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Abstract: Band-limited signal extrapolation and spectral super-resolutions are closely related.
They both can be achieved using Slepian series. This method is often believed to be dependent
on computing definite integrals. Instead of using numerical integration, a simple and reliable
method, which can be implemented in MATLAB, is presented. This way, it is much easier to
investigated the extent to which a signal can be extrapolated from its samples taken in a finite
interval. The proposed method is tested with data from a real microphone array.
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1. INTRODUCTION

Sampled band-limited signals play an important role in
most parts of everyday modern life. Measured signal is
always finite in time and sampled at discrete time instants.
Thus if one is interested in computing its spectrum, an
additional assumption about the missing data has to be
made. Fourier series is computed assuming that the signal
is periodic on the whole real line of time; Fourier transform
(sometimes referred to as Fourier integral) is computed
assuming that the signal is identically zero outside the
observation interval.

In general both these assumptions lead to presence of
spurious harmonics in the obtained spectrum due to dis-
continuities at both ends of the observation interval. The
problem can be mitigated by suppressing these discon-
tinuities using a window function; however, by applying
window functions of different shapes to the same signal,
one is able to achieve almost arbitrary spectrum. There
is no consensus which window is the ‘best’, unless some
additional properties of the signal are a priori known.
Furthermore by suppressing the signal amplitude at both
ends of the observation interval, the interval is further
shortened. This leads to lower spectral resolution due to
the uncertainty principle.

If there was a mathematical tool capable of bypassing
aforementioned problems, it would be greatly appreciated.
Such a tool exists—it is called the Prolate spheroidal
wave functions (PSWFs). They are also referred to as
‘Slepian functions’. Solid theoretical foundations were laid
by mathematicians Slepian, Pollak, and Landau in the
1960s, see Slepian (1961). Sadly, for many decades this
tool has not attracted as much attention as it deserves.
Even though the extrapolation method was simple, the
main obstacle was the computational burden of PSWFs.

In the 1980s the attention shifted towards iterative meth-
ods based on Gerchberg-Papoulis algorithm, see Papoulis
(1978). Nowadays, there is no longer problem with com-
puting PSWFs; the freely available software for comput-
ing their values with arbitrary precision was created by
Adelman (2014) and the software for computing their
discrete version, the Discrete prolate spheroidal sequences
(DPSS’s), is now a standard feature of MATLAB. New
papers concerning signal extrapolation using Slepian func-
tions, such as Gosse (2010) or Devasia (2013), begin to
appear. However, these papers treat only idealized signal
processing, expecting that no noise is present in the data.

The aim of this article is to investigate feasibility of ex-
trapolation if the noise is present. It is organised as follows.
Section 2 gives an overview of the mathematical framework
needed for band-limited extrapolation. Section 3 deals
with the regularization of Slepian series, since it is vital
for dealing with the effects of noise. Instead of abrupt
truncation, Tikhonov regularization is presented. Section 4
shows extrapolation of a simulated signal. Finally, in sec-
tion 5, the proposed method is tested by extrapolating
a two-dimensional signal of acoustic pressure, which was
measured by a real microphone array.

2. THE PRINCIPLE OF BAND-LIMITED
EXTRAPOLATION

2.1 Preliminaries

In many scientific fields, it is desired to obtain the Fourier
transform

)= 7wy = [ weae )

of a signal f(t). However, in a real-world application, the
signal is observed only at a finite interval of length T'. Thus
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the measured signal is of the form
F ), for |t] <1T/2,
9(t) = {undeﬁned, for |t|>T/2;
the rest of the signal remains unknown.

In order to compute the Fourier transform (1), the mea-
sured signal g(¢) has to be defined for all real ¢. The most
common approach is to assume

g(t)=0 forall [¢t|>T/2 (3)
or to periodically extend g(t) for all |¢| > T/2. However a
much more interesting option is to assume that

Flw)=0 foral |w|>Q. (4)
Signals associated with spectrum of the form (4) are
called band-limited (with band-limit ). This assump-
tion is not uncommon, for instance, it is essential for
Nyquist—-Shannon sampling theorem and, according to
Slepian (1976), there are many signals which can be (to
a certain degree of precision) considered band-limited.

For the sake of simplicity, from here to the end of section 4,
it is considered that the observation interval is (—1,1).
This can be done without loss of generality, because
(by the proper change of time-scale and time-shift) the
observation interval can be normalized to (—1,1).

2.2 Slepian functions

PSWFs or ‘Slepian functions’, denoted v, (¢, t), are special
functions defined by the integral equation

1 .
sinc(t — s)
5 ¥nlG ds = )\n n(Cy T 5
[ S e D= a@uen
for all real ¢ and non-negative integers n. The eigenvalues
An(c) are real and they satisfy the inequality

1> Xo(ce) > A1(e) > Ae(e) > -+ > 0. (6)
Both the functions v, (c,t) and the eigenvalues A, (c) are
continuous functions of a parameter c¢. The convolution
in (5) represents a time-limiting operation followed by a
band-limiting operation. Therefore the c is the band-limit
of Slepian functions.

