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Abstract— In this paper, the effective use of unmanned aerial
vehicles (UAVs) as flying base stations that can provide wireless
service to ground users is investigated. In particular, a novel
framework for optimizing the performance of such UAV-based
wireless systems, in terms of the average number of bits (data
service) transmitted to users under flight time constraints, is
proposed. In the considered model, UAVs are deployed over a
given geographical area to serve ground users that are distributed
within a given area based on an arbitrary spatial distribution
function. In this case, based on the maximum possible flight times
of the UAVs, the average data service delivered to the users is
maximized by finding the optimal cell partitions associatedto
the UAVs, under a fair resource allocation scheme. To this end,
using the powerful mathematical framework of optimal transport
theory, a gradient-based algorithm is proposed for optimally par-
titioning the geographical area based on the users’ distribution,
flight times, and locations of the UAVs. Simulation results show
that the proposed cell partitioning approach yields a significantly
higher fairness among the users compared to the classical
weighted Voronoi diagram. In particular, by using our approach,
the Jain’s fairness index is improved by a factor of 2.6.

I. I NTRODUCTION

Recently, the use of aerial platforms such as unmanned
aerial vehicles (UAVs), drones, and balloons has emerged as
a promising solution for providing reliable and cost-effective
wireless communication services for ground wireless devices
[1]–[3]. In particular, UAVs can be deployed as flying base
stations to provide coverage expansion and capacity enhance-
ment of terrestrial cellular networks [1], [3]–[5]. With their
inherent attributes such as mobility, flexibility, and adaptive
altitude, UAVs have several key potential applications in
wireless systems. For instance, UAVs can be deployed to
complement existing cellular systems by providing additional
capacity to hotspot areas during temporary events. In addition,
UAV-based wireless communications can provide fast, reliable
and cost-effective connectivity to areas that are poorly covered
by terrestrial networks. For instance, Google Loon and Face-
book’s Internet-delivery drone projects aim to provide a global
wireless connectivity by employing such aerial platforms [4].
To reap the benefits of using UAVs as aerial base stations,
one must address many technical challenges such as deploy-
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ment, air-to-ground channel modeling, user association, and
flight time optimization [5].

For instance, in [4], the authors studied the efficient de-
ployment of aerial base stations to maximize the coverage
and rate performance of wireless networks. The work in
[6] performed air-to-ground channel modeling for UAV-based
communications. In [7], the authors introduced a framework
for trajectory optimization and energy-efficient UAV-based
communication. The work in [8] studied the joint optimiza-
tion of user scheduling and UAV trajectory to maximize the
minimum rate of users.

Another important challenge in UAV-based communications
is user (or cell) association. The work in [9] investigated the
area-to-UAV assignment for capacity enhancement of hetero-
geneous wireless networks. However, this work is limited to
the case with a uniform spatial distribution of ground users,
and it ignores the UAVs’ flight time constraints. The work
in [10] derived the delay-optimal cell association policy in a
UAV-enabled cellular network. However, in [10], the impact
of flight time constraints on the system performance is not
taken into account. Indeed, theflight time duration of the UAVs
presents a unique design challenge for UAV-based communi-
cation systems [11]. In particular, the performance of such
systems significantly depends on the flight duration that each
UAV can dedicate to provide wireless service to ground users.
Hence, while analyzing UAV-based communication systems,
the flight time constraints must be also taken into account. In
consequence, there is a need for a new framework that can
be used to analyze and optimize the performance of UAV-
based communications under flight time constraints. To our
best knowledge, none of the previous UAV studies such as [1]–
[10], considered the flight time constraints in their analysis.

