
 Simpson, E. (2015). Language Understanding in the Wild: Combining
Crowdsourcing and Machine Learning. In WWW '15: Proceedings of
the 24th International Conference on World Wide Web (pp. 992-1002).
Association for Computing Machinery (ACM).
https://doi.org/10.1145/2736277.2741689

Peer reviewed version

Link to published version (if available):
10.1145/2736277.2741689

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/

https://doi.org/10.1145/2736277.2741689
https://doi.org/10.1145/2736277.2741689
https://research-information.bris.ac.uk/en/publications/e6ed7b10-f0c0-4b9b-8588-81aee1329146
https://research-information.bris.ac.uk/en/publications/e6ed7b10-f0c0-4b9b-8588-81aee1329146

Language Understanding in the Wild: Combining
Crowdsourcing and Machine Learning

Edwin Simpson
University of Oxford, UK

edwin@robots.ox.ac.uk

Matteo Venanzi
University of Southampton, UK
mv1g10@ecs.soton.ac.uk

Steven Reece
University of Oxford, UK

reece@robots.ox.ac.uk
Pushmeet Kohli
Microsoft Research,

Cambridge, UK
pkohli@microsoft.com

John Guiver
Microsoft Research,

Cambridge, UK
joguiver@microsoft.com

Stephen J. Roberts
University of Oxford, UK

sjrob@robots.ox.ac.uk

Nicholas R. Jennings
University of Southampton, UK

nrj@ecs.soton.ac.uk

ABSTRACT
Social media has led to the democratisation of opinion shar-
ing. A wealth of information about public opinions, cur-
rent events, and authors’ insights into specific topics can
be gained by understanding the text written by users. How-
ever, there is a wide variation in the language used by differ-
ent authors in different contexts on the web. This diversity
in language makes interpretation an extremely challenging
task. Crowdsourcing presents an opportunity to interpret
the sentiment, or topic, of free-text. However, the subjec-
tivity and bias of human interpreters raise challenges in in-
ferring the semantics expressed by the text. To overcome
this problem, we present a novel Bayesian approach to lan-
guage understanding that relies on aggregated crowdsourced
judgements. Our model encodes the relationships between
labels and text features in documents, such as tweets, web
articles, and blog posts, accounting for the varying reliability
of human labellers. It allows inference of annotations that
scales to arbitrarily large pools of documents. Our evalu-
ation using two challenging crowdsourcing datasets shows
that by efficiently exploiting language models learnt from
aggregated crowdsourced labels, we can provide up to 25%
improved classifications when only a small portion, less than
4% of documents has been labelled. Compared to the six
state-of-the-art methods, we reduce by up to 67% the num-
ber of crowd responses required to achieve comparable accu-
racy. Our method was a joint winner of the CrowdFlower -
CrowdScale 2013 Shared Task challenge at the conference on
Human Computation and Crowdsourcing (HCOMP 2013).

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741689.

General Terms
Crowdsourcing, machine learning, variational Bayes, classi-
fier combination, text classification, sentiment analysis, hu-
man computation

1. INTRODUCTION
Social media provides an increasingly rich source of infor-

mation about public opinion and current events, which can
be valuable to professionals across a wide range of indus-
tries. For example, Twitter1 can reflect the public’s senti-
ment about the weather, such as in the data collected during
the CrowdScale 2013 Shared Task challenge2, opinion of ma-
jor health emergencies such as the H1N1 flu pandemic [6],
or knowledge of disaster events such as Typhoon Haiyan [5].
Mining this large body of unstructured data requires an un-
derstanding of the language used in each specific context.
For example, the sentiment of a document, which reflects
the author’s attitudes or opinion of a subject, is captured in
the language they use. However, that relationship between
sentiment and language typically depends on factors such as
the viewpoint and the gender of the authors and the con-
text of their writing. For example, distinctive terms such as
“love” and “dude” are more frequently used by female and
male Twitter users, respectively, to refer to the same con-
cept of a friend or a family member [15]. Similarly, reports
posted by members of the public to Ushahidi after the 2010
Haiti earthquake used a type of language that is significantly
different to that seen in other locations and other types of
emergency [22]. This diversity in social media text inhibits
the performance of any generic method for automated doc-
ument classification “in the wild”. However, this problem
can be alleviated by human interpreters who can use their
background knowledge and natural language understanding
skills to recognise the sentiment of documents and adapt to
the diverse language used in different contexts.

Interpreting sentiment or relevance of a piece of text is
highly subjective and, along with variations in annotators’
skill levels, it can result in disagreement. To overcome this

1www.twitter.com
2www.crowdscale.org

problem, existing methods for crowdsourced document clas-
sification require labels from multiple annotators for every
document in the corpus [28, 26], which can be prohibitively
costly or time consuming [22]. Fortunately, the occurrence
of certain terms in each document also provides weak indica-
tions of the sentiment of a document, which can be used to
reduce the cost of employing human interpreters to annotate
the entire corpus. Therefore, we propose a hybrid approach
to large scale document classification that integrates human
intelligence with automated analysis of text.

In this paper we present Bayesian Classifier Combination
with Words (BCCWords), a framework for combining anno-
tations from a crowd of workers with text features to classify
a corpus of documents. This approach is an example of an
emerging research area known as human-agent collectives
[12]. We introduce a scalable Bayesian inference mechanism
for BCCWords, which learns posterior distributions over the
workers’ reliability and document classifications, given the
documents’ text features and a set of crowdsourced annota-
tions. Our method not only allows us to handle the varying
error rates and bias of individual members of the crowd, but
also allows us to annotate an entire set of documents when
only a subset have been labelled by the crowd, by leveraging
the inferred language model to automatically annotate the
remaining documents.

In more detail, we make the following contributions to the
state-of-the-art:

1. We present a novel generic model, BCCWords, that
combines human and computer interpretations of free
text documents and infers their sentiment.

2. We present a novel scalable variational Bayes inference
algorithm, BCCWords–VB, for training the BCCWords
model. This algorithm was first demonstrated at the
CrowdScale 2013 Shared Task Challenge and was a
joint winner.

3. We derive an efficient inference decomposition method
that allows our algorithm to perform batch inference
over hundreds of thousands of documents and demon-
strate inference with 569, 786 crowdsourced sentiment
judgements for 98, 979 documents in approximately 20
minutes on a standard laptop.

4. We present an exhaustive evaluation of our algorithm
on two real datasets of text annotations and compare
it against six state-of-the-art methods for crowd-based
text classification and data aggregation. Specifically,
our evaluation shows that our algorithm is up to 25%
more accurate when only a small portion, less than
4% of the documents, have been labelled and that our
algorithm reduces by up to 67% the amount of crowd
labels required to achieve comparable accuracy with
standard methods.

