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Abstract. This paper proposes a predictive control method for rail vehicle air-conditioning systems. Due to 
heat transfer and diffusion, the air-conditioning system is a long-time-delay system. However, most air-
conditioning systems use feedback control, which has problems such as long transition time, system shock, 
and mismatch between air cooling capacity and load, resulting in the waste of energy. Combined with 
feedforward and feedback control, a predictive control method with dynamic correction is proposed to solve 
this problem. Based on the load prediction, the real-time indoor temperature feedback link is added to send 
the cold air into the room in advance, which makes the room temperature stable, and the energy-saving 
effect significant.  In the study, variance analysis of environmental factors is performed to improve the 
accuracy of the load prediction system, and the mean relative error (MRE) of the prediction reached 0.0112. 
By comparing the simulation results of predictive control and feedback control, it is proved that the 
predictive control with correction has a smoother room temperature curve. The energy-saving rate is about 
25.2%. 

1 Introduction 
The air conditioning system is one of the main energy-
consuming systems on rail transit vehicles. According to 
the analysis of energy consumption statistics of operating 
lines, the air-conditioning system energy consumption 
accounts for about 30% of the vehicle energy 
consumption. 

Energy conservation of air-conditioning systems has 
been valued in various buildings. Many studies have 
proposed some energy-saving methods, such as fuzzy 
control or neural network control [1], adaptive con1trol 
[2], heat storage, robust control, etc. However, the air-
conditioning system is a time-delay system with a long 
lag time. The lagging response of room temperature to 
regulation and heat source interference has a great 
influence on room temperature control effect and system 
energy-saving [3,4]. Due to heat transfer and gas 
diffusion, when a command is inputted to the system at 
the current moment, the indoor temperature and humidity 
cannot reach the expected control target until ∆t time. It 
means that after the control command was issued, the 
load demand or operating condition may change before 
the controlled variable respond. Therefore, the system 
often runs under unmatched loads, resulting in a waste of 
energy and poor stability of indoor control. Air-
conditioning systems mostly use feedback control. The 
system has a strong anti-interference ability and high 
control accuracy, but also has problems such as long 
transition time and system shock. Most traditional air-
conditioning energy-saving measures have this problem. 
The control strategy is studied to eliminate the effect of 
indoor temperature delay on the control during the 

operation and adjustment of the air conditioning system 
[5]. Rail transit vehicles have short operating lines, 
frequent passenger boarding, and rapid environmental 
changes [6], so the system lag will seriously affect the 
energy-saving control of air-conditioning systems. For 
this problem, predictive control can be a suitable solution. 
However, there are two problems to be solved for the 
prediction control. One is the prediction system accuracy, 
and the other is the adjustment method of the control 
system. 

There have been many studies on load prediction. 
Load prediction methods mainly include building energy 
consumption simulation, multiple regression analysis, 
time series, grey theory, artificial neural network, etc. [7]. 
Reference [8] established a regression model of 
commercial building energy consumption based on the 
outdoor temperature and compared the predicted results 
with actual energy consumption. Reference [9] used one-
variable linear regression to obtain the function of the 
building envelope load and the temperature difference 
between indoor and outdoor, and finally calculated the 
building cold load. Reference [10] used historical load 
data to establish a model for predicting the next day air-
conditioning load, and the prediction results were in 
good agreement with the measured results. Reference [11] 
used short-term indoor and outdoor temperature 
differences, heating energy consumption, and indoor 
load test data to establish a neural network model to 
predict long-term heating energy consumption. 
Reference [12] compared the prediction results of the 
neural network with the prediction results of the physical 
model and proved the accuracy of the neural network. 

In terms of predictive control of air conditioning 
systems, to solve the lag, scholars have proposed 
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methods including Smith estimation pre-compensation 
[13], model predictive control [14,15], Elman neural 
network multi-step [16], etc. Reference [15] proved that 
model predictive control could help reduce peak energy 
consumption and significantly reduce the operating costs 
of buildings. Literature [16] proposed a method for 
indoor temperature predictive control based on the multi-
step predictive model of Elman neural network for the 
predictive control of indoor temperature time-delay in 
VAV air-conditioning systems. Literature [17] proposed 
a robust model predictive control strategy, which can 
improve the supply air conditioning control of the air 
handling unit by directly dealing with related 
uncertainties and constraints. 