The main contribution of this paper is a novel framework
for optimized UAV-to-ground communications under explicit
UAVs’ flight time constraints. In particular, we consider a
network in which multiple UAVs are deployed as aerial base
stations to provide wireless service to ground users that are
distributed over a geographical area based on an arbitrary
spatial distribution. In the considered model, given the max-
imum possible flight time of UAVs, that is imposed by the
limited on-board energy of UAVs and flight regulations, we
maximize the average number of bits (data service) transmitted
to the users under a fair resource allocation scheme. To this
end, based on the flight times and the spatial distribution



of users, we find the optimal cell partitions associated to
the UAVs. Using the powerful mathematical framework of
optimal transport theory[12], we propose a gradient-based
algorithm that optimally partitions the geographical areabased
on the users’ distribution as well as the UAVs’ flight times and
locations. The results show that our proposed cell partitioning
approach, under the flight time considerations, leads to a
significantly higher fairness among the users compared to the
classical weighted Voronoi approach. In particular, the Jain’s
fairness index is improved by a factor of 2.6.

The rest of this paper is organized as follows. In Section II,
we present the system model. Our cell partitioning problem is
presented in Section III. In Section IV we detail our approach
to find the optimal cell partitions. Simulation results are pro-
vided in Section V and conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a geographical areaD ⊂ R
2 within which a

number of wireless users are located according to a given
distributionf(x, y) in the two-dimensional plane. In this area,
a setM of M UAVs are used as aerial base stations to provide
wireless service for the ground users1. Let si = (xi, yi, hi)
be the three-dimensional coordinate of each UAVi ∈ M
with hi being the altitude of UAVi. We consider a downlink
scenario in which each UAV adopts a frequency division
multiple access (FDMA) technique to provide service for the
ground users. LetPi andBi be, respectively, the maximum
transmit power and the total available bandwidth for UAV
i. Moreover, we useAi, as shown in Fig. 1, to denote the
partition of the geographical area which is served by UAV
i. In this case, all users located in cell partitionAi will be
connected to UAVi. Hence, the geographical area is divided
into M disjoint partitions each of which is associated with
one of the UAVs. Letτi be theflight time duration of UAV
i which is used to provide wireless service to ground users.
During the flight time, the UAV must initiate connections to
the ground users, perform required computations, and transmit
data to the users. LetTi be the effective data transmission
period during which a UAV services the users. In general,
the effective data transmission time is less than the total
flight time. Consequently, we consider acontrol timeasgi(.),
a function of the number of users inAi, to represent the
portion of the flight time that is not used for the effective
data transmission. This control time naturally captures the total
time that a UAVi needs to spend for computations, setting up
connections, and control signaling.

In our model, we use the termdata serviceto represent
the amount of data (in bits) that each UAV transmits to
a given user. Clearly, the data service depends on several
factors such as the effective data transmission time (which
is directly related to flight time) and the transmission band-
width. Therefore, the effective data transmission times and the
bandwidth of the UAVs are considered as theresourcesneeded
to service the users. Given this model, we analyzeUAV-based

1For wireless backhauling of aerial networks, satellite andWiFi are
considered as the two feasible candidates.

Fig. 1: System model.

communications under flight time constraints. In particular,
given the maximum possible flight times (imposed by the
energy and flight limitations of each UAV), we maximize
the average data service to the users under a fair resource
allocation policy by optimal cell partitioning of the area.Here,
we optimally partition the geographical area based on the flight
times and the spatial distribution of users. As a result, given
the maximum possible flight time of each UAV, the total data
service under user fairness considerations is maximized. Next,
we present the air-to-ground path loss model for UAV-user
communications which is used to perform our analysis.

The air-to-ground signal propagation is affected by the
obstacles and buildings in the environment. Depending on the
propagation environment, air-to-ground communication links
can be either LoS or non-line-of-sight (NLoS). Clearly, the
probability of having LoS communication links depends on the
locations, heights, and the number of obstacles, as well as the
elevation angle between a given UAV and it’s served ground
user. In our model, we consider a widely used probabilistic
path loss model provided by International Telecommunication
Union (ITU-R), and the work in [6]. The path loss between
UAV i and a given user at location(x, y) can be given by [6]:

Λi(x, y)=
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whereµLoS andµNLoS are different attenuation factors consid-
ered for LoS and NLoS links.fc is the carrier frequency,c is
the speed of light, anddo is the free-space reference distance.
Also, di(x, y) =

√

(x− xi)2 + (y − yi)2 + h2
i is the distance

between UAVi and an arbitrary ground user located at(x, y).
For the UAV-user link, the LoS probability is given by [6]:

PLoS,i = b1

(

180

π
θi − 15

)b2

, (2)

whereθi = sin−1( hi

di(x,y)
) is the elevation angle (in radians)

between the UAV and the user. Also,b1 and b2 are constant
values reflecting the environment impact. Note that, the NLoS
probability isPNLoS,i = 1− PLoS,i. Clearly, consideringdo =
1m, andKo =

(

4πfc
c

)2
the average path loss is

Kodi
2(x, y)[PLoS,iµLoS + PNLoS,iµNLoS]. Hence, the received

signal power from UAVi will be:

P̄r,i(x, y) =
Pi

Kodi
2(x, y) [PLoS,iµLoS + PNLoS,iµNLoS]

, (3)



where Pi is the UAV’s transmit power. Then, the received
SINR for a user located at coordinates(x, y) while connecting
to UAV i will be:

γi(x, y) =
P̄r,i(x, y)

Ii(x, y) + σ2
, (4)

whereIi(x, y) = β
∑

j 6=i

P̄r,j(x, y) is the received interference

at location(x, y) stemming from all UAVs except UAVi. We
also consider a weight factor0 ≤ β ≤ 1 to adjust the amount
of interference and capture the impact of any interference
mitigation technique. Naturally,β = 1 andβ = 0 correspond
to the full interference and interference-free scenarios.

Clearly, the throughput of a user located at(x, y) if it
connects to UAVi is:

Ci(x, y) =W (x, y) log2 (1 + γi(x, y)), (5)

whereW (x, y) is the bandwidth allocated to the user at(x, y).
Subsequently, the total data service for the user provided by

the UAV will be:
Li(x, y) = TiCi(x, y), (6)

whereTi is the effective transmission time of UAVi. Also,
Li(x, y) represents the total number of bits transmitted to the
user located at(x, y). Note that, the data service offered to
each ground user depends on a number of key parameters such
as the location of the user and the serving UAV, the bandwidth
allocated to the user, and the effective data transmission time
of the UAV. Here, theresourcesused by the UAVs to service
the ground users are the bandwidth and the effective data
transmission times. Clearly, the amount of resources that each
user can receive depends on the total number of users, cell
partitions as well as bandwidth and flight times of the UAVs.
Next, we present our optimal cell partitioning problem.

III. C ELL PARTITIONING PROBLEM FORDATA SERVICE

MAXIMIZATION UNDER FAIR RESOURCE ALLOCATION

In this section, we present our cell partitioning problem
whose goal is to maximize the average data service based
on the UAVs’ flight times as well as the spatial distribution
of users. Here, each cell partition is assigned to one UAV,
and the users within the cell partition must be serviced by the
corresponding UAV. We note that, in classical cell partitioning
approaches such as Voronoi and weighted Voronoi diagrams,
the spatial distribution of users is not taken into account.
As a result, some partitions can be highly congested with
users and, hence, each user will receive significantly lower
amount of resources than those in less congested partitions.
Thus, such classical cell partitioning approaches can leadto a
highly unfair data service for the users. In our cell partitioning
problem, however, while maximizing the total data service,we
ensure that the resources are equally shared among the users.
Hence, our approach avoids creating unbalanced cell partitions
and, thus, it leads to a higher level of fairness compared to
the Voronoi case.

Let τi be the flight time of UAVi over its cell partitionAi.
The flight time is composed of the effective data transmission
time and the control time. To ensure a fair resource allocation,
we consider the following fairness criterion:

Ti = τi − gi

(
∫

Ai

f(x, y)dxdy

)

, ∀i ∈ M, (7)

where gi is the control time which depends on the number
of the users located inAi. Note also that, given the spatial
distribution of users,f(x, y), and the total number of users,
N , the average number of users in partitionAi is equal
to N

∫

Ai
f(x, y)dxdy. From (5) and (6), which are used to

compute the amount of data service, we can see that the
value TiBi can be considered as the resources that UAVi
uses to service users inAi. In this case, under a fair resource
allocation policy, we should have:

TiBi
∫

Ai
f(x, y)dxdy

=
TjBj

∫

Aj
f(x, y)dxdy

, ∀i 6= j ∈ M, 2 (8)

where (8) ensures that a UAV with more resources (bandwidth
and flight time) will serve a higher number of users.

