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Abstract— Successful state-of-the-art object recognition tech-
niques from images have been based on powerful methods,
such as sparse representation, in order to replace the also
popular vector quantization (VQ) approach. Recently, sparse
coding, which is characterized by representing a signal in a
sparse space, has raised the bar on several object recognition
benchmarks. However, one serious drawback of sparse space
based methods is that similar local features can be quantized
into different visual words. We present in this paper a new
method, called Sparse Spatial Coding (SSC), which combines
a sparse coding dictionary learning, a spatial constraint coding
stage and an online classification method to improve object
recognition. An efficient new off-line classification algorithm
is also presented. We overcome the problem of techniques
which make use of sparse representation alone by generating
the final representation with SSC and max pooling, presented
for an online learning classifier. Experimental results obtained
on the Caltech 101, Caltech 256, Corel 5000 and Corel 10000
databases, show that, to the best of our knowledge, our
approach supersedes in accuracy the best published results to
date on the same databases. As an extension, we also show high
performance results on the MIT-67 indoor scene recognition
dataset.

I. INTRODUCTION

Recognizing objects in images has been a challenging
task and, for a good number of years, it has attracted the
attention of a large number of researchers from several
communities such as robotics, computer vision and machine
learning. Object recognition is at the core of important tasks,
like tracking and Simultaneous Localization And Mapping
(SLAM). Unquestionably, the amount of information cap-
tured in a single frame has naturally been conducive for the
numerous image based techniques and has spawned several
categorization methodologies.

Sparse Coding (SC) has been successfully used for image
denoising [10] and image restoration [20], [22]. However,
only recently SC has been effectively applied in lieu of
Vector Quantization (VQ) techniques in object recognition
tasks, and is now considered as the state-of-the-art [14], [35].
This powerful representation has also been regarded as likely
to be separable in high-dimensional sparse spaces [27] and
therefore suitable for classification. On the downside, a weak
point of sparse coding is that the regularization process can
select different basis for two similar patches. The observation
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of this fact led us to investigate ways to overcome this severe
drawback of sparse representation.

The main problem we deal with in this paper is the
uncovering of the semantic category of an image. Much
of the work for whole image categorization has already
been successfully accomplished using Bag-of-Features (BoF)
based approaches. However, those approaches represent an
image as an orderless collection of local features, that
obviously do not capture global features, such as shape, to
differentiate between objects. In order to overcome this loss
of spatial information, an extension to BoF called Spatial
Pyramid Matching (SPM), was proposed by Lazebnik et al.
[16]. Nowadays, SPM is an important component of state-
of-the-art object recognition techniques such as [6], [9], [11],
[32], [35].

Indeed, SPM is a preferred choice, since it creates geomet-
rical relationships between features, which combined with
SC, leads to high accuracy results. Therefore, our work aims
to develop a new approach for object recognition called SSC,
which combines the advantages of SPM and implements
a spatial Euclidian coding representation to overcome the
aforementioned SC drawbacks.

Our method is composed of three main steps: i) a Training
Phase, ii) a Coding Phase, and iii) an Online Learning
approach to predict the labels that will be assigned to a
feature.

In the training phase we build the dictionary with a set
of random patches extracted from the training image set.
These patches are normalized and passed on to the dictionary
learning process.

The Coding Phase can be further divided into two steps: i)
the extraction of local descriptors, which can use SIFT [18]
or SURF [2] descriptors, and ii) code generation, based on
the dictionary and on the quantization of each descriptor,
using a spatial constraint, instead of sparsity. The codes
associated with each region are pooled together to form a
global image signature. We maximize the signature using
max pooling [26].

The final stage of our method sends the global features to
an Online Classification method. We chose online learning
based on the requirements that are typical of real robots:
i) small memory availability; ii) large amounts of data, and
iii) suitability for data streaming (typical of several robotic
tasks).

