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Abstract— In this paper, the effective use of unmanned aerial ment, air-to-ground channel modeling, user associatiod, a
vehicles (UAVs) as flying base stations that can provide witess  flight time optimization [5].
service to ground users is investigated. In particular, a noel For instance, in [4], the authors studied the efficient de-
framework for optimizing the performance of such UAV-based . . .
wireless systems, in terms of the average number of bits (cat PlOyment of aerial base stations to maximize the coverage
service) transmitted to users under flight time constraints is and rate performance of wireless networks. The work in
proposed. In the considered model, UAVs are deployed over a [6] performed air-to-ground channel modeling for UAV-bdse
given geographical area to serve ground users that are disbuted  communications. In [7], the authors introduced a framework
}""th'r.‘ a given area based on an arbitrary spatial distribution . aiectory optimization and energy-efficient UAV-bese
unction. In this case, based on the maximum possible flighimes L . - - L
of the UAVs, the average data service delivered to the users i COmmunication. The work in [8] studied the joint optimiza-
maximized by finding the optimal cell partitions associatedto tion of user scheduling and UAV trajectory to maximize the
the UAVs, under a fair resource allocation scheme. To this ey minimum rate of users.
using the powerful mathematical framework of optimal transport Another important challenge in UAV-based communications
theory, a gradient-based algorithm is proposed for optimaly par- s ,ser (or cell) association. The work in [9] investigathe t
titioning the geographical area based on the users’ distribtion, . .
flight imes, and locations of the UAVs. Simulation results sow ~aréa-to-UAV assignment for capacity enhancement of hetero
that the proposed cell partitioning approach yields a sigrficantly ~geneous wireless networks. However, this work is limited to
higher fairess among the users compared to the classicalthe case with a uniform spatial distribution of ground users
weighted Voronoi diagram. In particular, by using our approach,  and it ignores the UAVs' flight time constraints. The work
the Jain’s fairness index is improved by a factor of 2.6. in [10] derived the delay-optimal cell association policyd
UAV-enabled cellular network. However, in [10], the impact

of flight time constraints on the system performance is not

Recently, the use of aerial platforms such as unmannken into account. Indeed, tHight time duration of the UAVs
aerial vehicles (UAVs), drones, and balloons has emergedpigsents a unique design challenge for UAV-based communi-
a promising solution for providing reliable and cost-effee  cation systems [11]. In particular, the performance of such
wireless communication services for ground wireless devicsystems significantly depends on the flight duration thaheac
[1]-[3]. In particular, UAVs can be deployed as flying bas&/AV can dedicate to provide wireless service to ground users
stations to provide coverage expansion and capacity eehartdence, while analyzing UAV-based communication systems,
ment of terrestrial cellular networks [1], [3]-[5]. With ¢ir the flight time constraints must be also taken into accoumt. |
inherent attributes such as mobility, flexibility, and atleg Consequence, there is a need for a new framework that can
altitude, UAVs have several key potential applications iR€ used to analyze and optimize the performance of UAV-
wireless systems. For instance, UAVs can be deployed hgsed communications under flight time constraints. To our
complement existing cellular systems by providing addiio best knowledge, none of the previous UAV studies such as [1]-
capacity to hotspot areas during temporary events. Iniadgit [10], considered the flight time constraints in their anelys
UAV-based wireless communications can provide fast, bédia  The main contribution of this paper is a novel framework
and cost-effective connectivity to areas that are pooryeced for optimized UAV-to-ground communications under exgilici
by terrestrial networks. For instance, Google Loon and FaddAVs' flight time constraints. In particular, we consider a
book’s Internet-delivery drone projects aim to provide abgll network in which multiple UAVs are deployed as aerial base
wireless connectivity by employing such aerial platformg [ stations to provide wireless service to ground users that ar
To reap the benefits of using UAVs as aerial base statioéstributed over a geographical area based on an arbitrary

one must address many technical challenges such as depf@atial distribution. In the considered model, given thexma
imum possible flight time of UAVs, that is imposed by the
This research was supported by the U.S. National Sciencedation limited on-board energy of UAVs and flight regulations, we
Research (ONR) under Grant N00014-15-1-2709, and, by thé ERrting . . .
Grant 305123 MORE (Advanced Mathematical Tools for Complietwork to the users under a fair resource allocation scheme. To this

