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ABSTRACT

Research on time-series classification has garnered importance among practitioners in

the data mining community. A major reason behind the ever-increasing interest among

data-miners is the plethora of time-series data available from a wide range of real-life

domains. Temporal-ordered data from a variety of sensor-based domains such as wearable

devices, smart homes, industrial monitoring, medical diagnosis, etc. provide classification

challenges more akin to real-world scenarios. Thus, building more robust time-series

classification models is imperative.

One group of popular models focuses on identifying short discriminative temporal

patterns (subsequences) from the time-series for classification. These temporal

subsequences, known as shapelets, are local patterns that can be used to uniquely identify

the target class of a time-series instance. In this dissertation, I explore two real-world

challenges pertaining to shapelet based time-series classification models and provide

solutions to mitigate those challenges.

In the first challenge, the problem of cost-sensitive learning in time-series classification

is explored. First, the problem of highly imbalanced time-series classification using

shapelets is investigated. The current state-of-the-art approach learns generalized shapelets

along with weights of the classification hyperplane via a classical cost-insensitive loss

function. Cost-insensitive loss functions tend to treat different misclassification errors

equally, and thus, models are usually biased towards examples of the majority class.

In this research, the generalized shapelets learning framework is extended and a cost-
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sensitive learning model is proposed. Instead of incorporating the misclassification cost as

prior knowledge, as was done by other published methods, a constrained optimization

problem was formulated to learn the unknown misclassification costs along with the

shapelets and their weights. Secondly, I focus on the problem of cost-sensitive early

classification in time-series datasets. High false alarm rates in intensive care units (ICUs)

cause desensitization among care providers, thus risking patients’ lives. Providing early

detection of true and false cardiac arrhythmia alarms can alert hospital personnel and avoid

alarm fatigue. This will ensure hospital personnel can act only on true life-threatening

alarms, hence improving efficiency in ICUs. Furthermore, suppressing false alarms cannot

be an excuse to suppress true alarm detection rates. In this study, a cost-sensitive approach

for false alarm suppression while keeping near perfect true alarm detection rates was

investigated using a confidence estimate for shapelets matching.

In the second challenge, the temporal dependencies among shapelets are explored.

The existing shapelet-based methods for time-series classification assume that shapelets

are independent of each other. However, they neglect temporal dependencies among

pairs of shapelets, which are informative features that exist in many applications. Within

this new framework, a scheme is explored to extract informative orders among shapelets

by considering the time gap between pairs of shapelets. In this realm, two models are

proposed, Pairwise Shapelet-Orders Discovery (PSOD) and Learning pairwise Orders

and Shapelets (LOS), which extracts both informative shapelets and shapelet-orders and

incorporates the shapelet-transformed space with shapelet-order space for time-series

classification. The two proposed models are contrasting approaches in the time-series

classification paradigm. The PSOD is a search-based greedy procedure to extract unique

shapelets and identify orders among the selected shapelets. On the other hand, LOS

is an optimization-based approach to extract shapelet-orders among learned generalized

shapelets. However, in both the hypotheses, the extracted pairwise shapelet-orders

could increase the confidence of the prediction and further improve the classification
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performance. The experimental results provide evidence that when considering shapelet-

orders, classification accuracy is significantly improved on average over baseline methods.

To the best of my knowledge, these are the first work that proposes formal methodologies

to extract shapelet-orders and present augmented space of shapelets and shapelet-orders.
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CHAPTER 1

INTRODUCTION

The dissertation is motivated by the increasing popularity of research in time-series

classification in machine learning. Time-series classification can be defined as learning

how to assign labels to time-series. A time-series is a collection of temporal ordered

observations collected at equal intervals. The task of time-series classification consists of

learning a classifier from a time-series dataset in order to map from the space of temporal

inputs to a space of class variable categories. Research on time-series classification has

garnered importance among practitioners in the data mining community. A major reason

behind the ever-increasing interest among data-miners is the plethora of time-series data

available from a wide range of real-life domains. Temporal ordered data from areas such

as financial forecasting, medical diagnosis, weather prediction, etc. provide classification

challenges more akin to real-world scenarios. Thus, building more robust time-series

classification models is imperative.

One group of popular models focuses on identifying short discriminative patterns

(subsequences) from the time-series for classification. These short time-series

subsequences, known as shapelets (Ye and Keogh, 2009a), are local patterns that can

be used to characterize a time-series instance for determining the time-series example’s

class membership. In this dissertation, two real-world challenges pertaining to shapelet
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based time-series classification models are explored. In the first challenge (Chapter 2

and Chapter 3), the problem of cost-sensitive learning in time-series classification is

explored. In the second challenge (Chapter 4 and Chapter 5), the problem of extracting

temporal dependencies among shapelets is studied and two contrasting frameworks time-

series classification are proposed that leverages temporal dependency information among

pairwise shapelets to improve the time-series classification performance.

In Chapter 2 the variable cost of sensitivity and specificity measurements in medical

applications is investigated. More specifically, the problem of high false alarm rates

in intensive care units (ICUs) which cause desensitization among care providers, thus

risking patients’ lives is explored. A shapelet based time-series classification framework

is proposed that leverages the temporal uncertainty measurements of shapelet matches

to estimate the confidence of early classification predictions of time-series, therefore

providing a cost-sensitive prediction model. Providing early detection of true and false

cardiac arrhythmia alarms can alert hospital personnel and avoid alarm fatigue, so that they

can act only on true life-threatening alarms, hence improving efficiency in ICUs. However,

suppressing false alarms cannot be a justification to suppress true alarm detection rates. In

this study, a cost-sensitive approach is proposed for false alarm suppression while keeping

near perfect true alarm detection rates.

In Chapter 3 the cost-sensitive learning with respect to algorithm-level modifications

for highly imbalanced time-series classification using shapelets is explored. Cost-

insensitive loss functions tend to treat different misclassification errors equally and thus,

models are usually biased towards examples of majority class. The rare class (which will

be referred to as positive class) is usually the important class and a false negative error is

always costlier than a false positive error. Traditional 0-1 loss functions fail to differentiate

between these two types of misclassification errors. Instead of using standard 0-1 loss

functions a variable misclassification costs is introduces to minimize the conditional risk.

By strongly penalizing false negative mistakes the decision boundaries is pushed away
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from the majority classes, thus leading to an improvement in generalization error in

minority classes. The generalized shapelets learning framework is extended and a cost-

sensitive learning model is proposed. Instead of incorporating the misclassification cost as

a prior knowledge, as was done by other published methods, a constrained optimization

problem is proposed to learn the unknown misclassification costs along with the shapelets

and their weights.

In Chapter 4 the temporal dependency among shapelets in time-series datasets is

leveraged to improve time-series classification accuracy. The existing shapelet-based

methods for time-series classification assume that shapelets are independent of each

other. However, they neglect temporal dependencies among pairs of shapelets, which

are informative features that exist in many applications. In this new framework, a scheme

to extract informative orders among shapelets is explored by considering the time gap

between two shapelets. In addition, a model, Pairwise Shapelet-Orders Discovery, is

proposed which extracts both informative shapelets and shapelet-orders and incorporates

the shapelet-transformed space with shapelet-order space for time-series classification.

The hypothesis of the study is that the extracted orders could increase the confidence of

the prediction and further improve the classification performance.

In Chapter 5 the caveats of the Pairwise Shapelet-Orders Discovery model are

highlighted. The previous model which is based on a random selection of candidate

shapelets does not guarantee the selection of optimal shapelets. This, in turn, may lead

to poor quality shapelet-orders. It is proven that learning shapelets, instead of searching,

guarantees near-optimal shapelets thus decreasing generalization error. However, the

costly initialization approach for learning generalized shapelets significantly limits its

scalability in large time-series datasets. In this chapter the problem of leveraging temporal

dependencies among generalized shapelets from randomly initialized subsequences by

jointly learning from the shapelet-transform space and the shapelet-order space is studied.

The underlying hypothesis is that leveraging the temporal dependency information among
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generalized shapelets improves the classification performance. Furthermore, introducing a

randomized subsequence initialization for learning generalized shapelets allows for a more

scalable shapelet learning approach. The problem of leveraging temporal dependencies

among generalized shapelets from randomly initialized subsequences is addressed

by jointly learning from the shapelet-transform space and the shapelet-order space.

The underlying hypothesis is that leveraging the temporal dependency information of

generalized shapelets improves the classification performance. Furthermore, introducing

a randomized subsequence initialization for learning generalized shapelets allows a more

scalable shapelet learning approach.
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CHAPTER 2

COST-SENSITIVE EARLY TIME-SERIES
CLASSIFICATION

2.1 Introduction

Suppressing high false alarm rates from bedside monitors in intensive care units (ICUs)

has been a topic of special interest in the last decade (Aboukhalil et al., 2008; Li and

Clifford, 2012; Behar et al., 2013; Salas-Boni et al., 2014; Scalzo et al., 2013). Alarm

fatigue among care providers inside ICUs due to the high percentages of bedside monitor

false alarms, has been identified as one of the top 10 medical hazards (Jr., 2012). Alarm

fatigue results in desensitization among care providers, which ultimately can lead to lower

standards of care to patients and also result in fatal consequences (Drew et al., 2014).

Artifacts, noise and missing values are some primary factors that corrupt the physiological

data from bedside monitors, causing high false alarm rates.

Different approaches have been applied to reduce false alarm rates. One direction

is to determine the quality of the ECG signal, based on the fact that noisy signals are

more prone to trigger false alarms. For example, Behar et al. (Behar et al., 2013)

proposed several novel ways of measuring ECG signal quality. Another direction consists

of data fusion methods where extra non-ECG waveform data, such as invasive arterial
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Table 2.1: Weighted accuracy comparison between the proposed approach to the state-of-the-art
on asystole cardiac alarms (ASYS) and ventricular tachycardia alarms (VTACH).

Dataset Behar et al.(Behar et al., 2013) Proposed approach
ASYS 45.96˘14.33 65.05˘7.55

VTACH 32.80˘8.32 48.56˘7.41

blood pressure (ABP) and photoplethysmogram (PPG) (Li and Clifford, 2012; Sayadi

and Shamsollahi, 2011) are incorporated. These non-ECG waveforms are assumed to

be highly correlated to ECG, and consequently could be used to identify the alarm types.

Recently, several methods were developed to suppress the false ventricular tachycardia

alarms without the need for additional non-ECG waveforms, which resulted in reduction

of true alarm detection (Behar et al., 2013; Salas-Boni et al., 2014). Their approach is

based on features extracted from the ECG signal 20 seconds prior to a triggered alarm.

All aforementioned methods extract statistical features from the ECG signals and feed

them into a classifier, which often results in a black-box approach. However, in medical

applications, it is important not only to provide accurate prediction but also to provide

interpretable results, such that medical experts get insights about the prediction.

In this chapter a cost-sensitive classification model for early and interpretable

prediction of life threatening arrhythmia alarms is characterized. The objective of the

prediction model is to suppress false alarms while keeping true alarm detection rates high.

In addition, by identifying alarms early, the response time of the medical personnel can be

improved in the event of life-threatening arrhythmia alarms, and the alarm fatigue problem

can be reduced among care providers. In Table 2.1, the effectiveness (weighted accuracy

in Eq. 2.11) of the proposed approach to suppress a large percentage of false alarms for

two datasets as compared with the current state-of-the-art method is shown.
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Table 2.2: Properties (interpretability, earliness, uncertainty, and false alarm suppression (FAS)
used to categorize the methods.

(Li and Clifford, 2012) (Behar et al., 2013) EDSC (Xing et al., 2009) Proposed approach

Intrepretabilty ˆ ˆ X X
Earliness ˆ ˆ X X

Uncertainty ˆ ˆ ˆ X
FAS X X ˆ X

2.2 Contribution

The contributions of this study, summarized in Table 2.2, are the following:

• A time-series classification model is characterized to provide more accurate

prediction (high true alarm detection and false alarm suppression) than the state-

of-the-art methods on arrhythmia alarms.

• Interpretable results are provided in order to explain the rationale of the prediction,

whereas all other published methods are black-box.

• Early prediction before the alarm happens is achieved, which helps the practitioners

to respond early to the alarm, whereas all other methods provide prediction at the

time when alarms happen.

• A cost-sensitive model to achieve the desired level of false alarm suppression rates

is proposed.

2.3 Related work

Early Classification of time-series

In the field of time-series classification, early classification of time-series has gained

popularity (Xing et al., 2011), especially in application areas where critical time sensitive

decision making is required, such as early warning of diseases (Ghalwash et al., 2013a).

The principal objective of early classification models for time-series is to predict the label
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of the alarm as the ECG signal is progressively recorded and before the alarm happens.

If the observed signal is insufficient to make an accurate prediction, more ECG signal

data are used and the process is repeated until the time when the alarm happens. Early

prediction of life-threatening cardiac alarms would allow care providers inside ICUs to be

alert at the time of (or even before) true arrhythmia alarm events, and at the same time

would automatically suppress false arrhythmia alarms.

Interpretable Early Classification Model

Medical experts tend to favor interpretable methods which provide visual clarification

of prediction results rather than black-box methods. A method called Early Distinctive

Shapelet Classification (EDSC) was proposed to provide interpretable early classification

results (Xing et al., 2011). The method extracts local discriminative patterns from the

time-series in order to characterize the target class locally. These discriminative local

patterns, known as shapelets (Ye and Keogh, 2009b), are effective for early classification.

An example of such shapelets is shown in Fig. 2.1. The patterns extracted from the two

classes of the time-series are discriminative, hence, a new signal can be classified as soon

as a match between the signal and any of these extracted shapelets is found. In this way,

the method is able to justify the prediction of the new signal as red (blue), because the new

signal has a pattern that is similar to a pattern observed previously in the red (blue) class.

For more details about EDSC, the reader is referred to (Xing et al., 2011).

In cases where signals from different classes are similar to each other, especially in the

early phases of the signals, the shapelets extracted from these classes might exhibit similar

patterns, which can mislead the prediction. For example, a true alarm signal might match a

false alarm shapelet; in this case, the EDSC method would predict the signal as false alarm

as soon as the match is found regardless of how reliable the match is. In other words, the

EDSC method does not provide uncertainty estimates on the match between the signal and

shapelet and depends only on the distance measurement (match) for the prediction of label
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FIGURE 2.1: Shapelets (in black) from true alarm (red) and false alarm (blue) classes.

of the time-series. This drawback was addressed by Ghalwash et al. (Ghalwash et al.,

2014) where the EDSC method was extended to produce interpretable early classification

of time-series with uncertainty estimates, known as MEDSC-U. The uncertainty for the

predicted label was used to decide the class membership of the time-series signal. In

this study, the MEDSC-U method is investigated for ECG signal classification and use

the uncertainty estimates to decide the alarm class membership for ECG signals. The

estimated uncertainties are used to develop a cost-sensitive decision algorithm for early

alarm prediction using ECG signals.

2.4 Model Description

The modified early distinctive shapelet classification method for uncertainty estimation

(MEDSC-U) (Ghalwash et al., 2014) is described briefly. Given a time-series dataset D,

where each time-series example is an ECG signal of 20 seconds prior to the alarm event,

each signal is associated with a label (true or false alarm). The task is to correctly classify

the ECG signal as early as possible. The MEDSC-U extracts all shapelets of different

lengths for early classification. For each shapelet a distance threshold is learned such that

the shapelet discriminates between classes. Then, MEDSC-U ranks the shapelets using
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a utility function that incorporates earliness and accuracy of the shapelet. The shapelets

are then pruned by selecting the top performing shapelets that cover the entire dataset and

finally the method classifies unknown time-series based on the most confident matching

shapelets. In Section 2.4.3, how to characterize this method in order to suppress a large

fraction of false alarms while keeping near-perfect true alarm detection rates is shown.

2.4.1 Learning Phase

The MEDSC-U method has three steps to extract all discriminative shapelets for early

classification.

1. Shapelet Extraction

The shapelet is defined as S “ ps, l, δ, cq where s is a time-series subsequence of

length l, c is the alarm label of the shapelet (true or false alarm), and δ is a distance

threshold which needs to be learned. The distance threshold is estimated by computing

the distances between the subsequence s and all time-series in the dataset. To compute

the distance between a subsequence s of length l and a time-series T of length L (where

l ď Lq, a window of length l is slide over the time-series T to extract all subsequences

th1, h2, ..., hL´l`1u of length l. Then, the distance can be computed as

distps, T q “ min
@iPt1,2,...,L´l`1u

distps, hiq (2.1)

where distps, hiq is the Z-normalized Euclidean distance, which is computed as

distps, hiq “

g

f

f

e

1

l

l
ÿ

j“1

ˆ

sj ´ µs
σs

´
hij ´ µhi
σhi

˙2

(2.2)

where µ and σ are the mean and standard deviation of the subsequence. In both (Xing et al.,

2011) and (Ghalwash et al., 2014) the distance was computed using Euclidean distance

without Z-normalization, however, the Z-normalized Euclidean distance is used due to
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different variances of the ECG signal examples. The distance threshold δ is computed

such that the shapelet discriminates between the two alarm categories. Then, the MEDSC-

U method iterates over all time-series in D to extract all subsequences of length l, where l

is the length of the potential shapelet. The method varies l between minL and maxL which

are user-defined parameters.

2. Ranking shapelets

MEDSC-U assigns a score to each shapelet that incorporates both the earliness and the

accuracy. The earliness defines how early, on average, the shapelet matches the target time-

series (the shapelet S matches the time-series T if distps, T q ď δ). Then, the shapelets are

sorted in descending order based on their utility scores.

