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Abstract: We consider whether the new horizon-first law works in higher-dimensional f (R) theory.
We firstly obtain the general formulas to calculate the entropy and the energy of a general
spherically-symmetric black hole in D-dimensional f (R) theory. For applications, we compute the
entropies and the energies of some black hokes in some interesting higher-dimensional f (R) theories.
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1. Introduction

Since Bekenstein’s and Hawking’s work [1,2], it is convinced that there may be a deep relation
between the gravitational field equations and the laws of thermodynamics. Like in thermodynamics, four
laws of black hole dynamics were found in [3]. The field equations of general relativity in its tensorial
form can be derived by applying the Clausius relation δQ = TδS on the horizon of spacetime, here
δQ is the energy flux across the horizon and δS and T are the change in the entropy and the Unruh
temperature seen by an accelerating observer just inside the horizon [4]. From Einstein equations, one can
obtain the thermal entropy density of spacetime without assuming the temperature or the horizon [5,6].
It was shown that for a generalized gravity theory, the field equations are equivalent to the first law of
thermodynamics [7]. This programme was also applied to other modified gravity theories: such as f (R)
theory [8,9], and scalar-Gauss–Bonnet gravity [10]. It was shown, however, that the Bekenstein–Hawking
entropy depends not only on the black hole parameter, but also on the coupling which induces Lorentz
violation [11].

For a spherically-symmetric spacetime, Einstein’s field equations can be written in the form
of thermodynamic identity (called the horizon-first law): dE = TdS − PdV [12]. This framework
of horizon thermodynamics has also been extended to other theories of gravity [13,14] and the
non-spherically-symmetric cases [15]. The horizon-first law, however, has two shortcomings: (a) the
thermodynamic variables are vague in the original derivation and require further determination, (b) both
S and V are functions of only r+, so does the horizon-first law, which makes the terms ‘heat’ and ‘work’
confused [16]. To avoid these two problems, a new horizon-first law was proposed in [16], where
the temperature T and the pressure P are independent thermodynamic quantities and the entropy
and free energy are derived concepts, while the horizon-first law can be restored by the Legendre
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projection. This procedure was generalized to in f (R, RµνRµν) theory [17] and f (R) theory with a
spherically-symmetric black hole [18] or with a general spherically-symmetric black hole [19].

The natural generalization of general relativity is the higher-dimensional and higher-order gravity.
Higher-dimensional black hole in higher-dimensional gravity is physically interesting, whose physics are
markedly different and much richer than those in four dimensions, see, for example, there are limits on the
ratio of mass to charge for Tangherlini–Reissner–Nordstrom black hole [20]. Extra dimensions are also
needed for consistency in string theory. So it is valuable to study the physics of high-dimensional black
holes. In addition, energy issue in higher-dimensional and higher-order gravity is still an open problem,
some attempts to find a satisfactory answer to this problem have been proposed [21–25]. In literature, there
have been several attempts to define the concept of energy using local or quasi-local concepts, however, not
all these definitions of energy agree with each other. Here we will investigate this issue in D-dimensional
f (R) black hole and hope to give interesting suggestions.

As one of the simplest modifications to general relativity, f (R) gravity have been extensively studied
over the past decade [26–28]. It’s Lagrangian is a function of Ricci scalar in which higher-order terms can
encapsulate high-energy modifications to general relativity, but the field equations are simple enough that it
is possible to solve them. Secondly, and most importantly, f (R) gravity does not suffer from Oströgradsky
instability. Various applications of f (R) gravity to cosmology have been investigated, such as inflation,
dark energy, cosmological perturbations, and black hole solutions. Here we will investigate whether the
new horizon-first law still works in higher-dimensional f (R) gravity. We will adopt the method presented
in [12] to define the energy and the entropy: writing the radial component of gravitational field equations
on the horizon as the equation of state P = D(r+) + C(r+)T, which can be rewritten as a thermodynamic
identity δG = −SδT + VδP, then identifying S as the entropy, and taking E = G + TS− PV as the energy.
We will show that the new horizon-first law can give not only the entropy but also the energy of black hole
in higher-dimensional f (R) theory, which for some special cases are consistent with the results obtained
by using other methods.