When the order n is smaller than 2¢/w, the eigenvalues
are close to 1, Slepian functions look similar to Hermite
functions, and their energy outside the interval (—1,1) is
negligible (Fig. 2, top). However, the eigenvalues fall off
to zero rapidly with increasing n once n has exceeded the
critical value 2¢/w. This behaviour is illustrated by the
Fig. 1.
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Fig. 1. The eigenvalues of integral equation (5).

If n > 2¢/m, the amplitude of Slepian functions for [t| > 1
is significant. The amplitude further grows with increasing
order.
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Fig. 2. Slepian functions for ¢ = 10 and T' = 2: Comparison
of Slepian functions [solid] with corresponding Her-
mite functions [dashed] (top). Three Slepian functions
of orders n > 2¢/m (bottom).

Slepian functions possess a unique and rather surprising
property—they are orthogonal over a finite as well as
infinite interval.

[ nle i)t = b, ™
= Spn
/_wwn(c, t)hm (e, t) dt = (o) (8)

The symbol é,,, stands for the Kronecker delta. Slepian
functions are eigenfunctions of Fourier transform

_n 2w w
F{tn(e,t)} =3 \/mjwn(c,c), lw| <e, )

07 |CU| > C.

These and many other properties make them ideal for
processing of band-limited signals.

2.8 The principle of band-limited extrapolation

Let B denote the class of all square-integrable band-limited
functions. Slepian functions form a complete orthogonal
basis with respect to the class B, i.e. any function f(¢) € B
can be expressed in the form of Slepian series

FO) = antnl(c,t), (10)
n=0
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where a,, are the Slepian coefficients. The coefficients can
be obtained using the orthogonality (7) or (8).

an = )\n(c)/_oof(t)z/}n(qt) dt = /_lf(t)wn(c,t) dt (1)

Using the right-hand side of this equation, one is able to
compute Slepian coefficients a,, using only the knowledge
of the measured part of the signal (2). Then, by plugging
these coefficients into (10), which is defined for all real ¢,
the signal is extrapolated.

For a simple sine wave sinwgt, observed at [t| < 1, the
coefficients computed using the right-hand side of (11) are

a, = sin (nz> M Un (c7 @) .
2 c c
It is noteworthy that, for the purpose of extrapolation, the
coefficients are valid only if wy < ¢. If the condition is not
met, the error ||f(¢) — fn(t)||; still converges to zero; how-
ever, no convergence is guaranteed for || f(t) — fn(t)| .-

(12)

If one is more interested in super-resolution, rather than
extrapolation, the Slepian series can be constructed in
the frequency domain (instead of the time domain). The
obtained spectrum is given by the series

Flw) = anF (e, )},

where the Fourier transform of Slepian function is given
by (9). This way there is no need to compute the standard
Fourier transform or to apply a window function.

(13)

2.4 Numerical computation of Slepian coefficients

When the signal is measured, only a finite number of
samples is known. Let

-
g=1[9(t1) g(t2) ... g(tx)] (14)
denote the collection of known samples acquired at time

instants {tk}szl C (=T/2,T/2).

Clearly, (11) is not suitable for any practical data process-
ing. It is impossible to compute the integral exactly; it has
to be approximated by means of numerical integration—
for instance using Newton-Cotes or Gaussian quadrature
rules. The former is essentially the case of Devasia (2013).
He proposes polynomial interpolation and integration of
order 250. Obviously, such high-order interpolation reeks
havoc due to instability if noise is present.

In case of noisy signal, these polynomial methods would
require optimization of their order, which leads to unnec-
essary complication of Slepian’s idea. In fact the solution
to the problem does not lie in the proper choice of the
approximating method, it lies in the choice of proper
orthogonal basis—the Slepian sequences.

2.5 Slepian sequences

Discrete prolate spheroidal sequences (DPSS’s) or simply

‘Slepian sequences’ are discrete versions of Slepian func-

tions, see Slepian (1978). They are defined by the equation
K

=1

(15)

Both the sequences and the eigenvalues are functions
of index-limit K and band-limit 27W < 7. They are
orthogonal with respect to summation over a finite as well

as infinite interval
K

Z?ﬂn(K, W, k)wm(K’ w, k) = Omn, (16)
k=1
3 B

k;m¢n (K, W, k) (K, W, k) = ()’ (17)

This makes them ideal for processing of uniformly sampled
signals. Slepian sequences can be easily computed—the
software for generating Slepian sequences is implemented
in MATLAB known as the dpss. The sequences are gen-
erated only for 1 < k < K. The samples outside the ob-
servation interval can be computed using the convolution
(15). Even if the signal is sampled non-uniformly, it can
be still processed using Slepian functions. Then the only
disadvantage is that the orthogonality cannot be used; the
least-squares approximation has to be used in order to
obtain Slepian coefficients.

