits, and
they compute the HV by local excitatory-lateral inhibitory
interactions.

A) Sensory inputs
The PI mechanism receives angular and linear cues as sensory
inputs. Like in social insects, angular cues are derived from
allothetic compass cues. We employ a compass sensor which
measures the angle φ of the agent’s orientation. In insects, this
information is derived from the combination of sun- and skylight
compass information (Wehner, 2003). In desert ants, it has been
found that linear cues are derived from the strides taken by the
animal during the journey (Wittlinger et al., 2006, 2007). For
our model, we assume that such odometry is translated into
an estimate of the animal’s walking speed. For the embodied
agent employed here (i.e., a hexapod robot), the walking speed
is computed by accumulating steps and averaging over a certain
time window. These step counting signals are derived from the
motor signals. The input signals for the angular component φ and

FIGURE 2 | Multilayered neural network of the proposed path

integration (PI) mechanism. (A) Sensory inputs from a compass sensor (φ)

and odometer (s) are provided to the mechanism. (B) Neurons in the head

direction (HD) layer encodes the sensory input from a compass sensor using a

cosine response function. Each neuron encodes a particular preferred

direction enclosing the full range of 2π . Note that the figure depicts only six

neurons for simplicity. (C) An odometric sensory signal (i.e., walking speed) is

used to modulate the HD signals. (D) The memory layer accumulates the

signals by self-recurrent connections. (E) Cosine weight kernels decode the

accumulated directions to compute the output activity representing the home

vector (HV). (F) The difference between the HV angle and current heading

angle is used to compute the homing signal (see Equation 11).

the linear component s have value ranges of

φ ∈ [0, 2π), (1)

s ∈ [0, 1]. (2)

B) Head direction layer
The first layer of the neural network is composed of HD cells with
activation functions

xHD
i (φ(t)) = cos(φ(t)− φi), (3)

φi =
2π i

N
, i ∈ [0, N − 1], (4)

where the compass signal φ(t) is encoded by a cosine response
function with N preferred directions φi ∈ [0, 2π). The resolution
is determined by 1φ = 2π

N and the coarse encoding of variables,
here angles, by cosine responses allows for high accuracy and
optimized information transfer (Eurich and Schwegler, 1997).
Coarse coding has been shown to be present in different sensory
processing in the insect brain, including olfactory (Friedrich
and Stopfer, 2001) and visual processing (Wystrach et al.,
2014). Furthermore, it has been shown that polarization-sensitive
neurons in the anterior optic tubercle of locusts exhibit broad
and sinusoidal tuning curves of 90–120◦ (Heinze et al., 2009;
Heinze and Homberg, 2009; el Jundi and Homberg, 2012). Head-
direction cells in the central complex of Drosophila melanogaster
were shown to have activity bump widths of 80–90◦ (Seelig and
Jayaraman, 2015). However, their measurements are based on
calcium imaging data, which is only an approximation of the
neuron’s firing rate.
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C) Odometric modulation of head direction signals
The second layer acts as a gating mechanism (G), which
modulates the neural activity using the odometry signal s (∈
[0, 1]). Therefore, it encodes in its activity, the traveled distances
of the agent. The gating layer units decrease the HD activities by
a constant bias of 1, so that the maximum activity is equal to zero.
A positive speed increases the signal linearly. The gating activity
is defined as follows:

xGi (t) = f





N−1
∑

j = 0

δijx
HD
j (t)− 1+ s



 , (5)

f (x) = max(0, x), (6)

where δij is the Kronecker delta, i.e., first layer neurons j and
second layer neurons i are connected one-to-one. Forward speed
signals have been found in the central complex of walking
cockroaches (Martin et al., 2015).

D) Memory layer
The third layer is the so-called memory layer (M), where the
speed-modulated HD activations are temporally accumulated
through self-excitatory connections:

xMi (t) = f





N−1
∑

j = 0

δijx
G
j (t)+ (1− λ)xMi (t − 1t)



 , (7)

where λ is a positive constant defined as the integrator leak
rate, which indicates the loss of information over time. A leaky
integrator has previously been applied by Vickerstaff (2007) to
explain systematic errors in homing of desert ants (Müller and
Wehner, 1988). If the leak rate is equal to zero, the accumulation
of incoming directional signals is unbounded, which is not
biologically plausible. As such, any path integration system based
on linear integration therefore bounds the natural foraging range
of the animal in order to exhibit accurate path integration (Burak
and Fiete, 2009).

E) Decoding layer
The final and fourth layer decodes the activations from the
memory layer to produce a vector representation, i.e., the HV,
which serves as the output of the mechanism referred to as PI
state:

xPIi (t) = f





N−1
∑

j = 0

wijx
M
j (t)



 (8)

wij = cos(φi − φj) = cos

(

2π(i− j)

N

)

, (9)

where wij is a cosine kernel, which decomposes the projections
of memory layer actitivities of the jth neuron to the ith
neuron’s preferred orientation. While a cosine synaptic weight
kernel is biologically implausible, it is reasonable to assume

that an approximate connectivity could arise from forming
local-excitation lateral-inhibition connections (e.g., mexican-hat
connectivity). An example of such a connectivity formed by
cell proximity could be the ring architecture of head-direction-
selective neurons in the ellipsoid body of the central complex
(Seelig and Jayaraman, 2015; Wolff et al., 2015). The resulting
HV is encoded by the average position of maximum firing in
the array (angle θHV ) and the sum of all firing rates of the array
(length lHV ). We calculate the position of maximum firing using
the population vector average given by:

θHV (t) = arctan

(

∑N−1
i = 0 x

PI
i (t) sin(2π i/N)

∑N−1
i = 0 x

PI
i (t) cos(2π i/N)

)

, (10)

where the denominator is the x coordinate of the population
vector average, and the numerator is the y coordinate. See
Figure 3 for example output activities of the decoding layer
neurons.