Technically, the earliness between the shapelet S “ ps, l, δ, cq and the time-series T of

length L is defined as

EMLpS, T q “ min
@iPt1,2,...,L´l`1u

distps, hiq ď δ (2.3)

where hi are all subsequences of the ECG signal T of length l. Using earliness the weighted

recall of the shapelet is calculated as

WeightedRecallpSq “
1

}Tc}

ÿ

TPD

1
α
a

EMLpS, T qq
(2.4)

where α is a user defined parameter that determines the importance of the earliness, and

}Tc} is the number of false alarm ECG signal. Finally, the utility score of the shapelet is

defined as

UtilitypSq “
2ˆ PrecisionpSq ˆWeighted RecallpSq

PrecisionpSq `Weighted RecallpSq
(2.5)

where Precision is the fraction of the matched time-series that are relevant (true alarm
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time-series) and is computed as

PrecisionpSq “
}tdi ď δ ^ classpTiq “ cu}

}tdi ď δu}
(2.6)

where di “ distps, Tiq and classpTiq is the class of the ith time-series Ti

3. Pruning Phase

The process begins from the highest ranked shapelet S. The MEDSC-U method removes

all time-series from the dataset that are covered by the shapelet S. This shapelet is stored

along with all other shapelets that have the same score as S (equal-performance shapelets

as S). Then, the next ranked shapelet is considered. If the shapelet covers any of the

remaining time-series, the shapelet and all other equal-performance shapelets are added to

the extracted list and all covered time-series are removed. The method iteratively does so

until all time-series in the dataset are covered.

2.4.2 Testing Phase

When an ECG signal T with unknown label (true or false alarm) is encountered,

the distance between the observed signal and all extracted discriminative shapelets is

computed. When the shapelet S “ ps, l, δ, cq matches T (i.e. the distance distps, T q

between T and S is less than or equal to δ) then T is classified as class c. Since ECG

signals from bedside monitors are often contaminated with artifacts and noise which cause

false alarms. The distance between T and S contains uncertainty in itself. To account for

that uncertainty, the distance is defined as a random variable d

d “ distps, T q ` ε (2.7)

where ε is some random variable with 0 mean and standard deviation equal to σ.

If the shapelet S matches T , the confidence Cc
S of classifying T as class c can be

estimated by computing two components: 1) confidence in the fact that d is less than a
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threshold δ and 2) confidence in the ability of shapelet S to accurately classify time-series

T. Therefore, Cc
S is defined as

Cc
S “ CSpd ă δ|S matches T q ˆ CSpclasspT q “ c|S matches T q

The first component is defined as

CSpd ă δ|S matches T q “
pδ ´ distps, T qq2

σ2 ` pδ ´ distps, T qq2
(2.8)

The closer distps, T q is to δ, the lower the confidence is. Also, larger σ means lower

confidence. More details about the derivation of Eq. 2.8 can be found in (Ghalwash et al.,

2014). The second component is computed as

CSpclasspT q “ c|S matches T q “ PrecisionpSq (2.9)

where Precision is the fraction of the matched time-series that are from class c (Ghalwash

et al., 2014). Thus the lower bound of the class confidence estimate of the prediction Cc
S

is calculated as

Cc
S ě

pδ ´ distps, T qq2

σ2 ` pδ ´ distps, T qq2
ˆ PrecisionpSq (2.10)

Since both terms in this product take value between 0 and 1, the highest value of the Cc
S is

1.

Eq. 2.10 computes the confidence of predicting the time-series T as class c using the

shapelet S. So, for any time-series T , the distance distps, T q between the time-series and

the shapelet is computed. If the distance is less than or equal to the threshold, then the

confidence Cc
S is computed using Eq. 2.10. If the distance is greater than the threshold, the

confidence is not computed, Hence, the confidence is computed only when the shapelet

matches the time-series.

When multiple shapelets match T over time, the overall confidence of the prediction

increases as more evidences are gathered for the particular time-series. For more details
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regarding computing the class confidence when multiple shapelets match, the readers are

encouraged to read (Ghalwash et al., 2014).

2.4.3 One-Sided MEDSC-U (1-MEDSCU)

Next the method of adapting MEDSC-U for the task of suppressing false alarm while

keeping high true alarm detection rates is described. Since missing true alarm could lead

to fatal consequences and risking patients’ lives, the naive method is to predict every alarm

as a true alarm. In this case, the true alarm detection (sensitivity) is 100% but false alarm

suppression (specificity) is 0.

To ensure that no true alarms is missed, a cost-sensitive alarm detection is provided by

comparing the computed Cc
S to a predefined confidence threshold value. In particular, a

confidence threshold is set for predicting true alarm as very low and for false alarm as very

high (99%). Therefore, when a true alarm shapelet (shapelet extracted from true alarm

signals) matches the time-series, the signal is classified immediately as a true alarm. On

the other hand, when a false alarm shapelet (shapelet extracted from false alarm signals)

matches the time-series, the estimated confidence at that particular time point is checked.

If the estimated confidence is less than the predefined confidence threshold (no strong

evidence yet that the signal is a false alarm), the prediction task is delayed and larger

signal is looked is taken into consideration in the hope that the confidence estimate will

increase with access to more data. If at the end of the time-series the conditions failed to

satisfy (no confident true or false alarm shapelets match so far), the ECG signal is classified

as a true alarm.

Setting high confidence threshold for false alarm prediction ensures that a signal can

be predicted as false alarm only if the confidence in the proposed model’s prediction is

more than 99%, thus ensuring high true alarm detection rates. This approach in decision

making ensures no true alarm is missed. On the other hand, the signal is predicted as a true

alarm as soon as a match is found so that an early alert for every true alarm is provided.
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This approach could be viewed as a hybrid approach between MEDSC-U and EDSC

methods, where it utilizes high confidence level for predicting false alarm and predicts

a true alarm as soon as a match is found. this approach is termed as One Sided MEDSC-U

(1-MEDSCU).

2.5 Data description and Pre-processing

Two different critical alarm datasets were extracted from PhysioNet’s MIMIC II version 3

repository (Saeed et al., 2011) (Goldberger et al., e 13). The database is a multiparameter

ICU repository containing patient records of up to eight signals from bedside monitors in

ICUs. The signals are sampled at 125 Hz. The extracted datasets contains the time stamps

and human-annotated true and false asystole and ventricular tachycardia alarms. A subset

of patient’s records was extracted which contained only signal from lead ECG II, because

it was identified as the sensor which contained the least number of missing values across

the patients. For each alarm a 20-second window prior to the alarm event was extracted

similar to (Salas-Boni et al., 2014). Few alarm events contained missing values, that was

ignored in this study. Finally, 261 asystol (ASYS) alarms and 629 ventricular tachycardia

(VTACH) alarms was selected. Details about distribution of true and false alarms in the

individual datasets are explained in Table 2.3.

The raw signals extracted from MIMIC II was very noisy with high frequency signal

components. In order to obtain a smooth signal, the ECG signal was passed through a

low pass filter to remove the white noise. A 20-second analysis window prior to the alarm

event was considered in the proposed algorithm. However, each 20-second ECG signal

contained 2500 data points in the time-series, which increased the computational cost in

Table 2.3: Dataset description.
Dataset Total alarms True Alarms (%) False Alarms (%)
ASYS 261 40 (15.3%) 221 (84.7%)

VTACH 629 227 (36.09%) 402 (63.91%)
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the proposed pattern extraction algorithm. Thus, each ECG signal was down-sampled

from 125 Hz to 12.5 Hz, resulting in 250 temporal points in each signal.

2.6 Experimental setup

Assuming that the number of true alarms is N , the true alarm dataset was partitioned into

four distinct partitions, hence, each partition had N{4 true alarms. For each partition,

N{4 false alarms were randomly selected from the false alarm dataset to ensure balanced

training data. To train the proposed method (and the baseline methods) using the training

data (of size N{2) and test them on the remaining examples. In addition, the entire

process was repeated 20 times (each repetition had 4 distinct partitions on true alarm)

which resulted in 80 different combinations of training data.

4 evaluation measures was used: True alarm detection (TAD) rate, which is sensitivity;

False alarm suppression (FAS) rate, which is specificity; and Earliness, which is the

fraction of the time points used for classification. However, since missing true alarm

(positive class) is more severe than missing false alarm (negative class), different errors

incur different weights. The balanced accuracy (the average between sensitivity and

specificity) considers similar weights for different errors. To account for this, a weighted

accuracy metric is proposed where the false negative is penalized more than the false

positive by 1`β2. Higher β penalizes false negatives more than false positives. Therefore,

the weighted balanced accuracy (WAcc) is computed as:

WAcc “ pWSens ` Specq{2 (2.11)

where

WSens “ TP{pTP ` p1` β2
qFN q

Spec “ TN {pTN ` FPq

where TP, TN, FP, FN is the number of true positives, true negatives, false positives,

and false negatives, respectively.
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2.7 Baseline methods

The proposed method is compared to three baseline models.

1. BeharRaw: A state-of-the-art false alarm suppression method (Behar et al., 2013)

was applied on the raw ECG signals.

2. BeharFiltered: The same state-of-the-art method(Behar et al., 2013) was applied on

the filtered ECG signals.

3. EDSC (Xing et al., 2011) with the Z-normalized version of distance measuring

(Eq. 2.2).

The original EDSC method resulted in 0 sensitivity, thus it was not include as a baseline

method.

2.8 Results

2.8.1 Accuracy performance

The evaluation of each method is shown in Table 2.4. Clearly, 1-MEDSCU method has

near optimal TAD rate, while all other methods have much less TAD rate. For example, on

ASYS dataset, BeharFiltered has comparable TAD rate (92.37%) to 1-MEDSCU method

(99.12%), however, it has lower FAS rate (18.97%) compared to 1-MEDSCU (34.29%).

EDSC has better FAS rate (74.16%) than the proposed model but on the cost of TAD rate

(83.62%). This shows that the proposed method has moderate FAS rates while keeping

high TAD rate, which is an extremely challenging task. The same conclusion applies on

VTACH. However, the desired level of FAS can be obtained by adjusting the confidence

threshold of the method, which will reduce TAD rate but will still be comparable to other

methods. This is explained in the next section.

In addition to TAD and FAS, it is clear that 1-MEDSCU method has better weighted

accuracy WAcc than all other methods. There is a statistically significant difference
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Table 2.4: Evaluation of the models in terms of true alrm detection rate (TAD), false alarm
suppression rate (FAS), earliness (100 - earliness) and weighted accuracy (WAcc). Larger value
has better performance. Pvlaue is computed between 1-MEDSCU and the best baseline method on
the corresponding evaluation measure.

Behar (Raw) Behar (Filtered) EDSC 1-MEDSCU pvalue
2

A
SY

S

TAD 84.62˘11.46 92.37˘11.27 83.62˘15.19 99.12˘ 3.25
FAS 35.03˘7.64 18.97˘7.24 74.16˘9.41 34.29˘12.36

100-Earliness 0 0 62.8˘6.27 38.39˘9.05
WAcc (β “ 2) 47.11˘11.13 49.16˘10.84 66.12˘11.55 65.68˘6.32 0.74
WAcc (β “ 3) 41.9˘13.7 45.96˘14.33 59.75˘13.39 65.05˘7.55 1.20e-03

2

V
TA

C
H

TAD 86.22˘8.69 52.60˘25.27 64.78˘23.16 95.67˘8.81
FAS 31.18˘5.7 51.07˘24.75 65.07˘14.77 20.32˘13.43

100-Earliness 0 0 59.9˘11.71 39.96˘9.34
WAcc (β “ 2) 44.49˘3.11 37.20˘5.99 48.65˘2.47 52.85˘5.52 4.72e-09
WAcc (β “ 3) 36.34˘2.91 32.80˘8.32 42.58˘3.39 48.56˘7.41 3.13e-09

(pvalue is shown in the last column of Table 2.4) between the proposed method and all

other methods using significance level 0.05, except for EDSC on ASYS at β “ 2.

2.8.2 Controlling False Alarm Suppression Rate

1-MEDSCU has advantage over other methods in controlling the balance between TAD

and FAS. In other words, the false alarm confidence threshold used in 1-MEDSCU controls

the sensitivity of the model to predict true and false alarm. When a test ECG signal

matches a false alarm shapelet (blue shapelet as in Fig. 2.1), the method computes the

confidence of the match. If the estimated confidence is greater than the false alarm

confidence threshold, then 1-MEDSCU predicts the signal as a false alarm. Increasing

the false alarm confidence threshold guarantees that no true alarm is incorrectly predicted

as a false alarm but at the same time decreases the false alarm suppression rate. In the

previous results, a 99% false alarm confidence threshold was used to ensure near-optimal

TAD rates. By varying the confidence level FAS rate comparable to other method can be

obtained but still with higher (but not near-optimal) TAD rates. The results of varying the

false alarm confidence threshold is shown in Fig. 2.2.

The blue dotted (red dashed) line represents the varying FAS (TAD) rates for different
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false alarm confidence thresholds (x-axis), respectively. The blue marks (star, circle, and

diamond) indicate the FAS rates, while the red marks show the TAD rates achieved by

the three baseline models. It is clear that, the proposed model can achieve similar FAS

rates as the baseline methods with comparable or even higher TAD rate. For example, in

order to achieve FAS rate similar to EDSC (blue star) a TAD rate of 83 (the vertical line

that touches the blue star, touches the red dashed line at 83%) can be achieved by setting

false alarm confidence threshold to 4.9%. So, comparable TAD rates to EDSC (red star)

is achieved. Comparing to BeharRaw, it has 35% FAS (blue diamond) and 85% TAD (red

circle), while 1-MEDSCU can achieve 99% TAD at 35% FAS, significantly outperforming

BeharRaw.

Therefore, by varying the confidence threshold, one can achieve the desired level of

FAS with comparable or even better TAD rates.

2.8.3 Earliness

The results of earliness of the methods are shown in Table 2.4. 1-MEDSCU not only

provide accurate results (as shown in the previous sections) but also provide these results

early. So, the prediction takes place even before the actual alarm alerts, whereas all other

methods, except EDSC, provide results at the time when the alarm happens. The prediction

of the proposed method is provided, on average, using around 60% of the time points (8

seconds before the actual alarm) at a false alarm confidence threshold of 99%. Although,

it is evident that EDSC has better earliness performance than 1-MEDSCU, the proposed

method outperforms EDSC in terms of TAD as in Table 2.4. By varying the false alarm

confidence threshold, the earliness of 1-MEDSCU improves as shown in Fig. 2.3. At

4.9% confidence threshold, the predictions of the proposed method were provided using

only 40% of time-series’ length, comparable to EDSC.

From Fig. 2.2 and 2.3, it can be concluded that by lowering the false alarm confidence

threshold one can obtain earlier predictions and higher FAS rates but at the cost of reducing
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FIGURE 2.2: Varying false alarm confidence threshold for ASYS. The red line shows increasing
true alarm detection with increasing false alarm confidence threshold. The blue line show
decreasing false alarm suppression with increasing false alarm confidence threshold. The red and
blue marks indicate TAD and FAS respectively achieved by the baseline methods.

TAD rates. Therefore, a proper trade-off has to decided by hospital administrators between

earliness, FAS and TAD.

2.8.4 Interpretability: Case Study

An example is presented to show the effectiveness of the proposed interpretable method

that utilizes the confidence levels to produce more accurate results. In Fig. 2.4, a true

alarm signal matches a false alarm shapelet (solid blue segment) with confidence 1% at

time point 4 (so 16 seconds before the alert). EDSC would classify that example at that

time as false alarm. However, 1-MEDSCU does not classify the signal at that time because

the confidence is less than the false alarm confidence threshold (99%), therefore, delays
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FIGURE 2.3: Trend of Earliness with varying false alarm confidence threshold (100 -
Earliness) on ASYS. Larger the value, the earlier the prediction.

the decision. At time 4.9 second, another false alarm shapelet (dotted blue) matches the

signal resulting in confidence 8%. 1-MEDSCU continues until time 16 where the signal

matches a true alarm shapelet (red shapelet). The method immediately classifies the signal

correctly as a true alarm, because the method does not require confidence to predict the

signal as a true alarm. It is clear that the signal can be mistakenly classified as a false

alarm because two evidences (two shapelets) were found in the early phases of the signal.

However, since the evidences are not strong enough the method continues until either a

very strong evidence to classify as a false alarm is found or any evidence to classify it as a

true alarm is found, thus ensuring high TAD rates.
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FIGURE 2.4: True alarm example wrongly classified as false alarm by EDSC at time 4, however,
correctly classified as true alarm by 1-MEDSCU at time 16.

2.9 Conclusion

In this chapter, the problem of suppressing high cardiac false alarms using univariate ECG

signals is addressed. The objective of this study was to reduce false alarms as much

as possible without compromising TAD performance. This objective was achieved in

the proposed (1-MEDSCU) model by keeping high confidence threshold for false alarm

predictions to ensure high TAD. A moderate percentage of FAS was achieved while

keeping high rate of early TAD predictions. The proposed early alarm detection approach

had outperformed the state-of-the-art methods on both datasets in terms of weighted

accuracy. In addition, it was shown how one can control the FAS rate at the cost of
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TAD rate, nevertheless, the method achieved higher suppression rate than other methods

keeping comparable TAD rate. In addition, the method provides not only accurate results

but also provides interpretable results early.
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CHAPTER 3

HIGHLY IMBALANCED TIME-SERIES
CLASSIFICATION

3.1 Introduction

One of the key sources of performance degradation in the field of time-series classification

is the class imbalance problem (López et al., 2013) the minority class (positive class)

is outnumbered by abundant negative class instances. Models built using standard

classification algorithms on such imbalanced datasets, which generally have minimum

classification error as a criterion for classifier design often, are biased towards the majority

class; and therefore, have higher misclassification error for the minority class examples.

Moreover, in real-world scenarios such as object detection, medical diagnosis etc., the

positive class is usually the more important class and false negatives are always costlier

than false positives. Traditional 0 - 1 loss function classifiers fail to differentiate between

these two types of errors and final outcomes are naturally biased towards the abundant

negative class. Thus, a cost-sensitive classifier is preferred when dealing with datasets

where examples from different classes carry different misclassification costs.