In summary, there are many studies on load 
prediction at present, but few on load prediction for rail 
transit vehicles air-conditioning. Due to their 
characteristics, vehicle air conditioning is different from 
building air conditioning systems. Predictive control is 
mostly in the research stage, which is inconclusive and 
lacks in-depth research on control methods. But the 
predictive control method could greatly improve the 
comfort and stability of the indoor environment and 
energy saving. 

This paper studies predictive control and proposes a 
control method based on load prediction. Firstly, the load 
characteristics of rail vehicles air-conditioning are 
analyzed, and the significance ranking of each 
environmental impact factor is obtained by using 
variance analysis, which determines the input of the load 
prediction model. Then establish an artificial neural 
network model and train it with a large amount of data 
until the errors meet the requirements after verification to 
ensure that the prediction results of the neural network 
are accurate and reliable. Next, determine the theoretical 
method of predictive control and establish an air-
conditioning system simulation model to verify its 
reliability. Finally, obtain the results of predictive control 
and energy-saving rate. 

The structure of this paper is as follows: Section 2 
discusses the research methods, including theoretical 
analysis and simulation model building of load 
prediction system and air-conditioning predictive control 
system. Section 3 is the training and verification of the 
load prediction system, using multiple evaluation criteria 
to determine the accuracy of the prediction system. 
Section 4 is the simulation calculation results and 
analysis of the predictive control system. Section 5 is the 
conclusion. 

2 Methodologies 
The predictive control method is divided into two steps, 
the first is prediction, and the second is control. Only by 
accurately predicting the amount of cooling the air-
conditioning system needs to supply next, can it be 
effectively controlled. The research method is divided 
into two parts, which will be detailed in the following. 

2.1. Load prediction 

Artificial neural network (ANN) uses network topology 
to imitate the human brain system. It has the 
characteristics of memory, autonomous learning, and 
optimized computing, and has been widely used in 
various fields. The BP neural network has a multi-layer 
structure, including an input layer, several hidden layers, 
and an output layer. The neurons in different layers are 
fully connected, which is very suitable for complex non-
linear objects, such as the prediction of air conditioning 
loads. Here we use the BP neural network for load 
prediction.  

2.1.1. Load characteristics and model inputs. There 
is a big difference between the air conditioning of 
subway vehicles and the building, because of its 
operating environment. Therefore, in the load prediction, 
it is necessary to consider its characteristics and analyze 
the influence of different environmental factors on the air 
conditioner, and take these into the prediction model. 

The air conditioning load of a subway vehicle 
includes envelope structure heat transfer, passenger heat 
dissipation, electromechanical equipment heat 
dissipation, fresh air load, heat dissipation from the door 
opening, and solar radiation heat from the ground line. 
The air-conditioning load shows obvious peak-to-valley 
differences with passenger flow and train running 
intervals. In terms of passenger flow, the passenger 
density in the carriages during peak and non-peak hours 
vary greatly every day, and the passenger flow on 
different days such as weekdays, weekends, and legal 
holidays also changes hugely. The number of passengers 
has the biggest effect on the cooling load because it 
determines the heat dissipation and the fresh air volume. 
Subway vehicles operate underground most of the time 
and are less affected by solar radiation, but ground lines 
should also be considered. As vehicles travel in the 
tunnel for a long time, the heat transfer of the envelope 
structure has a smaller effect on the load than the 
building envelope structure. When the train is stationary 
and running, the heat transfer coefficient K changes, 
which increases with the train running speed. Besides, 
the heat dissipation of the equipment in the car is lighting 
equipment, fans, and electrical equipment, which are 
fixed values and small. 

The orthogonal test method is adopted. Set six 
influence factors and an error column: climate, body 
material structure, vehicle speed, passenger flow, 
lighting and equipment power, fresh air volume index. 
The first four factors are each at four levels, and the last 
two factors are each at two levels without interference. 
Subsequently, variance analysis was used for the 
calculation load, and the results are shown in Table 1. 
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Table 1. Variance analysis results. 