F) Homing signal
To apply the HV for homing behavior, i.e., returning home on
a straight path, the vector is inverted by a 180◦ rotation. The
difference between the heading direction φ and the inverted HV
direction θHV−π is used for steering the agent toward home. The
agent applies homing by sine error compensation, which defines
the motor command:

mHV (t) = lHV (t) sin
(

θHV (t)− φ(t)− π
)

. (11)

This leads to right (mHV < 0) and left turns (mHV > 0)
for negative and positive differences, respectively, and thereby
decreasing the net error at each step. The underlying dynamical
behavior of this sine error compensation is defined by a stable and
an unstable fixed point (see Supplementary Marterial). This leads
to dense searching behavior around a desired position, where the
error changes rapidly (Vickerstaff and Cheung, 2010).

2.2. A Reward-Modulated Learning Rule for
Acquiring and Retrieving Vector Memories
We propose a heterosynaptic, reward-modulated learning rule
(Smith et al., 2008; Cassenaer and Laurent, 2012; Hige et al.,
2015) with a canonical form to learn vector memories based
on four factors (see Figure 4): a context-dependent state, an
input-dependent PI state, a modulatory reward signal, and the
vector array state. Like the HV, GV memories are computed
and represented in circular arrays. The context-dependent state,
such as inbound or outbound foraging, activates the vector
representation, and thus retrieves the vector memory. The
association between the PI-based state and the reward signal
modulates the plastic synapses connecting the context unit
(presynaptic) with the vector array units (postsynaptic). The
associated information is used by the agent on future foraging
trips to steer toward the rewarding location. The received reward
is an internally generated signal based on food reward due to
visiting the feeder.
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FIGURE 3 | Example of vector representations based on the neural activities of the decoding layer (see Figure 2E) in the path integration (PI)

mechanism for a square trajectory. The agent runs for 5 m in one of the four directions (180◦, 270◦, 0◦, 90◦), thus finally returning to the starting point of its journey.

The coarse encoding of heading orientations lead to a correct decoding of memory layer activities. Thus, the activities of the decoding layer in the PI mechanism (see

inlay) represent the home vector (HV), where the position of the maximum firing rate is the angle and the amplitude of the maximum firing rate is the length of the

vector. Note that, as the agent returns to the home position, the output activities are suppressed to zero resulting from the elimination of opposite directions.

The context-dependent unit (see Figure 4) is a unit that
represents the agent’s foraging state, i.e., inward or outward. Here
we apply a simple binary unit given by:

σ (t) =

{

1 if outward trip,

0 if inward trip.
(12)

The context-dependent unit projects plastic synapses onto a
circular array that represents the GV. The GV array has the same
number of neurons, thus the same preferred orientations as the
PI array. In this way, each neuron i ∈ [0,N − 1] has a preferred
orientation of 2π i

N . The activity xGVi of the GV array is given by:

xGVi (t) = wGV
i (t)σ (t), (13)

where wGV
i are the weights of the plastic synapses. For these

synapses, we apply a reward-modulated associative learning rule
given by:

1wGV
i (t) = µGVr(t)σ (t)

(

xPIi (t)− xGVi (t)
)

, (14)

wGV
i (t + 1t) = wGV

i (t)+ 1wGV
i (t), (15)

where µGV = 2 is the learning rate, and xPIi (t) is the PI activity in
the direction i = 2π i

N . The weights are therefore only changed
when the agent forages outbound, because for the inward trip
we assume that the agent returns to the home on a straight
path. This is in accordance with behavioral data indicating that
ants acquire and retrieve spatial memories based on internal
motivational states, given by whether they are on an inward or
outward trip (Wehner et al., 2006). The food reward r(t) at the
feeder is given by:

r(t) = max(0, 1− 5d(t)) (16)

where d(t) is the agent’s distance to the feeder, which we
computed directly using the positions of the agent and feeder,
given that the reward is physically bound to the location of the
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FIGURE 4 | Canonical vector learning rule involves associations of

path integration (PI) states with context-dependent and reward

signals. Global vector memories are acquired and expressed by this learning

circuit. The home vector array activities are associated with the food reward

given an active foraging state (outward journey). For details, see text below.

food. Due to the delta rule-like term xPIi (t)− xGVi (t), the weights
wGV
i approach same values as the activities of the PI state at the

rewarding location. Thus, the weights represent the static GV to
the rewarding location (feeder). After returning back home, the
agent applies the angle θGV of the GV to navigate toward the
feeder using error compensation. The motor signal of the GV:

mGV (t) = lGV (t) sin
(

θGV (t)− φ(t)
)

, (17)

is applied together with the homing signal mHV and random
search mε , where lGV is the length of the GV. We model the
random search by the agent as a correlated Gaussian random
walk, which has been previously used to study animal foraging
(Bovet and Benhamou, 1988). Therefore, mε is drawn from a
Gaussian distributionN (mean, S.D.):

mε(t) ∈ N (0, ε(t)), (18)

with an adaptive exploration rate ε(t) given by:

ε(t) = σ (t) exp
(

− β(t)v(t)
)

, (19)

where v(t) is an estimate for the average food reward received
over time and β(t) is the inverse temperature parameter. The
exploration rate is thus zero for inward trips, because the agent
applies path integration to reach its home position on a straight
path. We define v by the recursive formula:

v(t) = r(t)+ γ v(t − 1t), (20)

where v(t) is a lowpass filtered signal of the received food
reward r(t) with discount factor γ = 0.995. Convergence of
goal-directed behavior is achieved for ε below a critical value,
which depends on the choice of β . We assume that ǫ and v are
based on a probability distribution with fixed mean. We derive

a gradient rule, which leads to minimization of the Kullback-
Leibler divergence between the distribution of ǫ(v) and an
optimal exponential distribution (see SupplementaryMaterial for
a derivation). The learning rule is given by:

1β(t) = µβ

(

1

β(t)
+ µvv(t)ε(t)

)

, (21)

β(t + 1t) = β(t)+ 1β(t), (22)

where µβ = 10−6 is a global learning rate, µv = 102 is a reward-
based learning rate. The adaptation of beta is characterized by
small changes scaling with the square root of time, while the
term containing v(t) allows for exploitation of explored food
rewards to further decrease ε through β . In ecological terms,
such exploitation of sparse distributed resources is crucial for the
survival of an individual as well as the whole colony (Biesmeijer
and de Vries, 2001; Wolf et al., 2012; Bolek and Wolf, 2015).

The final motor command 6 in our action selection
mechanism is given by the linear combination:

6(t) = (1− ε(t))
(

σ (t)mGV (t)+mHV (t)
)

+mε(t), (23)

where outward trips are controlled by the balance of random
walk and global-vector guided navigation depending on the
exploration rate ε, while inward trips are controlled solely by
the homing signal mHV . The combination of the two sinusoidals
is equivalent to a phase vector (phasor) addition resulting in a
phasor, which connects the current position of the agent with
the learned feeder location (see Supplementary Material for a
derivation).

3. RESULTS

Using the proposed model embedded as a closed-loop control
into a simulated agent, we carried out several experiments to
validate the performance and efficiency in navigating the agent
through complex and noisy environments. We will further
demonstrate that the generated behaviors not only resemble
insect navigational strategies, but can also predict certain
observed behavioral parameters of social insects.

3.1. Path Integration (PI) in Noisy
Environments
It has been shown, both theoretically and numerically, that PI
is inherently prone to error accumulation (Benhamou et al.,
1990; Vickerstaff and Cheung, 2010). Studies have focused on
analyzing resulting errors from using certain coordinate systems
to perform PI (Benhamou et al., 1990; Cheung and Vickerstaff,
2010; Cheung, 2014). Here we apply a system of geocentric static
vectors (fixed preferred orientations) and analyze the effect of
noise on the resulting error. How can noise be characterized in
PI systems? Both artificial and biological systems operate under
noisy conditions. Artificial systems, such as robots employ a
multitude of sensors which provide noisy measurements, and
generate motor outputs that are similarly noisy. Rounding errors
in their control systems can be an additional source of noise.
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In animals, noise is mainly attributed to random influences
on signal processing and transmission in the nervous system,
including synaptic release and membrane conductance by ion
channels and pumps (see Stein et al., 2005 for review).

In order to validate the accuracy of the PI mechanism, we
measure the positional errors of the estimated nest position
with respect to the actual position over time. In the following
experiments, we averaged positional errors over 1,000 trials with
trial duration T = 1, 000 s (simulation time step 1t = 0.1 s).
In each trial, the agent randomly forages out from the nest and
when the trial duration T is reached, the agent switches to the
inward state and only applies the path integration mechanism
for homing (see Figure 5A for example trajectories). After trial
duration T, the mean distance of the agent from the nest is
9.3 ± 5.0 m. The radius of the nest the agent has to reach
for successful homing is set to 20 cm. Figure 5B shows the
distribution of positional errors for three different correlated,
sensory noise levels (1, 2, and 5%). The distribution of errors
follows a two-dimensional Gaussian distribution with mean 0.0
(nest) and width 〈δr〉.

In population coding, neural responses are characterized by
correlated or uncorrelated noise (Averbeck et al., 2006, see
Figure 5C for examples). In the uncorrelated case, fluctuations
in one neuron are independent from fluctuations in the other
neurons. Correlated noise is described by fluctuations which are
similarly expressed across the population activity, and therefore
leads to a shift of the observed peak activity. Here, we numerically
analyze the effects of correlated and uncorrelated noise on the
accuracy of the proposed PI mechanism. Correlated noise is here
defined as a shift δφ of the peak activity, i.e., fully correlated
noise, such that the compass input to the PI mechanism is
given by:

φnoisy(t) = φ(t)+ δφ, (24)

where δφ is drawn from a Gaussian distribution N (0, 2πζsens)
with sensory noise level ζsens. Uncorrelated noise, also referred
to as neural noise, is defined by adding fluctuations δxHDi to
the activities of the HD layer, which are drawn from a Gaussian
distributionN (0, ζneur) with neural noise level ζneur .