Recently, in the realm of time-series classification, a novel framework was proposed

known as Learning Time-series Shapelets (LTS) (Grabocka et al., 2014) to directly learn

24



generalized short time-series subsequences known as shapelets ((Ye and Keogh, 2009a))

along with weights of a classifier hyperplane to differentiate temporal instances in a binary

classification framework. Shapelets are local discriminative patterns (or subsequences)

that can be used to characterize the target class, for determining the time-series class

membership. Shapelets have been proven to have high predictive powers as they provide

local variation information within the time-series as well as high interpretability of

predictions due to easier visualizations. LTS formulates an optimization problem where

a cost-insensitive 0-1 logistic loss function is minimized in order to learn generalized

shapelets. The minimum Euclidean distances of the learned shapelets to the time-series

can be used to linearly separate the time-series examples from different classes.

However, LTS uses cost-insensitive loss function that treats false positive and false

negative errors equally, which limits its applicability on balanced datasets. In this chapter,

a cost-sensitive time-series classification framework (henceforth known as CS-LTS) is

proposed by extending the LTS model. A cost-sensitive logistic loss function is minimized

to enhance the modeling capability of LTS. The cost-sensitive logistic loss function uses

variable misclassification costs for false positive and false negative errors. Generally,

these misclassification cost values are available from the cost matrix provided by domain

experts which is often a cumbersome procedure. Instead of using fixed cost parameters,

the proposed method learns the variable misclassification costs from the training data via

a constrained optimization problem.

3.2 Contribution

The main contributions of this chapter are summarized as the following.

‚ The proposed method learns the misclassification costs from the training data thus

nullifying the need for predetermination of cost values for misclassification errors. To

the best of my knowledge, the proposed model is the first algorithmic approach to solve
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FIGURE 3.1: An illustration of the proposed CS-LTS model (right) compared to LTS (middle)
using 2 shapelets learned on an imbalanced version of BirdChicken dataset (left)

highly imbalanced time-series classification problem.

‚ A constrained optimization problem is proposed which jointly learns shapelets (highly

interpretable patterns), their weights, and most importantly misclassification costs, while

other cost-sensitive approaches mainly consider misclassification costs are given a priori.

‚ The effectiveness of the method is demonstrated on life-threatening cardiac arrhythmia

dataset from Physionets MIMIC II repository showing improved true alarm detection rates

over the current state-of-the-art method for false alarm suppression.

‚ Finally, the method is evaluated extensively on 34 real-world time-series datasets with

varied degree of imbalances and compared to a large set of baseline methods previously

proposed in the realm of imbalance time-series classification problems.

In Fig. 3.1, all time-series examples are shown for the blue and red classes. The blue

class has only 3 time-series, while the red class has 10 time-series. Since LTS does not

handle imbalance dataset, the learned hyperplane is very biased. This is clear from the

middle image in Fig. 3.1 that shows the distance between the two learned shapelets using

LTS and the training time-series. CS-LTS learns a hyperplane that is aware about the

imbalance in the data, as shown in rightmost image of Fig. 3.1.

26



3.3 Related Work

Time-series classification via shapelets.

In the field of time-series classification, the concept of shapelets have received a lot

of attention (Grabocka et al., 2014; Hou et al., 2016; Zhang et al., 2016; Ghalwash

et al., 2014; Ye and Keogh, 2009a). Shapelets are local discriminative patterns (or

subsequences) that characterize the target class and maximally discriminate instances of

time-series from various classes. Discovering the most discriminative subsequences is

crucial for the success of time-series classification using shapelets. The primary approach,

based on search-based techniques, proposed by Ye et al. ((Ye and Keogh, 2009a)),

exhaustively search for all possible subsequences and a decision tree was constructed

based on information gain criterion. The information gain accuracy was ranked based

on the minimum distance of the candidate subsequences to the entire time-series training

set. Hills et al. ((Hills et al., 2014)) perceived this minimum distance of the set of

shapelets to a time-series dataset as a data transformation to a shapelet-transformed space

where standard classifiers could be used to achieve high classification accuracy using the

shapelet-transformed data as predictors. Recently, Grabocka et al. ((Grabocka et al.,

2014)) proposed a novel framework known as Learning Time-series Shapelets (LTS) to

jointly learn generalized shapelets along with weights of a logistic regression model using

the minimum Euclidean distances of shapelets to time-series dataset as predictors. The

method discovered optimal shapelets and reported statistically significant improvements in

accuracy compared to other shapelet-based time-series classification models. However, a

major drawback is low true positive rate in case of highly imbalanced time-series datasets.

The logistic loss used in the LTS framework is a cost-insensitive loss function which treats

false positive and false negative misclassifications errors equally. Classification models

built using such loss functions suffer from the class imbalance problem.
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Cost-sensitive classification.

Classification techniques for handling imbalanced data-sets can broadly be divided into

two kinds of approaches, data-level approaches (Cao et al., 2011; He et al., 2008; Cao

et al., 2013; Chawla et al., 2002; Han et al., 2005; Liu et al., 2009; Cao et al., 2014)

and algorithmic-level (Sun et al., 2007) approaches. Data-level methods are sampling

techniques that act as a pre-processing steps prior to the learning algorithm to balance the

imbalanced datasets either through oversampling of the minority class or under sampling

of the majority class or combination of both. Algorithmic-level approaches directly

manipulate the learning algorithm by incorporating a predefined misclassification cost for

each class to the loss function. These methods have reported excellent performance with

good theoretical guarantees (He and Garcia, 2009); however, predetermination of optimal

class misclassification cost or data-space weighting is required which can vary on a case-

by-case basis among different datasets and also require domain expertise.

In this study, an algorithmic approach is followed to directly manipulate the learning

procedure by minimizing a cost-sensitive logistic loss function. An additive asymmetric

learning function is fitted to the training data. In addition to learning the shapelets

and weight parameters of the classification hyperplane, the cost parameters are also

estimated from the training data. A constrained optimization problem is formulated

that is optimized to jointly learn shapelets, weights of the classification hyperplane and

misclassification cost parameters nullifying the need for predetermination of cost values

for misclassification errors.

3.4 Method Preliminaries

A binary class time-series dataset composed of I training examples denoted as T P RIˆQ

is considered where, each Ti p1 ď i ď Iq is of length Q and the label for each time-

series instance is a nominal variable Y P t0, 1uI . Candidate shapelets are segments of

28



length L from a time-series starting from j´th time point inside the ith time-series. The

objective is to learn k shapelets S, each of length L, that are most discriminative in order

to characterize the target class. The shapelets are denoted as S P RKˆL.

The minimum distance Mi,k between the ith series Ti and the kth shapelet Sk is the

distance between the segment and time-series. This is defined as

Mi,k “ min
j“1,...,J

1

L

L
ÿ

l“1

pTi,j`l´1 ´ Sk,lq
2 (3.1)

Given a set of I time-series training examples andK shapelets, a shapelet-transformed

matrix (Hills et al., 2014) M P RIˆK can be constructed which is composed of minimum

distances Mi,k between the ith series Ti and the kth shapelet Sk. The minimum distance

M matrix is a representation in the shapelet transformed space and acts as predictors for

each target time-series. However, the function in Eq. 1 is not continuous and thus non-

differentiable. Grabocka et al. (Grabocka et al., 2014) defined a soft-minimum function

(shown in Eq. 3.2), which is an approximation for Mi,k.

Mi,k ≈ M̂i,k “

řJ
j“1Di,k,j exppαDi,k,jq
řJ
j“1 exppαDi,k,jq

(3.2)

where Di,k,j is defined as the distance between the jth segment of series i and the kth

shapelet given by the formula

Di,k,j “
1

L

L
ÿ

l“1

pTi,j`l´1 ´ Sk,lq
2 (3.3)
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3.5 Model Description

A linear learning model (shown in Eq. 3.4) was proposed by (Grabocka et al., 2014) using

the minimum distances M as predictors in the transformed shapelet space.

Ŷi “ W0 `

K
ÿ

k“1

Mi,kWk @i P t1, ..., Iu (3.4)

The learning function (Eq. 3.4) is extended by incorporating CFN and CFP for false

negative and false positive misclassifications cost respectively. The new asymmetric

learning model is defined as Eq. 3.5.

Zi “
1

CFN ` CFP
ln

σpŶ qCFN

1´ σpŶ qCFP
“

1

CFN ` CFP
pŶ ` ln

CFN
CFP

q (3.5)

σpq is the logistic function and σpŶ q represents the posterior probability of P pY “

1|Xq.

Additionally, a cost-sensitive loss function (Eq. 3.6) is proposed which is a differential

cost-weighted logistic loss between the actual targets Y and the estimated targets Z.

LpY, Zq “ ´Y lnσpCFNZq ´ p1´ Y qlnp1´ σpCFPZqq (3.6)

A regularized cost-sensitive logistic loss function defined by Eq. 5.6 is the regularized

objective function denoted by F .

argmin
S,W,C

FpS,W,Cq “ argmin
S,W,C

I
ÿ

i“1

LpYi, Ziq ` λW }W }2 (3.7)

whereC P tCFN , CFP u. The problem is formulated as a constrained optimization problem

since the misclassification costs should always be positive. The misclassification cost

denotes the loss incurred when a wrong prediction occurs. The constraints ensure both

costs are positive and also the fact that cost of false negative is at least θ times greater than
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cost of false positive. These conditions ensure the loss function to be penalized more in

the event of an error in the positive class than an error in the negative class.

argmin
S,W,C

FpS,W,Cq

subject to CFN ą 0, CFP ą 0

CFN ą θCFP

(3.8)

Similar to (Grabocka et al., 2014), a Stochastic gradient descent (henceforth SGD)

approach is adopted to solve the optimization problem. The SGD algorithm optimizes the

parameters to minimize the loss function by updating through per instance of the training

data. Thus, the per-instance decomposed objective function Fi (denoted by Eq. 3.9) shows

the division of Eq. 5.6 into per-instance losses for each time-series.

Fi “ LpYi, Ziq `
λW
I

K
ÿ

k“1

W 2
k (3.9)

The objective of the learning algorithm is to learn the optimal shapelet Sk, the weights

W for the hyperplane and the misclassification costs C which minimizes the loss function

(Eq. 5.6).

The SGD algorithm requires definitions of gradients of the objective function with

respect to shapelets, hyperplane weights and misclassification costs. Eq. 5.9 shows the

point gradient of objective function for the ith time-series with respect to shapelet Sk.

BFi
BSk,l

“
BLpYi, Ziq
BZi

BZi

BŶi

BŶi

BM̂i,k

J
ÿ

j“1

BM̂i,k

BDi,k,j

BDi,k,j

BSk,l
(3.10)

Furthermore, the gradient of the cost-sensitive loss function with respect to the learning

function Zi is defined in Eq. 3.11. Also the gradient of the cost-sensitive learning function

with respect to the estimated target variable Ŷi is shown in Eq. 3.12

BLpYi, Ziq
BZi

“ p1 ´ YiqσpCFPZiqCFP ´ Yip1 ´ σpCFNZiqqCFN (3.11)
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BZi

BŶi
“

1

CFN ` CFP
(3.12)

Eq. 3.13 shows the gradient of the estimated target variable with respect to the

minimum distance. The gradient of the over all minimum distance with respect to the

segment distance and the gradient of the segment distance with respect to a shapelet point

is defined by Eq. 3.14 and Eq. 3.15 respectively.

BŶi

BM̂i,k

“ Wk (3.13)

BM̂i,k

BDi,k,j

“
exppαDi,k,jp1` αpDi,k,j ´ M̂i,kqq

řJ
j“1 exp pαDi,k,jq

(3.14)

BDi,k,j

BSk,l
“

2

L
pSk,l ´ Ti,j`l´1q (3.15)

The hyperplane weights W are learned by minimizing the objective function 5.6 via

SGD. The gradients for updating the weights Wk is shown in Eq. 3.16 and Eq. 3.17 shows

the gradient for update of the bias term W0.

BFi
BWk

“
BLpYi, Ziq
BZi

BZi

BŶi
M̂i,k `

2λW
I

Wk (3.16)

BFi
BW0

“
BLpYi, Ziq
BZi

BZi

BŶi
(3.17)

The learning procedure for estimating the misclassification cost values in the proposed

framework is a constrained optimization problem since CFN ą 0, CFP ą 0 and

CFN ą θCFP , where θ P Z. However, Stochastic Gradient Descent algorithm can

only be applied to solve unconstrained optimization problems. Thus, the constrained

optimization is converted into an unconstrained optimization similar to (Radosavljevic
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et al., 2010) SGD algorithm is applied to solve the optimization problem for learning the

optimal misclassification costs.

CFN “ θCFP `D (3.18)

The false negative misclassification cost pCFNq is first written in terms of false

positive misclassification cost as shown in Eq. 3.18 and replaced in Eq. 3.6 changing the

optimization problem to Eq. 5.12.

argmin
S,W,CFP ,D

FpS,W,CFP ,Dq

subject to CFP ą 0

(3.19)

D is a regularization term for the misclassification cost. The objective function is then

minimized with respect to logCFP instead of CFP . As a result, the new optimization

problem becomes unconstrained. Derivatives of objective function with respect to logCFP

and D in gradient descent are computed as:

BFi
B log cFP

“ cFP
BLpYi, Ziq
BcFP

(3.20)

BLpYi, Ziq
BcFP

“
BLpYi, Ziq
BZi

BZi
BcFP

(3.21)

BLpYi, Ziq
BD

“
BLpYi, Ziq
BZi

BZi
BD

(3.22)

The steps of the proposed cost-sensitive time-series classification method (CS-LTS,

henceforth) are shown in Algorithm 1. The pseudocode shows that the procedure updates

all K shapelets and the weights W , W0, false positive cost CFP and parameter D by a

learning rate η.
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Algorithm 1 Cost-sensitive learning time-series shapelets
0: procedure CS-LTS

Input: T P RIˆQ, Number of shapelets K, length of a shapelet L, Regularization
parameter λW , Learning rate η, maxIter
Initialize: Shapelets S P RKˆL, classification hyperplane weights W P RK , Bias
W0 P R, Misclassification cost CFP P R, θ P Z, D P R

0: for iterations = NmaxIter
1 do

0: for i “ 1, ..., I do
0: for k “ 1, ..., K do
0: W new

k Ð W old
k ´ η BFi

BWk

0: for l “ 1, ..., L do
0: Snewk,l Ð Soldk,l ´ η

BFi
BSk,l

0: end for
0: end for
0: W new

0 Ð W old
0 ´ η BFi

BW0

0: logCnew
FP Ð logCold

FP ´ η
BFi

B logCFP

0: Dnew Ð Dold ´ η BFi
BD

0: end for
0: end forReturn S,W,W0, CFP
0: end procedure=0

3.6 Experimental Evaluation

In this section, the effectiveness of the proposed method (CS-LTS) is evaluated on different

setting represented by different datasets. The objective function in Eq. 5.6 is a non-convex

function with respect to parameters and solving it via SGD requires a good initialization

of the parameters. The initialization step is very important in this scenario as it influences

whether the optimization reaches the region of global minimum.

3.6.1 Model parameter initialization

Shapelets were initialized using K-means centroids of all segments similar to (Grabocka

et al., 2014). First the minimum length (Lmin) of a shapelet is set to 10% of the length

of the time-series examples. Then the total number of shapelets was computed as Lmin

multiplied by number of training time-series. The number of shapelets used as input for

the optimization function was determined using K “ logptotal number of segmentsq.
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Three scales tLmin, 2ˆ Lmin, 3ˆ Lminu of subsequence lengths were investigated.

The weight parameters Wk and W0 were initialized randomly around 0. CFP was

initially set to 1. The values for θ and initial value of D were determined through a

grid search approach using internal cross-validations over the training data. The values

for θ were searched from the set t1, 5, 10, 25, 50, 100u and the initial values for D was

chosen from t0.001, 0.01, 0.1, 10, 100, 1000u. The best parameter value was identified via

internal cross-validation on training data. Once the best parameter value was identified, the

methods were trained on the entire training set using the best chosen parameters, and the

learned model was tested on the test set which was completely separate from the training

procedure. The learning rate η was initialized to a small value of 0.01. The maxIter for

the optimization was set to 5000 iterations.

3.6.2 Evaluation measures

Fβ score for β P t1, 2, 3u is reported since this is a commonly used performance metric

for imbalanced learning. These are simple functions of the precision and recall. The

traditional F-score or F1 score is the harmonic mean of precision and recall that is

considered a balanced measure between precision and recall. For β ą 1 the evaluation

metric rewards higher true positive rates. The sensitivity and specificity evaluation metrics

is also considered, as the objective is to achieve lower false negative with minimum

increase in false positive rates.

3.7 Results

3.7.1 Cost Sensitive Cardiac Arrhythmia Alarms Detection

In this set of experiments, the effectiveness of the proposed method is demonstrated on two

cost-sensitive applications from PhysioNet’s MIMIC II version 3 repository (Goldberger

et al., e 13; Saeed et al., 2011). The objective is to detect true alarms while suppressing

false alarms, where missing true alarms (positive class) is more severe than missing false
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alarms (negative class), since missing true alarm could lead to serious consequences and

risk patients’ lives.

The database is a multi-parameter ICU repository containing patients’ records of up to

eight signals from bedside monitors in Intensive Care Units (ICU). The extracted datasets

contain human-annotated true and false cardiac arrhythmia alarms. A subset of patients’

records was extracted that contained signal from lead ECG II, because it was identified

as the sensor that contained the least number of missing values across the patients. For

each alarm event, a 20-second window prior to the alarm event was extracted similar to

(Roychoudhury et al., 2015).

The dataset is partitioned into four distinct cross-validation datasets, where the model

is trained on 3 folds and tested on the fourth one. In addition to the cross validation

experiment, the entire process of cross-validation is repeated for 10 independent trials

(each trial has 4 distinct partitions on true alarm instances) which results in 40 different

combination of training data. The mean and standard deviation of the evaluation metrics

is then reported.

The two datasets selected are VTACH and CHALLENGE. VTACH consists of true

and false Ventricular Tachycardia alarms from the ICU patients. CHALLENGE dataset is

a mixture of different true and false arrhythmia alarms. The alarms categories are Asystole,

Extreme Bradycardia, Extreme Tachycardia, Ventricular Tachycardia and Ventricular

Flutter/Fibrillation. This dataset was presented at a competition in 2015 organized by

PhysioNet to encourage the development of algorithms to reduce the incidence of false

alarms in the Intensive Care Unit (ICU).