3. SERIES TRUNCATION AND REGULARIZATION

The Slepian coefficients obtained from a noisy signal
Qn = Qn + €5 (18)
can be regarded as a superposition of the deterministic

part a,, and the noisy part €,. In a real-world application,
the series (10) has to be truncated. Let

N
fN() = antn(c,t) (19)
n=0
denote the Nth order approximation of signal f(¢). As
often mentioned, with increasing n the method becomes
unstable. In order to avoid the blow-up problem, Slepian
series has to be truncated at certain order N. The optimal
order is dependent on the parameter ¢ and the Signal-to-
noise ratio (SNR). Finding it by hand is not an easy task;
it is admissible only in the absence of noise.

3.1 Tikhonov regularization

By applying Tikhonov regularization, the abrupt trunca-
tion is avoided. The regularized solution is given by
N .

an )2 (c)
=Y 22 (e, t),
where « denotes the regularization parameter. Some of the
coefficients a,,, which would normally be discarded, now
partially contribute to the extrapolation process. The pa-
rameter o may be determined using Morozov discrepancy
principle—Dby solving the discrepancy equation

| XK
?Z'fK,a(k) —g(k)|2 =o” (21)
k=1

It requires knowledge of the noise variance o. Fortunately,
the variance can be computed quite easily.

(20)

3.2 Estimation of the variance of the signal noise

Here proposed method was already used by Williams
(2000) in the field of acoustic holography for regularization
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of signal reconstruction using singular value decomposi-
tion.

Slepian coefficients usually decay very rapidly once n has
exceeded the critical value 2¢/w. For example, for a sine
wave, they decay with /A, (c), see (12). Thanks to the
rapid decay, the expected value of Slepian coefficient is
very close to the variance of noise, when its order n is
large.

EX(|an|) o for n> 2c/7. (22)
Using the coefficients of orders from M to N, the noise

variance can be estimated by
2

~ o2 (23)

N

1 K
N AT 2 |2 R (K W)

n=M k=1
providing that M, N > 2¢/m.

4. NUMERICAL EXPERIMENT

The example was chosen in accordance with Gosse (2010)
and Devasia (2013) so the reader may easily notice the
effect of noise. The signal
f(t) = sin(nt) Cos(37rt)e_2t2+3t + 0.5[sin(57t) — cos(7mt)]
(24)
is observed for || < 1 s and sampled with period
T, = 1072 s. The samples contain white Gaussian noise
with variance o = 1073,
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Fig. 3. Extrapolation for ¢ = 20m: Original signal [blue]
and extrapolated [red] in time domain (top) and
comparison of the Fourier spectra (bottom).

Slepian sequences are the most suitable tool for extrapo-
lation, when the signal is sampled uniformly. Slepian coef-
ficients are shown in Fig. 4. Notice that the coefficients do
not decay for n > 48. As expected, they fluctuate around
20log(o). These coeflicients were used for estimation of

the noise variance. Fig. 3 shows the extrapolation obtained
using Tikhonov regularization in both time and frequency
domain. The effects of noise are devastating: negligible
part of signal was extrapolated; slight improvement of
spectral resolution occurred at the frequency of 77 rad/s.
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Fig. 4. Slepian coefficients: The coefficients play different
roles in the process of signal extrapolation depending
on their order.

4.1 Importance of the correct choice of the band-limit

In order to illuminate how crucial the choice of the ¢ is, the
experiment was repeated with ¢ = 7.57. Now, the spectral
resolution is significantly increased in comparison to the
standard Fourier transform—a ‘true’ super-resolution is
achieved (Fig. 5, bottom).
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Fig. 5. Extrapolation for ¢ = 7.5m: Original signal [blue]
and extrapolated [red] in time domain (top) and
comparison of the Fourier spectra (bottom).
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When ¢ — 7/Ts, no extrapolation is possible and the
results of Slepian method are similar to those of Fourier
transform. The only way to improve extrapolation (and
spectral resolution) is by lowering the ¢ as close to the
signal’s band-limit {2 as possible. In real data-processing
the ¢ has to be set according to the knowledge of a physical
phenomena which causes that the measured signal is band-
limited.

5. EXAMPLE OF APPLICATION

In the field of acoustic holography, see Williams (2000),
a microphone array is used to measure the amplitude of
sound pressure p(x,y) (a complex functions of spatial co-
ordinates x and y). Further data processing often requires
spatial Fourier transform of p(zx,y); however, there are
two factors limiting the transform: a) limited dimensions
of the microphone array b) limited number of samples—
given by the number of microphones. By using Slepian
method instead of Fourier transform, data processing may
be improved.