Figure 5D shows the effect of different degrees of sensory
noise on the performance of PI for a fixed number of 18 neurons
per layer averaged over 1000 trials. For noise levels up to 5%
(equal to 18◦), the observed mean position error increases only
slowly and nonlinearly with values below 0.4 m demonstrating
that our PI mechanism is robust for sensory noise up to these
levels.

In Figure 5E, we showmean position errors for different levels
of uncorrelated noise. Similar to sensory noise, the errors first
increase slowly and nonlinearly for noise up to 2%, while for
noise larger than 5%, errors increase linearly. In comparison with
sensory noise levels, uncorrelated noise leads to larger errors due
to a more dispersed peak activity. However, for noise levels up
to 2%, mean position errors are well below 0.2 m indicating
robustness of our PI mechanism with respect to uncorrelated
noise. Given this apparent similar nature of correlated and

uncorrelated noise, we only applied sensory, correlated noise for
the following experiments of this study.

In Figure 6, we varied the number of neurons in the circular
arrays of the PI mechanism for three different sensory noise
level (0, 2, and 5%). Note that the errors for 0% noise arise
from the accuracy limit given the number of neurons. While the
mean position error is significantly higher for 6 and 9 neurons,
it achieves a minimal value for 18 neurons. For larger system
sizes, the error only changes minimally. This is again mainly
due to the coarse coding of heading directions. Interestingly, the
ellipsoid body of the insect central complex contains neurons
with 16–32 functional arborization columns (called wedges, see
Wolff et al., 2015). The numerical results heremight point toward
an explanation for this number, which efficiently minimizes the
error.

Besides errors resulting from random noise, there are
also systematic errors observed in navigating animals. Both
invertebrate and vertebrate species exhibit systematic errors in
homing behavior after running an L-shaped outward journey
(see Etienne and Jeffery, 2004 for review). Müller and Wehner
(1988) have examined such errors in desert ants by measuring
the angular deviation with respect to the angle of the L-shaped
course (see Figure 7). In order to show that our mechanism
is able to reproduce these errors, we fit our model against the
desert ant data from Müller and Wehner (1988) using the leak
rate λ (Equation 7) of the PI memory layer as control variable.
Using a leak rate of λ ≈ 0.0075 resulted in angular errors most
consistent with behavioral data. Leaky integration producing
systematic errors is an idea that has been previously proposed
(Mittelstaedt and Glasauer, 1991; Vickerstaff and Cheung, 2010).
Thus, here our mechanism is not only performing accurately in
the presence of random noise, but it also reproduces behavioral
aspects observed in animals.

In Table 1, we compare the accuracy and efficiency with other
state-of-the-art PI models. Haferlach et al. (2007) apply less
neurons than our model, but we achieve a better performance
in terms of positional accuracy with larger sensory noise (values
taken from Figure 9). Note that our model achieves similar
accuracy, when using six neurons (see Figure 6). The model
by Kim and Lee (2011) applies 100 neurons per layer leading
to a fairly small positional error despite of 10% uncorrelated
noise (Figure 6A, N1 = 100 neurons). However, both models
apply straight paths before homing, which results in smaller path
integration errors compared to random foraging as observed in
insects. Furthermore, many desert ant species were measured
to freely forage average distances of 10–40 m depending on
the species (Muser et al., 2005), whereas some individuals
travel even up to multiple hundred meters (Buehlmann et al.,
2014). Our foraging time has been adjusted for realistic
foraging distances, and if we reduce the foraging time in our
model, we achieve similarly small positional errors as previous
models. Furthermore, behavioral data measured in desert ants
(Merkle et al., 2006) revealed that path integration errors are
approximately 1–2 m depending on foraging distance. The
median values are taken from Figure 3B in Merkle et al. (2006)
and reflect the error between the endpoint of an ant’s inward run
and the correct position of the nest. These larger errors compared
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FIGURE 5 | Path integration (PI) accuracy under the influence of external noise. (A) Example trajectories of the simulated agent during random foraging (light

gray) and homing behavior (dark gray) for different sensory, correlated noise levels: 1, 2, and 5%. The red point marks the starting point at the nest, and the blue point

indicates the return, when the agent switches to its inward state. Using only path integration, the agent successfully navigates back to the nest with a home radius

(green circle) of 0.2 m. (B) We evaluate the accuracy of the proposed PI mechanism by using the mean positional error averaged over each time step during each trial.

Distribution of positional errors for different sensory, correlated noise levels: 1, 2, and 5%. (C) Examples of population-coded HD activities with correlated and

uncorrelated noise. Filled dots are activities of individual neurons, while the dashed line is a cosine response function. (D) Mean position errors 〈δr〉 (± S.D.) in PI with

respect to fully correlated, sensory noise levels averaged over 1,000 trials (fixed number of 18 neurons per layer). (E) Mean position errors 〈δr〉 (± S.D.) in PI with

respect to uncorrelated, neural noise levels averaged over 1,000 trials (fixed number of 18 neurons per layer).

to model accuracies are likely due to noise accumulation in
sensing, neural processing and motor control, although it is
difficult to determine an exact quantification. Nonetheless, ants
are able to reliably navigate by falling back to other strategies,
such as searching behavior or visual homing.