Factor Climate Envelope Speed 
Personnel 

density 

Lighting 
and 

equipment 

Fresh air 
volume  

Error 
column 

Sum of squared 
deviations Qi 

431544 127184 53672 9722869 29419 34674 11900 

Sum of squared 
deviations Q 

10352626 

Degrees of 
freedom Si

2 
143848 42394.63 17890.63 3240956 29419 34674 11900 

F 19.32 5.69 - 435.20 3.95 4.66 - 

Significance 
Particularly 
significant 

Significant 
Non-

significant 
Particularly 
significant 

Significant Significant 
Non-

signific
ant 

 
Check the F distribution table, and take the 

significance levels of 0.1 and 0.05. The critical value F 
is:
 F0.1(3,4)=4.19;F0.1(1,4)=4.54;F0.05(3,4)=6.59;F0.05(1,4)=7.71
. The significance ranking of each influencing factor is as 
follows: personnel density (F=435.20)> climate 
(F=19.32)> envelope (F=5.69)> fresh air volume 
(F=4.66)> lighting and equipment (F=3.95)> speed (non-
significant). It is consistent with the character analysis. 

Remove insignificant variables based on variance 
analysis. Because the predictive control is in the vehicle 
operation phase and the body material structure is fixed, 
the determined input factors of the neural network should 
include outdoor temperature, outdoor humidity, solar 
radiation, number of passengers, fresh air volume, and 
equipment. Also, due to the heat storage of the envelope 
structure, the air conditioning load has a time delay to the 
change of the outdoor environment, so it is necessary to 
consider the previous environmental parameters. In 
building air-conditioning systems, this delay time is long 
and usually takes two or three hours. Because the 
thermal inertia of the cabin material is smaller than that 
of the building envelope, the delay time of the load is 
also short.  Based on multiple model trials and 
verifications, the input lead time was set to one hour, t-1. 
Therefore, there are nine input nodes, and the output 
node is the air-conditioning load Q. 

2.1.2. Neural network prediction model. The neural 
network has a variety of learning algorithms. The 
TRAINLM algorithm is selected here, which has fast 
convergence speed and high accuracy. Although this 
algorithm occupies a large amount of memory, the 
vehicle air-conditioning load prediction is not a big 
network, so it is the most applicable algorithm. 

In the training of neural networks, the hidden layer 
neurons number is important. Too few neurons will lead 
to poor fault tolerance of the network, fail to learn well, 
and ultimately affect the load prediction effect. 
Conversely, it will cause too long training time and 
decrease network association ability, called overfitting. 
The selection of the nodes number in the hidden layer 
currently has no strict calculation method, which can 
only be determined by experiments according to the 
training purpose and requirements. According to 

Kolmogorov's theorem, if the number of input layer 
nodes is m, the number of hidden layer nodes should be 
2m+1. The number of nodes can be gradually increased 
or decreased based on 2m+1 during training. After 
several trial calculations, the model was determined to be 
a three-layer neural network structure with 18 hidden 
layer nodes. 

The structure of the neural network is shown in 
Figure 1. Take the learning rate as Net.train Param.lr = 
0.1. 

 

Figure 1. Neural network structure. 

2.2. Predictive control system  

Based on load prediction, predictive control of the air-
conditioning system is performed. 

2.2.1. Predictive control. After predicting the air-
conditioning load in the room at time t0+1, the required 
cooling capacity in the room at time t0+1  is calculated 
according to the environmental status of the room and 
sent in advance at the current time. Such a predictive 
control method helps adjust the air conditioning in 
advance when the indoor cooling load changes. 

For example, when a heat source is predicted to enter 
the room at time t0+1 , the temperature will gradually 
decrease at time t0 . When the heat source enters, the 
room temperature will not exceed the design range due to 
the heat transfer delay. At the same time, the temperature 
decreases at t0 means that the inverter compressor starts 
to speed up slowly at t0 . When the room temperature 
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reaches its peak, the cold air has been fully sent to the 
room. The air conditioner does not need to run at high 
speed suddenly, which makes the compressor operation 
curve more smooth. According to [18], compressor 
efficiency varies with speed. The highest efficiency is 
usually in the middle position, and the efficiency will be 
greatly reduced at full speed, which is consistent with 
our air conditioning simulation results. The main energy 
consumption component of the unit air-conditioning 
system for rail transit vehicles is the compressor. The 
compressor start-stop and speed greatly influence air-
conditioning energy consumption. Therefore, when using 
predictive control, the more stable operation will 
improve the efficiency of the air-conditioning system, 
with a good energy-saving effect. 