Online learning is well suited to several robotic tasks
where in general the robot does not have access to the
entire data domain. This is also similar to decision making
problems, where parts of the data are incrementally presented



over time [29]. This idea can be exemplified by a simple
game quiz. Consider a student and a teacher executing
together, n times, the following steps:

1) An input sample is presented to the student.
2) The student responds to the input with a prediction.
3) The teacher reveals the true answer for the input.
4) If the prediction is correct, then the model is rein-

forced, if it is wrong, the student is penalized and
updates his model based on the correct information.

The goal of the student is to minimize the cumulative error
over time by updating his internal model of the problem.

We propose here a new method to improve object recogni-
tion called (SSC), which combines the learning of a sparse
coding dictionary, a spatial constraint coding stage and an
online classification method. Furthermore, we also propose
a new and efficient off-line algorithm. Experimental results,
presented later in this paper, show that, to the best of our
knowledge, the results obtained on the Caltech 101, Caltech
256, Corel 5000 and Corel 10000 datasets, achieve accuracies
that are superior to the best published results to date on the
same databases. In addition, we also obtain high performance
results on the MIT-67 indoor scene recognition dataset.

The main contributions of this paper are: i) A new object
recognition method which makes use of SC for dictionary
learning and a coding stage based on spatial constraint, ii)
a new off-line method based on SVD, called Orthogonal
Class Learning OCL, designed to take advantage of the high
dimensionality of features when compared to the number of
feature examples, and iii) an object recognition technique
based on online learning, that when combined with the
previous steps, leads to state-of-the-art performance results
on several popular benchmark datasets.

After discussing the related works in the next section, in
Section III we present our methodology to learn dictionaries
and to generate code, based on sparse coding and locality,
respectively. We also present a novel off-line classification
method and an online learning algorithm that comprise the
final classification technique of our methodology. Exper-
imental results are described in Section IV followed by
Section V, which reports on what we have concluded with
this investigation, the work underway and the possible next
research directions.

II. RELATED WORK
Several approaches using SC and dictionary learning for

image classification have been proposed in recent years.
Some of these approaches use supervised feature learning
[1], [6], [14], [37], [38] which achieve high performance re-
sults on several object/scene datasets. Unsupervised learning
[11], [16], [32], [35] was used to recognize images on a
large-scale, unlabeled database.

Two recent works dealing with SC and supervised dictio-
nary learning are [14] and [6]. [14] proposes a supervised
dictionary learning technique called Label Consistent KSVD
(LC-KSVD), that assigns labels (a column of the dictionary
matrix), in order to increase the discrimination power in
sparse coding during the learning process of a dictionary.

This method combines dictionary learning and a single pre-
dictive linear classifier with an objective learning function. In
[6], the authors proposed a method for supervised dictionary
learning with a deep analysis of coding and spatial pooling
modules. This evaluation ushered two discoveries: First, that
sparse coding improves soft quantization, and second, that
max pooling, almost in all the studied cases, is superior
to average pooling, which is unequivocally perceived when
using a linear SVM.

Another research stream is related to unsupervised dic-
tionary learning for object recognition. Recent works have
proposed additional regularization and/or constraints such as
spatial properties, like [11], [15] and [32]. Yang et al. [35]
propose an extension to the SPM method [16] by replac-
ing the vector quantization with a sparse coding approach.
After running SPM, a max pooling technique is applied to
summarize all the local features representing the image. By
incorporating locality, the approach in [32] aims to decrease
the reconstruction error of the sparse coding based on the
idea that similar patches will have similar codes given the
locality.

Our approach could be classified as an unsupervised
dictionary learning technique, and more specifically, it shares
some similarities with the work of [11], [32]. However,
instead of using locality for training the dictionary and the
to generate coding, our method uses sparse representation
for the dictionary, since our data for training is limited. As
Coates et al. [8] conclude, sparse coding achieves consistent
results when a small number of examples are available.
The work of [28], presents a thorough analysis of the
importance of sparse representation for image classification,
also points out the relevance of sparsity for learning the
feature dictionary. We then move on to an encoding process
which uses spatial similarity, initially in an off-line mode,
and finally in an online classification approach. The details
of our method will be described in the following sections.