Engineering). end, based on the flight times and the spatial distribution

I. INTRODUCTION



of users, we find the optimal cell partitions associated to B =
the UAVs. Using the powerful mathematical framework of
optimal transport theory[12], we propose a gradient-based > P *
algorithm that optimally partitions the geographical dpeaed ' 8= (%, Vo Tt)
on the users’ distribution as well as the UAVS' flight timeglan
locations. The results show that our proposed cell paniitigp
approach, under the flight time considerations, leads to a
significantly higher fairness among the users comparedeo th
classical weighted Voronoi approach. In particular, the'sa
fairness index is improved by a factor of 2.6.

The rest of this paper is organized as follows. In Section II,
we present the system model. Our cell partitioning problem i
presented in Section Ill. In Section IV we detail our apptoacommunications under flight time constrainta particular,
to find the optimal cell partitions. Simulation results are-p given the maximum possible flight times (imposed by the
vided in Section V and conclusions are drawn in Section Vénergy and flight limitations of each UAV), we maximize
Il. SYSTEM MODEL the average .data ser\{ice to the users under a fair resource

) _ o _ allocation policy by optimal cell partitioning of the arddere,

Consider a geographical aréa C R W'th'n_ which a _ we optimally partition the geographical area based on tghtfli
n_um.ber.of W|rele§s users are Ioca.ted according tq a 9Vffhes and the spatial distribution of users. As a resultegiv
distribution f (z, y) in the two-dimensional plane. In this aréay,e maximum possible flight time of each UAV, the total data
a setM of M UAVs are used as aerial base stations to provid@,jce under user fairness considerations is maximizestt, N

wireless service for the ground userset s; = (z;,4i,h) e present the air-to-ground path loss model for UAV-user
be the three-dimensional coordinate of each UA: M communications which is used to perform our analysis.

with hi.be.ing thg altitude of UAVi. We consider a dowr!li.nlf The air-to-ground signal propagation is affected by the
scenario in which each UAV adopts a frequency divisioggiacies and buildings in the environment. Depending en th
multiple access (FDMA) technique to p_rowde serwce_for thﬁropagation environment, air-to-ground communicatianksi
ground users. LeP; and B; be, respectively, the maximumc,, pe either LoS or non-line-of-sight (NLoS). Clearly, the
transmit power and the total available bandwidth for UAY).,papility of having LoS communication links depends om th
i. Moreover, we used;, as shown in Fig.1, to denote thej, aiions heights, and the number of obstacles, as weleas t
Pa”'“o'f‘ of the geographical area which is _s.ervedl by UAYjevation angle between a given UAV and it's served ground
. In this case, aII. users located in cell paruuen V\_"" be user. In our model, we consider a widely used probabilistic
connected to UAVi. Hence, the geographical area is dividefl, 1555 model provided by International Telecommundcati
into M disjoint partitions each of which is associated Wlﬂbnion (ITU-R), and the work in [6]. The path loss between

one of the UAVs. Letr; be theflight time duration of UAV UAV i and a given user at locatid, y) can be given by [6];
+ which is used to provide wireless service to ground users.

7, : flight time

a
Cell partition associated o~
to UAV i e

fxy) 7

V=(x,y), ©users distribution-

b R

Fig. 1: System model.

