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Abstract

Scene perceiving and understanding tasks includ-
ing depth estimation, visual odometry (VO) and
camera relocalization are fundamental for appli-
cations such as autonomous driving, robots and
drones. Driven by the power of deep learning,
significant progress has been achieved on individ-
ual tasks but the rich correlations among the three
tasks are largely neglected. In previous studies,
VO is generally accurate in local scope yet suf-
fers from drift in long distances. By contrast, cam-
era relocalization performs well in the global sense
but lacks local precision. We argue that these two
tasks should be strategically combined to leverage
the complementary advantages, and be further im-
proved by exploiting the 3D geometric information
from depth data, which is also beneficial for depth
estimation in turn. Therefore, we present a collab-
orative learning framework, consisting of Depth-
Net, LocalPoseNet and GlobalPoseNet with a joint
optimization loss to estimate depth, VO and cam-
era localization unitedly. Moreover, the Geometric
Attention Guidance Model is introduced to exploit
the geometric relevance among three branches dur-
ing learning. Extensive experiments demonstrate
that the joint learning scheme is useful for all tasks
and our method outperforms current state-of-the-art
techniques in depth estimation and camera relocal-
ization with highly competitive performance in VO.

1 Introduction

As the basis of various key applications such as autonomous
driving, VR/AR, robot vision and drones, researches on scene
perceiving and understanding including depth estimation, vi-
sual odometry and camera relocalization have attracted sig-
nificant attention from the community. Due to the develop-
ment of deep learning, many approaches have been proposed
recently to solve these three individual tasks by using CNNs

*The work was done during Haimei Zhao’s visit at UBTECH
Sydney Al Centre, School of Computer Science, Faculty of Engi-
neering, The University of Sydney.
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Figure 1: The collaborative learning framework architecture.

or RNNS to replace traditional methods in supervised or un-
supervised manners.

Depth Estimation has been extensively studied recently due
to its crucial role in 3D scene understanding. Supervised
monocular learning is first proposed as a regression prob-
lem to learn a mapping from RGB images to per-pixel depth
maps using labelled datasets [Eigen er al., 2014]. DORN
[Fu et al., 2018] turns the regression procedure into a multi-
class classification problem with discrete depth values. Al-
though these supervised methods can achieve impressive re-
sults, collecting a dataset with ground truth is both challeng-
ing and expensive, especially for outdoor scenarios. Unsu-
pervised approaches [Zhou er al., ; Wang er al., 2018] make
use of the photometric consistency between adjacent frames
to provide self-supervision. This pipeline relies on a spa-
tial transformer network [Jaderberg et al., 2015] to synthe-
size reference frames using target frames, which can simul-
taneously optimize the pose transformation between them.
Stereo methods [Godard et al., 2017; Zhan et al., 2018]
employ the consensus between the left and right cameras
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in image or feature level. These self-supervised methods
tend to suffer from the violation of moving vehicles or peo-
ple. To tackle this issue, several works [Casser et al., 2019;
Xu et al., 2019] use the Mask R-CNN [He et al., 2017] to sep-
arate dynamic objects from the scene and deal with them sep-
arately to improve the estimation accuracy. MD2 [Godard et
al., 2019] employs an auto-masking strategy to handle static
camera and moving objects.

Visual Odometry is one of the most essential techniques in
computer vision and robotic localization. Traditional meth-
ods generally follow a pipeline [Fraundorfer and Scaramuzza,
2012] including camera calibration, feature detection, feature
matching, outlier rejection, motion estimation, scale estima-
tion and Bundle Adjustment. Recently, deep learning based
methods have been presented, which replace the original vi-
sual odometry (VO) process with an end-to-end neural net-
work. DeepVO [Wang et al., 2017] combines CNNs and
Long Short-Term Memory Networks (LSTMs) to obtain pose
estimation from image sequences by conducting sequential
modelling. UndeepVO [Li er al., 2018] employs a framework
similar to [Zhou et al., ] to estimate VO with recovered scales
from stereo sequences. CTCNet [Iyer ef al., 2018] adds a set
of transformation constraints across a series of frames to en-
force the geometric consistency of the trajectory. At present,
VO estimation is relatively accurate locally but it is still con-
fronted with the issue of long-distance drift.