III. METHODOLOGY

As we have sketched before, our method is composed by
a training phase, corresponding to sparse coding dictionary
learning, and a coding phase, corresponding to the sparse
spatial coding process. After coding, our SSC image sig-
nature is presented to a learning method that could be our
offline OCL or our online LaRank. In what follows we will
discuss each of the main modules of the SSC technique.

A. Dictionary Learning

First, we compute a set X of SIFT descriptors xi,∀i =
1, . . . , N from a random collection of image patches and use
their information to solve

argmin
U,D

N∑
m=1

‖xm − µmD‖2 + λ|µm|, (1)

where U = [µ1 . . . µm] is the set of basis of each descriptor.
Equation 1 presents the problem of not being convex

simultaneously for both U and V . Honglak et al. [17] also



points out this problem and propose a technique, consisting
of optimizing one variable while the other remains constant.
For example, when U is constant, D becomes convex and
vice-versa.

When the dictionary D is fixed, Eq. 2 can be rewritten as:

argmin
µm

‖xm − µmD‖22 + λ|µm|, (2)

where the ‖xm − µmD‖22 constraint describes the recon-
struction error, and λ is a regularization parameter used to
prevent overfitting.

As stated, this problem is known as Lasso, a linear
regression with L1 norm regularization on the coefficients.
It can be solved using tools such as those provided by the
recently published Sparse Modeling Library (SPAMS) [21]
or with a feature-sign search algorithm [17].

When U is fixed, the problem is reduced to a Least Squares
problem with quadratic constraints:

argmin
D

‖X − UD‖2F (3)

s.t. ‖Dk‖ ≤ 1, 1 ≤ k ≤ n,

which can be solved with the Lagrange Dual procedure.
Several tests were performed by extracting SIFT descrip-

tors from random patches to train the dictionary, and iterating
Eq. 2 and Eq. 3.

Finally, after the dictionary is trained, the next step is the
coding phase. For that we use a spatial constraint.

B. Coding Phase

Instead of coding with a sparsity constraint, we have
chosen to use the spatial Euclidean similarity, based on the
works of [32] and [36]. Those works suggest that locality
produces better signal reconstruction.

In VQ, each descriptor is represented by a single base.
However, spatial approaches use multiple basis in order to
capture possible correlations between similar descriptors.

Another factor which led us to opt for this type of
coding, is also presented in the works of [32] and [36]:
locality imparts a higher probability of selecting similar basis
for similar patches. This is different from a SC approach,
where regularization can select quite diverse basis for similar
patches (see Figure 1).

Coding with spatial Euclidean similarity transforms Eq. 1
into:

argmin
µ

N∑
i=1

‖xi −Dµi‖2 + λ ‖di � µi‖2 (4)

s.t. µi = 1, ∀i, i = 1, .., N ,

where di is the spatial similarity member computed as

di = dist(xi, D), (5)

where dist(xi, D) is a vector of Euclidean distances between
each input descriptor xi and the basis of the dictionary.

Given these distances, we apply a KNN method that
returns the K most similar basis for the given input, implying

SC SPATIAL

D={dj} j=1, ..., n

Xi Xi 

D={dj} j=1, ..., n

Fig. 1. One SC shortcoming is that regularization can select different basis
for similar patches, a problem that spatial constraint techniques are able to
overcome. Xi represent the input features and D represents the dictionary.
As it can be seen in this example, the spatial Euclidean coding selected the
nearest basis in the dictionary.

on a low computational requirement for our coding process.
The values of di are normalized by the max distance to
adjust for the range of possible numbers represented within
the interval (0, 1].

After coding each local feature, we perform the max
pooling to concatenate each code into a final image rep-
resentation. This final representation is used in one of the
classification methods. We test the final signature in the OCL
classification technique, and then we use an online approach
that consitutes the final step of the methodology.