Using (8) and considering the fact that
∫

D
f(x, y)dxdy =

M
∑

k=1

∫

Ak
f(x, y)dxdy = 1, we have the following constraint on

the number of users in each partition:
∫

Ai

f(x, y)dxdy =
BiTi

M
∑

k=1

BkTk

, ∀i ∈ M. (9)

As we can see from (9), the number of users in each generated
optimal partition will depend on the UAVs’ resources. Clearly,
when the UAVs have the same flight times and bandwidths,
(7)-(9) lead to

∫

Ai
f(x, y)dxdy = 1

M
, ∀i ∈ M. This case

implies that identical UAVs will service equally-loaded cell
partitions. Given (5), (6), and (9), we can write the average
data service at location(x, y) ∈ Ai as:

Li(x, y) =
TiBi

N
∫

Ai
f(x, y)dxdy

log2 (1 + γi(x, y))

=

(

1

N

M
∑

k=1

BkTk

)

log2 (1 + γi(x, y)) . (10)

Now, we formulate an optimization problem that seeks to
maximize the average data service by optimal partitioning of
the target area. The data service maximization problem is
given by:

max
Ai, i∈M

M
∑

i=1

∫

Ai

Li(x, y)f(x, y)dxdy, (11)

s.t.
∫

Ai

f(x, y)dxdy =
BiTi

M
∑

k=1

BkTk

, ∀i ∈ M, (12)

γi(x, y) ≥ γth, if (x, y) ∈ Ai, ∀i ∈ M, (13)

Al ∩ Am = ∅, ∀l 6= m ∈ M,
⋃

i∈M

Ai = D, (14)

where (12) captures the constraint on the load of each cell
partition. Also, (13) is the necessary condition for connecting

2Note that, given flight times of the UAVs,τi, ∀i ∈ M, we can compute
Ti, ∀i ∈ M by solving the system of equations in (7) and (8).



each user to a UAVi. (14) ensures that the cell partitions are
disjoint and their union covers the entire target areaD.

Considering the constraint in (13), we define the function

qi(x, y) =
(

γi(x,y)
γth

)−n

with n being a large number (i.e. tends

to +∞), and, then, we subtractqi(x, y) from the objective
function in (11). Clearly, when (13) is violated,qi(x, y) tends
to +∞ and, hence, point(x, y) will not be assigned to UAV
i or equivalently(x, y) /∈ Ai. Therefore, assuming that the
problem is feasible, we can remove (13) while penalizing the
objective function in (11) byqi(x, y). Now, by definingωi =
BiTi

M∑

k=1

BkTk

, the maximization problem in (11) can be rewritten

as the following minimization problem:

min
Ai, i∈M

M
∑

i=1

∫

Ai

−(Li(x, y)− qi(x, y)) f(x, y)dxdy, (15)

s.t.
∫

Ai

f(x, y)dxdy = ωi, ∀i ∈ M, (16)

Al ∩ Am = ∅, ∀l 6= m ∈ M,
⋃

i∈M

Ai = D. (17)

Solving the optimization problem in (15) is challenging
due to various reasons. First, the optimization variablesAi,
∀i ∈ M, are sets of continuous partitions (as we have a
continuous area) which are mutually dependent. Second, to
perfectly capture the spatial distribution of users,f(x, y) is
considered to be a generic function ofx andy and, this leads to
the complexity of the given two-fold integrations. In addition,
due to the constraints given in (16), findingAi becomes more
challenging. To solve the optimization problem in (15), we
model the problem by exploitingoptimal transport theory[12].