Camera Relocalization aims to infer the global pose of a
camera from visual scene representations, which is crucial for
navigation applications. PoseNet [Kendall ez al., 2015] is one
of the early attempts to train CNNss in the end-to-end manner
to infer the camera’s 6-DoF pose from a single image. Map-
Net [Brahmbhatt et al., 2018] combines camera relocalization
with traditional VO and GPS data to improve the estimation
accuracy. With the self-attention mechanism, AtLoc [Wang
et al., 2019] devotes to helping CNNs focus on geometrically
robust objects or features, producing more robust estimation.
Currently, the quality of camera relocalization is reasonably
satisfactory in the global range but there is still a big margin
for improvement concerning local precision.

In previous work, the three tasks (depth estimation, VO and
camera relocalization) are accomplished using separate neu-
ral networks from a single image or video clips. Since they
all fall into the domain of scene understanding from input
images, it is reasonably to argue that the abundant inter-task
geometric correlations should be exploited to bring extra ben-
efits to each other.

In this paper, we propose a collaborative learning network
to jointly conduct the tasks of depth estimation, VO and cam-
era relocalization from monocular videos. We leverage three
branches (DepthNet, LocalPoseNet and GlobalPoseNet) to
perceive the environment from different perspectives, which
are particularly suitable for exploiting 3D geometry struc-
ture, local pose transformation and global pose, respectively.
With a purposefully designed joint optimization loss, our
three branches are able to provide complementary benefits
and overcome the individual defects (e.g., drift in long dis-
tance for LocalPoseNet and low precision in local range for
GlobalPoseNet) during learning. In addition, the Geomet-
ric Attention Guidance Model (GAGM) is introduced to ex-
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tract valuable 3D geometric information from the depth esti-
mation branch to enhance the VO and camera relocalization
branches, which is also helpful for the improvement of depth
estimation in turn. The visualization of the attention maps
shows that our GAGM does have the ability to learn mean-
ingful guidance from the depth information.

The main contributions of our work are as follows:

1) We present a collaborative learning framework to jointly
conduct the tasks of depth estimation, visual odometry and
camera relocalization to leverage the complementary advan-
tages among tasks. To the best of our knowledge, this is the
first work to jointly solve these three problems.

2) We introduce a Geometric Attention Guidance Model
(GAGM) as an inter-task interaction mechanism to help Lo-
calPoseNet and GlobalPoseNet acquire valuable geometric
information from the depth data to improve the accuracy.

3) We conduct extensive experiments on KITTI and our
method outperforms SOTA methods by 10.4% in depth es-
timation and 15.2% and 27.4% in camera relocalization ac-
cording to two major performance metrics, respectively.

2 Methodology

This section presents our collaborative learning framework
for depth estimation, visual odometry and camera relocal-
ization from monocular videos. Taking a sequence of video
frames as input, the aim of our framework is to produce depth
map D; and camera global pose P, from each frame and the
ego-motion of each frame pair 7T} ,_,; simultaneously. For
this purpose, our framework consists of three main network
branches DepthNet, LocalPoseNet and GlobalPoseNet with
an interaction mechanism GAGM.

2.1 Depth and Visual Odometry

The estimation of depth and VO employs the self-supervised
pipeline [Zhou er al., 1, which is built based on the photomet-
ric consistency among adjacent frames.

As shown in Figure 2, our DepthNet and LocalPoseNet
both adopt encoder-decoder architecture, while skip connec-
tions are used in DepthNet to utilize both shallow informa-
tion and deep abstract features to get accurate depth maps.
To ensure a fair comparison with other methods, we modified
the ResNet18 network pretrained on ImageNet [Russakovsky
et al., 2015] as our encoder, Ep and E;. The DepthNet
O takes frame sequence < Iy, I}, I44, > as input and
outputs corresponding depth maps < D;_,, D, Diyyy >,
f(I,0) D. Meanwhile, from continuous frames, the
LocalPoseNet @ produces the 6-DoF relative pose transfor-
mation < Tyyp—¢, Tt—pn—e > of adjacent frame pairs, g(<
Ity Ipn >, @) =< Titnst >.