C. Off-line learning method

We propose an off-line method based on SVD, called
Orthogonal Class Learning (OCL). This new methodology
takes advantage of the high dimensionality of the feature
vectors when compared to the number of feature examples,
i.e., we have a set with m n-dimensional feature vectors
where n� m. In this case, a base with only m components
is used to represent new feature vectors. In addition, we
obtain a new base for which new feature vectors are unit
vectors, and pairwise orthogonal.

Consider, initially, that we have h classes, each of which
represented by k n-dimensional feature vectors so that we
have m = h × k feature vectors. Let f1, f2, . . . , fm denote
feature vectors of all training data, and let F denote the n×m
matrix where columns are formed by the feature vectors, that
is:

F = (f1, f2, ..., fm). (6)

Using SVD decomposition, we have F = USV T . Instead
of forming new basis from the columns of U as it is done
in standard PCA, we lay hold of the fact that

V T = (STS)−1STUTF, (7)

and form a new basis A = (STS)−1STUT such that in
this new basis our new feature vectors are columns from
V T , which are unit vectors and pairwise orthogonal. The
advantage of this new representation is that, given object
classes i and j and their feature vectors as matrices Fi and



Fj formed with columns from F , we obtain new matrices
Ci = A.Fi and Cj = A.Fj , such that columns of Ci and Cj
are pairwise orthogonal vectors.

Finally, we build our classifier based on the aforemen-
tioned observations. Given an object and its feature vector
f , we obtain a new feature vector e = A× f . The decision
over the class S is given by

S = argmax
s
‖CTs e‖. (8)

D. Online learning method

In summary, the approach used in our final methodol-
ogy was based on an Online LaRank [5]. We have se-
lected a LaRank multi-class solver. The LaRank algorithm
is grounded in a randomized exploration, inspired by the
perceptron algorithm [4].

LaRank was selected as solver chiefly for these following
reasons:

• It reaches the equivalent accuracy levels of other SVM
solvers, like SVMstruct [31], but with higher computa-
tional performance;

• It generalizes better than perceptron-based algorithms;
• It achieves nearly optimal test error rates after a single

pass over the randomly reordered training set.
The Online LaRank technique achieves the same test

accuracy of batch optimization after a single epoch thanks to
the Reprocess step implementation over SMO-Optimization
algorithm [24].

IV. EXPERIMENTS
For evaluation purposes, we tested our method in two

scenarios. First, we performed experiments using our tech-
nique with off-line classification methods, such as SVM and
with the OCL approach. In a second phase we tested our
final methodology (Sparse dictionary learning plus spatial
Euclidean coding) with an online learning algorithm.

The first test aims to show that only a sparse spatial con-
straint approach can lead to state-of-the-art results with our
off-line approach. Furthermore, the combination of sparse
coding and locality with the correct online learning method
can produce superior results.

A. Parameters Setting

One of the most critical settings for an object recognition
method is the choice of a local feature to be used. In our
experiments, we chose SIFT [18] due to its high accuracy
on several object recognition tasks [3], [16], [35]. Because
of the dense grid sampling in the step for selecting regions
of interest, our experiments use 6 pixels step between each
region with a patch size of 16× 16 pixels. During our trials,
we tested the system with smaller step sizes, but as expected,
the computational cost was prohibitive. We also resized the
images to 300× 300 pixels.

We trained all the dictionaries for the tests with 1024 basis
and 20000 random patch samples. The main parameter set-
ting for the dictionary training is the sparsity/regularization

that we empirically set to λ = 0.30. For the coding stage,
after experimenting with other values, we selected K = 5
neighbors for the KNN.

All results report the average for 10 runs with random
selection of training and testing sets.

B. Off-line Methods Evaluation

We first test how the SSC method works in an off-
line standard classification method, like a Linear SVM and
Random Forests. Additionally, we also present the results we
obtained with the new OCL algorithm. The dataset used was
the Caltech 101, consisting of 101 classes with broad shape
variation. For evaluation purposes, we compare our results
with three recently proposed methods: LLC [32], ScSPM
[35], and NBNN [3]. Table I summarizes the results. As
it can be seen, our technique presents better performance,
specially when combined with the OCL technique, outper-
forming the best results reported in the literature.