Achieving high true alarm detection rate (TAD) or high sensitivity is important when

suppressing high false alarm rates from bedside monitors in ICU. High false alarm rates

cause desensitization among care providers, thus risking patients’ lives (Drew et al., 2014).

The objective of the prediction task is to provide high false alarms suppression (FAS)

rates (achieve high specificity) while keeping TAD (sensitivity) high. In the two datasets,
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FIGURE 3.2: CS-LTS[‚] vs. LTS[�] vs. BEHAR[‹] in terms of true alarm detection (TAD) and
false alarm suppression (FAS) rates over 2 critical alarm datasets. CS-LTS achieves higher TAD
on both datasets compared to LTS and BEHAR.

(Fig. 3.2) CS-LTS (circle) achieves higher TAD (Y-axis) than LTS (diamond) and the

current state-of-the-art baseline BEHAR (Behar et al., 2013) (star) in the field of critical

alarm detection. FAS (X-axis) is better for LTS (diamond) on both datasets compared to

CS-LTS (circle). However, improving TAD by decreasing FAS is acceptable as missing

true alarms may result in patient fatality. CS-LTS (circle) beats BEHAR (star) in terms

of true alarm detection rate on both the datasets. In terms of false alarm suppression, CS-

LTS achieves comparable performance on VTACH dataset. BEHAR (star) achieves 100%

FAS for CHALLENGE dataset, however, true alarm detection rate is 0. Fig. 3.3 shows the

comparison of Fβ scores for VTACH and CHALLENGE datasets. In both datasets CS-

LTS outperforms LTS with respect to β = 2 and β = 3. This proves that CS-LTS improves

the TAD score on both datasets when compared to LTS.

3.7.2 Balanced time-series Datasets

In this set of experiments, the proposed model attains comparable or better classification

accuracy when compared to state-of-the-art LTS on balanced datasets. So, incorporating

cost sensitive learning does not hurt the optimization algorithm because it automatically

learns the cost sensitive parameters. This is very useful if the intrinsic sensitivity of the

data is not known a priori.
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FIGURE 3.3: Comparison of CS-LTS vs. LTS in terms F1, F2 andF3 scores over 2 false alarm
suppression datasets.

Sixteen binary-class datasets were selected from UCR time-series repository (Chen

et al., 2015). In order to ensure fair comparison with LTS, the default train and test

splits were used. Ten independent runs (with different initialization for both LTS and

CS-LTS) were conducted and the average and standard deviation of the evaluation metric

are reported.

The results of comparing CS-LTS to LTS on the 16 datasets are shown in Fig. 3.4. It

is observed that CS-LTS outperforms or comparable to LTS on all 16 datasets. This set of

experiments highlights the fact that the CS-LTS model provides a good alternative to LTS

as it can handle balanced datasets quite effectively. The proposed method attains higher

sensitivity with little loss of specificity when compared to LTS.

3.7.3 Imbalanced time-series Datasets

In order to highlight the advantage of cost-sensitive learning over cost-insensitive learning,

in this set of experiments, the proposed model was extensively evaluated on 18 highly

imbalanced datasets and compare it with LTS and different over-sampling and under-

sampling methods. The imbalanced time-series datasets were constructed by authors in

Cao et al. (2014) from 5 multi-class datasets from the UCR time-series repository and the
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FIGURE 3.4: F2 and F3 scores between CS-LTS and LTS for 16 balanced time-series datasets.
(Left) In terms of F2 score CS-LTS outperforms or is comparable to LTS in all 16 datasets. (Right)
In terms of F3 score CS-LTS outperforms or is comparable to LTS in all 16 datasets.

Table 3.1: Imbalanced datasets constructed from UCR Repository (Chen et al., 2015) where ˚ is
the index of the original class that is assumed as the positive class

Dataset Training Test Length
#Positive #Negative IM Ratio #Positive #Negative

FaceAll* 80-150 1000 6.7 - 12.5 91-123 977 - 1079 131
SLeaf* 35 450 12.9 40 600 128

TwoPatterns* 200 180 9 1001 - 1106 1894 - 1999 128
Wafer* 200 380-3000 1.9-15 562 - 6220 392 - 3402 152
Yoga* 200 800-900 4 - 4.5 1300 - 1570 730 - 870 426

details are shown in Table 3.1.

The main advantage of CS-LTS over LTS is its superior performance in case of

imbalanced datasets. In Fig. 3.5, it is shown that CS-LTS comfortably outperforms LTS

on all 18 imbalanced datasets in terms of both F1 and F2 scores.

Moreover, in comparison to the state-of-the-art methods for imbalanced time-series

classification, CS-LTS is very competitive. As shown in Table 3.2 in terms of F1 score.

The best method per dataset is shown in bold. The proposed CS-LTS method attains the

highest number of absolute wins (5.86 wins) where a point is awarded to a method if
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FIGURE 3.5: F1 and F2 score between CS-LTS and LTS for 18 imbalanced time-series datasets.
(Left) In terms of F1 score CS-LTS achieves very high accuracy compared to LTS on 15 datasets
and is comparable to LTS in 3. (Right) In terms of F2 score CS-LTS outperforms or is comparable
to LTS in all 18 datasets.

it attains the highest F1 score among the rest of the baseline methods for that particular

dataset. In case of draws, the point is split into equal fractions and awarded to each method

having the highest F1 for a particular dataset.

3.8 Discussion

Amongst the baselines, SPO (Cao et al., 2011), SMOTE (Chawla et al., 2002),

BORSMOTE (Han et al., 2005), ADASYN (He et al., 2008), DB (Guo and Viktor,

2004) and MoGT (Cao et al., 2014) are over-sampling techniques which mostly act as

a preprocessing technique to over sample the rare class examples in order to construct

balanced datasets. Easy (Liu et al., 2009) and Balanced (Liu et al., 2009) are under-

sampling methods which reduces the number of examples from the majority class via

under-sampling the majority class to balance the datasets.

From Table 3.2, it can be inferred that CS-LTS beats LTS and Easy across all datasets

40



Ta
bl

e
3.

2:
C

om
pa

ri
so

n
of

m
ea

n
F
1

sc
or

es
fo

rv
ar

io
us

ba
se

lin
e

m
et

ho
ds

ag
ai

ns
tp

ro
po

se
d

m
et

ho
d.

C
S-

LT
S

ac
hi

ev
es

hi
gh

es
ta

bs
ol

ut
e

w
in

s.
Da

tas
et

SP
O

(C
ao

et
al.

,2
01

1)
Re

pe
at

SM
OT

E
(C

ha
wl

ae
ta

l.,
20

02
)

BO
RS

M
OT

E(
Ha

ne
ta

l.,
20

05
)

AD
AS

YN
(H

ee
ta

l.,
20

08
)

DB
(G

uo
an

dV
ikt

or
,2

00
4)

1M
oG

T
(C

ao
et

al.
,2

01
4)

2M
oG

T
(C

ao
et

al.
,2

01
4)

1N
N

Ea
sy

(L
iu

et
al.

,2
00

9)
Ba

lan
ce

d(
Li

ue
ta

l.,
20

09
)

LT
S(

Gr
ab

oc
ka

et
al.

,2
01

4)
CS

-L
TS

Fa
ce

Al
l1

96
(0

.9)
94

(0
.0)

95
(0

.6)
95

(0
.5)

95
(0

.5)
95

(0
.8)

96
(0

.5)
97

(0
.5)

98
(0

.0)
67

(5
.9)

86
(2

.4)
98

(0
.4)

99
(0.

2)
Fa

ce
Al

l2
93

(1
.0)

83
(0

.0)
88

(0
.5)

88
(0

.7)
88

(0
.8)

92
(0

.4)
90

(0
.5)

86
(0

.8)
83

(0
.0)

76
(3

.2)
93

(1
.3)

93
(0

.4)
95

(0.
4)

Fa
ce

Al
l3

95
(0

.6)
97

(0.
0)

96
(0

.6)
97

(0.
2)

96
(0

.4)
91

(0
.4)

95
(0

.6)
94

(0
.6)

97
(0.

0)
60

(6
.6)

73
(2

.7)
90

(2
.6)

92
(0

.4)
Fa

ce
Al

l4
94

(0
.5)

96
(0

.0)
95

(0
.6)

96
(0

.5)
96

(0
.5)

90
(1

.0)
95

(0
.5)

95
(0

.5)
96

(0
.0)

72
(3

.0)
87

(2
.7)

94
(0

.3)
98

(0.
1)

Fa
ce

Al
l5

96
(0

.4)
97

(0.
0)

97
(0.

1)
97

(0.
1)

97
(0.

2)
95

(0
.3)

97
(0.

2)
95

(0
.3)

95
(0

.0)
85

(2
.5)

92
(1

.1)
95

(0
.4)

97
(0.

1)
SL

ea
f1

83
(0

.8)
81

(0
.0)

79
(1

.4)
79

(1
.6)

79
(1

.6)
81

(1
.6)

87
(2.

1)
83

(1
.7)

57
(0

.0)
54

(5
.1)

50
(4

.4)
4(

20
.2)

49
(1

.8)
SL

ea
f2

96
(1

.0)
94

(0
.0)

95
(0

.7)
96

(0
.0)

96
(0

.4)
96

(0
.0)

98
(0.

7)
95

(0
.3)

91
(0

.0)
85

(6
.7)

87
(3

.9)
96

(1
.5)

98
(0.

5)
SL

ea
f3

88
(1.

6)
83

(0
.0)

83
(1

.0)
83

(1
.1)

83
(1

.1)
82

(0
.5)

84
(0

.7)
84

(1
.4)

66
(0

.0)
66

(5
.6)

54
(6

.6)
0.0

(0
.0)

84
(1

.6)
SL

ea
f4

93
(1.

0)
61

(0
.0)

72
(2

.4)
71

(0
.7)

73
(0

.4)
89

(1
.5)

83
(2

.9)
88

(1
.9)

68
(0

.0)
56

(7
.9)

66
(4

.8)
66

(3
6.7

)
88

(0
.0)

SL
ea

f5
90

(1.
1)

88
(0

.0)
89

(0
.7)

89
(0

.7)
89

(0
.6)

87
(0

.8)
89

(1
.0)

89
(0

.8)
71

(0
.0)

59
(8

.3)
52

(5
.2)

36
(3

.9)
82

(1
.4)

Tw
oP

att
ern

s1
92

(0
.3)

71
(0

.0)
77

(0
.2)

77
(0

.2)
78

(0
.3)

89
(0

.2)
84

(0
.6)

84
(0

.6)
92

(0
.0)

95
(4

.0)
75

(1
.6)

96
(1

.4)
99

(1.
4)

Tw
oP

att
ern

2
78

(0
.7)

65
(0

.0)
68

(0
.3)

68
(0

.1)
68

(0
.2)

73
(0

.2)
75

(0
.5)

81
(0

.6)
89

(0.
0)

31
(2

.4)
68

(1
.2)

51
(1

.7)
72

(3
.4)

Tw
op

att
ern

3
86

(0
.3)

65
(0

.0)
70

(0
.4)

71
(0

.5)
71

(0
.7)

57
(0

.2)
82

(0
.6)

89
(0

.6)
91

(0.
0)

36
(3

.0)
69

(0
.9)

5(
13

.1)
51

(1
1.3

)
Tw

oP
att

ern
4

90
(0

.5)
68

(0
.0)

73
(0

.2)
73

(0
.2)

73
(0

.2)
73

(0
.2)

82
(0

.7)
87

(0
.4)

87
(0

.0)
35

(2
.5)

71
(1

.5)
96

(1
.4)

99
(1.

2)
W

afe
r0

99
(0.

0)
99

(0.
0)

99
(0.

0)
99

(0.
0)

99
(0.

0)
99

(0.
0)

99
(0.

0)
99

(0.
0)

99
(0.

0)
93

(1
.1)

99
(0.

1)
98

(0
.6)

99
(0.

0)
W

afe
r1

99
(0.

1)
99

(0.
0)

99
(0.

1)
99

(0.
0)

99
(0.

1)
99

(0.
1)

99
(0.

1)
99

(0.
1)

98
(0

.0)
93

(0
.8)

98
(0

.6)
97

(1
.6)

99
(0.

1)
Yo

ga
1

89
(0

.2)
88

(0
.0)

90
(0.

1)
90

(0.
2)

90
(0.

2)
88

(0
.0)

88
(0

.1)
88

(0
.2)

83
(0

.0)
59

(2
.5)

85
(0

.6)
24

(1
.7)

70
(0

.9)
Yo

ga
2

91
(0.

2)
90

(0
.0)

91
(0.

1)
91

(0.
1)

91
(0.

1)
91

(0.
0)

90
(0

.1)
91

(0.
1)

86
(0

.0)
61

(2
.5)

87
(0

.7)
5(

0.0
)

81
(1

.7)
Ab

so
lut

eW
ins

3.3
6

0.6
9

0.8
5

1.1
8

0.8
5

0.3
6

1..
86

0.3
6

2.4
2

0
0.0

9
0

5.8
6

41



CD

13 12 11 10 9 8 7 6 5 4 3 2 1

SPO
1MoGT
CS-LTS
2MoGT
ADASYN
BORSMOTE
SMOTE

DB
1NN

REPEAT
LTS

Balanced
EASY

FIGURE 3.6: Critical difference diagram showing average rank of CS-LTS against all baseline
methods on 18 imbalanced datasets.

except 1 dataset (TwoPatterns3) in case of LTS which is a draw. Comparing with other

baseline methods it is seen that CS-LTS has achieved similar accuracy as baseline methods

on more than one datasets (such as wafer0 and wafer1). CS-LTS achieves comparable

results with almost all of the over-sampling methods except for sleaf1 and TwoPatterns3

dataset. Results of CS-LTS on Sleaf1 and TwoPatterns3 certainly outperform LTS by

huge margins; however, due to overlapping data-points in the feature space, it is hard for

a linear model to achieve high classification accuracy in these two datasets. Compared

to under-sampling methods (Easy and Balanced), CS-LTS is better than these baseline

methods on most of the datasets. Another comparable method is the 1-Nearest Neighbor

method (1-NN) which is known to be a good classifier for time-series classification

problems. However, 1-NN computationally suffers from high dimensionality, hence it

is time consuming compared to the proposed method. Moreover, CS-LTS is an easier-to-

interpret method as compared to 1-NN which makes it more desirable to domain experts.
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CS-LTS is an algorithmic approach to solve the imbalanced time-series classification

problem whereas the state-of-the-art methods in this field are data manipulation methods

that use over-sampling and under-sampling techniques, which act as a pre-processing step

to solve the high imbalance time-series classification problem. Fig. 3.6 shows the critical

difference diagram amongst all the baseline methods and CS-LTS.

3.9 Conclusion

In this chapter, the novel perspective of learning generalized shapelets for time-series

classification via a logistic loss minimization is adapted, and the time-series classification

framework is extended to a cost-sensitive framework that can handle highly imbalanced

time-series datasets. In contrast to the baseline model, whose prediction accuracy is biased

towards the abundant negative class, the proposed CS-LTS does not suffer from class

imbalance problem. Extensive experiments on 36 real-world time-series datasets reveal the

proposed method is a good alternative to the baseline model. It can handle both balanced

and imbalanced time-series datasets and achieve better or comparable results against the

current state-of-the-art methods.
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CHAPTER 4

LEVERAGING SUBSEQUENCE-ORDERS FOR
TIME-SERIES CLASSIFICATION

4.1 Introduction

A majority of shapelet discovery methods are focused on univariate time-series data. Only

a handful of methods (e.g., (Cetin et al., 2015; Ghalwash et al., 2013b; Grabocka et al.,

2016)) consider extracting shapelets from multivariate time-series. Both the univariate

and multivariate shapelet discovery methods assume that the extracted shapelets are

independent of each other, neglecting the role of temporal dependency among pairs of

shapelets. For example, in Fig. 4.1, two instances which are colored differently are from

different classes. Shapelet 1 and Shapelet 2 are two potential shapelets extracted from

the dataset. These two shapelets could not distinguish instances from different classes, as

they are present in both instances. However, taking the orders of shapelets into account

could classify these instances correctly. A real-life example is in Intensive Care Units

(ICU) where a patient is connected to multiple health monitoring devices that monitor

the patient’s health by checking heart rate, blood pressure, etc. Temporal patterns from

multiple sensors are often good indicators of the patient’s health status. Therefore, the

order among shapelets is informative in classification.
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Shapelet 1 

Shapelet 1 

Shapelet 2 

Shapelet 2 

Shapelet 2 

Shapelet 1 

FIGURE 4.1: The blue univariate time-series is from class 1, and the red univariate time-series
is from class 2. Shapelet 1 and Shapelet 2 could misclassify either classes, as they are present in
both classes. However, considering pairwise shapelet-orders allows to differentiate the blue from
the red time-series.

In this chapter, a novel scheme, named TimeGap-based-orders, to extract informative

orders among pairwise shapelets by considering the time gap between any pairs of

shapelets is explored. Based on this scheme, a novel model, Pairwise Shapelet-Orders

Discovery (PSOD), which extracts both informative shapelets and shapelet-orders and

incorporates the shapelet-transformed space with shapelet-order space for time-series

classification is proposed. The experiments show that the extracted pairwise shapelet-

orders could refine the class membership confidence, which measures the probability of

belonging to a particular class of a time-series instance, and improve the classification

accuracy.

The proposed model first randomly extracts a subsequence from time-series. If it

is significantly different from the already accepted shapelets and rejected shapelets, it

is considered as a candidate shapelet. Then the order between the candidate shapelet

and any shapelet in the accepted list is evaluated. If the overall classification accuracy

is improved, then the candidate shapelet and the order will be saved into the accepted

shapelet list and order list respectively. Otherwise, if the candidate shapelet alone improves
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the classification performance, then the candidate shapelet will be accepted and the order

candidate will be discarded. The classification performance of PSOD has been evaluated

on both synthetic and real-life datasets.