Rail transit vehicle air-conditioners are all fixed air 
volume units and only the supply air temperature 
changes. The humidity requirements in the vehicle are 
not high. When the temperature meets the design 
requirements, and the air-conditioning unit supplies air at 
the dew point, the humidity can fully meet the 
requirements. After the load prediction, we calculate the 
supply air temperature. 

The calculation formula of the sensible heat load is as 
follows: 

Q=
CpρG*(To-Ts)

3600
 

(1) 

Where, Q  is the sensible heat load,  kW ; Cp  is the 
specific heat capacity, J/(kg·K) ; ρ  is the air density, 
kg/m³; G is the supply air volume, kg/h; To is the design 
temperature, °C; Ts is the supply air temperature, °C. 

The supply air temperature calculated based on the 
load is as follows: 

Ts=To-
Q*3600

CpρG
 

(2) 

However, there is a problem with this calculation 
method. If there is an error in the load prediction or an 
error in the adjustment of the air-conditioning system, 
there is no link to return this error to the predictive 
control system, and the error will gradually accumulate 
and become larger. Therefore, we need to return the 
room temperature controlled to the predictive control 
system. After the correction calculation, we can get the 
actual supply air temperature. 

Calculated as follows: 

Ts=To-
Q*3600+(TN-To)CpρV*3600/∆t

CpρG
 

(3) 

Where, TN  is the indoor temperature, °C ; V  is the 
room volume, m³;  ∆t  is the lead time of predictive 
control, s. 

2.2.2. Predictive control simulation model. When the 
load prediction is realized, a complete simulation model 
of the air-conditioning system and the control system is 
built to compare and analyze the control effect and 
calculate the system energy-saving efficiency. 

Amesim provides basic engineering components for 
physical modeling without refining mathematical models. 
It can be used for simulation of the air-conditioning 
system, and can also perform PID feedback control. 
Build an air conditioning system model in Amesim. The 
load prediction and predictive control system are realized 
in Simulink by using co-simulation. 

Rail transit vehicle air-conditioners are mostly 
overhead unit air conditioners. Its compressors, 
condensers, throttling devices, evaporators, fans, and 
electrical devices are installed in a box to form a 
complete air-conditioning unit. In the simulation, the 
load is entered into the chamber module using the data 
module. Fresh air and return air are mixed and sent to the 
evaporator for processing and then to the chamber. Due 
to the variability of the control, it is set here as a 
variable-frequency unit. But in fact, a large part of air-
conditioning for rail transit vehicles still uses fixed-
frequency units, and they are even less energy efficient. 

The transmission interface module of Amesim and 
Simulink is compiled by VC ++ to realize the dynamic 
transmission of data. After the data is transmitted to the 
S-Function in Simulink, it is first normalized to meet the 
input requirements of the neural network. Then the 
trained neural network is called, and the predicted load Q 
is output. Based on the predicted load value, a series of 
calculations are performed by adding the indoor 
temperature. Finally, the target value of the supply air 
temperature is obtained and transmitted to Amesim. 

There are ten groups of data transmitted by Amesim 
to Simulink. The first nine sets of environmental state 
data are used to input the trained neural network for load 
prediction, and the temperature at the current time t0 in 
the room is used to correct the predicted load according 
to the indoor state. Simulink has two sets of data 
transmitted to Amesim. The air supply temperature at t0 
is the target of the predictive control system, and the 
predicted indoor load is regarded as error observation. 
Table 2 shows the data transmitted between Amesim and 
Simulink. 

Table 2. Co-Simulated transmission data. 