The structure of this paper is as follows. In Section 2, we briefly review the new horizon-first law and
its applications in f (R) theories. In Section 3, we consider whether the new horizon-first law still holds
in higher-dimensional f (R) theory. In Section 4, we discuss applications for some D-dimensional f (R)
theories. Conclusions and discussions are given in Section 5.

2. The New Horizon-First Law and Its Application in f (R) Theory

Inspired by the radial Einstein equation on the horizon of Schwarzschild black hole, it is reasonable
to suggest that the radial field equation of a gravitational theory under consideration takes the following
form [16]

P = D(r+) + C(r+)T, (1)

where C and D are functions of the radius of black hole, r+, in general they depend on the gravitational
theory one considered. The temperature T in (1) is identified from thermal quantum field theory, which
is independent of any gravitational field equations [16]. According to the conjecture proposed in [6],
the pressure in (1) is identified as the (r

r) component of the matter stress-energy, it also does not fall back
on any gravitational field equations. Considering a virtual displacements δr+ and varying the Equation
(1), then multiplying the volume of black hole V(r+), yields [16]

δG = −SδT + VδP, (2)
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comparing with the thermodynamical identity δG = −SδT + VδP, where G can be identified as the Gibbs
free energy which is given by [16]

G =
∫

V(r+)D′(r+) dr+ + T
∫

V(r+)C′(r+)dr+

= PV − ST −
∫

V′(r+)D(r+)dr+, (3)

and S is identified as the entropy which is [16]

S =
∫

V′(r+)C(r+)dr+. (4)

Using the degenerate Legendre transformation as that in thermodynamics, the energy E is defined as
E = G + TS− PV which can be easily got [18]

E = −
∫

V′(r+)D(r+)dr+. (5)

This procedure was firstly investigated for Einstein gravity and Lovelock gravity which only give
rise to second-order field equation [16] and was also applied to f (R) gravity with a general static
spherically-symmetric black hole in f (R) gravity

ds2 = −W(r)dt2 +
dr2

N(r)
+ r2dΩ2, (6)

where W(r) and N(r) are general functions of the coordinate r and the event horizon is local at the largest
positive root of N(r+) = 0 with N′(r+) 6= 0, the entropy in this case is given by [19]

S =
∫
(2πr+F + πr2

+F′)dr+ = πr2
+F, (7)

where F = d f
dR . The energy is found to be [19]

E =
1
2

∫ √W ′

N′

[
F

r2
+

+
1
2
( f − RF)

]
r2
+dr+. (8)

For W(r) = N(r), Equation (8) reduces to the result obtained in [18] which is consistent with the
expression obtained in [21] and can be derived by using the unified first law of black hole dynamics [29];
Equation (7) is consistent with the results derived by using the Wald entropy formula or the Euclidean
semiclassical approach [30–32]. In the next section, we will consider the new horizon-first law in
D-dimensional f (R) Theory with a general static spherically-symmetric black hole.

3. The Entropy and Energy of D-Dimensional f (R) Black Hole

In this section, we turn our attention to discussing whether the new horizon-first law still holds in the
D-dimensional f (R) theory. Considering a general spherically-symmetric and static D-dimensional black
hole in f (R) theory, its geometry is given by

ds2 = −W(r)dt2 +
dr2

N(r)
+ r2dΩ2

D−2, (9)
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in which dΩ2
D−2 represents the D− 2-dimensional unit spherical line element. For the metric (9), the surface

gravity takes the form [33]: κK =
√

W ′(r+)N′(r+)/2, giving the temperature of the black hole as

T =
κK
2π

=

√
W ′(r+)N′(r+)

4π
. (10)