2
During the flight time, the UAV must initiate connections to (@) (di(x,y)/do)QuLos, LoS link,
the ground users, perform required computations, andrtriansi (2, y)= snfod 9 _
data to the users. Lef; be the effective data transmission ( e ) (i(w,9)/do) " iintos, NLOS link,

period during which a UAV services the users. In generabherey s and unios are different attenuation factors consid-
the effective data transmission time is less than the tot&led for LoS and NLoS linksf, is the carrier frequency, is
flight ime. Consequently, we considecantrol timeasg;(.), the speed of light, and, is the free-space reference distance.
a function of the number of users id;, to represent the Also, d;(z,y) = V@ —z)2+ (y —v:)? + 12 is the distance
portion of the flight time that is not used for the effectivgyetween UAV: and an arbitrary ground user located aty).
data transmission. This control time naturally captureddtal For the UAV-user link, the LoS probability is given by [6]:
time that a UAVi needs to spend for computations, setting up 180 by
connections, and control signaling. Plos; = b1 <_9i — 15> , )

In our model, we use the termiata serviceto represent Q
the amount of data (in bits) that each UAV transmits t@hered; = Sinil(db(}:’ )) is the elevation angle (in radians)
a given user. Clearly, the data service depends on sevajahween the UAV and the user. Alsb, and b, are constant
factors such as the effective data transmission time (whighlues reflecting the environment impact. Note that, the SlLo
is directly related to flight time) and the transmission bangyrobability is Pulosi = 1 — Plos.i- Clearly, consideringl, =
width. Therefore, the effective data transmission timesthe 1 m. andk, = (4%1%)2 the average path loss is
bandwidth of the UAVs are considered as tasourcesieeded ¢ .2 (x, y)[PLos.ifiLos + PaLos.ifintos]. Hence, the received
to service the users. Given this model, we analy&¥-based sjgnal power from UAV: will be:

1For wireless backhauling of aerial networks, satellite aniFi are P (w )= i
P Y= di(x,y) [Plos.ifiLos + PuLos.ifiNLos]
ol ) 0S,iMLo 0S,7 o

®3)

considered as the two feasible candidates.



where P; is the UAV’s transmit power. Then, the received T, =71 —gi </ f(x,y)da:dy), Vie M, (7)
SINR for a user located at coordinatasy) while connecting

to UAV 4 will be: Briay) where g; is the control time which depends on the number
vi(z,y) = ”7’3/2, (4) of the users located id;. Note also that, given the spatial

Li(w,y) + o distribution of usersf(z,y), and the total number of users,

whereI;(z,y) = 8. P.j(z,y) is the received interference N, the average number of users in partitioy is equal

to NfA (x,y)dzdy. From (5) and (6), which are used to

. . . compute the amount of data service, we can see that the
also consider a weight factor< 5 < 1 to adjust the amount
value T;B; can be considered as the resources that WAV
of interference and capture the impact of any mterference
mitigation technique. Naturally — 1 and 3 — 0 correspond uses to service users ;. In this case, under a fair resource
9 . que. . SP allocation policy, we should have:
to the full interference and interference-free scenarios.

j#i
at location(z, y) stemming from all UAVs except UAV. We

Clearly, the throughput of a user located @t y) if it T;B; T;B; L 2
connects to UAV; is: J4, (2, y)dady fA (z,y)dxdy’ vizjeM= (8
Ci(xvy) = W(xay)logQ (1+’}/1(.T,y)), (5)

. . where (8) ensures that a UAV with more resources (bandwidth
wherelV (z, y) is the bandwidth allocated to the user(@ty). and flight time) will serve a higher number of users.
Subsequently, the total data service for the user proviged b Usmg (8) and considering the fact thfit f(z,y)dzdy =
the UAV will be: Li(z,y) = T;C; ) ©)
i(z,y) = TiCi(z,y), Z [, f(@,y)dzdy = 1, we have the following constraint on
whereT; is the effective transmission time of UAY, Also, the number of users in each partition:
L;(x,y) represents the total number of bits transmitted to the B T,
user located afz,y). Note that, the data service offered to f(z,y)dedy = ——— Vie M. (9)
each ground user depends on a number of key parameters such A; Z BT
as the location of the user and the serving UAV, the bandwidth
allocated to the user, and the effective data transmisgioa t