3.2. Global Vector (GV) Learning and
Goal-Directed Navigation
In the previous section, we proposed a reward-modulated
associative learning rule for GV learning. In order to test
the performance of our insect-inspired model applying this

learning rule, and to validate the use of learned vector
representation in goal-directed navigation, we carried out several
experiments under biologically realistic conditions. We apply the
PImechanismwithN = 18 neurons per layer and a sensory noise
level of 5%. In the first series of experiments, a single feeder is
placed with a certain distance Lfeed and angle θfeed to the nest.
The agent is initialized at the nest with a random orientation
drawn from a uniform distribution on interval [0, 2π). In this
naïve condition, the agent starts to randomly search in the
environment. If the agent is unsuccessful in locating the feeder
after a fixed time tforage, it turns inward and performs homing
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FIGURE 6 | Mean positional errors 〈δr〉 (± S.D.) in path integration (PI)

with respect to number of neurons per layer averaged over 1, 000 trials

for three different sensory noise level (0, 2, and 5%). In all three cases,

the error reaches a minimum plateau between 16 and 32 neurons (colored

area), which corresponds to the number of functional columns in the ellipsoid

body of the insect central complex (Wolff et al., 2015).

FIGURE 7 | Systematic errors δθ of desert ant homing are reproduced

by leaky integration of path segments. Müller and Wehner (1988) tested

the ants how accurate they return to the nest after following the two

connected, straight channels with 10 and 5 m length to the feeder (sketch

modified from Müller and Wehner, 1988). The second channel angle α was

varied in 2.5◦ intervals for the simulation results. In our model, the leak rate λ in

the self-recurrent connections is used to fit the behavioral data (Müller and

Wehner, 1988). We found that values λ ≈ 0.0075 accurately describe the

observed systematic errors in desert ants.

behavior using only the PI mechanism. If the agent however finds
the feeder, the current PI state is associated with the received
reward, and stored in the weights to the GV array. The agent
returns back home after the accumulated reward surpasses a fixed
threshold. Each trial lasts a fixed maximum time of T = 3

2 tforage,
before the agent is reset to the nest position. On subsequent
foraging trips, the agent applies the learned vector representation
and navigates along the GV, because the exploration rate is
decreased due to the previous reward. If the agent finds the feeder
repeatedly, the learned GV stabilizes and the exploration rate
decreases further.

Figure 8 demonstrates such an experiment for a feeder with
a distance of Lfeed = 10 m and angle θfeed = 90◦ from the nest.

TABLE 1 | Comparison of existing path integration (PI) models in terms of

accuracy and efficiency.

Model Neurons Noise [%] Error [m] Foraging

dist. [m]

Haferlach et al., 2007 6 3 0.46± 0.18 ≤ 5

Kim and Lee, 2011 100 10 0.018± 0.002 ≤ 5

Our model 18 5 0.351± 0.140 9.3± 5.0

18 10 1.160± 0.484 9.3± 5.0

18 5 0.070± 0.037 5± 3

Cataglyphis fortis – – median=1.27 (N = 51) 5

(Merkle et al., 2006) – – median=2.45 (N = 53) 10

– – median=2.47 (N = 50) 20

In Figure 8A, we show the trajectories of the agent during five
trials. The trial numbers are color-coded (see colorbox). During
the first trial, the agent has not visited the feeder yet and returns
home after tforage = 2, 000 s of random search. During the
second trial (see yellow-colored trajectory), the agent finds the
feeder and learns the GV representation from the PI state (see
Figure 8B). Here the red dotted line indicates the correct angle
θfeed = 90◦ to the feeder, while the cyan-colored line is the
average angle estimated from the synaptic strengths of the GV
array. In doing so, the agent is able to acquire an accurate vector
representation (Figure 8B) resulting in stable trajectories toward
the goal for the final three trials, which is again due to a low
exploration rate (Figure 8C). The repeated visits to the feeder
decrease the exploration rate due to the received reward (red
line). In the final two trials, the agent navigates to the feeder on
a stable trajectory (i.e., low exploration rate) demonstrating that
the learning rule is robust for goal-directed navigation in noisy
environments. Note, that the reward signal peak is decreased
for the final two trials, because the agent does not enter the
reward area centrally. Furthermore, switching the context unit to
the inbound state is determined by the accumulated amount of
reward over time. As such, smaller, but broader reward signals
give a similar accumulated reward than a bigger and sharper
signal.

In Figure 9, we simulated 100 learning cycles with different
randomly generated environments, each consisting of 100
consecutive trials. The feeders are randomly placed by sampling
from a uniform distribution U as follows:

rfeed = (rmax − rmin)
√
n1 + rmin, (25)

θfeed = 2πn2, (26)

n1, n2 ∈ U(0, 1), (27)

where rfeed is the distance from the nest to a feeder and θfeed is
the angle with respect to the x axis. We chose the rmin = 1 m
and rmax = 40 m to be the bounds, in which the feeders can be
placed. The density is determined by how many feeders will be
placed within these bounds. Here, we generated 50 feeders for
each environment. In Figure 9A, we show the mean exploration
rate, and the running averages of mean homing and goal success
rates with respect to trials (foraging time tforage = 1, 000 s,
averaged over 100 cycles). Note that the foraging time has been
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FIGURE 8 | Learning walks of the simulated agent for a feeder placed Lfeed = 10 m away from the nest. (A) Trajectories of the agent for five trials with a

feeder in 10 m distance and 90◦ angle to the nest. Each trial number is color-coded (see colorbar). Inward runs are characterized by straight paths controlled only by

PI. See text for details. (B) Synaptic strengths of the GV array changes due to learning over time (of the five trials). The estimated angle θGV (cyan-colored solid line) to

the feeder is given by the position of the maximum synaptic strength. (C) Exploration rate and food reward signal with respect to time. The exploration rate decreases

as the agent repeatedly visits the feeder and receives reward.