The action of D-dimensional f (R) gravity with source is represented by

I =
∫

dDx
√
−g
[

f (R)
2k2 + Lm

]
, (11)

where k2 = 8π and D ≥ 3. Here we take the units G = c = h̄ = 1. f (R) is a function of the Ricci scalar R
and Lm is the matter Lagrangian. Physically f (R) theory must fulfil two stability conditions [34]: (a) no
ghosts, d f /dR > 0; and (b) no tachyons, d2 f /dR2 > 0 [35]. Variation of the action (11) with respect to
metric provides the gravitational field equations

Gν
µ ≡ Rν

µ −
1
2

δν
µR = k2

(
1
F

Tν
µ +

1
k2 T

ν
µ

)
, (12)

where Tµν = −2√−g
δLm
δgµν the energy-momentum tensor of the matter. We define the stress-energy tensor of

the effective curvature fluid as T ν
µ which is given by

T ν
µ =

1
F(R)

[
1
2

δν
µ( f − RF) +∇µ∇νF− δν

µ2F
]

, (13)

where 2 = ∇λ∇λ. Assuming the metric (9), we derive after some calculations by using of the
relations 2F = 1√−g ∂µ[

√−ggµν∂νF] the (1
1) components of the Einstein tensor and the effective curvature

fluid respectively

G1
1 =

1
r2

[
(D− 2)(D− 3)(N − 1)

2
+

(D− 2)NW ′r
2W

]
, (14)

and

T 1
1 =

1
F(R)

[
1
2
( f − RF)− N

2W
W ′F′ − D− 2

r
NF′

]
, (15)

where the prime stands for the derivative with respected to r. Taking the trace of Equation (12), yields
the relation

RF(R)− D
2

f (R) + (D− 1)2F = k2Tν
ν , (16)

where Tν
ν is the trace of the energy-momentum tensor. Substituting Equations (14), (15) and Tr

r = P into
Equation (12), yields

k2P =
F(D− 2)(D− 3)

2r2 (N − 1)− 1
2
( f − RF) +

NF′(D− 2)
r

+
(D− 2)NW ′F

2Wr
+

NW ′F′

2W
. (17)
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Thinking of N(r+) = 0 and the temperature (10) at the horizon, Equation (17) reduces to

P = − 1
8π

[
F(D− 3)(D− 2)

2r2
+

+
1
2
( f − RF)

]
+

1
4

√
N′

W ′

[
F(D− 2)

r+
+ F′

]
T. (18)

Comparing Equations (18) and (1), we then get

D(r+) = −
1

8π

[
F(D− 3)(D− 2)

2r2
+

+
1
2
( f − RF)

]
, (19)

and

C(r+) =
1
4

√
N′

W ′

[
F(D− 2)

r+
+ F′

]
. (20)

The volume V of the black hole in D-dimensional spacetime takes the form [36]

V(r+) =
2π

D−1
2

Γ(D−1
2 )

∫ r+

0

√
W(r)
N(r)

rD−2dr. (21)

Use the relation N(r+)
W(r+)

= N′(r+)
W ′(r+)

[33], we get

V′(r+) =
2π

D−1
2

Γ(D−1
2 )

√
W ′(r+)
N′(r+)

rD−2
+ . (22)

Substituting Equations (22) and (20) into the expression (4), the entropy of black hole (9) in
D-dimensional f (R) gravity is

S =
π

D−1
2

2Γ(D−1
2 )

∫
[F(D− 2)rD−3

+ + rD−2
+ F′]dr+ =

π
D−1

2

2Γ(D−1
2 )

FrD−2
+ . (23)

Inserting Equations (22) and (19) into Equation (5), then we obtain the energy of black hole (9) in
D-dimensional f (R) theory as

E =
π

D−3
2

4Γ(D−1
2 )

∫ √W ′

N′

[
F(D− 2)(D− 3)

2r2
+

+
1
2
( f − RF)

]
rD−2
+ dr+. (24)

Equations (23) and (24) are the main results obtained in this work, they can be used to calculate
the entropy and the energy of a specific black hole in a specific D-dimensional f (R) gravity. For D = 4,
Equations (23) and (24) recover Equations (7) and (8). Fixing f (R) = R and W = N, one expects the results
to go back to the framework of higher-dimensional Einstein’s gravity, see Equations (27) and (29) in the
next section.