of the UAV. Here, theresourcesised by the UAVs to service optimal partition will depend on the UAVS’ resources. Clgar

the ground users are the bandwidth and the effective d flen the UAVs have the same fIight times and bandwidths,

transmission times. Clearly, the amount of resources thet e ? (9) lead to [, f(z,y)dedy = Vi € M. This case
i A; T ]\1’
user can receive depends on the total number of users, érﬁpl)hes that identical UAVs will service equally-loadedlice

lp\)lartlttlons as We"t as ban?mdlth elllnd ﬂﬁ.ht t_lmes o[)lthe UAV artitions. Given (5), (6), and (9), we can write the average
ext, we present our optimal cell partitioning problem. data service at locatiofir, y) € A, as:

As we can see from (9), the number of users in each generated

I11. CELL PARTITIONING PROBLEM FORDATA SERVICE T B
MAXIMIZATION UNDER FAIR RESOURCE ALLOCATION Li(z,y) = N, f@ Zy)dxdylogQ (14 vi(z,y))
In this section, we present our cell partitioning problem AiM a '
whose goal is to maximize the average data service based 1
: . T == BTy | 1 14+ vz, y)). 10
on the UAVS’ flight times as well as the spatial distribution N ; ¥Tk | logz (1+7i(z, ) (10)

of users. Here, each cell partition is assigned to one UAV,

and the users within the cell partition must be serviced lsy th Now, we formulate an optimization problem that seeks to

corresponding UAV. We note that, in classical cell partiig Maximize the average data service by optimal partitionihg o

approaches such as Voronoi and weighted Voronoi diagrarf target area. The data service maximization problem is

the spatial distribution of users is not taken into accourfliven by:

As a result, some partitions can be h.ighly_ cqngested with max Z/ Li(z,y) f(x,y)dzdy, (11)
users and, hence, each user will receive significantly lower Aiyi€M ;

amount of resources than those in less congested partitions B, T; ,

Thus, such classical cell partitioning approaches can tead / fz,y)dedy = 77—, Vie M, (12)
highly unfair data service for the users. In our cell pastithg Z By Ty,

problem, however, while maximizing the total data serviee, L )

ensure that the resources are equally shared among the users i, y) 2 wn, 1 (2,y) € Aiy Vie M, (13)
Hence, our approach avoids creating unbalanced cellipasit AiNA, =0, Vl£m e M, U A; =D, (14)
and, thus, it leads to a higher level of fairness compared to ieM

the Voronoi case. where (12) captures the constraint on the load of each cell

Let 7; be the flight time of UAV: over its cell partitionA,. " . o .
N . . v tition. Also, (13 th dition f rtmer
The flight time is composed of the effective data transmn;&gar ition. Also, (13) s the necessary condition for co

time and the control time. To ensure a fair resource allooati  2yqe that, given flight times of the UAVs;;, Vi € M, we can compute
we consider the following fairness criterion: Ty, Vi € M by solving the system of equations in (7) and (8).



each user to a UAV. (14) ensures that the cell partitions ar@ptimal cell partitions are obtained by optimally mappihe t
disjoint and their union covers the entire target afea users to the UAVs. In fact, given (15), the cell partitiong ar
Considering the constraint in (13), we define the functiorelated to the transport map by [13]:

. —_ ’Yi(way) - 1 1 i
gi(z,y) = ( = ) with n being a large number (|..e. tands G) =" sila, (U);/ f(z,y)dzdy = w; o, (19)
to +o0), and, then, we subtraet;(z,y) from the objective Py A;
function in (11). Clearly, when (13) is violated;(x, y) tends B.T;

to +oo and, hence, pointz,y) will not be assigned to UAV wherew; = ==, as given in (16), is directly related to