IV. OPTIMAL TRANSPORTTHEORY FOROPTIMAL CELL

PARTITIONING

Optimal transport theory was initiated by the Monge’s
problem which is stated as follows [12]. Given piles of
sands and holes with the same volume, what is the best
move (transport map) to entirely fill up the holes with the
minimum total transportation cost. Mathematically, the Monge
optimal transport problem can be written as follows. Given two
probability distributionsf1 on X ⊂ R

n, andf2 on Y ⊂ R
n,

find the optimal transport mapG from f1 to f2 that minimizes
the following problem:

min
G

∫

X

c (x, G(x))f1(x)dx; G : X → Y , (18)

wherec(x, G(x)) denotes the cost of transporting a unit mass
from a locationx ∈ X to a locationy = G(x) ∈ Y .

Given this optimal transport framework, we can solve our
optimization problem in (15). In particular, we model this
problem as a semi-discrete optimal transport problem in which
the source measure (users’ distribution) is continuous while
the destination (UAVs’ distribution) is discrete. Using optimal
transport theory, we can find the optimal cell partitions,Ai,
for which the average total data service is maximized. In our
model, users have a continuous distribution, and the locations
of the UAVs can be considered as discrete points. Then, the

optimal cell partitions are obtained by optimally mapping the
users to the UAVs. In fact, given (15), the cell partitions are
related to the transport map by [13]:
{

G(v) =
∑

i∈M

si1Ai
(v);

∫

Ai

f(x, y)dxdy = ωi

}

, (19)

whereωi = BiTi
M∑

k=1

BkTk

, as given in (16), is directly related to

the flight time and the bandwidth of the UAVs.1Ai
(v) is the

indicator function which is 1 ifv ∈ Ai, and 0 otherwise.
Therefore, the optimization problem in (15) can be cast

within the optimal transport framework as follows. Given a
continuous probability measuref of users, and a discrete
probability measureΓ =

∑

i∈M

ωiδsi
corresponding to the

UAVs, we must find the optimal transport map for which
∫

D
J (v, G(v))f(x, y)dxdy is minimized. In this case,δsi

is
the Dirac function, andJ is the transportation cost function
which is used in (15) and is given by:

J(v, si) = J(x, y, si) = qi(x, y) − Li(x, y). (20)

Now, using the Kantorovich duality theorem [12] from op-
timal transport theory, we can transform (15) to the following
optimization problem [13]:

max
ψi,i∈M

{

F (ψT ) =

M
∑

i=1

ψiωi +

∫

D

ψc(x, y)f(x, y)dxdy

}

, (21)

whereψT is a vector of variablesψi, ∀i ∈M , andψc(x, y) =
inf
i
J(x, y, si) − ψi. As a result, the optimization problem in

(15) is reduced to (21) with a set ofM optimization variables,
ψi, ∀i ∈ M. Given (21), we can further proceed to solve (15)
by presenting the following theorem:

Theorem 1. Given (21),F is a concave function of variables
ψi, i ∈ M. Also, we have:

∂F

∂ψi
= ωi −

∫

Di

f(x, y)dxdy, (22)

whereDi={(x, y)|J(x, y, si)−ψi ≤ J(x, y, sj)−ψj, ∀j 6= i}.

Proof: Clearly,
M
∑

i=1

ψiωi is a linear function ofψi. Also,

given anyi ∈ M, J(x, y, si)− ψi is a linear function ofψi.
Let z(ψT ) = inf

i
J(x, y, si)−ψi with ψT being a vector of all

variablesψi, i ∈ M. Then, we can observe that the hypograph
of z(ψT ), a set of points belowz(ψT ), is a convex set.
Subsequently, considering the fact that a function is concave
if and only if its hypograph is convex, we prove the concavity
of z(ψT ). Finally, since multiplyingz(ψT ) by a positive
probability density functionf(x, y), and taking integration
over(x, y) does not violate the concavity,F is also a concave
function ofψT . Now, to find the derivative ofF with respect
to ψi, we first compute∂ψ

c

∂ψi
, which is given by:

∂ψc

∂ψi
=

{

−1, if J(x, y, si)− ψi≤ J(x, y, sj)−ψj , i 6= j,
0, otherwise.