4.2 Contribution

The main contributions of this chapter are the following:

‚ This is the first study that considers temporal dependency information among pairs of

shapelets and generates pairwise shapelet-orders for use in time-series classification.

‚ One order-generation scheme is explored, which emphasizes the time gap between

shapelets.

‚ A novel model, PSOD, is proposed to extract informative shapelets and pairwise

shapelet-orders together from data. The experimental results provide evidence that when

considering shapelet-orders, classification accuracy is significantly improved on average

over baseline methods.

4.3 Related work

In the field of time-series classification, extracting shapelets to perform classification has

recently received extensive attention (Hou et al., 2016; Roychoudhury et al., 2017; Xing

et al., 2011; Zhang et al., 2016). The minimum distance between a shapelet and a time-

series, namely shapelet transformation (Hills et al., 2014; Lines et al., 2012), is a very

popular feature, and can be used as predictors in the traditional classifier framework.

Therefore, discovering the most discriminative subsequences is crucial for the success

of time-series classification using shapelets.

Search-based techniques (Ghalwash et al., 2014; Ye and Keogh, 2009a) conduct

an exhaustive search of all possible subsequences, which is often intractable for large

datasets. Numerous methods (Grabocka et al., 2016; Karlsson et al., 2016; Mueen et al.,
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2011; Rakthanmanon and Keogh, 2013; Ye and Keogh, 2009a) have been proposed

to speed up the search process for identifying discriminative shapelets from potential

candidates. Alternatively, instead of searching all possible subsequences, generalized

shapelets (Grabocka et al., 2014; Hou et al., 2016; Zhang et al., 2016) are learned from

the data. The above approaches are mainly designed for univariate time-series datasets. A

few studies (e.g. (Bostrom and Bagnall, 2017; Cetin et al., 2015; Ghalwash et al., 2013b;

Grabocka et al., 2016; Karlsson et al., 2016)) have investigated the shapelet procedure for

multivariate time-series datasets.

All the existing shapelet-based approaches only focus on how to select (or generalize)

discriminative shapelets, but ignore the orders among shapelets, which is also an important

ingredient in prediction. Mueen et al. (Mueen et al., 2011) had proposed Logical shapelets,

which are logical combinations of multiple shapelets. Using conjunctive and disjunctive

logical operations, they increased the expressiveness of the shapelets by discovering

logical rules. However, the rules discovered failed to capture the temporal dependency

among shapelets. Moreover, Logical shapelets was proposed for univariate time-series

datasets and the technique of combining multiple shapelets through logical rules from

different dimensions was not discussed. Recently, Patri et al. (Patri et al., 2015) briefly

discussed that the temporal dependency among shapelets on multivariate time-series can

improve classification performance. The idea is to inter-leave time-series segments from

multiple dimensions to form a final concatenated one dimensional time-series. However,

this is only applicable to multivariate time-series. In contrast, a formal generalized method

is proposed to extract the most informative pairwise shapelet-orders that enhance the

confidence of prediction on both univariate and multivariate time-series.

Another direction of analyzing time-series has focused on extracting association rules

among frequent patterns (chung Fu, 2011) from time-series. A common approach is to

first discretize (Das et al., 1998; Leigh et al., 2002; Ting et al., 2006) the time-series data

into segments and convert each segment into a symbol. The rules are then discovered in
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the transformed symbolic domain. The discovery of high quality rules from time-series

was also proposed in (Shokoohi-Yekta et al., 2015). Tatavarty et al. (Tatavarty et al.,

2007) considered the problem of discovering temporal dependencies between frequently

appearing patterns in multivariate time-series. Their work focused on discovering temporal

associations among frequently occurring subsequences from different dimensions by

transforming the time-series to a symbolic representation, whereas, this study focuses on

discovering discriminative shapelets and the temporal gap among them in both univariate

and multivariate time-series data for classification. To the best of my knowledge, this

study is the first work which proposes a formal methodology to extract shapelet-orders and

present an augmented space of shapelets and shapelet-orders. In addition, the proposed

approach is applicable to both univariate and multivariate time-series datasets.

4.4 Method Preliminaries

A time-series dataset composed of I training instances is denoted as T P RIˆDˆL.

Instances are considered to have d p1 ď d ď Dq dimensions where each Ti p1 ď i ď Iq

is of length L (for notation convenience one can assume Ti have equal frequency in all

dimensions and L is fixed, however, the length of time-series can vary among training

instances) and the corresponding label is a nominal variable Yi P t1, ..., CuI . When d “ 1,

the data represents a univariate time-series, while d ą 1 it corresponds to a multivariate

(multidimensional) time-series.

Candidate shapelets S are short subsequences extracted from time-series, which are

discriminative patterns and characterizes the target class. Let skd P S represent the kth

candidate shapelet of length l extracted from dimension d (l is not mentioned in the

notation for simplification). Next, definitions of some terminologies used in this study

are introduced.

Definition 1. Distance between two candidate shapelets Dispsk1 , sk2q: The distance
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between two candidate shapelets sk1 and sk2 of same length l is calculated as

Dispsk1 , sk2q “
b

1
l

řl
p“1ps

k1
p ´ s

k2
p q2, where skp represents the pth value in the candidate

shapelet skd of length l.

Definition 2. Minimum distance (mi,k): The minimum distance mi,k between the time-

series Ti and a candidate shapelet skd is the minimum distance between the candidate

shapelet and any segment of length l extracted from Ti, that is,

mi,k “ min
q“1,...L´l`1

g

f

f

e

1

l

l
ÿ

p“1

pTi,d,p`q´1 ´ skd,pq
2, (4.1)

where Ti,d,p`q´1 represents pp ` q ´ 1qth value in the dimension d in the instance Ti

and skp represents the pth value in the candidate shapelet skd of length l. Note that mi,k is

normalized by dividing shapelet length, so that mi,k is independent of length l.

Definition 3. Shapelet transformation (M): The minimum distance between candidate

shapelets skd and the time-series Ti indicates the degree of similarity between a candidate

shapelet skd and the time-series Ti examples. This representation is known as shapelet-

transformed data (Hills et al., 2014). The representation M P RIˆK reduces the

dimensionality of the original time-series since number of candidate shapelets K is less

than the length of the time-series L.

Definition 4. Start-time (Bk
i ): The start-time of a candidate shapelet skd in Ti is the point

q from which the candidate shapelet skd has minimum distance to Ti, that is,

Bk
i “ argmin

q

g

f

f

e

1

l

l
ÿ

p“1

pTi,d,p`q´1 ´ skd,pq
2 (4.2)

The benefit of using shapelet-orders to correctly classify time-series has been shown

in Fig. 4.1. One straightforward option is to consider the relative position of two candidate
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shapelets in the time-series, that is, whether a candidate shapelet sk1 occurs earlier (or

later) than (or overlaps with) a candidate shapelet sk2 . However, in most cases, the

time gap between two candidate shapelets is much more informative. For example,

if sk1 occurs more than 10 time-points earlier than sk2 , then the instance belongs to

one class. Otherwise, the instance belongs to another class. Simply considering the

relative position between the candidate shapelets fail to handle the time gap between

the candidate shapelets. Therefore, a scheme is proposed, named TimeGap-based-orders,

which considers the time gap between a pair of candidate shapelets. Please note that the

proposed order scheme incorporates and generalizes the scheme of considering the relative

position of two shapelets.

Definition 5. TimeGap gipsk1 , sk2q: Given two candidate shapelets sk1 and sk2 and a time-

series Ti, the time gap between two candidate shapelets is the difference of start-time of

two shapelets in the Ti, that is,

gips
k1 , sk2q “ Bk1

i ´B
k2
i . (4.3)

Note that the candidate shapelets sk1 and sk2 could be either from the same dimension,

or from different dimensions (in case of multivariate time-series datasets), thus d is omitted

in their notations.

4.5 Model Description:

In this section, Pairwise Shapelet-Orders Discovery (PSOD) model for extracting

informative shapelets and pairwise shapelet-orders for time-series classification is

introduced. The proposed model computes the confidence of classifying a time-series

instance to a particular class category. The confidence is calculated from two different

spaces, shapelet-transformed space and shapelet-order space. First the process of

identifying candidate shapelets is discussed, followed by the identification of candidate
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Algorithm 2 Selection of a random candidate shapelet
0: procedure SEARCH

Input: T P RIˆDˆL, Accepted shapelet list A, Rejected shapelet list R, Distance
threshold εd

0: Draw random series: i „ Ut1, ¨ ¨ ¨ , Iu;
0: Draw random dimension: d „ Ut1, ¨ ¨ ¨ , Du;
0: Draw random shapelet length: l „ Ut1, ¨ ¨ ¨ , Lu;
0: Draw random start point: p „ Ut1, ¨ ¨ ¨ , L´ l ` 1u;
0: Randomly selected candidate: sk Ð Ti,d,p:p`l´1;
0: if sk is not similar to any previously accepted shapelets inA as well as any rejected

shapelets inR then;
0: Return sk
0: else
0: R “ RY sk
0: end if
0: end procedure=0

orders. In each case, a confidence measure is introduced to evaluate the quality of a

candidate shapelet as well as a candidate order respectively.

4.5.1 Randomized shapelet candidate extraction:

Inspired from the huge speed up by Grabocka et al. (Grabocka et al., 2016), a similar

shapelets extraction approach to randomly select subsequences from time-series, and

then evaluate it by computing classification accuracy has been considered. The steps to

randomly select a candidate shapelet is summarized in Algorithm 2.

The primary idea of this method is to select a candidate shapelet from randomly

chosen subsequences (lines 3-7) and prune similar candidate subsequences of same length

(lines 8-11). The motivation behind randomly choosing subsequences lies in the fact

that the majority of subsequences from time-series instances are similar, therefore it is

computationally efficient to only consider a small set of non-redundant candidate segments

which are helpful in classification. The distance threshold εd, obtained from the P

percentile of distances between any pairs of random segments from time-series examples

(Grabocka et al., 2016), prunes the search space of similar shapelets. The distance between
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a randomly selected subsequence sk and any shapelet of same length in the accepted set

A as well as rejected shapelets setR is calculated based on Definition 1. If the distance is

larger than the threshold εd, then sk will be considered as a candidate shapelet. Otherwise,

it will be pruned and added inR.

4.5.2 Class membership confidence in shapelet-transformed space:

The shapelet-transformed space is a matrix MIˆK of minimum distances between K

accepted shapelets and I time-series instances where each element of the matrix is mi,k.

For a time-series instance Ti, the shapelet-transformed space is a vector of size 1 ˆ K

denoted as mi. The probability pij of a time-series instance Ti selecting another instance

Tj as its neighbor is calculated using the softmax over Euclidean distances in the shapelet-

transformed space, that is,

pij “
eα||mi´mj ||

2

ř

z“1¨¨¨I,z‰i e
α||mi´mz ||2

, pii “ 0 (4.4)

where α pα ă 0q is a parameter to control the precision of the function. When α is very

small, e.g. α “ ´100, the instance will have a high probability of choosing the instance

with the smallest distance as its closest neighbor, which may make the model biased to the

nearest neighbor.

The class membership confidence pS
i,c of time-series instance Ti for class c in shapelet-

transformed space is the sum of the probability of Ti selecting other instances Tj whose

labels are c, that is,

pS
i,c “

ÿ

Yj“c

pij (4.5)

where Yj “ c represents that the label of time-series instance Tj is class c. Each time-series

instance Ti shall have |C| confidence values and the class with the highest probability shall

be assumed to be the estimated class of the instance Ti.
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FIGURE 4.2: An example of finding a TimeGap-based-order candidate.

Pairwise shapelet-order extraction:

Assume sk1 is an accepted shapelet and sk2 is a candidate shapelet. Before accepting sk2 ,

the potential orders between sk1 and sk2 is extracted using TimeGap-based-order scheme

introduced in Sec. 5.4.

For a pair of shapelets, sk1 and sk2 , the time gap gips
k1 , sk2q between sk1 and sk2

related to an individual time-series instance Ti is calculated based on Eq. 4.3. For I

training instances, a vector xg1psk1 , sk2q, ¨ ¨ ¨ , gIpsk1 , sk2qy of length I is obtained. Then,

the cut-point h P tg1psk1 , sk2q, ¨ ¨ ¨ , gIpsk1 , sk2qu that separates the dataset into two subsets

and maximizes the information gain is chosen. The left subset contains the instances

which satisfy gpsk1 , sk2q ď h, and the right subset contains the instances which satisfy

gpsk1 , sk2q ą h. An illustrated procedure is shown in Fig. 4.2. The entropy of both subsets

are calculated. The one that has the smaller entropy will be selected as a candidate order.

For example, if the entropy of the left subset is smaller, then gpsk1 , sk2q ď h will be

selected as a candidate order, otherwise, gpsk1 , sk2q ą h will be considered as a candidate

order.

Let o represent a candidate order. The class of a candidate order is determined by the

class that has the highest number of instances in the subset with the smaller entropy. For

example, in Fig. 4.2, assume that the left subset has the smaller entropy and the number of
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instances with label`1 is more than the instances with other label, then the candidate order

gpsk1 , sk2q ď h shall be assigned to the class of `1. In this example, o : gpsk1 , sk2q ď h,

and Yo “ `1.

The precision of the candidate order o of Class = c is defined as

P pClass “ c|o existsq “
P po exists|Class “ cq P pClass “ cq

P po existsq
(4.6)

The confidence of the candidate order o of class = c is defined as a product of the

precision of the candidate order and the probability of the intersection that the candidate

order exists and belongs to class c, that is,

Cpoq “ P pClass “ c|o existsq ˆ P pClass “ cX o existsq (4.7)

Both terms in Eq. A.5 are probabilities, thus the confidence measure for order o is a value

between 0 and 1. Eq. A.1 and Eq. A.5 are detailed in Appendix A.

4.5.3 Updating class membership confidence using orders:

Let O denote order space. The class membership confidence pO
i,c of time-series Ti for class

c in the order space is calculated using the confidences of orders of class c that exist in Ti,

pO
i,c “ C

˜

ď

Yon“c X on occurs in Ti

on

¸

(4.8)

For example, suppose two orders of class c exist in instance Ti. The class membership

confidence of instance Ti for class c from the order space is computed as

pO
i,c “ Cpo1 Y o2q “ Cpo1q ` Cpo2q ´ Cpo1

č

o2q

“ Cpo1q ` Cpo2q ´ Cpo1q ˚ Cpo2q
(4.9)

In a general case when there are multiple orders, Eq. 4.8 can be calculated according to

the inclusion-exclusion principle of probability.
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Algorithm 3 Pairwise shapelet-orders discovery - training
0: procedure PSOD-TRAIN

Input: T P RIˆDˆL, Labels Y P CI

Initialize: Accepted Shapelets list A Ð H, Accepted order list O Ð H, Rejected
shapelet listRÐH;

0: for iteration = 1: NILQD
1 do

0: accÐ ACCURACY(A,O );
0: sk Ð SEARCH();
0: tA,Ou Ð EVALUATE(sk, acc);
0: end forReturn A,O;
0: end procedure=0

The initial class membership confidence for each time-series instance is computed in

the shapelet-transformed space using Eq. 4.5. The confidence of the orders provides

further evidence for or against the class membership for each time-series Ti instance to

each class categories. Therefore, the updated class membership confidence of Ti when

orders of class c occur can be computed as following,

P pYi “ c|M,Oq “ pS
i,c ˆ p

O
i,c (4.10)

If no order of class c occurs in Ti, then the class membership probability is penalized

by 1
C

, that is,

P pYi “ c|M,Oq “ pS
i,c ˆ

1

C
(4.11)

This update rule is valid since it can be assumed that prior probability of an example being

from class c is equal to 1
C

.

4.5.4 Pairwise shapelet-orders discovery

The training phase of PSOD is now introduced. The pictorial representation of the

framework is present in Appendix B and the pseudo code is outlined in Algorithm 3.

The model begins by searching a candidate shapelet using SEARCH() function (outlined

in Algorithm 2), and then evaluating the candidate shapelet sk as well as the potential

pairwise shapelet-orders using EVALUATE() (outlined in Algorithm 4). This process
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Algorithm 4 Evaluate candidate shapelets
0: procedure EVALUATE

Input: Accepted shapelet list A, Accepted order list O, Rejected shapelet list R,
current accuracy acc, a candidate shapelet sk;

0: tempAcc1Ð ACCURACY(A, O, sk)
0: tempAcc2 = 0, tempOrder = 0;
0: for m = 1, ¨ ¨ ¨ , |A| do
0: Extract a order candidate om between sk and sm.
0: tempAcc2Ð ACCURACY(A, O, sk, om);
0: if tempAcc2 ątempAcc1 then
0: tempAcc1 = tempAcc2
0: tempOrder = om
0: end if
0: end for
0: if tempAcc1 ą acc and tempOrder ! = 0 then
0: O Ð O

Ť

tempOrder;
0: AÐ A

Ť

tsku;
0: else
0: if tempAcc1 ą acc and tempOrder == 0 then
0: AÐ A

Ť

tsku;
0: end if
0: end if

Return A,O
0: end procedure=0

(lines 5-7) is repeated within a limited number of iterations or stops when the accuracy

of the model in the training set converges. The maximum number of iterations is upper

bounded by the maximum number of candidate subsequences which is the product of the

IˆLˆQˆD for a particular dataset. Q is the number of shapelet lengths to be evaluated.

In Algorithm 3 line 7, EVALUATE() returns an updated list of accepted shapelets

and an updated list of orders. In EVALUATE() (Algorithm 4), a candidate shapelet sk is

first evaluated (line 3) by calculating the classification accuracy (outlined in Algorithm 5).

Then, the potential orders between sk and any already accepted shapelet inA are evaluated

(lines 5-10). Only the candidate order, which yields the highest accuracy compared to

other orders and sk alone, is considered. If the overall classification accuracy is improved,

then the candidate order and the candidate shapelet (lines 11-13) are selected. Otherwise,
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the candidate order is discarded. The candidate shapelet is accepted if it alone improves

the accuracy (lines 15-16). At the beginning, for the first candidate shapelet, the accuracy

is computed only in shapelet-transformed space, as no order exists.