M

. . . 21 By Ty
i or equivalently(z,y) ¢ A;. Therefore, assuming that they, . gt time and the bandwidth of the UAV.., (v) is the
problem is feasible, we can remove (13) while penalizing the :

objective function in (11) by (z, y). Now, by definingw, — indicator function which is 1 ifv € A;, and 0 otherwise.
—BiTi_ the maximization prot;lem in (11) can be rewritten _Therefore, t_he optimization problem in (15) can pe cast
% BTy within the optimal transport framework as follows. Given a

continuous probability measurg of users, and a discrete

k=1
as the following minimization problem: o .
g P probability measurel’ = > w;ds, corresponding to the

M
. ieM
min Z/—(Li(x,y) —gi(,y)) f(w,y)dedy,  (15) yAVs, we must find the optimal transport map for which
=1 i

A ieM
JpJ (v,G(v))f(x,y)dzdy is minimized. In this casejs, is
s.t. f(z,y)dzdy = w;, Vi€ M, (16) the Dirac function, and/ is the transportation cost function
A; which is used in (15) and is given by:
ANA, =0, ViFmeM, | JA=D (17 J(v,8i) = J(2,y,8i) = qi(x,y) — Li(z,y).  (20)
ieM

Now, using the Kantorovich duality theorem [12] from op-

Solving _the optimization_ problem ir_1 (_15), is challenginqima| transport theory, we can transform (15) to the follogi
due to various reasons. First, the optimization variables optimization problem [13]:

Vi € M, are sets of continuous partitions (as we have a M
continuous area) which are mutually dependent. Second, sigux {F(yp7) = Zd)iwﬂr/ V(2. y) f (2, y)dady,, (21)
perfectly capture the spatial distribution of usef$z,y) is ¥i€M i—1 D
considered to be a generic functioruofndy and, this leads to T . ) . B
the complexity of the given two-fold integrations. In adii, w?a}reqp ISa vecto;\of varlabllfﬁié, Vi et_M_, a?ddj (I’gl) .
due to the constraints given in (16), finding becomes more '} .(I’y’si) —i- As aresult, the optimization problem in
challenging. To solve the optimization problem in (15), wéLS) is reduced to (21) with a set 8f optimization variables,
model the problem by exploitingptimal transport theory12]. ~ ¢i» Vi € M. Given (21), we can further proceed to solve (15)
by presenting the following theorem:
V. OPTIMAL TRANSPORTTHEORY FOROPTIMAL CELL Theorem 1. Given (21),F is a concave function of variables

PARTITIONING . .
. . i, 1 € M. Also, we have:
Optimal transport theory was initiated by the Monge'’s OF
—wi— [ fledndy, (22)
D;

problem which is stated as follows [12]. Given piles of o0
sands and holes with the same volume, what is the best ! o
move (transport map) to entirely fill up the holes with thivhereDi={(z, y)|J (z.y, i) = < J(z,y, 8;) =45, Y] # i}.
min_imum total transportation cost. Mathematically, the_rige Proof: Clearly, %4: biws is a linear function ofy;. Also,
optimal transport problem can be written as follows. Giwea t =
probability distributionsf, on X ¢ R”, and f, onY ¢ R®, given anyi € M, J(z,y,s;) — ¢; is a linear function ofy;.
find the optimal transport ma@ from £, to f» that minimizes Letz(y") = inf J(x,y, s;) = with ¥ being a vector of all
the following problem: variablesy;, i € M. Then, we can observe that the hypograph
, of z(yp), a set of points belowz(v"), is a convex set.
me/x ¢ (@, G(x)) fi(x)de; G: X =Y, (18) Subsequently, considering the fact that a function is cemca

wherec(x, G(x)) denotes the cost of transporting a unit maslfsanoI only if its hypograph is convex, we prove the concavity

from a locationz € X to a locationy = G(x) € Y. of ZWT)' Finally, since multipIyingz(z/:T) by a positive