FIGURE 9 | Longer foraging durations during global vector (GV) learning increase the average goal success rate, but decrease the ratio of learned

global vector and nearest feeder distance. (A) Mean exploration rate and running mean goal success and homing rate (± S.D.) with respect to trials averaged

over 100 cycles of randomly generated environments (foraging time tforage = 1, 000 s). Goal success is defined by whether a feeder was visited per trial. The homing

rate is determined by the agent’s return to the nest within the given total trial duration T. (B) Mean goal success rate after 100 trials with respect to foraging time

tforage averaged over 100 cycles. (C) Mean ratio of learned GV distance and nearest feeder distance with respect to foraging time tforage averaged over 100 cycles.
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reduced compared to Figure 8, because the random environment
contain multiple, not just a single feeder. This leads to a higher
probability of finding a feeder and for the learning algorithm to
converge. During the 100 trials, learning converges on average
within the first 20 trials given by a low mean exploration rate.
Like in the previous experiment, the agent reaches the feeder in
every trial after convergence is achieved. This is indicated by the
goal success approaching one. Average homing success is one for
every trial, which results from sufficient searching behavior and
the given total time T. The convergence of the learning process
is dependent on the foraging time, because longer time allow for
longer foraging distances, and thus larger search areas. Therefore,
we varied the foraging time tforage = 200, 400, 600, 800, and
1, 000 s and measure the mean goal success rate after 100 trials
averaged over 100 cycles (Figure 9B). Note, that in contrast to
naturalistic learning in ants, our agents reduces the exploration
rate to zero leading to pure exploitation of the learned global
vector. Ants live in environments with rather sparse, dynamic
food sources, thus their exploitation of learned vector memories
is rather flexible. Nevertheless, our results indicate that for longer
foraging times, the mean goal success rate approaches one and
its variance decreases. However, by measuring the averaged
ratio of learned vector and nearest feeder distance, we show
that this ratio decreases for larger foraging times (Figure 9C).
Thus, there is a trade-off with respect to convergence and
rewardmaximization, leading to an optimal foraging time. Desert
ants have been shown to increase their foraging times up to
a certain value, after which it saturates (Wehner et al., 2004).
This adaptation of foraging time might be indicated by the
trade-off resulting from our model. Furthermore, we encourage
the reader to see the Supplementary Video of path integration
and global vector learning performed by a simulated hexapod
robot.

4. DISCUSSION

Social insects, such as bees and ants, use PI-based vector
memories for guiding navigation in complex environments
(Collett et al., 1998, 1999; De Marco and Menzel, 2005; Collett
and Collett, 2015). Here, we proposed a novel computational
model for combining PI and the acquisition of vector memories
in a simulated agent. We have shown that a computational
model based on population-coded vector representations can
generate efficient and insect-like navigational behaviors in
artificial agents. These representations are computed and
stored using a simple neural network model combined with
reward-modulated associative learning rules. Thus, the proposed
model is not only accounting for a number of behavioral
aspects of insect navigation, but it further provides insights
in possible neural mechanisms in relevant insect brain areas,
such as the central complex. In the following, we will
discuss certain aspects of our model juxtaposing it with
neurobiological findings in insects. Furthermore, we provide
comparisons to other state-of-the-art models of vector-guided
navigation (Kubie and Fenton, 2009; Cruse and Wehner,
2011).

4.1. Head-Direction (HD) Cells and Path
Integration (PI)
A main property of the PI mechanism of our model is that
it receives input from a population of neurons, which encode
for allothetic compass cues. Here, we apply a cosine response
curve for coarse encoding of orientations. Such a mechanism was
previously applied by other models (Haferlach et al., 2007; Kim
and Lee, 2011). Neurons in the central complex of locusts contain
a population-coded representation of allothetic compass cues
based on the skylight polarization pattern (Heinze and Homberg,
2007). Similarly, central complex neurons in theDrosophila brain
encode for heading orientations based on idiothetic self-motion
and visual landmarks. Seelig and Jayaraman (2015) measured
the fluorescent activity of genetically expressed calcium sensors
indicating action potentials, while the fly was tethered on an
air-suspended track ball system connected to a panoramic LED
display. Any rotation of the fly on the ball is detected and
fed back by corresponding motions of the visual scene on the
display. The activity of 16 columnar neurons, which display the
full circular range, generates a single maximum, which moves
according to the turns of the fly on the ball. Interestingly, even
though the representation is generated by visual stimuli, it can be
accurately maintained solely by self-motion cues over the course
of several seconds in the dark. A recent study on dung beetles
(el Jundi et al., 2015), which navigate completely unaffected by
landmarks, has shown that celestial compass cues are encoded in
the central complex revealed by electrophysiological recordings.
Taken together, it is likely that the central complex of social
insects contains a similar neural coding of polarization- and
landmark-based compass cues. Not only is the central complex
function and anatomy highly conserved across insect species, but
behavioral experiments on ants and bees also suggest the central
role of using polarization and landmark cues for navigation.
Our model further predicts allothetic goal-direction cues to be
involved in PI mechanisms. Such neural representations have yet
to be observed in experiments, ideally by applying the tethered
track ball setup described in Seelig and Jayaraman (2015). A
recent study has developed such a system for the use in desert
ants (Dahmen et al., 2017), providing a powerful tool for future
investigation of underlying neuronal mechanisms by combining
this technology with electrophysiological recordings.