Transmission interface Amesim to Simulink Simulink to Amesim 

Data 

Outdoor dry bulb temperature at time t0+1 

Target supply temperature at 
time t0 

Outdoor dry bulb temperature one hour before t0+1 

Outdoor relative humidity at time t0+1 

Outdoor relative humidity one hour before t0+1 

Solar radiation at time t0+1 Air-conditioning load at t0+1 
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Equipment power at time t0+1 

Number of personnel at time t0+1 

Fresh air volume at time t0+1 

Room temperature at time t0 

 
The predicted lead time ∆t mentioned above is: 

∆t=t0+1-t0 (4) 

According to research, the lag of the air conditioning 
system is mainly due to the adjustment of the air 
conditioning system and the diffusion of the supply air in 
the room, which is about 5-6 minutes. In the simulation, 
since the carriage is set as a fixed-size chamber, the time 
of heat diffusion is not considered, so the advance time 
of predictive control in the simulation only needs to 
include the adjustment time of the air conditioning 
system. In this simulation, ∆t is about the 60s. However, 
in practical applications, the lead time ∆t  of the 
predictive control system should be 5-6 minutes. 

3 Load Prediction 

3.1. Data preprocessing for load prediction 

Neural network training requires a lot of historical data. 
Obtaining actual data is difficult, but energy simulation 
software can make up for this demand. A model was 
built using Trnsys according to the parameters of the 
subway car type B. By setting the size of the room, the 
material of the envelope structure, the thickness of the 
car wall, etc., the model is adapted to the actual situation 
of the subway vehicle. The number of personnel is set 
according to the number of subway capacity and the 
actual survey. Make the size change so that the predicted 
value is interpolated rather than extrapolated. Climate 
uses data from Beijing. 

The output data interval of the model operation is set 
to 0.2h, from May 1 to September 30, covering the entire 
air-conditioning season. Since the subway operates only 
during the day, nighttime temperature data will cause the 
neural network to fail to recognize it. Delete the data 

with zero loads at night, and only predict the running 
time from 6:20 to 23:00 during the day. 

3.2. Load prediction training and verification 

Use Matlab for programming and call the processed data 
for training. The final training data is about 51,000 sets, 
and 1000 sets of data are set as verification data. The 
number of iteration steps is 10,000.  

After the network training is completed, the model 
needs to be tested and verified to determine whether the 
obtained model is accurate. Call the network and the 
verified data to take the predicted data. Compare with the 
actual data, calculate the error, and judge whether the 
deviation is within the allowable range. The accuracy of 
the load prediction model can be evaluated by the mean 
relative error (MRE), mean square error (MSE), and the 
Pearson correlation coefficient.  

Figure 2(a) shows the comparison between the 
predicted value and the actual value of these 1000 sets of 
data. The abscissa represents the number of data input, 
which reflects the specific time point. The time interval 
between the two adjacent data is 0.2h. The ordinate is the 
cooling load of the air conditioner. The solid line is the 
actual value, and the dotted line is the prediction result. 
Figure 2(b) shows the predicted relative error. 

It can be seen that the prediction results are consistent 
with the actual data. The relative errors are within 10%, 
and 95% of the data are within 5%. Through statistical 
calculations, the mean relative error is 0.0112, the mean 
square error is 0.00034, and the Pearson correlation 
coefficient reaches 0.995. As shown in Table 3. It means 
that this neural network is accurate in predicting the 
cooling load of the air conditioner, which is enough to 
meet the prediction accuracy requirements. 

 

 
Figure 2(a). Comparison of predicted data and actual data. 
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Figure 2. Prediction results for 1000 sets of data. 

Table 3. Load prediction results. 

 MRE MSE Pearson correlation coefficient 
Prediction results 0.0112 0.00034 0.99503 

 
The linear regression graph of training data and test data is shown in Figure 3. Their R values are both around 0.998. 
 

  

Figure 3(a). Linear regression of training data. Figure 3(a). Linear regression of test data. 

 
Besides, one day's data was randomly selected for a 

detailed analysis of prediction results. Figure 4 is an 
enlarged curve of one-day prediction data. As in Figure 2, 
the solid line in Figure 4(a) is the actual data curve, the 
dashed line is the data curve of the predicted value, and 
Figure 4(b) is the predicted relative error curve. 

It can be seen from the figure that the curves of the 
actual data and the predicted data mostly coincide. The 
data with large errors are highlighted in red on the graph. 