(23)

Then, by defining

Di = {(x, y)|J(x, y, si)− ψi ≤ J(x, y, sj)− ψj , ∀j 6= i} ,



Algorithm 1 Gradient method for optimal cell partitioning

1: Inputs: f(x, y), ρ, τi, si, ∀i ∈ M.
2: Outputs: ψ∗

i , Ai, ∀i ∈ M.
3: Set initial values forψT

t , (t = 1) .
4: while

∥

∥∇F (ψT
t )

∥

∥

2
> ρ do

5: Setk = 1, ǫ1 = 1.
6: UpdateψT

t+1 = ψT
t + εk∇F (ψT

t ), k, t ∈ N.
7: if F (ψT

t ) < F (ψT
t+1) then

8: Go to Step 12 .
9: else

10: Go to Step 17 .
11: end if
12: while F (ψT

t ) < F (ψT
t+1) do

13: k → k + 1.
14: ǫk = 2k−1ǫ1.
15: UpdateψT

t+1 = ψT
t + εk∇F (ψT

t ), k, t ∈ N.
16: end while
17: while F (ψT

t ) > F (ψT
t+1) do

18: k → k + 1.
19: ǫk = 2−k+1ǫ1.
20: UpdateψT

t+1 = ψT
t + εk∇F (ψT

t ), k, t ∈ N.
21: end while
22: t→ t+ 1.
23: end while
24: ψ∗

i = ψT
t (i), ∀i ∈ M.

25: Ai =
{

(x, y)|J(x, y,si)− ψ∗

i ≤ J(x, y, sj)− ψ∗

j ,∀j 6= i
}

,
∀i ∈ M.

the derivative ofF , given in (21), will be:

∂F

∂ψi
= ωi −

∫

Di

f(x, y)dxdy . (24)

This proves the theorem.
Theorem 1 shows the concavity ofF as a function of

ψT . Thus, the optimal values for variablesψi, ∀i ∈ M,
can be obtained by maximizingF . Then, given the optimal
ψi, ∀i ∈ M, equation (19) is used to determine the optimal
cell partitions corresponding to the optimization problemin
(15). In this case, using the first derivative ofF provided in
(22), we propose a gradient-based method to determine the
optimal vectorψT that leads to the optimal cell partitions.
Here, using the gradient descent method is simple in terms of
implementation and does not require computing the Hessian
matrix of F which is needed in the Newton methods.

The proposed algorithm for finding the optimal cell par-
titions is shown as Algorithm 1 and proceeds as follows.
The inputs are the distribution of users, flight times, locations
of the UAVs, andρ > 0 which is the threshold based on
which the algorithm stops. In Algorithm 1, we first initialize
vector ψTt with t being the iteration number. Next, using
(22), we compute∇F (ψTt ). In Step 6, we updateψTt using
step sizeǫk. The appropriate step size at each iteration is
determined through Steps 7 to 21. In this case, the algorithm
stops whenever condition in4 is not satisfied. Clearly, due to
the concavity ofF , the optimal solution of (21) is attained.
Finally, based on the optimal vectorψT , the optimal cell
partitions are determined using Steps 24 and 25.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a rectangular area of size
1000m × 1000m in which the ground users are distributed

Table I: Simulation parameters.
Parameter Description Value

fc Carrier frequency 2 GHz
Pi UAV transmit power 0.5 W
No Noise power spectral -170 dBm/Hz
N Number of ground users 300
µLoS Additional path loss to free space for LoS 3 dB
µNLoS Additional path loss to free space for NLoS 23 dB
B Bandwidth 1 MHz
α Control time factor 0.01
h UAV’s altitude 200 m

µx, µy Mean of the truncated Gaussian distribution250 m, 330 m
b1, b2 Environmental parameters (dense urban)0.36, 0.21 [6]
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Fig. 2: Cell partitions associated to UAVs given the non-uniform
spatial distribution of users.

according to a two-dimensional truncated Gaussian distribu-
tion which is suitable to model a hotspot area [10]. Note that,
although we consider the truncated Gaussian distribution of
users, our analysis can also accommodate any other arbitrary
distribution. We deploy the UAVs based on a grid-based
deployment with an altitude of 200 m. Unless stated otherwise,
we consider a full interference scenario with an interference
factor β = 1. For the control time function, we consider
gi(z) = αz2, with α being an arbitrary constant factor.
This function is a reasonable choice in our model as it is
a superlinear function of the number of users and its value
can be adjusted by factorα. However, any arbitrary Lipschitz
continuous control function can also be considered in our
model. The simulation parameters are listed in Table I. We
compare our results, obtained based on the proposed optimal
cell partitioning approach, with the classical weighted Voronoi
diagram baseline. Note that, all statistical results are averaged
over a large number of independent runs.