In our model, we assume that the agent’s walking speed is
neurally encoded as a linear signal that modulates the amplitude
of HD activities by an additive gain. A similar, so-called gater
mechanism has been applied in a model by Bernardet et al.
(2008). Such linear speed signals have recently been found to
be encoded by neurons in the rat’s medial entorhinal cortex
(Kropff et al., 2015) as well as the cockroach central complex
(Martin et al., 2015). This shared encoding mechanism indicates
the necessity of linear velocity components for accurate PI
(Issa and Zhang, 2012). The temporal accumulation of speed-
modulated HD signals in our model is achieved by a self-
recurrent connection. Biologically, these recurrent connections
can be interpreted as positive feedback within a group of neurons
with the same preferred direction. Since our model applies
PI as a scaffold for spatial learning, we apply this simplified

Frontiers in Neurorobotics | www.frontiersin.org 12 April 2017 | Volume 11 | Article 20

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Goldschmidt et al. Goal-Directed Navigation in Insect-Inspired Artificial Agents

accumulation mechanism to avoid random drifts observed in
more complex attractor networks (Wang, 2001), which were
applied in previous PI models (Touretzky et al., 1993; Hartmann
andWehner, 1995). We were also able to test the leaky-integrator
hypothesis (Mittelstaedt and Glasauer, 1991) by fitting a single
leakage parameter to observed behavioral data from desert ants
(Müller andWehner, 1988). The leakage parameter decreases the
self-recurrent connection weight for leaky integration.

A HV representation is computed by using a cosine weight
kernel, which was also used in Bernardet et al. (2008). Such a
connectivity acts on each represented direction by adding the
projections from other directions, respectively. This leads to the
formation of an activity pattern with a single maximum across
the population. The angle of the represented vector is readout by
averaging the population vectors, while the distance is encoded
by the amplitude of the population activity. We show that such
a readout of a population-coded vector is sufficient to generate
robust homing behavior in an artificial agent. Furthermore, it
allows for accurate localization required for spatial learning of
locations.

The extensive numerical analysis of noise affecting the
accuracy of our PI mechanism leads to two predictions. First,
PI accuracy seems to follow a similar function with respect to
the noise levels for both the fully correlated and uncorrelated
random fluctuations. While uncorrelated noise could be further
filtered depending on the system size N, decorrelation of sensory
input noise could be achieved by adding inhibitory feedback as
shown in a model by Helias et al. (2014). Second, we varied
the number of neurons N per layer for different levels of fully
correlated noise, which predicts an accuracy plateau between
16 and 32 neurons where the accuracy will not increase for
larger systems. This indicates that such a number of partitions
for representing orientation variables is efficient and accurate
enough. Interestingly, most prominent neuropils of the central
complex exhibit a similar number of functional columns (Wolff
et al., 2015). The central complex has been shown to be involved
in sky compass processing (Heinze and Homberg, 2007), spatial
orientation (Seelig and Jayaraman, 2015), and spatio-visual
memory (Neuser et al., 2008; Ofstad et al., 2011). Its columnar
and reverberating connectivity further supports the functional
role of integrating orientation stimuli. These evidences suggest
that the proposed circular arrays representing navigation vectors
might be encoded in the central complex. We conclude that
further experiments are needed to unravel how PI is exactly
performed in the insect brain by closely linking neural activity
and circuitry to behavioral function.

4.2. Reward-Modulated Vector Acquisition
and the Role of Motivational Context
PI provides a possible mechanism for self-localization. As such,
it has been shown experimentally that social insects apply
this mechanism as a scaffold for spatial learning and memory
(Collett et al., 2013). Here we propose a reward-modulated
associative learning rule (Smith et al., 2008; Cassenaer and
Laurent, 2012; Hige et al., 2015) for acquiring and storing vector
representations. The acquisition and expression of such vector

memories depend on the context during navigation. For GVs, the
context is determined by the foraging state, which we model as a
binary unit. Indeed, behavioral studies on desert (Wehner et al.,
2006) and wood ants (Fernandes et al., 2015) have shown that
expression of spatial memories is controlled by an internal state
in a binary fashion. The association of the context with a reward
signal, received at the feeder, drives synaptic weight changes
corresponding to the difference between the current PI state and
the respective weight. As this difference is minimized, the weights
converge toward values representing the PI state when the reward
was received at the feeder. Thus, like the HV, GVs are population-
encoded with the angle determined by the position of the
maximum activity and the length determined by the amplitude
of the activity. To our knowledge, this is the first model that
applies such a neural representation to perform vector-guided
navigation. Previous models, such as Kubie and Fenton (2009);
Cruse and Wehner (2011), do not provide possible underlying
neural implementations of the PI-based stored information used
for navigation. The HD accumulator model (Kubie and Fenton,
2009) argued that vector information is stored in so-called
shortcut matrices, which are subsequently used for navigating
toward goals. Similarly, the Cruse and Wehner model (Cruse
and Wehner, 2011) stored HVs as geocentric coordinates in
the activity of two neurons. Although it has been argued that
this representation is biologically plausible, it is unlikely that
persistent activity can explain global vector memories which are
expressed over several days (Wehner et al., 2004). Furthermore,
representing a two-dimensional variable requires at least three
neurons, because firing rates are strictly positive. As such, existing
models offer sufficient mechanisms in order to generate vector-
guided navigation, they neither seem biologically plausible nor
provide any explanations how such information is dynamically
learned during navigation.