TABLE I
OFF-LINE METHODOLOGIES. WE SEE THAT THE COMBINED

APPLICATION OF THE TRAINING AND CODING STEPS WITH OUR OCL
APPROACH OUTPERFORMS THE RESULTS OF PREVIOUSLY REPORTED

METHODS.

N. train 5 10 15 20 25 30
NBNN [3] - - 65.00±1.14 - - 70.40
ScSPM[35] - - 67.00±0.45 - - 73.20±0.54

LCC[32] 51.15 59.77 65.43±0.45 67.74 70.16 73.44
Ours(RF) 33.69 41.54 46.12±0.98 49.80 52.08 54.24±0.59

Ours(SVM) 46.34 56.51 61.97±0.43 65.29±0.91 67.66±0.57 71.18±0.53
Ours(OCL) 56.70 65.26 69.00±0.74 71.7±0.72 73.62±0.51 75.67±0.52

C. Online Learning Evaluation

In order to compare ours with other online learning
approaches, we conducted experiments with our complete
methodology and with three other online methods: ORF (On-
line Random Forest) [30], OMCGB (Multi-Class Gradient
Boost), and OMCLPB (Online Multi-Class LPBoost) [29].
Table II reports the average results of 10 runs with randomly
chosen samples from the Caltech 101 dataset for training and
for testing. Each algorithm run for 10 epochs.

TABLE II
ONLINE LEARNING RESULTS. THE RESULTS SHOW A CLEAR

ADVANTAGE OF OUR METHOD OVER OTHER ONLINE LEARNING

TECHNIQUES BY A MARGIN EXCEEDING 21%.

training images Ours ORF [30] OMCGB [29] OMCLPB [29]
5 55.64 ± 1.03 43.21 ± 1.25 43.68 ± 1.52 43.95 ± 1.63
10 65.52 ± 0.74 47.75 ± 0.94 47.84 ± 1.54 48.4 ± 0.78
15 69.98 ± 0.86 49.8 ± 0.84 49.94 ± 0.75 51.09 ± 0.89
20 73.99 ± 2.1 41.93 ± 3.79 52.48 ± 0.81 53.25 ± 0.89
25 75.49 ± 0.62 53.79 ± 0.40 53.25 ± 0.49 54.87 ± 0.49
30 77.59 ± 0.46 55.54 ± 0.55 55.09 ± 0.85 56.57 ± 0.85

To complete the experimental tests, we analyze the be-
havior of each online classifier over 10 epochs. One well
known problem related to online learning is that the order
in which data is presented to algorithm can severely impact



Fig. 2. Accuracies obtained under 10 epochs, average of 10 runs, on Caltech
101 with 30 images per category for training. Our method and OMCLP need
3 epochs to stabilize, but our method reaches to state-of-the-art results with
a single epoch.

the performance [7]. So, to avoid such detrimental issue, we
randomly shuffle our training data into n slots (10 in our
trials) passing through all of them once, which constitutes
one epoch. We then repeat this procedure for 10 epochs.

Figure 2 shows how each method benefits from revisiting
the training set. We can see that both our method and
OMCLP reach stability with only 3 epochs, however our
technique presents an accuracy that is 21% better when com-
pared to the second best algorithm. After just one epoch, the
algorithm already outperforms the best results of previously
published works, using a single feature.

D. Caltech 101

Caltech 101 contains 9144 images divided into 102
classes, 101 object classes and one background class, with
large shape variation. The per-class number of images range
from 31 to 800. To make the comparison as fair as possible,
we follow the same steps of [16]. We run 10 times with
different randomly selected training and test images, and the
average of per-class recognition rates is recorded for each
run.

Table III shows the results and the comparison with
other methods recently proposed. These results confirm the
hypothesis of [8], that for datasets with a small number of
available training examples, for instance 30 images in 80, the
sparse representation is superior to soft-thresholded ones.