4. Applications

In this section, we will illustrate the procedure to calculate the entropy and the energy for black holes
in a certain f (R) theory by using Equations (23) and (24). These models have solutions with constant Ricci
curvature (such as a Schwarzschild or a Schwarzschild-de Sitter solution) or solutions with non-constant
Ricci curvature.
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4.1. The Constant Ricci Curvature Case

We start with the simplest but important case, F = 1, which implies f = R− 2Λ where −2Λ is an
integration constant to be regarded as the cosmological constant. This model has a Schwarzschild or a
Schwarzschild-de/anti de Sitter black hole solution [37,38]

W(r) = N(r) =


−M−Λr2, D = 3,

1− 2M
(D− 3)rD−3 −

2Λ
(D− 2)(D− 1)

r2, D > 3,
(25)

where M is the mass of black hole. The solution is Schwarzschild-de/anti de Sitter black hole solution for
D > 3 and it is the non-rotating BTZ black hole for D = 3. The constant curvature R0 from Equation (25)
is given by

R0 =
2DΛ
D− 2

. (26)

From Equation (23), the entropy is found to be

S =
π

D−1
2

2Γ(D−1
2 )

rD−2
+ . (27)

It reduces to S = πr+/2 for a non-rotating BTZ black hole and returns to the standard results for
D = 4. The energy of the black hole is obtained from Equation (24) as

E = −1
8

Λr2
+ =

1
8

M, (28)

where −Λr2
+ = M for D = 3 has been used at the horizon. For M = 0, it reduces to results presented

in [12]. For D > 3, it reads

E =
π

D−3
2

4Γ(D−1
2 )

[
(D− 2)rD−3

+

2
−

ΛrD−1
+

D− 1

]
=

π
D−3

2

4Γ(D−1
2 )

D− 2
D− 3

M, (29)

where we used N(r+) = 0 for D > 3 at the horizon. For 4-Dimensional Einstein’s gravity, Equations (27)
and (29) give S = πr2

+ = A/4 and E = M, respectively. The nonnegativity of the energy, gives new
constrains on the parameter: (D−1)(D−2)

2 > Λr2
+ for D > 3.

4.2. The Non-Constant Ricci Curvature Case

We apply the same procedure for black hole solutions with non-constant curvature which are more
interesting. We consider two types of f (R) theories: (a) F is a linear function of r, and (b) F is a power law
function of r.

4.2.1. F(r) = 1 + αr

In this case, F is a linear function of r with α a non-zero constant. W(r) and N(r) in three-dimensional
spacetime are given by [37]

W(r) = N(r) = C2r2 + C1

(
αr− 1

2

)
− C1α2r2 ln

(
1 +

1
αr

)
. (30)
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Function f (R(r)) reads

f = −4C2 + 4C1α2 ln
(

1 +
1
αr

)
− 2C1α(1 + 2αr)

r(1 + αr)
, (31)

where Ci are integration constants with C1 related to the mass of the central object and C2 identified as the
cosmological constant. The Ricci scalar R evolves as

R = −6C2 + 6C1α2 ln
(

1 +
1
αr

)
− C1α(2 + 9αr + 6α2r2)

r(1 + αr)2 . (32)

Then, the entropy formula (23) gives

S =
πr+

2
(1 + αr+), (33)

gives limit on parameter: α ≥ −1/r+ from S ≥ 0. The energy of the black hole is obtained from
Equation (24) as

E =
r2
+

8

[
C2 + 2α2C1 + 2αC2r+ − C1α2(1 + 2αr+) ln

(
1 +

1
αr+

)]
(34)

=
C1

16
,

where N(r+) = 0 was used. E ≥ 0 gives a new constraint on the parameter: C1 ≥ 0.
For D = 4 spacetime, W(r) and N(r) take the forms