The time with the largest error is the beginning of the 
morning peak period. At this time, the load change at 
each point is extremely large, so the prediction deviation 
is easy to occur. The other places with errors also are 
time with a big change, which conforms to the general 
law. But on the whole, this neural network has high 
prediction accuracy. Its average relative error is only 1-
3%, enough to serve as the basis for predictive control. 
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Figure 4(a). Comparison of predicted data and actual data. 

 
Figure 4(b). Prediction relative error. 

Figure 4. Prediction results for one day air conditioning load. 

4 Predictive control 

4.1. Predictive control without correction 

Using the co-simulation model, uncorrected predictive 
control is calculated first. The indoor temperature is 
controlled based on the predicted load of the neural 
network only. 

The method is as follows: the internal and external 
environmental parameters at time t0+1 are input to a load 
prediction model, and the prediction model outputs the 

indoor instantaneous cooling load at time t0+1. The cold 
load value is input to the predictive controller, and after 
calculation, the supply air temperature at time t0  in 
advance is obtained. At the same time, the controller 
gives the fresh air volume at time t0 from the passenger 
flow data. At time t0 , the deviation between the 
instantaneous supply air temperature and the supply air 
temperature output from the predictive controller is used 
to calculate the deviation value, which is controlled in 
advance by the PID controller. The flowchart is shown in 
Figure 5. 

 

Figure 5. Uncorrected predictive control flowchart. 
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The indoor temperature is calculated using equation 
(2): 

Ts=To-
Q*3600

CpρG
 

(2) 

Here we use the meteorological environment data of 
the Beijing, and randomly select the summer July 21 for 

calculation. The simulation time is from 6:20 to 23:00, 
and a point is taken every 5s.  With the same 
environment and system parameters, simulation 
calculations are performed for uncorrected predictive 
control and feedback control, respectively. 

 
 

Figure 6. Comparison of actual load and predicted load. Figure 7. Predicted target supply air temperature and actual 
supply air temperature. 

The comparison between the actual cooling load and 
the predicted cooling load is shown in Figure 6. The 
solid black line is the actual load value, and the dashed 
red line is the predicted load value, with a mean relative 
error of 2.22%. In Figure 7, the predicted supply air 
temperature output by the controller is a solid black 
curve, and the actual supply air temperature adjusted by 
PID in the air-conditioning model is a red dotted curve. It 
can be seen from the figure that the supply air 
temperature meets the requirements of the predictive 
controller. 

The air condition in the cabin of the two control 
methods is shown in Figure 8. The black solid line is the 
temperature of the feedback control, and the red dashed 
line is the temperature of the uncorrected predictive 
control. The other two dashed lines are humidity curves. 

The indoor design temperature is 26°C, the control range 
is ±1°C, and the design humidity is 55-60%. According 
to the control results, it can be found that the indoor 
conditions have met the design requirements most of the 
time. But at the morning peak, the room temperature for 
uncorrected predictive control was slightly out of range. 
The main reason here is a large number of passengers 
enter the compartment at the same time, so the indoor 
temperature rises rapidly. The uncorrected predictive 
control system only controls based on the predicted load 
and does not make adjustments to the indoor real-time 
changes. A slight error will lead to insufficient cooling 
capacity in the morning peak. However, in the 
uncorrected predictive control, the indoor temperature at 
most of the day is more stable, and the fluctuation range 
is smaller than in the feedback control. 

  

Figure 8. Indoor air condition with two control methods. Figure 9. Energy consumption of two control methods. 

Figure 9 shows the energy consumption of the two 
control methods. According to calculations, the energy-
saving rate of uncorrected predictive control is about 
26.5%. 

It can be known from the simulation results that the 
uncorrected predictive control can achieve a good 
energy-saving effect, but the control effect on room 
temperature is insufficient. It cannot be adjusted well 
when the load changes greatly. It is easy to provide 
insufficient cooling capacity when the load suddenly 
changes, making the room temperature beyond the 
design range, which is also a disadvantage of 
feedforward control. The load prediction system has a 
larger error than the middle value when the load is 

maximum or minimum, which is difficult to avoid due to 
the nature of machine learning. Therefore, we added a 
real-time feedback correction link to solve this problem. 