The paper is structured as follows. We review the liter-
ature on language modelling and aggregation models for
crowdsourced judgements in Section 2. Section 3 presents
our model in detail, then Section 4 provides mathematical
details for our variational inference algorithm. Section 5
demonstrates the efficacy of our approach by comparing
it against state-of-the-art benchmarks on two real world
crowdsourcing datasets. Finally, we conclude and discuss
future work in Section 6.

2. AGGREGATING JUDGEMENTS
Many applications in the literature have employed crowd-

sourcing, whereby multiple people process each document
or data point [13, 1, 33]. A key challenge in such crowd-
sourcing applications is to mitigate the bias of subjective
labellers. Previous work has addressed this problem by com-
bining crowd responses to obtain reliable aggregate classifi-
cations. However, as yet, these methods have not exploited
the language used in the text to further assist in interpreting
the text. We propose to use the variations in language asso-
ciated with sentiment to reduce errors and bias arise when
employing members of the public to perform labelling tasks.

A further challenge with real world applications of doc-
ument crowdsourcing is the cost of employing a sufficient
number of annotators to rapidly label a large dataset. For
example, the Ushahidi dataset comprises at least 40, 000 text
messages which had to be interpreted in the first month af-
ter the earthquake in Haiti, which proved to be infeasible
[22]. However, a suitable language model would enable au-
tomated analysis at much greater scale and allows the anno-
tators to focus their efforts on the most difficult documents.
We therefore propose a learning method for harnessing the
skills of human labellers to learn a bespoke language model
from much larger sets of documents.

A number of methods have been used in the literature
to address the challenge of aggregating annotations from
the crowd, including the simple technique of majority vot-
ing [18]. However, simple majority voting treats all annota-
tors as equally reliable and does not provide any meaningful
measure of confidence in the combined decision to account
for conflicts in judgement or low annotator skill levels. To
overcome this problem, probabilistic methods have been de-
veloped which learn the skill levels or bias of each annotator
and aggregate their decisions accordingly [26, 7, 32, 25, 31].
These methods are prone to error when only small amounts
of gold labels are available as they do not consider uncer-
tainty in skill levels and other model parameters. For ex-
ample, when only one label is obtained from a worker, these
methods may infer that the worker is either perfectly reli-
able or totally incompetent when, in reality, the worker is
neither. This is a common problem with approaches to infer-
ence that use maximum likelihood or maximum a-posteriori
solutions [4]. In order to overcome this limitation, algo-
rithms for aggregating crowdsourced data including SFilter
[8] and Bayesian Classifier Combination (BCC) [14, 30] cap-
ture the uncertainty in the workers’ skill levels or bias, as
well as the uncertainty in the aggregated labels. Unfortu-
nately, these methods do not exploit the text features of
documents, and consequently require each document to be
labelled by the crowd, often multiple times, to obtain confi-
dent classifications.

Previous work has introduced methods for automatic text
classification based solely on word content, such as the bag-
of-words classifier [11]. Although such methods have been
applied to automated sentiment analysis, they need a lan-
guage model for each application context [21]. This often re-
quires large amounts of training data and substantial effort
by the system designer to cope with the diversity in language
[17]. In contrast our approach uses a crowd of human an-
notators to learn a language model rapidly and cheaply. In
the following sections we develop the BCCWords model and
then demonstrate its efficacy with benchmark methods.

3. THE BCCWORDS MODEL
In this section we describe our novel BCCWords model.

This model is an extension of the independent Bayesian clas-
sifier combination (IBCC) model presented in [28] which
classified data points using only crowdsourced labels. BC-
CWords models the crowd as multiple heterogeneous clas-
sifiers, and uses both the crowd’s responses and the word
structure of documents to classify them. An advantage of
BCCWords is that it can be inferred in a semi-supervised or
unsupervised manner. It does not require separate training
and test phases but uses a single, combined learning phase
over all available data. The semi-supervised approach simul-
taneously learns from labelled training data and the latent
structure in the entire dataset, making it particularly suit-
able when gold-standard data is limited.

We start by introducing our notation. There is a crowd
of K annotators expressing their judgement about the cor-
rect classification of N documents over a range of C possible
classes. The classes may represent sentiment classes, topic
labels, or other types of annotation. Each document, i, has
an unknown true class ti ∈ C. The judgement of annotator k

for document i is denoted as label l
(k)
i , where l

(k)
i ∈ C. Also,

we assume that the nth word, wi,n, of document i takes a
value d from a dictionary of size D words. For notational
simplicity, we assume a dense set of judgements in which
each annotator rates all N documents. However, as will be-
come clear in section 4.1, our model naturally supports spar-
sity in the dataset, which is the case for the CrowdFlower
dataset used in Section 5.

N documents
Cat.

Dir.

Dir.

K workers

C true label values

Cat.

p β0

ti

α
(k)
0,c

π
(k)
c

l
(k)
i wd

Cat.
ωc,d

γ0,c

D words

Dir.

Figure 1: The factor graph of BCCWords. The
circular, shaded nodes represent observed variables
and the square, shaded nodes represent the hyper-
parameters. The plates describe (i) the set of K
annotators, (ii) the N documents, (iii) the C possi-
ble true label values and (iv) the D words contained
in the dictionary of terms used in the documents.

The factor graph of our Bayesian Combination Model,
BCCWords, is shown in Figure 1, and the model is de-
scribed as follows. We assume that each annotator draws
judgements for documents of class ti = c from a categorical

distribution with parameters π
(k)
c :

l
(k)
i |π

(k)
c , ti ∼ Cat(π(k)

c)

where π
(k)
c is the accuracy vector of annotator k for docu-

ments of class c. That is, each element of π
(k)
c specifies the

probability that annotator k will give a judgement c′ when
presented with a document whose true class is c:

π
(k)

c,c′ = p(l
(k)
i = c′|ti = c)

where p is the Dirichlet distribution. The set of accuracy

vectors π
(k)
c for all c is called the confusion matrix repre-

senting k’s reliability. In Figure 1, the annotator confusion
matrices are shown in the left-hand plate for all K anno-
tators, depicting how the response of an annotator depends
on the true class ti of the document they are judging. The
use of confusion matrices allows our model to combine an-
notators of very different skill levels, and is able to handle
those who make random guesses or whose responses are the
opposite of what we expect. Furthermore, a confusion ma-
trix accounts for the personal bias of an annotator, since
a tendency to select a more positive or negative judgment,
c′, than other members of the crowd, when presented with
documents of true class c, will result in an increased likeli-

hood, π
(k)

c,c′ . A personal bias toward selecting judgement c′

for all documents will result in high likelihoods π
(k)

c,c′ for all

true classes c, thus the model will lean that the label c′ from
annotator k is less strongly discriminative.