Our proposed encoding of GVs is validated by recent findings
from a behavioral study on wood ants (Fernandes et al., 2015).
The authors carried out a series of novel experimental paradigms
involving training and testing channels. In the training channel,
ants were trained to walk from their nest to a feeder at a
certain distance, before they were transferred to the testing
channel. There, theymeasured the expression of vectormemories
by observing the behavior. The authors showed that vector
memories are expressed by successful association of direction
and distance, therefore such memories might be encoded in a
common neural population of the insect brain. The acquisition
of vectors were rapid after 4–5 training trials, which corresponds
to the rapid vector learning shown by our model during
learning walks (Figure 8). However, the study mainly examined
the expression of homeward vector memories which are not
included in our model, because here the agent applies PI for
homing. Recent work by Fleischmann et al. (2016) investigates
landmark learning and memory during naturalistic foraging in
the desert ant species Cataglyphis fortis. Like other desert ants,
they spent the initial weeks of their lifetime inside the nest, before
spending about a week foraging repeatedly for food to bring
back to the nest. By placing controlled, prominent landmarks
around the nest, the authors could measure the foraging routes
of individual, marked ants. They also measured the accuracy
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of landmark-guided memories by transferring inward running
ants right before they entered the nest. Their results show that
ants initially forage only within a short distance and duration,
but more experienced foragers increase their average foraging
range and duration. Furthermore, they paths become straighter
and they are more successful in finding food (also shown in
another desert ant species; Wehner et al., 2004). Taken together,
their results indicate that landmark learning and memory is a
gradual process. Our model does not model landmark guidance
during foraging, but it provides a simple strategy that could
support this gradual learning mechanism. Specifically, it could
provide the agent with a directional bias, by which the agent can
learn visual routes toward rewarding food sources (Ardin et al.,
2016). Finally, possible interactions between path integration and
landmark-basedmemories has been recently shown in behavioral
experiments (Wystrach et al., 2015), and as such, a complete
neural model of naturalistic foraging behavior remains to be
future work.

Two major higher brain areas in social insects exhibit
experience-dependent plasticity due to foraging activity: the
mushroom bodies (Yilmaz et al., 2016) and the central complex
(Schmitt et al., 2016). The mushroom bodies are paired neuropils
known to be involved in olfactory learning and memory (Owald
and Waddell, 2015), as well as visual learning in discrimination
tasks (Vogt et al., 2014). Studies on the central complex across
various insect species have revealed its role in visual object
localization (Seelig and Jayaraman, 2013) and visual learning
(Liu et al., 2006), motor adaptation (Strauss, 2002), spatio-visual
memory (Neuser et al., 2008; Seelig and Jayaraman, 2015; Ofstad
et al., 2011), as well as polarization-based compass (Heinze and
Homberg, 2007). A common coding principle in the central
complex appears to be the topological mapping of stimuli within
the full azimuthal circle (Plath and Barron, 2015). Both higher
brain neuropils involve the functional diversity of multiple
neuropeptides and neurotransmitters (Kahsai et al., 2012). The
short neuropeptide F is a likely candidate influencing the foraging
state, as it has been shown to regulate feeding behavior and
foraging activity after starvation (Kahsai et al., 2010). Based on
this evidence, we conclude that the population-coded vector
memories described by our model are likely to be found in the
central complex. Nonetheless, we do not exclude the possibility
of possible interactions between the central complex and the
mushroom bodies involved in spatial learning and navigation,
which is supported by recent findings on novelty choice behavior
in Drosophila (Solanki et al., 2015).

We proposed a novel computational model for PI and the
acquisition and expression of vector memories in artificial
agents. Although existing vertebrate and invertebrate models
(Kubie and Fenton, 2009; Cruse and Wehner, 2011) have
followed a similar approach of implementing vector-guided
navigation, here we provide plausible neural implementations
of the underlying control and learning mechanisms. Tested
on a simulated agent, we show that the proposed model
produces navigational behavior in the context of realistic
closed-loop body-environment interactions (Webb, 1995; Seth
et al., 2005; Pfeifer et al., 2007). In our previous work,

we applied this approach to study adaptive locomotion and
climbing (Manoonpong et al., 2013; Goldschmidt et al., 2014;
Manoonpong et al., 2014), goal-directed behavior (Dasgupta
et al., 2014) and memory-guided decision-making (Dasgupta
et al., 2013). Although our model does not reproduce the full
repertoire of insect navigation, it has shown to be sufficient in
generating robust and efficient vector-guided navigation. Besides
behavioral observations, our model also provides predictions
about the structure and plasticity of related neural circuits in
the insect brain (Haberkern and Jayaraman, 2016). We discussed
our findings in the context of neurobiological evidences related
to two higher brain areas of insects, the central complex and
the mushroom bodies. We therefore conclude that our model
offers a novel computational model for studying vector-guided
navigation in social insects, which combines neural mechanisms
with their generated behaviors. This can guide future behavioral
and neurobiological experiments needed to evaluate our
findings.
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