During learning, the predicted depth map D, and pose
transformation 7" are used to warp the source frame I;,, to
obtain the synthesized target frame IAH,H,&. By adopting the
differential bilinear sampling mechanism [Jaderberg ef al.,
2015], we can obtain corresponding reprojected pixel coor-

dinate p in ft+n_,t for each pixel p in frame I;:

D~ KTyinsDi(p) K h(p)

(D
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Figure 2: Network architecture of the collaborative learning framework.

where K is the known camera intrinsics and h(p) = (z,y, 1)
means the homogeneous coordinates of pixel p. By constrain-
ing the difference between the synthetic frame IAHn%t and
the original target frame I;, depth and visual odometry can be
optimized in an self-supervised manner:

! = Z |It(p) - jt+n—>t(p)|

pely

@

The difference measurement ¢ is a weighted combination of
l1 loss and SSIM following prior work [Godard et al., 20171:

Co(Tey Tynst) = MU (I, Trpnse)

. 3
+(1- )\)ESSIM(It, Iiin—st)

To overcome the effect of occlusion and dynamic vehicles
moving at the same speed as the camera, the minimum dis-
similarities and the stationary mask x are adopted as proposed
in [Godard et al., 2019]:

“

le =K Z.LE%L fr(ft, It+n~>t)

where, IV is the collection of the reference frames.
An image-aware smoothing item is used to regularize the
depth discontinuity as previous work [Godard et al., 2017] :

&)

where i p, is the normalized inverse depth by mean value.

b = 1Ot 410, e 1201

2.2 Camera Relocalization

Our GlobalPoseNet ¥ aims to learn the global camera pose
from each image on the training set C' = (I, P*) in a super-
vised manner, g(I; ¥) = P. Given an input frame I;, the
pretrained ResNet34 network is first used in GlobalPoseNet
to extract valuable feature Fp,. The following Multilayers
Perceptrons (MLPs) then map feature F'p; to global pose P.

P = MLPs(Fp;) (6)

We represent the camera pose P as [p, ] with p € R? for po-
sition and a unit quaternion ¢ € R* for orientation to regress
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it with /; or Iy norm properly. Because any rotations in 3D
space can be effectively mapped to valid and unique unit
quaternions by normalizing 4D quaternions to unit length and
restricted to the same hemisphere according to [Brahmbhatt
et al., 2018; Wang et al., 2019]. To regularize the network,
we adopt the I loss between the predicted [p, ¢] and the label

[p*,q*]:

by =|lp—p*llie”" +n+ |[logg — logg*[1e” 7 +¢ (7)

where 7 and ¢ are weights for balancing the position loss and
rotation loss, learning from initial values ng and ¢ during
training simultaneously. logg is the logarithmic form of ¢:

_1u’

if [u] # 0

otherwise

—— COS
edl

v
logg =
0,

v and w are unit quaternion ¢’s real and imaginary parts.

®)

2.3 Collaborative Learning

Geometric Attention Guidance Model We propose a self-
learning Geometric Attention Guidance Model (GAGM) to
learn and leverage the latent geometric correlation between
DepthNet and two pose networks LocalPoseNet and Glob-
alPoseNet to acquire more accurate estimation. Our GAGM
takes the deepest feature of depth encoder Fp. and the second
last feature of depth decoder Fpg4, as input and outputs two
attention scale maps for LocalPoseNet and GlobalPoseNet,
respectively. As shown in Figure 2 (green area), in GAGM,
we first combine Fp. and Fpg, to get the depth feature F'p
via a concatenation and a convolution layer, to utilize both
abstract and explicit 3D geometric features from the depth
learning branch. Next, Fp is passed to an average pooling
and a max pooling operations along the channel axis and then
concatenated to obtain a highly compressed expression, since
pooling layers can help feature be concentrated as shown in
prior studies [Woo et al., 2018]. Lastly, a subsequent convo-
lution layer is employed to get the final attention scale maps.
During collaborative learning, the corresponding learned at-
tention maps in GAGM are introduced as guidance to scale
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the deepest feature of LocalPoseNet and GlobalPoseNet, F,
and F, by multiplication. The scaled features are regarded
as a residual item to be added to the original feature F, and
F¢, respectively. By introducing the condensed feature from
DepthNet, our framework allows LocalPoseNet and Glob-
alPoseNet branches to acquire useful information from not
only 2D input images but also 3D geometry to improve accu-
racy, which is also beneficial for the depth estimation in turn.
GAGM can be formulated as:

FD = WC[FDE; FDdz]

F} = Fr(W[AVP(Fp); MAP(Fp)]) + Fp,

Fl, = Fo(W,|AV P(Fp); MAP(Fp))) + Fg

here, Fi and Fé denote the guided feature of LocalPoseNet
and GlobalPoseNet, respectively. W, W; and W, are learn-
able weights of the corresponding convolution layers.

C))

The Joint Optimization Loss We design a joint optimiza-
tion loss £, for LocalPoseNet and GlobalPoseNet to regular-
ize them mutually. We can calculate a local pose transforma-
tion T}y ——p within input images window from pairwise
pose transformation learned from LocalPoseNet:

Tenst—n = Ternt Ty (10)
Besides, the local pose transformation can also be produced
from camera pose [p, q] estimated in GlobalPoseNet:

(B, q] =[Pt+n — Pt—n, Gt+n — Gt—n]

Tt+n—>t—n = F([ﬁ, (j])
where I is the transmutation function to change the represen-
tation mode for pose. Therefore, we can use the [; loss to
regularize the consistency between the poses predicted from
LocalPoseNet and GlobalPoseNet to optimize them jointly

within the time window whose size is 2n + 1, taking n as 1
in our work:

an

éc = ||,Tt+n—>t—n - Tt—&-n—)t—n”l (12)
To summarize, the integrated loss for our collaborative learn-
ing framework is:

1
(= §¥a£e+ﬂ£m+wg+5£c (13)
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Figure 4: The visual results evaluated on Cityscapes and Make3D.

where s denotes different scales and S means the number of
the scales (4 in our work).

Training Details We trained our models using the KITTI
dataset [Geiger et al., 2012], which is one of the most com-
monly used dataset in autonomous driving. We took sequence
00-08 from the KITTI Odometry dataset as training data, se-
quence 09 and 10 as test data following prior works [Zhou
et al., ; Zou et al., 2018]. Our DepthNet and LocalPoseNet
were first pretrained with input images resized to 640 x 192,
a batch size of 12 and parameter v and [ set to 1 and 0.05.
After that, we started to train the collaborative framework
with input images resized to 1024 x 320, a batch size of 4
and the loss weight «, 3, v and § set to 0.5, 0.05, 0.85 and
0.1, respectively. The learning rate was first set to 10~* for
the first 10 epochs and then dropped to 10~° for the remain-
ing 40 epochs. We took three consecutive frames as input.
With the ability of locally optimizing relative pose and global
pose within a time window during learning, our framework
should perform better if given longer sequences as input. Our
method was implemented in Pytorch.

3 Experiments

Comprehensive evaluations were implemented towards all
three tasks (depth estimation, VO and camera relocalization).
Our method achieved excellent results in the comparison with
existing SOTA researches, which demonstrates the effective-
ness of our collaborative learning method.
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Error metric|