Our language model is defined as follows. Given a docu-
ment i of class c we assume that the probability that the nth
word is d (i.e. wi,n = d) follows a categorical distribution
with parameters ωc = {ωc,d∀d}:

wi,n|ωc,d, ti ∼ Cat(ωc),

where ωc,d = p(wi,n = d|ti = c) is the probability that a
randomly-drawn word from a document of class c is the word
d. This probabilistic representation of text in documents
corresponds to a mixture of bag-of-words model [11], where
each mixture component is a bag-of-words model associated
with one particular object class. The word distributions are
represented in Figure 1 in the right-hand plate, showing the
variables corresponding to the D words in the dictionary.

We assume that the true class label for each document,
ti, is drawn from a categorical distribution with parameters
ρ: ti|ρ ∼ Cat(ρ). The parameters ρ can be regarded as the
proportion of documents in each class, so that ρc = p(ti =
c|ρ). These parameters are shown at the top of Figure 1.

To model the uncertainty in the latent variables in our
model, we assign conjugate Dirichlet prior distributions to

π
(k)
c , ωc and ρ, for each class c ∈ C and annotator k ∈ K:

π(k)
c |α

(k)
0,c ∼ Dir(α

(k)
0,c)

ρ|β0 ∼ Dir(β0)

ωc|γ0,c ∼ Dir(γ0,c),

where α
(k)
0,c , ∀c is the per-annotator confusion matrix hyper-

parameter, and γ0,c is the hyperparameter for the bag-of-
words distribution for each class c. These hyperparameters
have intuitive interpretations as prior pseudo-counts, mean-
ing that their values are equivalent to a number of prior
observations, which represent the strength of prior beliefs.
When implementing BCCWords, the diagonal values of hy-
perparameters α0,c of the confusion matrices can be set to
higher values than the off-diagonals, encoding the prior be-
lief that annotators are expected to be better than random.
The hyperparameters for the word distributions, γ0,c, and

the class proportions, β0, can both be set so that the priors
are uniform. This reflects an initial lack of information in the
word structure of the documents and the class distribution
of the documents.

To enable us to perform Bayesian inference over our model,
we first specify the complete joint distribution:

p
(
l, t,π

(1)
1 ,..,π

(K)
C ,ω1,..,ωC ,ρ|α(1)

0,1,..,α
(K)
0,C ,β0,γ0,1,..,γ0,C

)
=

N∏
i=1

{
ρti

K∏
k=1

π
(k)

ti,l
(k)
i

.

Wi∏
n=1

ωti,wi,n

}
p(ρ|β0)

C∏
c=1

{
p(ωc|γ0,c)

K∏
k=1

p(π(k)
c |α

(k)
0,c)

}
(1)

where l is the set of labels from all annotators for all docu-
ments, and Wi is the number of words in document i. The
next section describes a method that uses this joint distribu-
tion to estimate the posterior distribution over the unknown
variables in our model.

4. EFFICIENT VARIATIONAL INFERENCE
The BCCWords model presented in the previous section

is tuned, or inferred, by learning the parameters of the pos-
terior distribution over its unknown variables, so that the
model fits the data. In this section we describe an efficient
method for inference using variational Bayes (VB) [4]. The
next subsection presents details of the VB algorithm for BC-
CWords. Then, Section 4.2 describes how this BCCWords-
VB algorithm can be extended to batch processing and sub-
sequently can scale to large datasets when computer memory
capacity is limited.

Variational Bayesian inference is an approximate method
for obtaining a strict lower bound of the true (log) joint
posterior. VB explicitly takes uncertainty into account at
all levels of inference, allowing us to marginalise (albeit un-
der the VB approximations) over unknown variables, rather
than selecting the single most likely value. The approxima-
tion offers huge speed ups over Monte Carlo sampling based
Bayesian methods [28], and the performance degradation ap-
pears small in BCC models. Hence, VB is our preferred algo-
rithm for working with potentially large sets of documents.
In our experiments we implement our VB algorithm using
Infer.NET [20], which is a framework that enables rapid de-
velopment and running of Bayesian inference in graphical
models. In particular, the Infer.NET inference engine en-
ables us to switch between alternative inference algorithms
for BCCWords, including Gibbs sampling [9] and Expec-
tation propagation [19], that are potentially more accurate
but much slower than VB and less suitable for performing
inference over large–scale datasets.

The variational Bayesian inference algorithm uses an ap-
proximation to the joint probability distribution, q(t,θ) =
q(t)q(θ), that factorises between the true classes of the doc-
uments, t = {ti∀i}, and the set of model parameters, θ =

{π(k)
c ∀c∀k,ωc∀c,ρ}. The algorithm iterates between up-

dating the approximate posterior distribution over the true
classes of the documents, q(t), and the model parameters
q(θ), until it converges. The theory behind variational in-
ference guarantees that each iteration reduces the Kullback-
Leibler divergence [16] between the approximate solution
and the true posterior at each iteration, so that the ap-

proximation becomes closer to the exact solution with each
iteration. The updates can be viewed as passing messages
between the true class labels t and model parameters θ.
As we will see in the detailed explanation below, the spe-
cific forms of the factors q(t) and q(θ) arise naturally from
the BCCWords model and its choice of distributions. The
conditional independence relations in our model allow us to
further factorise the distribution over the model parameters,
q(θ) without additional approximation:

q(θ) = q(ρ)
∏
c∈C

{
q(ωc)

∏
k∈K

q(π(k)
c)

}
This means we can update each subset of model parameters
separately, and each of these factors will exchange different
messages with q(t). This type of algorithm is also known
as variational message passing (VMP) and has an efficient
scalable implementation which is described in Section 4.2.

4.1 The BCCWords–VB Algorithm
We now present the implementation of the variational in-

ference approach to BCCWords described in the previous
section. Specifically, we describe the details of the iterative
updates within a step-by-step description of the inference
algorithm based on the VB equations that we derive for
BCCWords.

Inputs: the algorithm takes as input a data set of annota-
tors’ responses, l, and where available, a set of known target
labels which are gold-standard training labels. We note that
gold labels are not necessary and the algorithm can operate
in unsupervised mode. To run the algorithm, we must also

select values for α
(k)
0,c , ∀k, β0 and γ0,c, as described above.

A number of techniques can be used to initialise these hy-
perparameters when the choice of values is unclear [3].

Step 1. Initialisation: initialise approximate posterior
distributions over the model parameters, θ. The choice of
initial distributions affects the number of iterations required
for convergence. In our implementation we initialise the
posterior distributions over the model parameters by set-
ting them to their prior distributions.