W(r) = N(r) = C2r2 +
1
2
+

1
3αr

+
C1

r

[
3αr− 2− 6α2r2 + 6α3r3 ln

(
1 +

1
αr

)]
, (35)

where C2 is related to the cosmological constant. We note that Equation (35) is different from Equation (27)
in [37]. Function f (R(r)) is given by

f = −6C2 − 36C1α3 ln
(

1 +
1
αr

)
+

6αC1(−1 + 6α2r2 + 3αr)
r2(1 + αr)

+
1 + 2αr

r2 , (36)

with the Ricci scalar

R = −12C2 − 72C1α3 ln
(

1 +
1
αr

)
+

6αC1(−1 + 6α2r2 + 6αr)(1 + 2αr)
r2(1 + αr)2 +

1
r2 . (37)

From Equation (23), the entropy of the black hole reads

S = πr2
+(1 + αr+). (38)

The energy of the black hole is obtained from Equation (24) as

E =
r+
2

+
r2
+

8
(−6C1α2 − 36α3C1r+ + 4C2r+ + 3α + 6αC2r2

+) +
3
2

α3C1r3
+(2 + 3αr+) ln

(
1 +

1
αr+

)
(39)

= C1 −
1

6α
,
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where we used N(r+) = 0. For C1 = 0, Equation (39) reduces to the result in [18]. To guarantee the
nonnegativity of the entropy and the energy, we must have new constraints on the parameters: α ≥ −1/r+
and C1 ≥ 1/6α.

4.2.2. F = αra

We now consider a power-law form for F(r), i.e., F = αra, with constants a and α. In this case, the
W(r) and N(r) in (9) were found to be [37]

W = r
2a(a−1)
a+D−2 N, (40)

and

N = C1r−
2a2−6a+6+(2a−5)D+D2

a+D−2 + C2r
2(D−2+2a−a2)

a+D−2 +
(D− 3)(a + D− 2)2

[2a2 − 6a + 6 + (2a− 5)D + D2](D− 2 + 2a− a2)
, (41)

where C1 and C2 are the integration constants. It returns to the Schwarzschild-de/anti de Sitter solutions
for a = 0 and α = 1. Function f (R(r)) and the Ricci scalar R take the forms, respectively

f =
2αC2(D− 1)(a− 1)(D− 2 + 2a)r

a(D−a)
a+D−2

a + D− 2
+

2aα(D− 1)(D− 3)ra−2

D− 2 + 2a− a2 , (42)

R = −C2(D− 1)(D− a)(D− 2 + 2a)

(a + D− 2)r
2a(a−1)
a+D−2

+
a(D− 1)(D− 3)(a− 2)
(D− 2 + 2a− a2)r2 . (43)

Note that although α and a are two arbitrary constants, a must satisfy a 6= 2− D, 1±
√

D− 1. From
Equation (23) the entropy for this type black hole is

S =
απ

D−1
2

2Γ(D−1
2 )

ra+D−2
+ . (44)

The energy of the black hole is obtained from Equation (24) as

E =
π

D−3
2

4Γ(D−1
2 )

a1r
D2−2a−3D+2aD+2

a+D−2
+ + a2r

2a2+2aD+D2−6a−5D+6
a+D−2

+

2(2− 2a + a2 − D)[6 + 2a2 + 2a(D− 3)− 5D + D2]
, (45)

where

a1 = αC2(a + D− 2)(2− 2a + a2 − D)[6 + 2a2 + 2a(D− 3)− 5D + D2], (46)

and

a2 = −α(a + D− 2)(D− 3)[(3− 2D)a2 + (6D− 8)a + (D− 2)2]. (47)

If taking a = 0 and α = 1, it is back to Einstein’s gravity and Equation (44) reduces to Equation (27); when
D = 3, C2 = −Λ, and C1 = −M, Equation (45) reduces to Equation (28); when D ≥ 4, C2 = −2Λ