4.2. Predictive control with correction 

The real-time correction link uses the indoor temperature 
at the current moment as one of the input data of the 
controller. When adjusting the air conditioning system, 
the predictive controller considers the deviation between 
the current environment and the design requirements, 
and then corrects the supply air temperature based on the 
deviation. 

8

E3S Web of Conferences 165, 04071 (2020)	 https://doi.org/10.1051/e3sconf/202016504071
CAES 2020



 

The indoor temperature is calculated using equation 
(2): 

Ts=To-
Q*3600

CpρG
 

(2) 

Here we use the meteorological environment data of 
the Beijing, and randomly select the summer July 21 for 

calculation. The simulation time is from 6:20 to 23:00, 
and a point is taken every 5s.  With the same 
environment and system parameters, simulation 
calculations are performed for uncorrected predictive 
control and feedback control, respectively. 

 
 

Figure 6. Comparison of actual load and predicted load. Figure 7. Predicted target supply air temperature and actual 
supply air temperature. 

The comparison between the actual cooling load and 
the predicted cooling load is shown in Figure 6. The 
solid black line is the actual load value, and the dashed 
red line is the predicted load value, with a mean relative 
error of 2.22%. In Figure 7, the predicted supply air 
temperature output by the controller is a solid black 
curve, and the actual supply air temperature adjusted by 
PID in the air-conditioning model is a red dotted curve. It 
can be seen from the figure that the supply air 
temperature meets the requirements of the predictive 
controller. 

The air condition in the cabin of the two control 
methods is shown in Figure 8. The black solid line is the 
temperature of the feedback control, and the red dashed 
line is the temperature of the uncorrected predictive 
control. The other two dashed lines are humidity curves. 

The indoor design temperature is 26°C, the control range 
is ±1°C, and the design humidity is 55-60%. According 
to the control results, it can be found that the indoor 
conditions have met the design requirements most of the 
time. But at the morning peak, the room temperature for 
uncorrected predictive control was slightly out of range. 
The main reason here is a large number of passengers 
enter the compartment at the same time, so the indoor 
temperature rises rapidly. The uncorrected predictive 
control system only controls based on the predicted load 
and does not make adjustments to the indoor real-time 
changes. A slight error will lead to insufficient cooling 
capacity in the morning peak. However, in the 
uncorrected predictive control, the indoor temperature at 
most of the day is more stable, and the fluctuation range 
is smaller than in the feedback control. 

  

Figure 8. Indoor air condition with two control methods. Figure 9. Energy consumption of two control methods. 

Figure 9 shows the energy consumption of the two 
control methods. According to calculations, the energy-
saving rate of uncorrected predictive control is about 
26.5%. 

It can be known from the simulation results that the 
uncorrected predictive control can achieve a good 
energy-saving effect, but the control effect on room 
temperature is insufficient. It cannot be adjusted well 
when the load changes greatly. It is easy to provide 
insufficient cooling capacity when the load suddenly 
changes, making the room temperature beyond the 
design range, which is also a disadvantage of 
feedforward control. The load prediction system has a 
larger error than the middle value when the load is 

maximum or minimum, which is difficult to avoid due to 
the nature of machine learning. Therefore, we added a 
real-time feedback correction link to solve this problem. 

4.2. Predictive control with correction 

The real-time correction link uses the indoor temperature 
at the current moment as one of the input data of the 
controller. When adjusting the air conditioning system, 
the predictive controller considers the deviation between 
the current environment and the design requirements, 
and then corrects the supply air temperature based on the 
deviation. 

 

The method is as follows: the internal and external 
environmental parameters at time t0+1 are input to a load 
prediction model, and the prediction model outputs the 
indoor instantaneous cooling load at time t0+1. The cold 
load value at time t0+1  is input to the predictive 
controller together with the room temperature at time t0. 
The deviation between the indoor temperature and the 
design temperature at time t0 is used to correct the input 
cooling capacity. After calculation, the supply air 

temperature at time t0  in advance is obtained. At the 
same time, the controller gives the fresh air volume at 
time t0  from the passenger flow data. At time t0 , the 
deviation between the instantaneous supply air 
temperature and the supply air temperature output from 
the predictive controller is used to calculate the deviation 
value, which is controlled in advance by the PID 
controller. The flowchart is shown in Figure 10. 