Step 2. Update true class predictions: update the ap-
proximate posterior q(ti) over the class of each document,
i ∈ N . For any document i which has a gold label, the
value of ti is known so we do not need to update q(ti). In-
stead we set q(ti = c) = 1 where c is the observed value
of ti, and q(ti 6= c) = 0 for all other class values. For all
other documents, we obtain the current estimate q∗(ti) of
the probability that the true class of i is c:

q∗(ti = c) =
ri,c∑

c′∈C ri,c′
, (2)

where ri,c is the expectation of the likelihood, given by

ri,c = Eρ,πc,ωc [ln p(ti = c, ρc,πc, l,ωc)]

= Eρ[ln ρc] +

K∑
k=1

E
π

(k)
c

[lnπ
(k)

c,l
(k)
i

] +

Wi∑
n=1

Eωc [lnωc,wi,n]. (3)

The expectations in this equation are found using the cur-
rent estimates of the distributions over the model param-
eters, and are defined explicitly in the subsequent steps of

the algorithm. These terms can be seen as messages from
the model parameters to the true class labels, t.

Equation 2 can then be used to determine the messages
to pass to the model parameters θ, which are expectations
over the sufficient statistics of the set of true class labels for
all documents. The message for ρ contains expected counts
of each true class:

Nc =

N∑
i=1

q(ti = c).

The message for the confusion matrices contains the counts
of each judgement label c′ ∈ C given the true label c ∈ C:

N
(k)

c,c′ =

N∑
i=1

δ
l
(k)
i ,c′

q(ti = c) (4)

where δ
l
(k)
i ,c′

is the Kronecker delta and is unity if l
(k)
i = c′

and zero otherwise. Similarly, the message for the word
distributions contains counts of word occurrences in each
class:

Nc,d =

N∑
i=1

Wi∑
n=1

δwi,n,d q(ti = c). (5)

Step 3. Update confusion matrices: update the ap-

proximate posterior q(π
(k)
c) for each class c ∈ C and each

annotator k ∈ K. The prior distributions over the confusion
matrices are Dirichlet distributions, which are conjugate to
the categorical distributions. This means that the posterior
distributions over the confusion matrices are also Dirichlets,
with updated parameters:

q∗
(
π(k)

c

)
= Dir

(
π(k)

c |α
(k)
c,1 , ..., α

(k)
c,L

)
, (6)

where L is the cardinality of C and α
(k)
c is calculated by

adding counts from the true class label message to the prior

pseudo-counts α
(k)
0,c :

α
(k)

c,c′ = α
(k)

0,c,c′ +N
(k)

c,c′ . (7)

A more detailed derivation of these iterative update equa-
tions can be found in [28]. We can now calculate the message
to send back to the true labels, which is the expectation term
required for Equation (3):

E
[
lnπ

(k)

c,c′

]
= Ψ

(
α
(k)

c,c′

)
−Ψ

(
L∑

b=1

α
(k)
c,b

)
, (8)

where Ψ(.) is the standard digamma function.

Step 4. Update word distributions: update the approx-
imate posterior q(ωc) for each row c ∈ C to current estimate
q∗(ωc). Again, we have a posterior Dirichlet distribution
due to the use of conjugate exponential-family distributions
in our model:

q∗ (ωc) = Dir (ωc|γc,1, ..., γc,D) , (9)

where the parameters are updated by γc,d = γ0,c,d + Nc,d.
The message to the true class labels, which is required for
Equation (3), contains the terms:

E [lnωc,d] = Ψ (γc,d)−Ψ

(
D∑

d′=1

γc,d′

)
. (10)

Step 5. Update class proportions: update the approx-
imate posterior q(ρ) using the Dirichlet parameter update:

q∗ (ρ) = Dir (ρ|β1, ..., βC) (11)

where the parameters are updated by βc = β0,c + Nc. The
message from this parameter is:

E [ln ρc] = Ψ (βc)−Ψ

(
L∑

b=1

βb

)
. (12)

So, for one iteration of the algorithm, we calculate the up-
dated parameters, distributions and expectation terms de-
fined in steps 2 to 5.

Step 6. Check convergence: if the target label distri-
butions q∗(ti = c) have not converged to a stable solution
within a given tolerance, repeat the algorithm from Step 2.

Outputs: predictions of the document class labels, given by
the current estimates of q(ti = c)∀i∀c, their posterior expec-
tations. The algorithm also outputs approximate posterior

distributions over the model parameters, q(π
(k)
c), q(ωc), and

q(ρ) for each row c ∈ C and each annotator k ∈ K.

4.2 Scalability Through Inference Decompo-
sition

Performing a task such as sentiment analysis or disaster
report analysis can require us to work with extremely large
datasets with vast memory requirements. A major source
of memory usage is the large set of annotator confusion ma-
trices that the inference algorithm must iteratively update.
For example, the Ushahidi dataset, gathered after the Haiti
earthquake, was interpreted by approximately 700 workers
[22]. To resolve memory exhaustion difficulties of VB in-
ference at scale, this section proposes a scalable version of
the BCCwords-VB algorithm, Scalable BCCwords (ScalBC-
CWords), which can be run on a single computer. ScalBCC-
Words is identical to BCCWords except that we decompose
the entire data set into a set of batches of data by distribut-
ing the annotators across P partitions. During each iteration
of the VB inference algorithm ScalBCCWords switches each
batch in and then out of memory in turn. Batches produce
messages that summarise each portion of data and occupy
considerably less computer memory than the entire data set.

We chose to distribute the workers between the batches
so that each batch contains all the responses from work-
ers in that batch. This partitioning criterion is sensible as
each batch only has to represent a subset of annotators, and
thus only represents a small set of confusion matrices. The
splits can be chosen to meet memory constraints. The cor-
responding factor graph is shown in Figure 2, showing how
all partitions share the same class distribution of documents
and the word distributions conditioned on document class.

When batch p is processed, the pseudo counts N
(k)

c,c′ are

calculated using Equation (4), for all k ∈ p. The log con-
fusion matrix messages, Mp,c,i, for batch p for each class c
and document i are calculated as follows,

Mp,c,i =
∑
k∈p

E
[
lnπ

(k)

c,l
(k)
i

]
using Equation 8 to calculate the expected log confusion
matrix. The log confusion matrix for batch p is then deleted

Worker k in batch p

Dir.

Cat.

p β0

l
(k)
i

wd

ωc,d

γ0,c

Cat.

ti

Dir.

α
(k)
0,c

π
(k)
c

Worker k′ in batch p′

Cat.

l
(k′)
i

Dir.