5.1 Extension to two dimensions

In order to apply the proposed method to a two-
dimensional signal, a generalization has to be made. Com-
bining the ideas of Slepian (1964, 1978), it is possible to
seek discrete two-dimensional orthogonal sequences max-
imally concentrated in a rectangle consisting of K x K
samples and band-limited in a circle of radius W. These
sequences are solutions to the equation

K K W J; {27rW\/(k —p)2+ (- q)Q]
ZZ ¢n(K7VVap7Q) \/(k—p)2+(l—Q)2 o

p=1g=1

- An(I(a W)d)n(Kv VV, kv l)7

(25)
where Ji(x) denotes Bessel function of order 1. Both the
eigenfunctions and the eigenvalues are functions of index-
limit K and band-limit 27rW < 7. These sequences can be
regarded as a generalization of Slepian sequences to two
dimensions.

5.2 Data from a microphone array

A harmonic sound source vibrating at the frequency
wo = 40007 rad/s was placed 35 cm above a microphone
array. The sound source is a simple speaker and the array
is a matrix of 8 X 8 microphones with spacing of 50 mm
between the microphones. The sound pressure p(z,y,t)
was sampled at 51.2 kHz. The complex amplitude of sound
pressure p was obtained using FFT algorithm (Fig. 6, left).
The matrix p contains 64 samples of the p(z,y). In order
to test Slepian method, only 6 x 6 samples (coloured) will
be used for extrapolation; the remaining 26 samples (dark
blue) are reserved for the verification of results.

In order to compute the spatial Fourier transform of
p(z,y), an assumption about its band-limit has to be
made. The ¢ can be determined according to the physical
phenomena of far-field holography. In the distance of 35 cm
from the sound source, virtually all evanescent waves (the
waves with spatial frequency exceeding wg/v, where v
denotes the speed of sound) should be reliably eliminated

by exponential decay of their amplitude with distance.
Therefore the signal can be considered band-limited with
band-limit wy/v. In our experiment, the band-limit should
be approximately 37 rad/m.
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Fig. 6. Sound pressure: Measured spatial signal (left) is
divided into 6 x 6 samples used for extrapolation
[coloured] and 26 samples used for validation [dark
blue]. Extrapolated signal (right). From top to bot-
tom: real part, imaginary part, and absolute values.
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Fig. 7. Spatial Fourier transform: Plot of Fourier spectrum
obtained by FFT (left, peak value 0.64 Pa) and by
Slepian method (right, peak value 0.77 Pa).

The signal was extrapolated using Tikhonov regularization
as in previous sections. Out of all 36 coefficients @, the
last ten were used for estimation of the noise variance and
the value ¢ ~ 0.02 Pa was obtained. For band-limited
extrapolation, this value is relatively high. Nevertheless,
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there is no doubt that the signal was partially extrapolated
(Fig. 6, right).

A slight super-resolution was achieved. The spectrum
obtained from Slepian series (Fig. 7, right) is a bit sharper
with higher peak value than the spectrum computed by
FFT (Fig. 7, left). Had there been higher precision in data
acquisition, better results could be achieved.

The experiment was repeated using a more restrictive
band-limiting setting. The ¢ was reduced by 25% and the
results are shown in Fig. 8. There is no physical reason for
such reduction of ¢; however, the quality of extrapolation
has improved and the signal is visibly extended. The
spectrum has peaked at 0.92 Pa.
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Fig. 8. Second extrapolation: Extrapolated sound pressure
and its spatial Fourier transform obtained using band-
limit of 27.75 rad/m.

If the limited data was treated by windowing, large part
of the useful information would be lost and the k-space
(spatial frequency domain) would show unsatisfactory
resolution.

6. CONCLUSION

This paper shows how to implement a robust algorithm
capable of practical band-limited signal extrapolation and
spectral super-resolution. Thanks to the use of Slepian
sequences (instead of Slepian functions), the unwieldy
approximation chain involving numerical integration is
successfully eliminated. The proposed method is relatively
simple, can be implemented in MATLAB and, as it was
demonstrated, it is suitable for processing of measured
signals.

It was shown that the noise is an important limiting factor
and it is noteworthy that the parameter ¢ plays a much
more important role than previously anticipated. In order
to improve the performance of Slepian method, ¢ should
be chosen as close to the signal’s band-limit as possible.

Extrapolation and super-resolution are often treated sep-
arately. Here, they were presented together, so that the
reader can see their close relation. Compared to window-
ing, Slepian method extends signals instead of shortening
them. It is an interesting alternative to the classical ap-
proach of windowing and FFT.
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