While computing accuracy (outlined in Algorithm 5), if the accepted shapelet-orders

list O is empty, then the class membership confidence is calculated only in the shapelet-

transformed space (line 6). If O is not empty and multiple orders of class c exist in the

instance, then the class membership confidence is calculated based on Eq. 4.10, otherwise,

it is computed according to Eq. 4.11. Note that the class membership confidence is

calculated for each class (Algorithm 5, line 5), and the predicated class of instance Ti

is the class with the highest probability (Algorithm 5, line 12).

The pseudocode of the testing phase of PSOD is outlined in Algorithm 6. For a

test instance T1i, the minimum distances between the K accepted shapelets and T1i are

computed according to Definition 1. The probability of T1i selecting an instance Tj in the

training dataset as its neighbor is computed based on Eq. 4.4, and the class membership

confidence for T1i in shapelet-transformed space is computed using Eq. 4.5. Next, the

selected orders in the order list O will be checked whether they occur in T1i. For class = c,

if some orders belonging to class c occur, the class membership will be updated according

to Eq. 4.10, otherwise, it will be updated based on Eq. 4.11. The class with the highest

membership confidence will be selected as the final predicted class.

4.5.5 Analysis of runtime:

Given a dataset of I training examples of length L having C classes, the total number of

shapelet candidates has an order of OpIL2q. In Eq. 4.5, the class membership confidence

is computed for each class for each time-series. Thus the worst-case time complexity to

identify the best shapelet isOpI2L4Cq. Using the distance threshold εd reduces the number

of total shapelet candidates to an order of OpfIL2q where f is a fraction of the total

candidate shapelets that are evaluated, denoted by f “ #Accepted shapelts`#Rejected shapelets
IL2 .
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Algorithm 5 Classification accuracy
0: procedure ACCURACY

Input: T , Labels Y , Accepted shapelet list A, Accepted order list O, a candidate
shapelet sk and a candidate order o

0: acc “ 0, AÐ A
Ť

tsku, O Ð O
Ť

tou
0: for i “ 1, ¨ ¨ ¨ , I do
0: for c “ 1, ¨ ¨ ¨ , C do
0: P pYi “ c|M,Oq “ pS

i,c ;
0: if |O| ą 0 then
0: if Order of class = c exist then
0: P pYi “ c|M,Oq “ pS

i,c ˆ p
O
i,c;

0: else
0: P pYi “ c|M,Oq “ pS

i,c ˆ
1
C

;
0: end if
0: end if
0: end for
0: Ŷi “ argmaxc P pYi “ c|M,Oq;
0: if Ŷi ““ Yi then
0: acc “ acc` 1;
0: end if
0: end for
0: acc “ acc{I ;
0: AÐ Aztsku, O Ð Oztou
0: Return acc
0: end procedure=0

The time complexity is thus lowered to OpfI2L4Cq. Furthermore, the discovery of

shapelet orders among the accepted shapelets increases the time complexity of the

algorithm. The total number of possible shapelet orders evaluated is upper bounded by

the total number of accepted shapelets. The running time to accept the best candidate

shapelet order isOp#Accepeted shapeletsˆ I ˆCq. Therefore, the overall running time

can be denoted as OpfIL2 ˆ pIL2C ` #Accepted shapelets ˆ I ˆ Cqq. In Table 4.1,

PSOD’s training time is empirically compared with state-of-art shapelet based methods on

different datasets.
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Algorithm 6 Pairwise shapelet-orders discovery - testing
0: procedure PSOD-TEST

Input: T 1 P RITestˆDˆL, T P RITrainˆDˆL, Accepted Shapelets list A, Accepted
order list O;

0: for i = 1: ITest do
0: for j = 1: ITrain do
0: pij “

eα||mi´mj ||
2

ř

z“1¨¨¨I,z‰i e
α||mi´mz ||2

;

0: for c “ 1, ¨ ¨ ¨ , C do
0: P pYi “ c|M,Oq “ pS

i,c “
ř

Yj“c
pij;

0: if |O| ą 0 then
0: if Order of class = c exist then
0: P pYi “ c|M,Oq “ pS

i,c ˆ p
O
i,c;

0: else
0: P pYi “ c|M,Oq “ pS

i,c ˆ
1
C

;
0: end if
0: end if
0: end for
0: end for
0: Ŷi “ argmaxc P pYi “ c|M,Oq;
0: end for
0: Return Ŷ
0: end procedure=0

4.6 Experimental Evaluation

The proposed model1 was evaluated extensively on both univariate and multivariate real-

world datasets. Additionally, two synthetic datasets were used to highlight the advantage

of leveraging shapelet-orders over shapelet information. The univariate datasets were

obtained from the UEA & UCR Time Series Classification Repository (Bagnall et al.,

2017). Details about each univariate datasets can be viewed on repository’s website2.

Moreover, 6 multivariate datasets are chosen that were used in (Grabocka et al., 2016)

to highlight the advantage of shapelet-orders in real-world multidimensional time-series

datasets.

1 Code Link for PSOD: https://bitbucket.org/shoumikrc/psod/src
2 The UEA & UCR Time Series Classification Repository, www.timeseriesclassification.com
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4.6.1 Baselines and experimental setup

The focus of the proposed model is to improve upon shapelet-based classification models

and since there is no existing model which considers orders between shapelets, proposed

method, PSOD, was compared with 5 state-of-art shapelet-based time-series classification

models.

‚ Scalable Shapelet Discovery (SSD) (Grabocka et al., 2016): This method is a fast

procedure to extract random shapelets from the time-series dataset. The proposed PSOD

method generalizes SSD by taking pairwise shapelet-orders into account and this is why

these two methods are compared.

‚ Learning Time-Series Shapelets (LTS) (Grabocka et al., 2014): The LTS generalizes

shapelets, thus it obtains more accurate prediction on most datasets. However, LTS is not

directly applicable to multivariate datasets while PSOD is applicable.

‚ Fast Shapelets (FS) (Rakthanmanon and Keogh, 2013): The FS algorithm discretize and

approximates the shapelets rather than a complete search at each node of the decision tree.

It is also not directly applicable to multivariate time-series datasets.

‚ Naive Shapelets3 (NS) (Patri et al., 2014): This is an naive extension of the FS algorithm

where a d-dimensional multivariate time-series example is converted into d univariate

time-series instances and FS is applied to each equivalent univariate representation to learn

a decision tree independently. The final label is determined via a majority voting scheme.

‚ Shapelet Forests3 (SF) (Patri et al., 2014): The SF algorithm combines the FS algorithm

for univariate time-series to build an ensemble of classifiers, one for each time-series

dimension in the multivariate time-series instances.

The default training and test sets were used in all experiments. The average accuracy

of 5 trials was reported for each method. Three shapelet lengths were used, l P

t0.1L, 0.2L, 0.3Lu. The distance threshold percentile (P ) was set at P “ 0.35 for all

3 We implemented the model as original source code was not available.
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FIGURE 4.3: Average accuracy of FS, SSD, LTS and PSOD on synthetic dataset where orders
between shapelets exist in the data.

datasets. For parameter α, we consider two choices, ´10 and ´100, and chose the best

one through internal cross validation in the training set. All experiments were run on a

windows 10 machine with 32 GB RAM and Intel i7 quad core processor.

4.6.2 Results on synthetic datasets

Two groups of synthetic time-series datasets were generated: (1) the orders of shapelets are

different in two classes; (2) there is no order between shapelets. Two subsequences with

specific patterns were considered. The first one is y “ sinx, x P r0, πs, and the second

one is y “ ´ sinx, x P r0, πs. In the group of synthetic dataset where order matters,

the first pattern always occurs before the second one in the data that is labeled as “Class

1”, whereas the first pattern always occurs after the second one in the data that is labeled

as “Class 2”. A sample of time-series from both classes and two patterns are plotted in

Fig. 4.1. In both synthetic datasets, the start-time of patterns were randomly selected, and

the remaining points in the time-series follow Gaussian distributionN p0, 0.05q. Moreover,

noise sampled from a product distribution comprised of N p0, 0.05q and Up0, 0.25q was

also added to the patterns. The length of time-series is 400, and 20 time-series were

generated for each class in both training and test datasets.

Fig. 4.3 shows the classification accuracy obtained by all baselines and PSOD on
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FIGURE 4.4: Average accuracy of FS, SSD, LTS and PSOD on synthetic dataset where no order
between shapelets exists in the data.

the synthetic dataset where shapelets have different orders in two classes. PSOD has

significantly outperformed all baselines in terms of classification accuracy. As expected,

the accuracies obtained by all baselines are random, as there is no subsequence that could

differentiate the class. Moreover, all baselines and PSOD perform comparable on the

dataset where there is no order among shapelets (Fig. 4.4). Therefore, the benefit of taking

shapelet-orders into account was more evident when temporal dependency among pairs of

shapelets could differentiate the class.

4.6.3 Analysis of percentile (P) parameter

The sensitivity of the distance threshold εd in Algorithm 2 was evaluated on three real-

world datasets. The threshold distance used for pruning similar candidates has a significant

effect on the quantity of rejected candidates. The distance threshold εd is controlled by the

parameter P which denotes the percentile of distances. Larger values of P means that

two subsequences which have large distance will be considered as similar. As indicated in

Fig. 4.5 larger percentile values result in more candidate subsequences being rejected with

a degradation in accuracy (shown in Fig. 4.6).
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FIGURE 4.5: Percentile Vs. % Shapelet rejected

4.6.4 Results on real-world univariate datasets

First, the performance of PSOD was compared versus all the baseline methods on 6

datasets that have a variety of properties in terms of time-series length and number

of classes. The average accuracy and their training time (in brackets) are reported in

Table 4.1. On the first group of datasets, BeetleFly and Earthquark, which have binary

classes and moderate time-series length, PSOD produced much better results than FS and

SSD. Although PSOD and LTS obtained comparable accuracy on Earthquake dataset,

PSOD only took a quarter of LTS’s training time to finish training the model. On the

second group of datasets, HandOutline and StarLingthCu., which have long length, PSOD

produced the most accurate results. The superiority of PSOD compared to LTS with

respect to training time is also more clear. On the third group of datasets, InsetW. and
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FIGURE 4.7: The effect of varying percentile parameter P on (a) number of shapelets rejected
and (b) accuracy.
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FIGURE 4.8: Statistical significance

FaceAll, which have multiple classes, PSOD still outperform FS and SSD with respect to

accuracy. Table 4.1 revealed that (1) although PSOD attained slightly inferior results than
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Table 4.1: Average accuracy (Training time in minutes) of 6 different real-world time-series
datasets.

Dataset C L FS LTS SSD PSOD

BeetleFly 2 512 0.65 (0.3) 0.7 (1.3) 0.7 (0.001) 0.75 (0.2)
Earthquake 2 512 0.71 (27.7) 0.74 (41) 0.68 (1.2) 0.73 (11)
HandOutline 2 2709 0.81 (2051) ą 2 days 0.81 (0.8) 0.86 (627)
StarLightCu. 3 1024 0.91 (131) 0.85 (920) 0.94 (1.5) 0.94 (781)
InsectW. 11 256 0.47 (2.6) 0.60(157) 0.45 (0.3) 0.48 (12)
FaceAll 14 131 0.62 (4.1) 0.74 (303) 0.73 (0.1) 0.73 (26)

LTS, it is efficient. (2) PSOD obtained better (or comparable) classification accuracy than

FS and SSD on all 6 datasets. Although SSD was the fastest, the training time of PSOD is

better than FS and LTS.

Next, the effectiveness of PSOD was evaluated on 75 real-world univariate datasets
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FIGURE 4.10: Improvement over FS

Table 4.2: Average accuracy of NS, SF, SSD and PSOD on 6 multivariate datasets over 5 trials.

Dataset D C L NS SF SSD PSOD

mhealth 23 12 51 - 3431 0.75 0.78 0.73 0.81
Characters 3 20 109 - 205 0.90 0.96 0.97 0.97

HMP 3 21 125 - 9318 0.70 0.73 0.71 0.73
RealDisp 117 33 318 - 5643 0.67 0.69 0.71 0.78
Wafer4 6 2 126 - 146 0.85 0.91 0.87 0.88
ECG3 3 2 68 - 104 0.73 0.75 0.76 0.76

obtained from 7 categories namely ECG, Image, Sensor, Simulated, Spectro, Motion and

Device. The proposed PSOD was compared against FS and SSD only, since LTS is very

costly for longer time-series datasets. The significance test, calculated based on (Demšar,

2006), shows that PSOD is significantly better than FS and SSD at the 5% level (see

Fig 4.8). The percentage of improvement of PSOD over FS and SSD (plotted in Fig. 4.9)
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FIGURE 4.11: Improvement over SSD

shows that across 75 datasets PSOD has significantly improved the classification accuracy.

On average PSOD was 8.9% more accurate than FS and 2.6% better than SSD.

The percentage improvement of PSOD over FS and SSD for datasets from different

categories are shown in Fig. 4.10 and Fig. 4.11 respectively. Clearly, PSOD improved

the classification accuracy for most of the datasets from different categories, especially

from Motion and Device categories. For the few datasets, that PSOD failed to improve

the accuracy, it is possible that the procedure of randomly selecting shapelets may have

selected bad-quality shapelets which decreased the performance of PSOD (discussed in

section 4.6.6). Table 4.1 and Fig. 4.6.4 clearly indicate the superiority of PSOD. For more

detailed results on individual univariate datasets from different categories please refer to

Appendix C.
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4.6.5 Results on multivariate datasets

The proposed model was further assessed on 6 real-world multivariate time-series datasets.

Their characteristics and the average accuracy of 5 trials are shown in Table 4.2. PSOD

was compared with three multivariate time-series classification techniques namely NS, SF

and SSD. Table 4.2 shows that PSOD produced higher or comparable accuracy compared

to three baselines on 5 datasets, except Wafer. PSOD achieves higher accuracy on Wafer

dataset compared to NS by 3% and 1% higher compared to SSD, however SF achieves 3%

higher accuracy than PSOD.

4.6.6 Discussion

From the experiments, it was noticed that (1) in most datasets, PSOD is more accurate

than SSD and FS. The quality of the proposed order extraction schemes is dependent on

the quality of extracted shapelets. Poor quality shapelets may lead to poor quality orders

and consequently result in lower classification accuracy. Since in PSOD, subsequence

candidates are randomly extracted, the quality of shapelets may compromise to speedup

the shapelet extraction procedure. (2) PSOD is applicable to both univariate and

multivariate time-series, especially with shorter length, which is common in many

domains. For longer time-series, the efficiency of PSOD may vary, because the

computational complexity of PSOD increases with the number of potential candidate

shapelets. One future direction is to generate shapelets of good quality by generalizing

subsequences, as well as, developing more efficient methods for learning shapelet-orders

with smaller time complexity.

4.7 Conclusion

In this study, a novel order-generation scheme, TimeGap-based-orders, to capture

temporal dependency among shapelets is proposed, and a novel model PSOD aimed to
4 Balanced binary datasets were used.
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extract both informative shapelets and shapelet-orders is presented. From the extensive

experimental results, it can be inferred that that (1) the PSOD model produces more

accurate classification results compared to state-of-the-art alternatives in majority of the

datasets; (2) the proposed order-generation scheme is generalized, and can identify and

extract shapelet-orders from both univariate and multivariate time-series datasets.
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CHAPTER 5

LEVERAGING TEMPORAL DEPENDENCY AMONG
LEARNED SHAPELETS

5.1 Introduction

The plethora of time-series data collected from a wide range of domains has significantly

increased research interest among data-miners in the realm of time-series classification

(Bagnall et al., 2017). Temporal-ordered data collected at equal intervals are available

from sensor-based domains such as the internet of things (IoT) (Patri et al., 2014), image

outlines (Ye and Keogh, 2009a), spectro-analysis of food products (Bagnall et al., 2012),

trajectories of human motion (Mueen et al., 2011), etc. Moreover, with the increasing

popularity of wearable devices, smart homes, industrial environment monitoring devices

and healthcare devices are just a few under the umbrella domain of IoT that produce time-

series data. In all the aforementioned domains a robust time-series classification model is

imperative that can handle temporal data more akin to real-world challenges.

Among the numerous approaches that have been investigated for developing time-

series classification models, shapelets based methods have garnered much popularity due

to their simplicity and interpretable nature. Shapelets (Ye and Keogh, 2009a) are short

discriminative temporal patterns (subsequences) that encode local variation information.
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Classification models developed using these discriminative time-series subsequences

are highly interpretable and generally achieve better classification accuracy than the

approaches (Bagnall et al., 2017) which use the global properties of the time-series to

determine the category of a time-series.

Numerous methods (such as, (Grabocka et al., 2014, 2016; Hills et al., 2014; Mueen

et al., 2011; Xing et al., 2011; Ye and Keogh, 2009a)) have been proposed to discover

shapelets for classification of time-series data with multiple real-world applications

(Mirowski et al., 2016; Patri et al., 2014; Roychoudhury et al., 2015; Zakaria et al.,

2012). At the most basic level, the shapelet discovery methods can be divided into two

groups. The first group is search-based techniques (Ghalwash et al., 2014; Grabocka

et al., 2016; Ye and Keogh, 2009a) that conduct an exhaustive or randomized search of

all possible subsequences. Alternatively, instead of searching all possible subsequences,

the second group focuses on learning generalized shapelets (Grabocka et al., 2014;

Hou et al., 2016; Zhang et al., 2016) from data. In addition to discovering unique

shapelets, in many scenarios, the temporal interactions between shapelets are also helpful

(informative) for the classification of the category of the time-series (See Fig. 4.1 which

will be discussed later). However, most shapelet discovery methods neglect the temporal

interactions among shapelets as they assume that the extracted shapelets are independent

of each other. A recent work (Roychoudhury et al., 2019) first presented a notion

of time-gap based shapelet-orders to capture the temporal dependency among pairwise

shapelets, and proposed a model called Pairwise Shapelet-Orders Discovery (PSOD)

(Roychoudhury et al., 2019) to extract both informative shapelets and shapelet-orders.