Accuracy metrict

Methods Train Resolution

AbsRel SqRel RMSE RMSElog § < 1.25 § < 1.252 § < 1.25%
t[Garg et al., 2016] N 608 x 176 0.152 1.226 5.849 0.246 0.784 0.921 0.967
MD1 R507 [Godard et al., 20171 N 512 x 256 0.133 1.142 5.533 0.230 0.830 0.936 0.970
monoResMatch [Tosi ez al., 2019] S 640 x 192 0.116 0.986 5.098 0.214 0.847 0.939 0.972
MD2 [Godard et al., 2019] S 1024 x 320 0.107 0.849 4.764 0.201 0.874 0.953 0.977
t[Zhou et al., ] M 416 x 128 0.183 1.595 6.709 0.270 0.734 0.902 0.959
+GeoNet [Yin and Shi, 2018] M 416 x 128 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [Wang et al., 2018] M 416 x 128 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DEF-Net [Zou et al., 2018] M 576 x 160 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Struct2depth [Casser er al., 2019] M 416 x 128 0.141 1.026 5.142 0.210 0.845 0.845 0.948
RDN [Xu et al., 2019] M 832 X 256 0.138 1.016 5.352 0.217 0.823 0.943 0.976
HR [Zhou et al., 2019] M 1248 x 384 0.121 0.873 4.945 0.197 0.853 0.955 0.982
MD2(R18) [Godard et al., 2019] M 1024 x 320 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Ours (baseline w/o GAGM) M 1024 x 320 0.116 0.891 4.758 0.192 0.866 0.956 0.981
Ours (baseline) M 1024 x 320 0.108 0.766 4.562 0.183 0.887 0.964 0.983
Ours (R18) M 1024 x 320 0.103 0.725 4.466 0.179 0.893 0.964 0.983

Table 1: Quantitative results of single depth estimation over KITTI test set [Eigen ef al., 2014]. For a fair comparison, all the results were
evaluated taking 80 m as the maximum depth threshold. The resolution column means the size of input images and the “S” and “M” in train
column denote using stereo or monocular images for training. “1” means updated result after publication.

Sequences | PoseNet[Kendall ef al., 2015] MapNet [Brahmbhatt ez al., 2018] AtLoc [Wang et al., 2019] Ours

Mean Median Mean Median Mean Median Mean Median
09 22.80m,6.99° 18.60m,4.99° 31.44m,9.55° 26.03m,7.82° 10.32m,6.51° 9.42m, 5.26° 8.74m,4.49° 7.06m,3.14°
10 28.53m,7.47° 23.06m,5.88° 57.22m,8.52° 47.38m,7.37° 9.23m,5.60° 7.50m,4.81° 7.84m, 4.31° 6.92m, 3.86°
Average 25.67m,7.23 20.83m,5.44° 44.33m,18.07 36.71m,7.60 9.78m,6.06 8.46m,5.04 8.29m,4.4 6.99m,3.5°

Table 2: Results of camera relocalization on KITTI Odometry. Our method attained the best test results in both mean and median value.
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Figure 5: Visualization of VO trajectories using Evo [Grupp, 2017].

3.1 Evaluation of Depth Estimation

We conducted extensive evaluation experiments to compare
the depth estimation performance of our method with pre-
vious works. The quantitative results are reported in Ta-
ble 1, which clearly demonstrate that our model outperforms
current SOTA approaches trained in self-supervised manner.
Moreover, although being trained with monocular sequences
only, our model surpasse other methods learned from stereo
videos. As shown in Figure 3, our method can generate sat-
isfying depth maps with clear instance boundary and per-
form properly in some challenging situations including del-
icate structures (e.g. traffic signs) and low-texture regions
(e.g. the surface of tankers or carriages).

Ablation To ensure the fairness of the comparisons, we list
ablation study in Table 1. Ours (baseline) means method
without collaborative learning with GlobalPoseNet and the
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joint optimization loss £.., but with GAGM between DepthNet
and LocalPoseNet, which is totally self-supervised. It is clear
that our method is superior to other methods even without the
supervision of poses for GlobalPoseNet. Ours (baseline w/o
GAGM) means further removing the GAGM between Depth-
Net and LocalPoseNet. From the comparisons, the effect of
our collaborative learning framework and GAGM for depth
estimation can be demonstrated obviously.