 

Figure 10. Corrected predictive control flowchart. 

The indoor temperature is calculated using equation 
(3): 

Ts=To-
Q*3600+(TN-To)CpρV*3600/∆t

CpρG
 

(3) 

For comparison with the uncorrected predictive 
control in Section 4.1, the simulation of predictive 
control used the same environmental parameters and 
system parameters. Because the amount of interference 
does not change, the output of the load prediction system 
also does not change, as shown in Figure 6. 

After the simulation, the predicted supply air 
temperature output by the prediction controller and the 
actual supply air temperature adjusted by PID in the air-
conditioning system are shown in Figure 11. It can be 
seen that the controller requirements are also basically 

met, and the lowest supply air temperature is lower than 
the uncorrected predictive control. The air condition in 
the cabin of the two control methods is shown in Figure 
12. The meaning of each curve is the same as the figure 
in section 4.1. 

We found that after adding the real-time calibration 
link, the indoor temperature and humidity have reached 
the design requirements. The indoor condition at the 
morning peak was within the target range, and it soon 
cooled down to around the design temperature of 26°C. 
Compared with the feedback control, the results of the 
predictive control are smoother, with almost no large 
fluctuations, and no room temperature sudden changes. 
Due to its predictability, predictive control has greatly 
improved in control stability. 

  

Figure 11. Predicted target supply air temperature and actual 
supply air temperature. 

Figure 12. Indoor air condition with two control methods. 
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Figure 13. Energy consumption of two control methods. 

The energy consumption of predictive control and 
feedback control is shown in Figure 13, and the energy-
saving rate of predictive control is about 25.2%. 

In order to prove the applicability of the predictive 
control method, June 19th was selected to perform the 
simulation calculation again. The comparison between 

predictive control and feedback control is as follows. 
Figure 14 shows the indoor conditions for different 
control methods. Figure 15 shows the energy 
consumption, and the energy-saving rate is 24.3%. The 
conclusion is not much different from the previous 
simulation. 

 

  

Figure 14. Indoor air condition with two control methods. Figure 15. Energy consumption of two control methods. 

From the results, compared with the uncorrected 
predictive control system, the results of predictive 
control with dynamic correction are significantly better. 
It solves the shortcomings of poor anti-interference 
ability and unadjustable cold output. It can adjust quickly 
as the indoor environment changes. Compared with the 
feedback control system, the predictive control system 
with a dynamic correction link has more stable and 
smooth room temperature control. There are almost no 
room temperature sudden changes caused by load 
changes. Besides, the cooling capacity of the air 
conditioner matches the indoor load, and the compressor 
is adjusted in advance according to the prediction, so the 
energy-saving effect is obvious. 

5 Conclusion 
This paper proposed a predictive control method for rail 
transit vehicle air-conditioning systems with dynamic 
correction. Based on the previous analysis and results, 
the following conclusions were obtained: 

(1) The load characteristics of air conditioning for rail 
transit vehicles were analyzed, and the significance 
ranking of each environmental factor was obtained using 
variance analysis: personnel density (F=435.20)> climate 
(F=19.32)> envelope (F=5.69)> fresh air volume 
(F=4.66)> lighting and equipment (F=3.95)> speed (non-
significant). 

(2) A load prediction model for rail vehicle air-
conditioning was established. After training and testing, 
the mean relative error of the model is 0.0112, and the 
Pearson correlation coefficient reaches 0.995, which 
proved that the prediction results of this model are 
accurate and reliable. 

(3) Based on the load prediction, a predictive control 
method was proposed. The simulation results of 
predictive control with correction and predictive control 
without correction and feedback control were compared. 
The results of the corrected predictive control system 
shown that the indoor temperature is stable and changes 
smoothly. There were almost no room temperature 
sudden changes caused by load changes. The control 
effect was significantly better than the traditional 
feedback control. Also, the predictive control had a good 
energy-saving effect, with an energy-saving rate of 25.2% 
and 24.3% on different days. 
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