α
(k′)
0,c

π
(k′)
c

Cat.

Dir.

D words

C true label values

Figure 2: Factor graph for Scalable BCCwords. The
four plates included in the graph describe (i) the set
of workers K in the batch p, (ii) the set of workers K′

in the batch p’, (iii) the C possible true label values
and (iv) the D words contained in the dictionary
of terms used in the tweets. The plate for the N
documents is omitted for simplification.

from memory. Once a message is obtained for each batch,
the log true class prediction probability is calculated using,

ri,c = Eρ[ln ρc] +
∑
p∈P

Mp,c,i +

Wi∑
n=1

Eωc [lnωc,wi,n]

as per Equation 3. Hence, scalBCCWords is mathematically
equivalent to BCCWords and both methods converge to the
same solution. The remaining steps of the scalBCCWords
algorithm are identical to those of BCCWords. We note that
ScalBCCwords may process the batches in any order and not
all the batches need be updated during each iteration of the
VB algorithm. In our experiments, we provide an empirical
evaluation of both our algorithms showing the advantage of
ScalBCCWords-VB in memory occupancy.

5. EMPIRICAL EVALUATION
We evaluate the efficacy of our approach, ScalBCCWords,

using two real-world datasets, comparing performance against
the following five rival benchmark approaches. We note that
BCCWords-VB and ScalBCCWords produce the same clas-
sifications as they are mathematically equivalent and there-
fore only ScalBCCWords results are shown.

Majority Voting (MV) is a popular and simple algorithm
for obtaining a single decision from multiple opinions pro-
vided by a crowd [18, 29]. MV greedily assigns a class to each
document by choosing the label with the most votes from
the crowd. All votes are considered with uniform weight,
thus treating all annotators as equally reliable. Typically,
no measure of uncertainty in the final decision is provided.

Vote Distribution treats the fraction of votes in support
of each class as the probability of that class. It therefore
represents a simple technique for estimating the empirical
probability that a document has a particular true label, as-
suming that all annotators are equally reliable.

Bag-of-words Classifier + MV trains a bag-of-words clas-
sifier by treating the majority vote as gold-labelled training
data [11]. Therefore, this approach learns a language model
that can be used to classify documents that have not yet
been labelled by the crowd, but does not account for vary-
ing reliability of the crowd labellers when training the model.

Dawid & Skene is a model for combining labels from mul-
tiple classifiers, using confusion matrices to model the relia-
bility of individual labellers [7]. The learning algorithm for
Dawid & Skene does not account for uncertainty in the con-
fusion matrices or other model parameters, which can lead
to errors when gold-labelled data is limited.

Independent Bayesian Classifier Combination (IBCC)
learns the confusion matrices using variational Bayes (VB).
Therefore, in contrast to Dawid&Skene, it handles model
uncertainty and can operate in unsupervised settings when
gold-labelled examples are unavailable. However, this model
does not consider text features and relies solely on labels pro-
vided by the crowd.

Community-Based Bayesian Classifier Combination
(CBCC) is an extension of IBCC that models communities
of workers with similar confusion matrices. It learns both
the confusion matrices of each community and each worker
but, like IBCC, it does not account for text features in the
documents [30]. We run CBCC with three communities as
suggested in the original paper, for both CF and SP.

In our experiments, we set the priors for IBCC, CBCC
and ScalBCCWords as follows. For the class proportions,
ρ, we used unbiased priors by setting the values of β0,c to
be equal for all classes. For the workers’ confusion matri-
ces, we used informative priors, setting the diagonal counts

α
(k)
0,c,c to C+1.5, with the off-diagonals set to 1. This means

that workers are initially assumed to be reasonably accu-
rate. For ScalBCCWords, the word distributions were given
uninformative priors, by setting uniform values for γ0,c,d for
all words d ∈ D.

5.1 Datasets
We evaluate our approach using two crowdsourcing datasets,

which provide real sentiment judgements obtained from hu-
man workers. The two datasets demonstrate our approach
on two very different kinds of document, with distinct sen-
timent analysis problems.

The CrowdFlower dataset (CF) was provided by Crowd-
Flower3 as part of the 2013 Crowdsourcing at Scale shared
task challenge. The dataset contains 569, 375 judgements
for 98, 980 tweets. This dataset includes 300 tweets with
gold-standard sentiment labels, which correspond to 1, 720
judgements from 461 workers. The judgements reflect the
sentiment of tweets discussing the weather, and can take
values from four sentiment categories: negative (0), neutral
(1), positive (2), tweet not related to weather (4) and can-
not tell (5). This dataset therefore concerns a multi-class
labelling problem.

3www.crowdflower.com

25,000 50,000 75,000 100,000 125,000 150,000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

labels

A
c
c
u

ra
c
y

IBCC
CBCC
ScalBCCWords
MV−Text classifier
Dawid&Skene
MV
Vote distribution

(a) CrowdFlower (CF)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.5

0.55

0.6

0.65

0.7

0.75

0.8

 # labels

A
c
c
u
ra

c
y

IBCC
CBCC
ScalBCCWords
Bag−of−words + MV
Dawid&Skene
MV
VoteDistribution

(b) Sentiment Polarity (SP)

Figure 3: Accuracy of seven methods measured with increasing proportions of labels for both datasets.

The Sentiment Polarity dataset (SP) contains annotations
for a set of 5, 000 sentences from movie reviews, extracted
by [23] from the website RottenTomatoes4. This dataset has
gold-standard sentiment labels for all the movie reviews as-
signed by the website, which marked them as either “fresh”
(positive) or “rotten” (negative). A set of 27, 747 sentiment
judgements were collected from 203 workers using Amazon
Mechanical Turk (AMT)5 by [27]. The SP dataset therefore
presents a binary sentiment analysis problem, with workers
forced to select either positive (1) or negative (0), with no
option to express their uncertainty.

The vocabulary of a real-world text corpus is often ex-
tremely large, so most practical deployments of language
modelling methods employ a set of heuristic pre-processing
steps to remove noisy data that would otherwise add unnec-
essary computation and memory costs. In our experiments,
the dictionary for both datasets was obtained using the stan-
dard approach of stemming the text through the Porter’s
stemmer algorithm [24], then removing common stop words,
before extracting the 300 words with the highest term fre-
quency x inverse document frequency (TF-IDF) score [2].
TF-IDF is a heuristic for selecting words that are important
in distinguishing documents within a corpus, where term
frequency is the number of occurrences of word d within
the corpus, and inverse document frequency = log(N/Nd),
where Nd is the number of documents containing d. While
ScalBCCWords is agnostic to the type of features supplied,
these standard text pre-processing steps are used to allow
the experiments to focus on comparing crowdsourced senti-
ment classification methods.