Generalization Ability Although being trained on KITTI
only, our method can also achieve promising results on un-
seen datasets without any fine-tuning. We conducted infer-
ence experiments on Make3D and Cityscapes to verify the
generalization ability as shown in Figure 4. Compared with
SOTA approaches, our method is capable to produce more
accurate depth maps with sharper object boundary and better
perception of distant instances even on unseen dataset.

3.2 Evaluation of Visual Odometry

Previous studies on Visual Odometry suffer severely from
long-distance drift. To overcome it, our collaborative learning
framework takes advantage of the rich 3D geometry informa-
tion from depth estimation branch and the global localization
auxiliary from relocalization network. In Table 2, we con-
ducted quantitative evaluation on KITTI Odometry test se-
quence 09 and 10. The Absolute Trajectory Error (ATE) was
calculated on 5-frame snippets and averaged over the full se-
quences following the protocol of [Zhou et al., |.

Ablation We also trained our models without collaborative
learning with camera relocalization task, which was taken as
the baseline in Table 3 and Figure 5 (right). The comparisons



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

5
0
400 =

500 20
600709 35

0
100.
20034

PoseNet

0
100
200
300 400

Sequencel0

Sequence09

400
500 -15 300 609 -15
600 40 700

AtLoc Ours

Figure 6: 3D visualization of the camera trajectory of KITTI Odometry sequence 09 and 10 . The units of the axes are meters.

Methods Sequence09 Sequencel0

ORB-SLAM [Mur-Artal et al., 2015] 0.014 £+ 0.008 0.012 £+ 0.011
Zhou et al. [Zhou et al., | 0.021 £+ 0.017 0.020 £+ 0.015
DDVO [Wang er al., 2018] 0.045 £+ 0.108 0.033 £ 0.074
DF-Net [Zou et al., 2018] 0.017 £ 0.007 0.015 £ 0.009
monodepth2 [Godard et al., 2019] 0.017 £ 0.008 0.015 £+ 0.010
ours (baseline w/o GAGM) 0.018 4+ 0.010 0.017 £ 0.011
ours (baseline) 0.016 4+ 0.008 0.016 4+ 0.009
ours 0.014 £ 0.007 0.014 £ 0.008

Table 3: Results of Visual Odometry on KITTI Odometry dataset.

of our predicted trajectory with other methods and our base-
line in Figure 5 can demonstrate our method is valuable for
alleviating drift in long range.

3.3 Evaluation of Camera Relocalization

The evaluation of camera relocalization was also conducted
on KITTI Odometry sequence 09 and 10. As shown in Ta-
ble 2, we summarized the mean and median value of position
and rotation error with corresponding ground truth. Bene-
fited from the 3D geometry guidance of depth network and
local constraints of visual odometry branch, our relocaliza-
tion results exceed prior SOTA methods in both position and
rotation accuracy. We visualized the prediction trajectory of
relevant methods using a subsampling factor 5 to show re-
sults more clearly, as listed in Figure 6. The green, red and
blue lines denote the ground truth, estimation and error, re-
spectively. Compared with other methods, our trajectories
are more accurate and noiseless.

Attention Map Analysis The visualization of the attention
guidance maps generated by GAGM is shown in Figure 7. It
is clear that GAGM is useful to teach the GlobalPoseNet to
focus on stable geometric features and regions such as road
signs, trees and the ground instead of dynamic cars for re-
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Figure 7: The visualization of learned attention maps in GAGM.

membering and recognizing scenes, which is highly valuable
for camera relocalization task.

4 Conclusion

The motivation of this work is to highlight the importance
of exploiting the inherent correlation among three classical
scene understanding tasks: depth estimation, VO and cam-
era relocalization. With the proposed collaborative learn-
ing framework and the joint optimization loss along with the
GAGM, we show the great prospect of boosting the perfor-
mance of the three tasks simultaneously through collabora-
tive learning. In the experimental studies, we show that our
method is superior to existing SOTA methods in depth es-
timation and camera relocalization, and can achieve highly
competitive results in VO. As to future work, we will fur-
ther train and evaluate our method on other datasets to fully
investigate its potential in various application scenarios and
provide more insights into its working mechanism.
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