Given this optimal transport framework, we can solve Olprrobablhty density fqncUonf(x,y), aad takmg Integration
over (z,y) does not violate the concavity, is also a concave

optimization problem in (15). In particular, we model thi : T : T :
problem as a semi-discrete optimal transport problem imWhﬁunCt'on Of.w - Now, toaf},['d th? de_rlva_tlve oF with respect
to 1;, we first computezt—, which is given by:

the source measure (users’ distribution) is continuoudewhi Y

the destination (UAVs’ distribution) is discrete. Usingtiopal 81/)0{—1, it J(z,y,8)— i< J(x,y,8;)—j, i # 7, (23)
transport theory, we can find the optimal cell partitions, 9v; |0, otherwise

for which the average total data service is maximized. In o -

model, users have a continuous distribution, and the locati then, by defining

of the UAVs can be considered as discrete points. Then, th®; = {(z,y)|J(x,y,s:) — ¥ < J(z,y,s;) — ¥;,Vj # i},




Algorithm 1 Gradient method for optimal cell partitioning Table I: Simulation parameters.

. . ) . . Parameter Description Value
l: InPUtS' f(l;z y)’ P 7_—“ 8i, Vi € M. fe Carrier frequency 2GHz
2: OUtpUtS. [ Ai, Vi e M. P, UAV transmit power 0.5W
3: Set initial values fon,b?, t=1). N? Noise power spectral -170dBm/Hz
4: while HVF("’L’?)HQ > P do #IL\;S Additione’a\‘du;;z\?rsrlo?sgt?lfjrr;iL;?J(:cse for Lo$ :gg
5: Setk = 1,T61 = 1.T . Iinos | Additional path loss to free space for NL4S  23dB
6: Update¢t+1 =, + EkVF(’lpt ), k,t € IN. B Bandwidth 1MHz
. « Control time factor 0.01
7 if F(y7) < F(,,) then h UAV's alfitude 200m
8: Go to Step 12 . Lz fty | Mean of the truncated Gaussian distributib®50m, 330m
o: else by, by Environmental parameters (dense urbar})0.36, 0.21 [6]
10: Go to Step 17 . 1000 <107
11 end if 6
12.  while F(¢]) < F(s{,,) do e o * o5
13 k— k+ 1. 2 £ 600
_ ok—1 g g [
14 € = 2 €1. 3 3 * ¥ UAVL
15 Updatev),, = ¢/ +exVF (), k,t € N g g 400 ¥ uave
16: end while > > 200 UAV 4
17 while F(y}) > F(y/,,) do o uavs
18: k—k+1. 200 400 600 800 1000 200 400 600 800 1000
19: € = 2—k+161 X-coordinate (m) X-coordinate (m)
20; Updatey?, , = ¥ + e, VF(yT), k,t € N. a) Proposed optimal cell b) Weighted Voronoi
t+1 t t g
21: end while partitions. diagram.
22 t—t+1. Fig. 2- » . . )
23: end while Ig. 2: Cell partltlonst_ alsz_oct:l_ageg to L]JCAVS given the non-uniform
24: 7 = 7 (i), Vi € M. spatial distribution of users.
25: Al = {(%Z/)U(%yysz)—ﬁ}: SJ(xvyvsJ)_w;vvj#Z}v . . . . . .
Vie M. according to a two-dimensional truncated Gaussian distrib
tion which is suitable to model a hotspot area [10]. Note,that
the derivative ofF’, given in (21), will be: although we consider the truncated Gaussian distributfon o
OF users, our analysis can also accommodate any other aybitrar
E =wi— /D f(z,y)ddy . (24)  distribution. We deploy the UAVs based on a grid-based

deployment with an altitude of 200 m. Unless stated otherwis
we consider a full interference scenario with an interfeeen

. . . factor 5 = 1. For the control time function, we consider
T y ’
¥ . Thus, the optimal values for variablas, Vi € M, gi(z) = «z?, with o being an arbitrary constant factor.

can be obtained by maximizing. Then, given the optimal . o L o
. ; . . . This function is a reasonable choice in our model as it is
i, Vi € M, equation (19) is used to determine the optimal . . .
o . S _a superlinear function of the number of users and its value
cell partitions corresponding to the optimization problém can be adiusted by facter. However. anv arbitrarv Lipschitz
(15). In this case, using the first derivative Bf provided in ) y : > any y Lp

. : ontinuous control function can also be considered in our
(22), we propose a gradient-based method to determine the : : : .
/ T : . model. The simulation parameters are listed in Table I. We
optimal vectorey)”™ that leads to the optimal cell partitions.