Our results, shown in Table III, were based on a dictionary
of 1024 basis. Nevertheless, during the experiments we have
tested different dictionary sizes, such as 1024, 2048 and
4096. Our highest scores were obtained with a dictionary of
size 4096. As it can be readily seen from Table III, the results
represent a significant improvement for recognition rates,
once our work, using a single feature approach, attained 80%
of accuracy on the Caltech 101 dataset.

E. Caltech 256

Caltech 256 is an extension of the Caltech 101 dataset with
29780 images with 257 categories, including background.
This dataset presents additional challenges when compared
with Caltech 101, once intra-class variance and object loca-
tion are larger.

Tests were performed with 15, 30, 45 and 60 images for
training and the rest was used for testing. Each category
contains at least 80 images. Table IV lists our results and
those reported in the literature. It can be seen that as
far as accuracy is concerned, our method outperforms the
techniques to date.

TABLE IV
AVERAGE ACCURACY ON THE CALTECH 256 DATASET. OUR METHOD

CLEARLY PRESENTS SUPERIOR ACCURACY RESULTS WHEN COMPARED

WITH SEVERAL OTHER HIGH PERFORMANCE METHODS, SPECIALLY

WHEN COMPARED WITH A METHOD WHICH APPLIES SPATIAL

CONSTRAINT TO THE CODING PHASE (LSCSPM).

N. training 15 30 45 60
KSPM [37] 56.40 64.40 ± 0.80 - -
ScSPM [35] 27.37 ± 0.51 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91

LScSPM [11] 30.00 ± 0.14 35.74 ± 0.10 38.54 ± 0.36 40.43 ± 0.38
Ours 30.59 ± 0.35 37.08 ± 0.36 40.68 ± 0.16 43.48 ± 0.38

F. Corel Datasets

Corel 1000, 5000 and 10000 datasets were originally
created for Content-Based Image Retrieval. However, we
believe that they are of particular interest to our tests, since
they have a large number of images and they are based on
natural images including those from outdoor scenes. The
same procedure used with the Caltech 101 experiments was
applied to these tests. We chose to perform experiments using
50 images for training and 50 for testing.

Table V summarizes the results on Corel datasets, with
our approach compared against SMK, LCC, ScSPM and
LScSPM. We highlight the greater recognition rate of our
technique. Furthermore, this table demonstrates the superior-
ity of our approach on the Corel 5000 and 10000, even when
compared with a method which applies spatial constraints to
the coding phase as [32]. One can observe that our method
attains results comparable to state-of-the-art on the Corel
1000 dataset.

TABLE V
RESULTS IN COREL DATASETS.

Methods Corel 1000 Corel 5000 Corel 10000
SMK [19] 77.90 - -
LCC [32] - 76.48 ± 0.77 67.72 ± 0.51

ScSPM [35] 86.20 ± 1.01 77.18 ± 0.57 68.39 ± 0.30
LScSPM [11] 88.40 ± 0.78 - -

Ours 88.40 ± 0.79 78.19 ± 0.63 69.33 ± 0.44

G. MIT 67 Indoor

We also compare our method with the challenging scene
dataset MIT 67. This dataset constitutes the largest publicly



TABLE III
RECOGNITION RESULTS ON CALTECH 101. THE RESULTS CAN BE DIRECTLY COMPARED WITH THE LITERATURE, SINCE ALL THE WORKS USE THE

SAME METHODOLOGY TO PERFORM THE EXPERIMENTS. OUR METHOD (IN BOLDFACE) HAS SUPERIOR RECOGNITION RATES WHEN COMPARED WITH

ALL THE SINGLE FEATURE APPROACHES FOUND IN THE LITERATURE. FURTHERMORE, WE REPORT RESULTS WITH A DICTIONARY OF 4096 BASIS,
SHOWN AT OURS4096 LINE. FOR ALL THE CASES, OUR WORK LARGELY OUTPERFORMS THE BEST AMONG THE CURRENT SINGLE FEATURE PUBLISHED

TECHNIQUES.