The PSOD model in an iterative manner evaluated the performance of a randomly selected

subsequence and all possible shapelet-orders, and then stores the selected subsequence

(including subsequence-orders) if they improve classification accuracy. However, one

major drawback of PSOD was the random selection of subsequences for candidate shapelet

that could lead to an extraction of non-optimal shapelets and eventually poor quality
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(a) PSOD (b) LOS
FIGURE 5.1: High-resolution melt curves of the rDNA internal transcribed spacer (ITS) region
of numerous strains of three fungi species. Two shapelets can be visually discovered in the
dataset. Both shapelets occur in all three species making it difficult to classify using traditional
shapelet based methods.The shapelet 0 was extracted by the current state-of-the-art method
PSOD (Roychoudhury et al., 2019), and shapelet 1 and shapelet 2 were discovered by the proposed
model LOS. X and Y represent start-time of shapelet 1 in three species, and A,B,C represent
start-time of shapelet 2 in three species.

shapelet-orders.

In this paper, we propose a novel model, Learning pairwise Orders and Shapelet

(LOS), which leverages the time-gap based orders among generalized shapelets. The

underlying hypothesis is that leveraging the temporal dependency information of near-

to-optimal shapelets improves the quality of the shapelet-orders and further improves the

classification performance. Let us explain this using an example. Fig. 4.1 plots the high-

resolution melt curves of the rDNA internal transcribed spacer (ITS) region of numerous

strains in three fungi species. The melt curve of the ITS region is unique to each species

and the curve shapes are conserved across different strains of the same species. It is evident

from the figure that each species has two shapelets in their waveform profiles. Using

traditional shapelet based algorithms (such as LTS (Grabocka et al., 2014)), it would be

impossible to differentiate among three species of fungi, as both red and blue shapelets

occur in all three fungi species. It is observed that the difference in time-gaps between the

two types of shapelets (see Fig. 5.1b) can be leveraged to uniquely identify a fungi species.
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The temporal gap between blue shapelet and red shapelet in case of species 3 pX ´ Cq

is larger than in species 2 pX ´ Bq which in turn is larger than the time-gap in species

1 pY ´ Aq. Thus, taking the temporal gap into consideration we can correctly identify

different species of fungi from the melt curves.

The shapelets extracted by PSOD and LOS and their locations of occurrences for each

fungi species are shown in Fig. 4.1. The PSOD model only extracted one shapelet, which

is shapelet 0 (green subsequence in Fig. 5.1a), and therefore did not extract any order.

The PSOD model’s inability to extract shapelet-orders can be attributed to the randomized

selection of subsequences for candidate shapelets. The randomized approach is susceptible

to the selection of sub-optimal shapelets, and consequently affects the quality of shapelet-

order. In contrast to PSOD, the proposed model LOS identified shapelet 1 and shapelet

2 (red and blue shapelets), and their corresponding time-gap based order information.

The classification accuracy obtained by PSOD on the Fungi dataset is 0.33, and obtained

by LTS, the shapelet-learning model, is 0.55. However, the proposed model reached an

accuracy of 0.85 on the Fungi datset (See Table 5.1 in Sec. 5.6).

The proposed model significantly extends the learning shapelet framework (such as

LTS (Grabocka et al., 2014)) to jointly learn generalized shapelets and extract informative

shapelet-orders among pairwise shapelets. In order to demonstrate the novelty of the

proposed model, we consider a variant of the proposed model. The alternative model

named as LTS`o consists of two steps. The first step simply applies the shapelet

learning model LTS to learn shapelets, and the second step applies a logistic regression

model to learn the weights of learned shapelets and the orders among learned shapelets.

Additionally, a randomized subsequence initialization for learning generalized shapelets

is proposed, instead of the costly k-means algorithm that is used by all existing shapelet

learning frameworks, allowing the proposed model to be more scalable than the traditional

shapelet learning approaches. The experiments on both synthetic and real-world datasets

shows the effectiveness and efficiency of the proposed model.
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5.2 Contribution

The contributions of this chapter are the following:

‚ This study considers temporal dependency information among pairs of learned

generalized shapelets and generates pairwise shapelet-orders among learned shapelets

for use in time-series classification.

‚ A model, Learning pairwise Orders and Shapelet (LOS), is proposed to jointly learn the

generalized shapelets (highly interpretable patterns) and extract shapelet-orders from data.

An optimization problem is proposed which jointly learns shapelets and the classification

hyperplane weights.

‚ A randomized subsequence initialization is considered to allow the model to scale to

large datasets.

5.3 Related work

Extracting shapelets for time-series classification has garnered a lot of attention (Hou et al.,

2016; Roychoudhury et al., 2017; Xing et al., 2011; Zhang et al., 2016) in the time-series

community. The shapelet transformed data (Hills et al., 2014; Lines et al., 2012) which

represents the minimum distance between shapelets and the time-series instances can be

used as predictors in a traditional classification framework. Therefore, the overall success

of time-series classification using shapelets is highly dependent on the discovery of the

most discriminative subsequences.

The brute-force search based approaches (Ghalwash et al., 2014; Ye and Keogh, 2009a)

for discovering shapelets is often intractable in case of datasets having very long time-

series. A number of speedup techniques (Grabocka et al., 2016; Karlsson et al., 2016;

Mueen et al., 2011; Rakthanmanon and Keogh, 2013; Ye and Keogh, 2009a) have been

proposed to scale the search process for identifying discriminative subsequences from

potential shapelet candidates. An alternative to the searching procedure for candidate
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shapelets is the learning of generalized shapelets. The Learning Time-series Shapelets

(LTS) approach (Grabocka et al., 2014) jointly learns generalized shapelets along with

weights of a logistic regression model using the shapelet-transformed data as predictors.

Successively, (Hou et al., 2016) and (Zhang et al., 2016) have also proposed alternative

procedures for learning generalized shapelets. These methods significantly improve

prediction accuracy compared to other shapelet-searching-based time-series classification

models. Additionally, randomized approaches (e.g., (Grabocka et al., 2016) and (Karlsson

et al., 2016)) have also been proposed and have shown robust classification performance

in terms of accuracy and speedup.

Most of the existing shapelet-based time-series classification methods focus on how

to search (or learn) discriminative shapelets and ignore the temporal dependencies among

shapelets, which is also an important feature in some time-series applications. Mueen et

al. (Mueen et al., 2011) had proposed Logical shapelets, which are logical combinations

of multiple shapelets. The shapelets’ expressiveness were enhanced using conjunctive

and disjunctive logical operations that helped to discover logical rules. However, these

discovered rules failed to capture the temporal dependency among shapelets. Patri et al.

(Patri et al., 2015) discussed how temporal dependency among shapelets on multivariate

time-series datasets can improve classification performance. A concatenated univariate

time-series was generated by inter-leaving time-series segments from multiple dimensions.

However, this approach was only applicable to multivariate time-series datasets.

An alternative direction of analyzing interactions among temporal patterns has focused

on extracting association rules among frequent patterns (chung Fu, 2011). A general

approach is to first discretize (Das et al., 1998; Leigh et al., 2002; Ting et al., 2006) the

time-series data into segments and convert each segment into a symbol. In the transformed

symbolic domain high quality rules (Shokoohi-Yekta et al., 2015) are discovered.

Tatavarty et al. (Tatavarty et al., 2007) proposed discovering temporal dependencies

between frequently appearing patterns in multivariate time-series. Their work focused on
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discovering temporal associations among frequently occurring subsequences in different

dimensions by transforming the time-series into a symbolic representation. On the

contrary, we focus on learning discriminative and unique shapelets (patterns) and

leverage the temporal gap among learned shapelets for classification.

Recently, Pairwise Shapelet Order Discovery (Roychoudhury et al., 2019) was

proposed as a formal generalized method to extract temporal dependency among pairs

of informative shapelets. The proposed method jointly extracts informative shapelets and

the most informative pairwise shapelet-orders that enhance the confidence of prediction

on both univariate and multivariate time-series. However, the randomized selection

of time-series subsequences for candidate shapelets could lead to selection of non-

optimal shapelets that could further lead to generation of poor quality shapelet-orders.

In this paper, the learning generalized shapelets framework is extended by augmenting

the shapelet-transformed space with the shapelet-order space, and propose the step of

randomly initializing subsequences to increase the model’s scalability.

5.4 Method Preliminaries

A multi-class time-series dataset composed of I training examples denoted as T P RIˆN

is considered, where each Ti p1 ď i ď Iq is of length N and the label for each time-series

instance is a nominal variable Y P t0, ¨ ¨ ¨ , CuI . The objective is to learn K shapelets

S, each of length L, that are most discriminative in order to characterize the target class,

and their order information. The shapelets are denoted as S P RKˆL. Next, some key

terminologies are introduced that are used in this paper.

Definition 6. Minimum distance (Mk
i ): The minimum distance Mk

i between the time-

series Ti and a candidate shapelet Sk is the minimum distance between the candidate
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shapelet and any segment of length L extracted from Ti, that is,

Mk
i “ min

j“1,...,J

1

L

L
ÿ

l“1

pTi,j`l´1 ´ S
k
l q

2 (5.1)

where, Ti,j`l´1 represents pj ` l ´ 1qth value in the instance Ti and Skl represents the lth

value in the candidate shapelet Sk of length L. Note that Mk
i is normalized by dividing

shapelet length, so that Mk
i is independent of length L.

Definition 7. Shapelet-transform space (M): The minimum distance between candidate

shapelets Sk and the time-series Ti indicates the degree of closeness between a candidate

shapelet Sk and the time-series Ti examples. Given a set of I time-series examples and

K shapelets, a matrix M P RIˆK can be constructed which is composed of minimum

distances Mk
i between the ith series Ti and the kth shapelet Sk. This representation is

known as shapelet-transformed data (Hills et al., 2014). The representation M (shown

in Eq. 5.2) reduces the dimensionality of the original time-series since the number of

candidate shapelets K is less than the length of the time-series N .

M “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

S1 S2 . . . SK

M1
1 M2

1 . . . MK
1

... M2
2 . . . MK

2

...
... . . . ...

M1
I . . . . . . MK

I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(5.2)

Definition 8. Start-time (Bk
i ): The start-time of a candidate shapelet Sk in Ti is the

point j from which the candidate shapelet Sk has the minimum distance to Ti, that is,

Bk
i “ argminj

1
L

řL
l“1 pTi,j`l´1 ´ S

k
l q

2. The matrix B is a matrix of start-times Bk
i where

shapelet Sk has minimum distance with time-series example Ti
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B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

S1 S2 . . . SK

B1
1 B2

1 . . . BK
1

... B2
2 . . . BK

2

...
... . . . ...

B1
I . . . . . . BK

I

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(5.3)

Definition 9. Time-gap GipS
k1 , Sk2q: Given two shapelets Sk1 and Sk2 and a time-series

Ti, the time-gap between two shapelets is the difference of start-times of the two shapelets

in the Ti normalized by the length of the time-series, that is,GipS
k1 , Sk2q “ 1

N
pBk1

i ´B
k2
i q.

Definition 10. Shapelet-order space (G): Given K shapelets and I time-series examples,

the shapelet-order space G P RIˆKpK´1q
2 represents the time-gaps among K pairwise

shapelets. K pairwise time-gaps results in KpK´1q
2

shapelet-orders which capture the

temporal interaction among the K candidate shapelets.

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

O1 O2 . . . O
KpK´1q

2

G1pS
1, S2q G1pS

1, S3q . . . G1pS
K´1, SKq

... G2pS
1, S3q . . . G2pS

K´1, SKq

...
... . . . ...

GIpS
1, S2q . . . . . . GIpS

K´1, SKq

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(5.4)

5.5 Model Description

The details of the Learning pairwise Orders and Shapelet (LOS) model is introduced.

In the LOS model, the probability of classifying a time-series instance to a particular

class category is estimated using a linear function which is a linear combination of

two different spaces, shapelet-transformed space and shapelet-order space. First, the

linear learning function is discussed, followed by the definitions of gradients to learn
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the generalized shapelets and the parameters for the classification model. Furthermore,

a fast temporal subsequence initialization procedure is introduced for learning generalized

shapelets. Finally, an alternative model is presented that extends the predictive function

with a weighted linear combinations of the two feature spaces.

5.5.1 Learning Objective

A linear learning function is proposed (Eq. 5.5) where the predicted target value Ŷi is

estimated jointly from the shapelet-transform space and the shapelet-order space. For ease

of explanation the learning model is described using binary targets (Y P t0, 1u) with the

fixed shapelet length of L. The minimum distances Mk
i PM and the time-gaps Gh

i PG are

used as predictors for approximating the value of Ŷi.

Ŷi “
K
ÿ

k“1

Mk
i W

k
M `

KpK´1q
2
ÿ

h“1

Gh
iW

h
G, (5.5)

where W k
M and W h

G are the linear weights (parameters) to be learned for determining

the classification hyperplane. A logistic regression framework is leveraged to learn the

parameters of the learning function. The logistic loss function LpY, Ŷ q “ ´Y lnσpŶ q ´

p1´Y qlnp1´σpŶ qq is used to estimate the loss between the true targets Y and the predicted

targets Ŷ . A regularized logistic loss function denoted by F is setup as the optimization

function and is defined as:

argmin
S,WM ,WG

FpS,WM ,WGq “ argmin
S,WM ,WG

I
ÿ

i“1

LpYi, Ŷiq ` λWM
}WM}

2
` λWG

}WG}
2 (5.6)

The objective of the learning algorithm is to learn generalized shapelets Sk, the weights

WM , WG for the hyperplane. Once generalized shapelets are updated, their corresponding

shapelet-order space G are updated as well. A Stochastic Gradient Descent (henceforth

SGD) approach is adopted to solve the optimization problem. The SGD algorithm
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optimizes the parameters to minimize the loss function by updating through per instance

of the training data. Thus, the per-instance decomposed objective function is denoted as

Fi “ Lpyi, ŷiq `
λWM
I

řK
k“1pw

k
Mq

2 `
λWG
I

ř

KpK´1q
2

h“1 pwhGq
2.

Gradients

The SGD algorithm requires definitions of gradients of the objective function with respect

to shapelets Sk, hyperplane weights WM and WG. However, according to Def. 5.1 Mk
i is

not a continuous function and thus non-differentiable. Instead, Mk
i can be approximated

using its soft-minimum approximation which is defined as

Mk
i ≈ M̂k

i “

řJ
j“1D

k
i,j exppαD

k
i,jq

řJ
j“1 exppαD

k
i,j
q

(5.7)

where Dk
i,j is defined as the distance between the jth segment of series i and the kth

shapelet given by the formula Dk
i,j “

1
L

řL
l“1pTi,j`l´1 ´ Skl q

2. Similarly, the start-time

Bk
i defined in Def. 8 is also not differentiable. However, the soft-minimum version of Bk

i

expressed as

Bk
i ≈ B̂k

i “

řJ
j“1 j exppαD

k
i,jq

řJ
j“1 exppαD

k
i,j
q

(5.8)

can be used instead.

Next, the gradient definitions required by the model to solve the optimization problem

are introduced. The point gradient of the objective function for the ith time-series with

respect to shapelet Sk at point l is defined as

BFi
BSkl

“
BLpYi, Ŷiq
BŶi

BŶi

BM̂k
i

J
ÿ

j“1

BM̂k
i

BDk
i,j

BDk
i,j

BSkl
. (5.9)

The derived expressions for the partial derivatives of each component in Eq. 5.9 are defined
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Algorithm 7 Learning pairwise Orders and Shapelets
0: procedure LOS

Input: T P RIˆN , Number of shapelets K, length of a shapelet L, Regularization
parameter λWM

,λWG
, Learning rate η, maxIter

Initialize: Shapelets S P RKˆL, classification hyperplane weights WM P RK , WG P

R
KpK´1q

2 ,
0: for iterations = NmaxIter

1 do
0: for i “ 1, ..., I do
0: for k “ 1, ..., K do
0: W knew

M Ð W kold

M ´ η BFi
BWk

M

0: for l “ 1, ..., L do
0: Sk

new

l Ð Sk
old

l ´ η BFi
BSkl

0: end for
0: end for
0: for h “ 1, ..., KpK´1q

2
do

0: W knew

G Ð W kold

G ´ η BFi
BWk

G

0: end for
0: end for
0: end for

Return S,WM ,WG

0: end procedure=0

as,

BLpYi, Ŷiq
BŶi

“ ´pYi ´ σpŶiqq,
BŶi

BM̂k
i

“ Wk

BM̂k
i

BDk
i,j

“
exppαDk

i,jp1` αpD
k
i,j ´ M̂

k
i qqq

řJ
j“1 exp pαD

k
i,j
q

,
BDi,k,j

BSkl
“

2

L
pSkl ´ Ti,j`l´1q

The hyperplane weights WM and WG are learned by minimizing the objective function

in Eq. 5.6 via SGD. The gradients for updating the weights W k
M and W h

G is defined as

BFi
BWk

M
“ ´pYi´σpŶiqqM̂

k
i `

2λWM
I

W k
M and BFi

BWh
G
“ ´pYi´σpŶiqqĜ

h
i`

2λWG
I
W h
G respectively.

The steps of the proposed learning algorithm for time-series classification are shown

in Algorithm 7. The pseudocode shows that the procedure updates all K shapelets and the

weights WM , WG by a learning rate η.
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5.5.2 Random initialization vs. k-means clustering

Gradient based optimization techniques are heavily dependent on good initialization of

parameters especially when applied to a non-convex learning functions. Traditional

shapelet learning frameworks (Grabocka et al., 2014; Hou et al., 2016; Zhang et al.,

2016) have applied k-means clustering algorithm to issue the k centroids of all time-series

segments of a given length as the initial subsequences for learning generalized shapelets.