5.2 Performance Comparisons
We investigated how the effectiveness of the language model

learnt by ScalBCCWords varies with the number of labels
supplied by the crowd. To do this we compared the perfor-
mance of the alternative methods on our two datasets and

4www.rottentomatoes.com
5www.mturk.com

evaluated the efficacy of each using four standard metrics:

Accuracy is the proportion of documents that were cor-
rectly labelled. For methods such as ScalBCCWords that
output probabilities we assign the label with the highest
probability.

Average recall is the mean across all classes of the recall
rate, defined as the fraction of positive instances of a given
class that were correctly labelled.

Negative log probability density (NLPD) is an error mea-
sure – the lower the better – based on how much weight a
classifier gave to the correct class of each document as de-
fined in [30].

AUC is the area under the curve of the receiver oper-
ating characteristic (RoC), which is the probability that a
randomly-chosen positive example is assigned a higher prob-
ability than a randomly-chosen negative example [28]. This
is a measure of an algorithm’s ability to differentiate be-
tween classes, regardless of whether the classes are imbal-
anced. For the CF dataset, we provide the mean AUC over
pairs of classes, using the method of [10].

The experiment is run iteratively, starting by running
each method with 2% randomly-chosen judgements from the
crowd, then evaluating the classification efficacy. We then
increase the number of judgements by adding a further 2%
randomly-selected labels from the crowd and re-running all
the methods. This process is repeated until all crowdsourced
labels have been used by the prediction methods.

Figure 3 shows the accuracy for the six methods for both
datasets, which improves for all methods as they get more
data. In particular, ScalBCCWords has highest accuracy
for a small number of labels, demonstrating the added value
of the language model. ScalBCCWords maintains the high-
est accuracy throughout, although IBCC, CBCC and Dawid
& Skene catch up for large numbers of crowdsourced la-

CF (20% labels) SP (20% labels)
Method Accuracy Avg. recall NLPD AUC Accuracy Avg. recall NLPD AUC

Majority vote 0.630 0.556 1.375 0.731 0.718 0.718 1.170 0.715
Vote distribution 0.653 0.592 1.227 0.749 0.706 0.706 0.945 0.738
Bag-of-words classifier + MV 0.670 0.608 2.280 0.755 0.726 0.726 0.642 0.792
Dawid&Skene 0.613 0.497 1.276 0.672 0.500 0.500 0.695 0.500
IBCC 0.693 0.553 0.950 0.811 0.738 0.738 0.506 0.833
CBCC 0.647 0.534 1.000 0.802 0.728 0.728 0.516 0.830
Scalable BCCwords 0.717 0.578 0.909 0.836 0.755 0.755 0.533 0.843

Table 1: Accuracy, average recall and negative log probability density score (NLPD) for the CF and the
SP datasets for the six tested methods (one for each row) when using 20% crowdsourced labels. Using this
subset of labels, 70% of the documents in both datasets have at least one crowdsourced label.

CF (all labels) SP (all labels)
Method Accuracy Avg. recall NLPD AUC Accuracy Avg. recall NLPD AUC

Majority vote 0.840 0.764 0.921 0.852 0.885 0.885 0.797 0.885
Vote distribution 0.883 0.779 0.458 0.942 0.887 0.887 0.338 0.947
Bag-of-words classifier + MV 0.867 0.764 0.921 0.859 0.885 0.885 0.797 0.891
Dawid&Skene 0.830 0.745 0.459 0.897 0.914 0.914 0.340 0.957
IBCC 0.860 0.763 0.437 0.935 0.915 0.915 0.374 0.957
CBCC 0.886 0.746 0.526 0.942 0.915 0.915 0.383 0.957
Scalable BCCwords 0.890 0.807 0.591 0.877 0.915 0.915 0.389 0.957

Table 2: Accuracy, average recall and negative log probability density score (NLPD) for the CF and the SP
datasets for the six tested methods (one for each row) when using all available crowdsourced labels.

bels. The accuracy of ScalBCCWords is 25% higher than
CBCC (0.57 vs. 0.40) after 20,000 labels in CF and is 8%
higher than CBCC (0.54 vs. 0.50) after 110 labels in SP.
Importantly, in order to achieve the same accuracy, Scal-
BCCWords requires up to 56, 935 fewer labels in CF and
up to 440 fewer labels in SP compared to the benchmarks.
Furthermore, Dawid & Skene initially infers a poor model
of worker accuracy due to scarce labels, which leads to poor
classification performance. Such a cold start phase is mit-
igated in the BCC methods by accounting for uncertainty
in the workers’ accuracy. Both MV and Vote Distributions
are more accurate than Dawid & Skene in the initial phase
but they are less accurate than all the other methods when
a larger amount of crowd labels have been used.

Table 1 shows prediction metrics for both datasets when
only 20% of the complete set of crowdsourced labels were
used. Using this subset reduces the number of labels avail-
able for each document so that only 70% of documents have
one or more crowdsourced labels. To classify the 30% of doc-
uments with no crowdsourced labels, ScalBCCWords and
the bag-of-words classifier apply their language models, while
other methods have no information about these documents
and assign a default category to all unlabelled documents.
ScalBCCWords has the highest accuracy and average re-
call on both datasets, significantly outperforming the bag-
of-words model, which also uses a language model but does
not model annotator bias and error rates.

Table 2 shows prediction metrics for both datasets, when
all crowdsourced labels were used. ScalBCCWords has the
highest accuracy and average recall on both datasets and
competitive AUC and NLPD on the SP dataset. This demon-
strates that ScalBCCWords performs well even when labels
are plentiful (in this case, on average 6 labels per document).

5.3 Language Model
The language model inferred by ScalBCCWords repre-

sents the probabilities of each word in the dictionary con-
ditioned on the sentiment classes. In Figure 4, the top row
shows the Wordles (word clouds) with the most probable
27 words in the five sentiment classes of the CF dataset.
ScalBCCWords is able to identify words that discriminate
the sentiment classes, such as “love” and “perfect”, which are
more likely to occur in the positive sentiment class, whereas
words such as “cold” and “hate” are more likely to appear
in the negative class. We note that common words such as
“day” are highly likely in both positive and negative classes
and are therefore not good discriminators in this dataset.
However, ScalBCCWords naturally uses the most discrim-
inative words to infer the sentiment class through Equa-
tion 2. In the second row of Figure 4, the wordles show the
words that most strongly indicate the class, i.e. the words
d with highest probability p(ti = c|wi,n = d) for class c.
Here we can see that “day” is not indicative of sentiment
class and there is little overlap between the word clouds for
each class. Figure 5 shows the Wordles for the SP dataset,
with the word “good” being equally likely in both sentiment
classes, suggesting that words that seem intuitively positive
may be poor discriminators, possibly because their meaning
is highly context-dependent.