Fig. 2 shows the proposed optimal cell partitions and the
classical weighted Voronoi diagram. In this case, we consider
5 UAVs that provide service for the non-uniformly distributed
ground users (truncated Gaussian distribution). Moreover, we
assume that the maximum flight time of each UAV is 30
minutes which corresponds to the typical flight time for quad-
copter UAVs. In Fig. 2, areas shown by a darker color have
a higher population density. As we can see from Fig. 2b, the
cell partitions associated with UAVs 3 and 4 have significantly
more users than cell partition 1. Therefore, given the limited
flight times, users located at cell partitions 3 and 4 cannot be
fairly served by UAVs. However, in the proposed optimal cell
partitioning case (obtained by Algorithm 1), the cell partitions
change such that the average data service under a fair resource
allocation constraint is maximized. For instance, as shownin
Fig. 2a, the size of cell partitions 3 and 4 decreases compared
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Fig. 3: Jain’s fairness index for average data service to users.

to the weighted Voronoi diagram. As a result, the proposed
cell partitions lead to a higher level of fairness among the
users than the weighted Voronoi case.

To show how fairly the users can be served in different
cases of cell partitioning, we use the Jain’s fairness index.
We compute the Jain’s index based on the data service that is
offered to each user which is given by [14]:

FJain(l1, l2, ..., lN ) =
(

N
∑

i=1

li

)2

×
(

N
N
∑

i=1

li
2
)−1

, (25)

whereN is the number of users, andli is the data service
to useri. Clearly, 1/N ≤ FJain ≤ 1, with FJain = 1/N and
FJain= 1 indicating the lowest and highest level of fairness.

Fig. 3 shows the Jain’s fairness index for different values of
the standard deviation in the truncated Gaussian distribution,
σo. In this figure, asσo increases, the spatial distribution of
users becomes closer to a uniform distribution. As we can see
from this figure, the minimum Jain’s index corresponding to
the proposed cell partitioning method is above 0.5. However, in
the weighted Voronoi case, it can decrease to 0.18 for a highly
non-uniform distribution of users withσo = 200m. This is due
to the fact that, in the Voronoi case, users located in highly
congested partitions receive lower service than the partitions
with low number of users. In the proposed approach, however,
the resources (flight time and bandwidth) are fairly shared
between the users thus leading to a higher fairness index. From
Fig. 3 we can also observe that, for higher values ofσo (more
uniform distribution), the fairness index for the proposed
approach becomes closer to the weighted Voronoi case.

Fig. 4 shows the average total data service as a function
of the interference factor,β used in (4). Clearly, as the
interference between UAVs decreases, the total data service
that they can provide to the ground users increases. For
instance, by decreasingβ from 1 (full interference case) to 0.1,
the total data service increases by a factor of 3 when 5 UAVs
are deployed. Fig. 4 also shows that the service gain achieved
by using a higher number of UAVs is significant only when
the interference between the UAVs is highly mitigated (low
values ofβ). For example, increasing the number of UAVs
from 5 to 10 can lead to 56% data service gain forβ = 0.1,
while this gain is only 5% in the full interference case.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
optimizing UAV-enabled wireless networks while taking into
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Fig. 4: Average data service versus interference factor.

account the flight time constraints of UAVs. In particular,
given the maximum possible flight times of UAVs, we have
maximized the average data service to the ground users under
a fair resource allocation policy. To this end, using tools from
optimal transport theory, we have determined the optimal cell
partitions associated with the UAVs. The results have shown
that, using our proposed cell partitioning approach, the users
receive more fair data service compared to the Voronoi case.
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