(D−1)(D−2) ,
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and C1 = 2M
3−D , Equation (45) returns to Equation (29). For D = 3, the solution becomes rather specific

since the last term in (41) vanishes for all values of a. The function f (R) reads [37]

f (R) = a3R
3−a

2(1−a) , (48)

with a3 = 4αC2(2a2 − a− 1)[2C2(2a + 1)(a− 3)]
a−3

2(1−a) (a + 1)
1+a

2(1−a) and a 6= 0. f (R) is a constant for a = 3
and it is un-physical for a = 1. The entropy (44) and the energy (45) respectively reduce to

S =
α

2
πra+1

+ =
α

2
π

(
−C1

C2

) (a+1)2
4a+2

, (49)

and

E =
αC2(a + 1)

8
r

4a+2
a+1
+ = −αC1(a + 1)

8
, (50)

with r+ = (−C1
C2
)

a+1
4a+2 . The nonnegativity of the entropy gives constraints on the parameters: C1(a + 1) ≤ 0,

and S ≥ 0 gives α ≥ 0. For a = 1/3, we have f ∼ R2, S = α
2 πr4/3

+ = α
2 π
(
−C1

C2

) 8
15 and E = − αC1

6 .
For D ≥ 4 and C2 = 0, the function f (R) takes the form [37]

f (R) = a4R1− a
2 , (51)

where a4 = 2α(a− 2)
a
2−1

[
a(D−1)(D−3)
D−2+2a−a2

] a
2 . The entropy (44) and the energy (45) respectively reads

S =
απ

D−1
2

2Γ(D−1
2 )

ra+D−2
+

=
απ

D−1
2

2Γ(D−1
2 )

[
−C1(2a2 − 6a + 6 + (2a− 5)D + D2)(D− a2 + 2a− 2)

(D− 3)(D− 2 + a)2

] (D−2+a)2

2a2−6a+6+(2a−5)D+D2

, (52)

E =
π

D−3
2

4Γ(D−1
2 )

a2r
2a2+2aD+D2−6a−5D+6

a+D−2
+

2(2− 2a + a2 − D)[6 + 2a2 + 2a(D− 3)− 5D + D2]

=
π

D−3
2 αC1

8Γ(D−1
2 )

(3− 2D)a2 + (6D− 8)a + (D− 2)2

2− a− D
, (53)

with r+ =
[
− (D−3)(D−2+a)2

C1[2a2−6a+6+(2a−5)D+D2](D−a2+2a−2)

]− D−2+a
2a2−6a+6+(2a−5)D+D2

. For the case of α = 1 and a = 0

the theory returns to D-dimensional Einstein’s gravity: r+ = (−C1)
1

D−3 , S = π
D−1

2

2Γ( D−1
2 )

(−C1)
D−2
D−3 ,

and E = π
D−3

2

8Γ( D−1
2 )

(D − 2)rD−3
+ = −π

D−3
2 (D−2)C1
8Γ( D−1

2 )
. For a = −2, we get f ∼ R2, S =

απ
D−1

2

2Γ( D−1
2 )

[
−C1(D2−9D+26)(D−10)

(D−3)(D−4)2

] (D−4)2

D2−9D+26 , and E = π
D−3

2 αC1
8Γ( D−1

2 )
D2−24D+32

4−D , obviously D 6= 4, 10. The

nonnegativity of the entropy and the energy give new constraints on the parameters: α ≥ 0 and
C1(D2 − 24D + 32) ≤ 0.
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5. Discussion and Conclusions

We have discussed whether the new horizon-first law still holds in higher-dimensional f (R)
gravity. We have derived the general formulas to calculate the entropy and the energy of a general
spherically-symmetric and static D-dimensional black hole in f (R) theories, which can be obtained by
using other methods. It gives a new method to rapidly compute the entropy and the energy of the black
hole in f (R) theory. For applications, we have calculated the entropy and the energy of some black
holes with constant Ricci curvature or with non-constant Ricci curvature in some interesting f (R) theory
by using these formulas, the nonnegativity of the entropy and the energy give new constraints on the
parameters. Except for the case discussed in [39] where F(R) = 0, it is valuable to apply this procedure to
other modified gravitational theories.
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