To validate the quality of the language model inferred by
ScalBCCWords using the crowd labels, we compare it to a
language model learned by training ScalBCCWords on the
gold-standard labels. For both models, we rank words by
their probabilities ωc,d in each class c, to examine which
terms the model has inferred are important to each class.
Using the non-parametric Kendall’s τ rank correlation test,
we find a significant positive correlation between the rank-

(a) Positive (b) Negative (c) Neutral (d) Not related (e) Unknown

(f) Positive (g) Negative (h) Neutral (i) Not related (j) Unknown

Figure 4: Top row (a) to (e): word clouds of the most probable 27 words from ScalBCCWords for the
sentiment classes of the CF dataset. Word size is proportional to estimated likelihood given the true label
class. Second row (f) to (j): word clouds for the most discriminative 27 words for three classes of the CF
dataset. Word size is proportional to the class probability given the word. Colours are for legibility only.

Positive Negative Neutral Unknown Not related Positive Negative
Gold Crowd Gold Crowd Gold Crowd Gold Crowd Gold Crowd Gold Crowd Gold Crowd

Gold 1.0 0.384 1.0 0.337 1.0 0.423 1.0 0.403 1.0 0.373 1.0 0.977 1.0 0.975

Crowd 0.384 1.0 0.337 1.0 0.423 1.0 0.403 1.0 0.373 1.0 0.977 1.0 0.975 1.0

(a) CrowdFlower (CF) (b) Sentiment Polarity (SP)

Table 3: The Kendall’s τ rank correlation coefficients (p < 10−5) for the word distributions, ωc,d, estimated by
BCCWords using gold labels and crowd judgements. Colour intensity indicates the correlation strength.

(a) Positive (b) Negative

Figure 5: Word clouds of the most probable 27 words
from ScalBCCWords for the sentiment classes of the
SP dataset. Word size is proportional to estimated
likelihood given the true label class. Colours are for
legibility only.

ings obtained from the model trained on the crowdsourced
data and the model trained on gold labels, as shown in Ta-
ble 3 for both datasets. This indicates that ScalBCCWords
can effectively train a language model using crowd labels
when gold-standard data is unavailable. Kendall’s τ is much

higher for SP, which reflects the higher accuracy of ScalBC-
CWords on the SP dataset shown in Table 2. This suggests
that the crowd’s decisions may more accurately reflect the
gold-labelled data when classifying the SP dataset, which
has only two diametrically opposed classes, rather than the
five less easily distinguished classes of CF.

5.4 Profiling Crowd Workers
Besides predicting document classifications and the lan-

guage model, ScalBCCWords learns the confusion matri-
ces that characterise the workers’ skill levels across senti-
ment classes. Figure 6 shows example crowd members with
very different confusion matrices. For example, subfigure (a)
shows a competent annotator who provides accurate labels
across all sentiment classes, hence the highly peaked likeli-
hoods along the diagonals. Subfigure (b) shows an annotator
whose reliability is inconsistent across the classes, with vary-
ing likelihoods of incorrect worker labels. This figure shows
that we are able to detect annotators with very different be-
haviour within our two real-world datasets. The BCCWords
model captures not just the overall skill level, but also the

accuracy and bias of the annotator for each specific class,
shown by the distribution in each row of Figure 6.

(a) CF dataset

Good worker Inaccurate worker

(c) SP dataset (d) SP dataset

(b) CF dataset

1

0.5

0

True
label Worker

label

1

0.5

0

Worker
label

True
label

1

0.5

0

Worker
label

True

label

1

0.5

0

True

label Worker
label

Figure 6: Confusion matrices of four workers, with
the likelihood of worker label given true class on the
vertical axis. These profiles show two workers who
are very well calibrated in their opinions (left) and
two workers who provide less accurate labels (right).

5.5 Memory Usage
We compared the memory usage of BCCWords-VB and

ScalBCCWords on the CF dataset. Figure 7 shows a plot
of memory demand when running the BCCWords-VB algo-
rithm with increasing subsets of labels. In particular, we
measured memory demand through the standard memory
profiler available in .NET6 that provides the approximate
memory allocated on the garbage collection heaps to store
the model instances of BCCWords. Despite the high noise of
these counters, which explains the variability of the curves in
the graph, we can still observe the general increasing trend of
memory usage when using more labels. As shown in Figure
7, the ScalBCCWords algorithm uses up to 80% less mem-
ory than the standard implementation of BCCWords (1 GB
vs. 200 MB) when the dataset includes 50, 000 labels.

6. CONCLUSIONS
This paper presents BCCWords, a novel algorithm for

combining crowdsourced annotations with text features in
order to determine the sentiment of documents. We pre-
sented a scalable variational Bayes inference algorithm for
BCCWords and demonstrated how it can be implemented
for a large corpus annotated by crowd workers. Our analysis
demonstrated that BCCWords is able to identify key differ-
entiating text features, which produce more accurate sen-
timent classifications when crowdsourced labels are scarce.
It is able to classify short messages such as tweets, despite
the limited number of text features in these short messages.

6CLR Profiler, clrprofiler.codeplex.com

Figure 7: Memory usage of BCCWords (orange line)
and the scalable implementation of BCCWords (blue
line) measured on real data.

We compared our algorithm with six benchmark methods on
two real-world crowdsourcing datasets and showed that our
method can improve accuracy by 25% over both standard
text classifiers and prominent aggregation models for crowd-
sourced data with annotations for a small portion of doc-
uments. Furthermore, our approach significantly reduces,
by up to 67%, the amount of labels that must be obtained
through crowdsourcing to achieve comparable accuracy with
rival methods.

We are currently investigating other prominent applica-
tions of our method: identifying aid requirements in disaster
response using reports from members of the public and first
responders; evaluating investor sentiment towards compa-
nies expressed in free-text reports; and determining student
sentiment from online forum postings to aid pastoral care.
These domains provide vast amounts of unstructured data
that can benefit from insights provided by human annota-
tors and the scalability of automated methods. Future work
will evaluate BCCWords with the different types of features
available in these domains, including alternative text fea-
tures, document metadata, and image features.

The way that BCCWords learns the annotator confusion
matrices could be modified for problems with ordinal classes,
such as those representing different strengths of sentiment,
to take advantage of relationships between neighbouring classes
when samples of annotator behaviour for each label and true
class value are sparse.

7. ACKNOWLEDGMENTS
We thank Gabriella Kazai, Lumi, London, UK for initial

discussions. This work was funded by the EPSRC ORCHID
programme grant (EP/I011587/1) and Microsoft Research,
Cambridge, UK.