Number of training samples 5 10 15 20 25 30
Malik [37] 46.6 55.8 59.1 62.0 - 66.2
KSPM [16] - - 56.40 - - 64.40 ± 0.80
NBNN [3] - - 65.00 ±1.14 - - 70.40

ML+CORR [12] - - 61.00 - - 64.14 ± 1.18
Boureau [6] - - - - - 75.7 ± 1.1
Coates [8] - - - - - 72.6 ± 0.9
SRC [33] 48.8 60.1 64.9 67.7 69.2 70.7

K-SVD [1] 49.8 59.8 65.2 68.7 71.0 73.2
D-KSVD [38] 49.6 59.5 65.1 68.6 71.1 73.0
ScSPM [35] - - 67.00 - - 73.20

LCC [32] 51.15 59.77 65.43 67.74 70.16 73.44
LC-KSVD [14] 49.6 63.1 67.7 70.5 72.3 73.6

Ours 55.64 ± 1.03 65.52 ± 0.74 69.98 ± 0.86 73.99 ± 2.1 75.49 ± 0.62 77.59 ± 0.46
Ours4096 59.19 ± 1.14 68.65 ± 0.65 73.09 ± 0.77 76.18 ± 0.58 78.22 ± 0.43 80.02 ± 0.36

Fig. 3. Average classification rates for MIT 67 indoor scene dataset, with
the exception of our result and [23], all other methods present the accuracy
of a single run. Our method reaches high performance results, although
inferior to GG, which shows an accuracy rate of 45.5% with a standard
deviation of 1.1, against our method which presents accuracy of 44.35%
with a standard deviation of 0.90.

available benchmark base for scene recognition, with 67
classes and 15620 images. It presents large in-class variabil-
ity and few distinctive attributes when compared to Scene-
15 [16]. The accuracy metric is the same used in other
experiments. We follow the same experimental setup of [25],
which uses 80 images per class for training and 20 images
per class for testing.

Figure 3 compares our results with other works reported
in literature, such as GIST [25], MM-scene [39], CENTRIST
[34], Object Bank [13] and GG [23]. Differently from the
works used for comparison, we do not apply any annotation
to the images in order to show the superior results obtained
by our method. One can see that our method, using a single
feature for recognition, is superior to algorithms specifically
tailored for this purpose: 44.35% against 36.9% obtained by
[34]. However, its overall performance does not match the
highest reported result in literature (45.5 – [23]).

Fig. 4. Performance of different sizes of dictionaries (Caltech 101). It can
be seen that there is an improvement with the increase in the size of the
dictionary, but this increase topples down for 4096 basis and larger.

H. Dictionary Size

An investigation on the effects of dictionary sizes, as
far as accuracy is concerned, was also performed. On one
hand, a small dictionary could not provide the required
discriminative power; on the other hand, large dictionaries
create antagonistic histograms for images of the same class,
which will not match. Three sizes were tested, 1024, 2048
and 4096. As it can be seen in Figure 4, our method presents
a performance enhancement with larger dictionary sizes, but
this performance boost starts to decrease for dictionary sizes
of 4096 basis and up. The accuracy gain from 1024 to 2048
is 2.11%, but from 2048 to 4096 is just 0.74%. These results
indicates that a policy of building even bigger dictionaries
has a limit, in terms of accuracy and memory efficiency.



V. CONCLUSION

This paper presented a novel methodology for object
recognition, called SSC, which uses sparse coding dictionary
learning combined with a spatial Euclidean coding phase.
Furthermore, one encouraging result is that our image rep-
resentation works with online learning algorithms, which
present some desirable properties, such as low memory
usage, meaning that large amounts of data can be quickly
processed and be suitable for data streaming.

Experimental results show that, to the best of our knowl-
edge, the results obtained on the Caltech 101, Caltech 256,
Corel 5000, and Corel 10000 datasets, demonstrate that our
approach achieves accuracy beyond the best results for single
feature previously published on the same databases. We also
show high performance results on the MIT 67 indoor scene
recognition dataset.

Future works will include exploring sparse supervised
dictionary learning methods, which could lead to better
accuracy. Other types of constraints and/or additional reg-
ularization will be investigated and other datasets will be
experimented.
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