. . . . compare our results, obtained based on the proposed optimal
Here, using the gradient descent method is simple in terms.c%flrlnpartitioning approach, with the classical weightedormi

implementation and does not require computing the Hess'gfg\gram baseline. Note that, all statistical results asrayed
matrix of F' which is needed in the Newton methods. . Lo
over a large number of independent runs.

The proposed algorithm for finding the optimal cell par-" " ) "
titions is shown as Algorithm 1 and proceeds as follows Fig.2 shows the proposed optimal cell partitions and the

The inputs are the distribution of users, flight times, |z classical weighted Voronoi diagram. In this case, we cansid

of the UAVs, andp > 0 which is the threshold based on2 UAVs that provide service for the non-uniformly distribdt

which the algorithm stops. In Algorithm 1, we first initiadiz ground users (truncatgd Gaus_sian Qistribution). More(v\(er

vector ¢} with ¢ being the iteration number. Next, usingas,s‘ume tha}t the maximum flight time Of. each UAV'is 30

(22), we comput(ﬂF(wT) In Step 6, we updatey! using minutes which corresponds to the typical flight time for quad
) t ) 1 t

step sizee,. The appropriate step size at each iteration Fs‘)p_te; UAVS. Iln _Fig.d2, areas shown by a d?rker c_olorbha\r/]e
determined through Steps 7 to 21. In this case, the algoritiﬂ'rh'g er popu atlon_ ensﬂy. As we can see from _F|g_._2 ; the
stops whenever condition i is not satisfied. Clearly, due to cell partitions associated with UAVs 3 and 4 have signifiant

the concavity ofF, the optimal solution of (21) is attained.more users than cell partition 1. Therefore, given the Bahit
Finally, based on the optimal vecta”, the optimal cell flight times, users located at cell partitions 3 and 4 caneot b

partitions are determined using Steps 24 and 25. fairly_served by UAVs. _However, in t_he proposed Op“'.“"’?' cell
partitioning case (obtained by Algorithm 1), the cell piEotis
V. SIMULATION RESULTS AND ANALYSIS change such that the average data service under a fair cesour
For our simulations, we consider a rectangular area of siallocation constraint is maximized. For instance, as shiown
1000m x 1000 m in which the ground users are distributedrig. 2a, the size of cell partitions 3 and 4 decreases cordpare

This proves the theorem.
Theorem 1 shows the concavity df as a function of
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Fig. 3: Jain’s fairness index for average data service to users. Fig. 4: Average data service versus interference factor.
to the weighted Voronoi diagram. As a result, the proposé@gcount the flight time constraints of UAVs. In particular,
cell partitions lead to a higher level of fairness among trgiven the maximum possible flight times of UAVs, we have
users than the weighted Voronoi case. maximized the average data service to the ground users under
To show how fairly the users can be served in differem fair resource allocation policy. To this end, using tootst
cases of cell partitioning, we use the Jain’s fairness indexptimal transport theory, we have determined the optimtl ce
We compute the Jain’s index based on the data service thapagtitions associated with the UAVs. The results have shown

offered to each user which is given by [14]: that, using our proposed cell partitioning approach, thersis
N o, N . receive more fair data service compared to the Voronoi case.
Fiain(l1, 12, ..., In) = (Z li) X (NZZiQ) ) (25) REFERENCES
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In this paper, we have proposed a novel framework for
optimizing UAV-enabled wireless networks while takingant