8. REFERENCES
[1] Y. Bachrach, T. Graepel, T. Minka, and J. Guiver.

How To Grade a Test Without Knowing the Answers
– A Bayesian Graphical Model for Adaptive
Crowdsourcing and Aptitude Testing. In Proc. of the
29th Int. Conf. on Machine Learning, pages
1183–1190. ACM, 2012.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[3] J. Bergstra and Y. Bengio. Random Search for
Hyper-Parameter Optimization. The Journal of
Machine Learning Research, 13:281–305, 2012.

[4] C. Bishop. Pattern Recognition and Machine Learning.
Springer, 4th edition, 2006.

[5] D. Butler. Crowdsourcing Goes Mainstream in
Typhoon Haiyan Response. Nature News,
doi:10.1038/nature.2013.14186, 2013.

[6] C. Chew and G. Eysenbach. Pandemics in the Age of
Twitter: Content Analysis of Tweets during the 2009
H1N1 Outbreak. PloS One, 5(11):e14118, 2010.

[7] A. P. Dawid and A. M. Skene. Maximum Likelihood
Estimation of Observer Error-Rates Using the EM
Algorithm. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 28(1):20–28, Jan. 1979.

[8] P. Donmez, J. Carbonell, and J. Schneider. A
Probabilistic Framework to Learn from Multiple
Annotators with Time-Varying Accuracy. In Proc. of
the Int. Conf. on Data Mining, pages 826–837, 2010.

[9] A. Gelfand and A. Smith. Sampling-Based Approaches
to Calculating Marginal Densities. Journal of the
American Statistical Association, 85(410):398–409,
1990.

[10] D. J. Hand and R. J. Till. A Simple Generalisation of
the Area Under the ROC Curve for Multiple Class
Classification Problems. Machine learning,
45(2):171–186, 2001.

[11] Z. S. Harris. Distributional Structure. Word, pages
146–162, 1954.

[12] N. R. Jennings, L. Moreau, D. Nicholson, S. D.
Ramchurn, S. Roberts, T. Rodden, and A. Rogers. On
Human-Agent Collectives. Communications of the
ACM, 2014.

[13] E. Kamar, S. Hacker, and E. Horvitz. Combining
Human and Machine Intelligence in Large-Scale
Crowdsourcing. In Proc. of the 11th Int. Conf. on
Autonomous Agents and Multiagent Systems, pages
467–474, 2012.

[14] H. Kim and Z. Ghahramani. Bayesian Classifier
Combination. In Proc. of the 15th Int. Conf. on
Artificial Intelligence and Statistics, page 619, 2012.

[15] F. Kivran-Swaine, S. Brody, and M. Naaman. Effects
of Gender and Tie Strength on Twitter Interactions.
First Monday, 18(9), 2013.

[16] S. Kullback and R. A. Leibler. On Information and
Sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, 1951.

[17] A. Levenberg, S. Pulman, K. Moilanen, E. Simpson,
and S. Roberts. Predicting Economic Indicators from
Web Text Using Sentiment Composition. In Int.
Journal of Computer and Communication
Engineering, 2014.

[18] N. Littlestone and M. Warmuth. The Weighted
Majority Algorithm. In 30th Annual Symposium on
Foundations of Computer Science, pages 256–261.
IEEE, 1989.

[19] T. Minka. Expectation Propagation for Approximate
Bayesian Inference. In Proc. of the 17th Conf. on
Uncertainty in Artificial Intelligence, page 362, 2001.

[20] T. Minka, J. Winn, J. Guiver, and D. Knowles.
Infer.NET 2.5. Microsoft Research Cambridge. See
http://research. microsoft. com/infernet, 2013.

[21] K. Moilanen and S. Pulman. Sentiment composition.
In Proc. of the Recent Advances in Natural Language
Processing Int. Conf., pages 378–382, 2007.

[22] N. Morrow, N. Mock, A. Papendieck, and N. Kocmich.
Independent Evaluation of the Ushahidi Haiti Project.
Development Information Systems., 8:2011, 2011.

[23] B. Pang and L. Lee. A Sentimental Education:
Sentiment Analysis using Subjectivity Summarization
Based on Minimum Cuts. In Proc. of the 42nd annual
meeting on Association for Computational Linguistics,
page 271, 2004.

[24] M. F. Porter. An algorithm for suffix stripping.
Program: Electronic library and Information Systems,
14(3):130–137, 1980.

[25] V. C. Raykar and S. Yu. Eliminating Spammers and
Ranking Annotators for Crowdsourced Labeling
Tasks. Journal of Machine Learning Research,
13:491–518, 2012.

[26] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning From
Crowds. Journal of Machine Learning Research,
11:1297–1322, 2010.

[27] F. Rodrigues, F. Pereira, and B. Ribeiro. Learning
from Multiple Annotators: Distinguishing Good from
Random Labelers. Pattern Recognition Letters,
34(12):1428–1436, 2013.

[28] E. Simpson, S. Roberts, I. Psorakis, and A. Smith.
Dynamic Bayesian Combination of Multiple Imperfect
Classifiers. In Intelligent Systems Reference Library
series: Decision Making and Imperfection, pages 1–35.
Springer, 2013.

[29] L. Tran-Thanh, M. Venanzi, A. Rogers, and N. R.
Jennings. Efficient Budget Allocation with Accuracy
Guarantees for Crowdsourcing Classification Tasks. In
Proc. of the 12th Int. Conf. on Autonomous Agents
and Multiagent Systems, pages 901–908, 2013.

[30] M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and
M. Shokouhi. Community-based Bayesian Aggregation
Models for Crowdsourcing. In Proc. of the 23rd Int.
Conf. on World Wide Web, pages 155–164, 2014.

[31] P. Welinder, S. Branson, P. Perona, and S. J.
Belongie. The Multidimensional Wisdom of Crowds.
In Advances in Neural Information Processing
Systems, pages 2424–2432, 2010.

[32] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan,
and P. L. Ruvolo. Whose Vote Should Count More:
Optimal Integration of Labels from Labelers of
Unknown Expertise. In Advances in Neural
Information Processing Systems, pages 2035–2043,
2009.

[33] K. W. Willett, C. J. Lintott, S. P. Bamford, K. L.
Masters, B. D. Simmons, K. R. Casteels, E. M.
Edmondson, L. F. Fortson, S. Kaviraj, W. C. Keel,
et al. Galaxy Zoo 2: Detailed Morphological
Classifications for 304,122 Galaxies from the Sloan
Digital Sky Survey. Monthly Notices of the Royal
Astronomical Society, 435(4):2835–2860, 2013.