However, k-means clustering is known to be time consuming method and does not scale

well to large time-series datasets. In order to speed-up the subsequence initialization

process, a random initialization process is proposed which consists of generating sine and

cosine waveforms of a given length with the frequency component randomly chosen from

a uniform distribution between 0 and 1. The choice of initialized subsequences for shapelet

learning is justified since it has been established in the time-series research community that

clustering time-series subsequences leads to a discovery of cluster centers patterns that are

sine waves (Keogh and Lin, 2005).

5.5.3 Extended Model (LOSγ)

In the proposed linear predictor function (Eq. 5.5), the shapelet-transform space encodes

the similarity between the learned shapelets and the time-series instances, and the shapelet-

order space provides the temporal dependency information among the learned pairwise

generalized shapelets. Without prior knowledge on the contribution of the shapelet-

transform space and the shapelet-order space, it is difficult to leverage the importance

of the features from these two spaces. Thus, the proposed LOS model is extended with

two additional weight parameters (γ1 and γ2) as shown in Eq. 5.10. The extended model

is termed as LOSγ .

Ŷi “
K
ÿ

k“1

γ1M
k
i W

k
M `

KpK´1q
2
ÿ

h“1

γ2G
h
iW

h
G (5.10)
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The parameters γ1 and γ2 are the weights from each of the feature spaces and control

the amount of influence the predictors of each space has on the final outcome of the target

variable. The learning problem is re-formulated as a constrained optimization problem

since the weight parameters γ P tγ1, γ2u values should always be positive. Moreover,

the values of the parameters can be forced to be fractional by enforcing the parameter

constrain of γ1 ` γ2 “ 1. These constraints allows us to measure the contributions of

both parameters towards the final prediction value of Ŷ . Learning these weights provides

an alternative capability in understanding the influences of the shapelet-transform space

and the shapelet-order space respectively. The constrained optimization function can be

written as

argmin
S,W,γ

FpS,WM ,WG, γq

subject to γ1 ` γ2 “ 1, γ1 ą 0, γ2 ą 0.

(5.11)

The previous gradient definitions also gets updated due to this new re-formalization as

BŶi

BM̂k
i

“ γ1Wk,
BFi
BW k

M

“ ´γ1pYi ´ σpŶiqqM̂
k
i `

2λWM

I
W k
M ,

and
BFi
BW h

G

“ ´γ2pYi ´ σpŶiqqĜ
h
i `

2λWG

I
W h
G.

The learning procedure for estimating the space contribution parameters in the

proposed framework is a constrained optimization problem because we need to guarantee

that γ1 ą 0, γ2 ą 0 and γ1 ` γ2 “ 1. However, the SGD algorithm can only be applied to

solve unconstrained optimization problems. Thus, we convert the constrained optimization

into an unconstrained optimization similar to (Radosavljevic et al., 2010) and apply the

SGD algorithm to solve the optimization problem for learning the optimal space weight

parameters. The γ2 parameter is first written in terms of γ1 ( γ2 “ 1´ γ1) and replaced in

equation (5.11) changing the optimization problem to Eq. 5.12.
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argmin
S,W,γ1

FpS,WM ,WG, γ1q subject to γ1 ą 0 (5.12)

The objective function is then minimized with respect to log γ1 instead of γ1. As a result,

the new optimization problem becomes unconstrained. The derivative of the new objective

function with respect to log γ1 in gradient descent is computed as: BFi
B log γ1

“ γ1
BLpYi,Ŷiq
Bγ1

,

where BLpYi,Ŷiq
Bγ1

“
řK
k“1M

k
i W

k
M ´

ř

KpK´1q
2

h“1 Gh
iW

h
G.

5.6 Experimental Evaluation

The proposed model was evaluated extensively on 14 real-world datasets obtained from the

UEA & UCR Time Series Classification Repository (Bagnall et al., 2017). Details about

each dataset can be viewed on the repository’s website1. Additionally, three synthetic

datasets were used to highlight the advantage of leveraging shapelet-orders over shapelet

information.

5.6.1 Baseline methods

The performance of the proposed LOS model was compared with the following baseline

models.

‚ Fast Shapelets (FS) (Rakthanmanon and Keogh, 2013): This is an extension of the

decision tree shapelet approach that speeds up the shapelet discovery task. The FS

algorithm discretize and approximates the shapelets rather than a complete search at each

node of the decision tree.

‚ Scalable Shapelet Discovery (SSD) (Grabocka et al., 2016): This method is a fast

procedure to extract random shapelets from the time-series dataset.

‚ Learning Time-Series Shapelets (LTS) (Grabocka et al., 2014): The LTS learns

shapelets instead of searching from the time-series data.

1 The UEA & UCR Time Series Classification Repository, www.timeseriesclassification.com
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‚ Pairwise Shapelet Order Discovery (PSOD) (Roychoudhury et al., 2019): The PSOD

method generalizes SSD by taking pairwise shapelet-orders into account.

In addition, three variants of the proposed model is considered.

‚ LTS`o: The LTS`o model simply extends the LTS model. It first applies LTS to learn

generalized shapelets, and then learn the weights of shapelets and the weights of shapelet-

orders of the learned shapelets through a logistic regression framework.

‚ LOSkmeans: The shapelets were initialized using k-means centroids of all subsequences.

‚ LOSγ: Extending LOS by modeling weight parameters controlling the contribution

from two feature spaces.

5.6.2 Experimental setup

For each method the average accuracy of 10 iterations was recorded. The default training

and test sets were used in the first iteration in all experiments. Then the train and test sets

were re-sampled in the following iterations. Each re-sample was same for each algorithm

and the re-samples were forced to retain the initial train and test sizes. Moreover, the re-

samples were stratified to retain the same class distribution as the default train and test

sets.

The minimum length (Lmin) of a shapelet is set to be 10 % of the length of the time-

series examples. The total number of segments was computed as Lmin multiplied

by the number of training time-series. The number of shapelets used as input for the

optimization function was determined usingK “ logptotal number of segmentsq. Three

scales tLmin, 2 ˆ Lmin, 3 ˆ Lminu of subsequence lengths were investigated. The weight

parametersWM andWG were initialized randomly around 0. γ1 was randomly picked from

a uniform distribution between 0 and 1. The parameter α, for the soft-max approximation

of minimum distances and start-times was set to ´100.
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(a) Synthetic 1 (b) Synthetic 2

(c) Synthetic 3
FIGURE 5.2: Three synthetic datasets were used to highlight the advantage of leveraging shapelet-
orders over shapelet information. Fig. 5.2a and Fig. 5.2b shows a binary class and multi-class
dataset respectively where the order among shapelets exist and differentiate the class of the time-
series examples. Fig. 5.2c shows a multi-class synthetic dataset where all the time-series examples
can be identified by a unique pattern.

5.6.3 Synthetic datasets

Two groups of synthetic time-series datasets were generated. In the first group, two sets

of synthetic datasets were generated where the orders of shapelets are different among

different classes of time-series. In the first dataset, (Fig. 5.2a) binary class synthetic

time-series examples were generated where two subsequences with a specific pattern were

considered. The first pattern is y “ sinx, x P r0, πs and is denoted as S1, and the second

pattern is y “ ´ sinx, x P r0, πs and denoted as S2. In this dataset, S2 always occurs more

than 100 time points after the occurrence of S1 in the red class, whereas in the blue class
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FIGURE 5.3: Average accuracy of synthetic time-series datasets.

the time difference between the two patterns is always less than 100. In the second dataset

(Fig. 5.2b), three patterns P1, P2 and P3 were generated. A multi-class time-series dataset

was generated where in the red class P1 always occurred before P2 and P3 always occurred

after P2. In a similar fashion for the blue class in Fig. 5.2b pattern P2 always occurs before

pattern P1 and P3 always occurs after pattern P1. In case of the green class time-series

pattern P3 always occurs before P1 which is followed by pattern P2. In the second group,

a multi-class synthetic time-series dataset was generated. The red class only contained P1,

the blue class only contained P2 and the green class had both P1 and P3 although the order

among P1 and P3 did not matter and both patterns were randomly placed. In all synthetic

datasets, the start-time of patterns were randomly selected, and the remaining points in

the time-series follow Gaussian distributionN p0, 0.05q. Additionally, noise sampled from

a product distribution comprised of N p0, 0.05q and Up0, 0.25q was added to the patterns.

The length of time-series is 400, and 20 time-series were generated for each class in both

training and test datasets.

5.6.4 Results on synthetic datasets

Fig. 5.3 shows the average classification accuracy obtained by all baselines, LOS and all

LOS variants on the synthetic datasets where shapelets have different orders. LOS, LOSγ

and LOSKmeans have significantly outperformed all baselines in terms of classification

accuracy. PSOD attains a high average accuracy of 0.96 on Synthetic 1 dataset however,

due to the random selection of candidate shapelets, PSOD looses performance in the more
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complicated Synthetic 2 dataset (average accuracy of 0.85) where three unique patterns are

present in the data and examples of each class have a combination of temporal dependency

among the three shapelets. LOS, LOSγ and LOSKmeans on the other hand can handle the

more complicated scenario in Synthetic 2 dataset to attain an a high average accuracy

between 0.96 ´ 0.99. The LTS`o model learns shapelets and considers shapelet-order as

well. However, it executes in a two separate steps. The accuracy obtained by LTS`o is

a near random guess. This verifies the superiority of LOS, which jointly learns shapelets

and orders. As expected, the accuracy obtained by FS, SSD and LTS on Synthetic 1 and

Synthetic 2 datasets are random, as there is no unique subsequence that can differentiate

the categories of the time-series examples.

All baselines and the variants of LOS model perform comparable on the Synthetic

3 datasets where there is no order among shapelets (as shown in Fig. 5.2c). Therefore,

the benefit of taking shapelet-orders into account was more evident when temporal

dependency among pairs of shapelets could differentiate the class. Also leveraging the

shapelet-orders among learned shapelets allows us to improve the classification accuracy

due to the extraction of shapelet-orders among generalized shapelets.

5.6.5 Results on real-world datasets

The performance of LOS was compared against all the baseline methods on 14 real-world

datasets that have a variety of properties in terms of time-series length and the number of

classes. The average classification accuracy is reported in Table 5.1. The first group of

datasets are binary class datasets. LOS attained the better or comparable accuracy in 4 out

6 binary class datasets when compared to baseline models. Although, on the Wine dataset

FS is clearly a winner, LOS attains better performance against SSD, LTS and PSOD. On

the second group of datasets, which have multiple classes, LOSKmeans either outperformed

or attained comparable performance as the baselines with respect to accuracy.
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Table 5.1: Average accuracy on real-world time-series datasets.
Dataset N C LOS LOSγ LOSKMeans LTS`O LTS PSOD SSD FS

Binary class datasets

DistPOutCo. 80 2 0.79 0.75 0.75 0.77 0.77 0.68 0.73 0.72
PowerCons 144 2 0.88 0.85 0.82 0.88 0.87 0.86 0.83 0.83

GunPoiMVsF 150 2 0.99 0.98 0.98 0.98 0.98 0.97 0.96 0.94
Wafer 152 2 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.99
Wine 234 2 0.59 0.57 0.52 0.54 0.52 0.50 0.50 0.75

Worm2Class 900 2 0.68 0.60 0.68 0.71 0.75 0.57 0.65 0.68

Multi-class datasets

DistPXTW 80 6 0.64 0.64 0.65 0.62 0.65 0.65 0.57 0.62
2Patterns 128 4 0.96 0.96 0.97 0.70 0.97 0.96 0.97 0.92
ECG5000 140 5 0.92 0.92 0.94 0.90 0.92 0.93 0.92 0.92

Plane 144 7 0.98 0.98 0.99 0.94 0.99 0.98 0.96 0.99
Fungi 201 18 0.69 0.79 0.85 0.63 0.55 0.33 0.28 0.56
Meat 448 3 0.91 0.90 0.92 0.73 0.89 0.91 0.91 0.83
Beef 470 5 0.57 0.55 0.59 0.48 0.57 0.55 0.5 0.56

OliveOil 570 4 0.66 0.53 0.73 0.41 0.41 0.44 0.65 0.73

5.6.6 Training time analysis

The proposed LOS and LOSγ not only improves accuracy, but also reduces the amount

of time it requires to train the model, thus allowing the proposed models to scale to

large time-series datasets. We first analyzed how the accuracy and running time of these

two models vary compared to LOSKmeans, LTS`o and LTS with respect to increasing

the number of shapelets (K) on Synthetic 1 dataset. In Fig. 5.4, the accuracy of five

methods was plotted as the number of shapelets (K) is increased and also the training

time (Fig. 5.5). We observed that at the beginning, the accuracy of LOS (blue line),

LOSγ (red line) and LOSKmeans (yellow line) increases as the number of shapelets learned

in the model is increased, and then converges to a stable value. However, with the

increasing number of shapelets the performance of LTS`o (green line) and LTS (purple

line) in terms classification accuracy do not improve. The primary reason for this is that

Synthetic 1 dataset has order in the time-series (see Fig. 5.2a). Moreover, increasing K

only slightly increases the running time for LOS (blue line) and LOSγ (red line) in Fig. 5.5.

LOSKmeans, LTS`o and LTS that use the k-means clustering algorithm for the initialization
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FIGURE 5.4: Analysis of Test set accuracy on Synthetic 1 dataset with increasing K.

of subsequences increase the training time by 4 folds for every value of K and becomes

costlier with increasing K value.

In Fig. ?? the training time vs. test accuracy is compared on three real time-series

datasets of different lengths. The blue bar indicates the test accuracy and the black dot

represents the running time for a model. The results indicate that the proposed LOS

and LOSγ attains similar or better accuracy with faster training time when compared to

LOSKmeans, LTS and LTS`o. For example, in the Worm2Class dataset (Fig. 5.6), both

LOS and LOSKmeans achieved an accuracy of 0.68 however, the running time of LOS

was 14 minutes compared to 30 minutes for LOSKmeans. For the Beef dataset (Fig. 5.8),

LOSKmeans achieved an accuracy of 0.59 with a run-time of 12.5 minutes, whereas, LOS

achieved a comparable accuracy of 0.57 with reduced run-time of 8.8 minutes. LOS and

LOS`o always take more time than LOS. Table 5.1, Fig. 5.6, Fig. 5.7 and Fig. 5.8 together

show that LOS can achieve the best (or the second best) accuracy with the smallest training

time.
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FIGURE 5.5: Analysis of Training time on Synthetic 1 dataset with increasing K.

5.7 Conclusion

A novel perspective of jointly learning generalized shapelets and leveraging shapelet-

orders that capture the temporal dependency among pairwise learned shapelets is proposed

for time-series classification. The shapelet-transformed space is augmented with the

shapelet-order space, and both shapelets and shapelet-orders are jointly learned from the

data. Many applications account for class discrimination via the temporal dependency of

shapelets as discussed in the paper. From the experimental results on the synthetic datasets,

we found that the LOS and its variants produce more accurate classification results

compared to PSOD which is the state-of-the-art method for leveraging shapelet-orders in

the shapelet based time-series classification models. Moreover, we significantly improved

the scalability of the model by proposing a random initializing technique. Experiments

on the real datasets show improved or comparable average classification accuracy when

compared to baseline methods. In the future, we plan to extend the proposed learning

framework for multivariate time-series datasets in order to capture shapelet-orders across
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FIGURE 5.6: Accuracy vs. training time comparison for Worm2class dataset.

FIGURE 5.7: Accuracy vs. training time comparison for OliveOil dataset.

FIGURE 5.8: Accuracy vs. training time comparison for Beef dataset.

multiple dimensions.

92



CHAPTER 6

CONCLUSION

In this dissertation, four different time-series classification models are proposed to

solve two real-world challenges pertaining to shapelet based time-series classification

frameworks. Two proposed models provide solutions to the cost-sensitive learning

problem (Chapter 2 and Chapter 3 in highly imbalanced time-series datasets. The

extraction of temporal dependency information among subsequences and leveraging such

information for time-series classification is explored in Chapter 4 and Chapter 5. The

proposed models are supervised learning problems that focus on improving the current

state-of-the-art methods on challenges related to real-world time-series datasets. In each

chapter, we present a structured report that includes:

‚ a detailed background to motivate the target problem and lead to the main idea of the

proposed approach;

‚ a comprehensive related work section listing the major state-of-the-art approaches of

the given problem;

‚ a thorough method description to provide the technical details of the method and

algorithm;

‚ a rigorous experimental evaluation to analyze the advantages and disadvantage of the
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proposed approach.

In Chapter 2 an uncertainty based cost-sensitive early time-series classification model

is proposed to suppress false and detect true cardiac arrhythmia alarms from ECG

signals. Experiments on two life threatening cardiac arrhythmia datasets from Physionet’s

MIMIC II repository provide evidence that the proposed method is capable of identifying

patterns that can distinguish false and true alarms using on average 60% of the available

time series’ length. Using temporal uncertainty estimates of time series predictions,

confidence was estimated in the early classification predictions, therefore providing a cost-

sensitive prediction model for ECG signal classification. The results from the proposed

method are interpretable, providing medical personnel a visual verification of the predicted

results. In conducted experiments, moderate false alarm suppression rates were achieved

(34.29% for Asystole and 20.32% for Ventricular Tachycardia) while keeping near 100%

true alarm detection, outperforming the state-of-the-art methods, which compromise

true alarm detection rate for higher false alarm suppression rate, on these challenging

applications.

In Chapter 3 a cost-sensitive time-series classification learning framework is proposed

by extending the generalized shapelet learning framework to handle highly imbalance

time-series datasets. First, the effectiveness of the proposed method is demonstrated on

two case studies from the previous chapter, with the objective to detect true alarms from

life threatening cardiac arrhythmia dataset from Physionet’s MIMIC II repository. The

results show improved true alarm detection rates over the current state-of-the-art method.

Additionally, the proposed method is compared to the state-of-the-art learning shapelet

method on 16 balanced dataset from the UCR time-series repository. The results show

evidence that the proposed method (CS-LTS) outperforms the state-of-the-art method.

Finally, extensive experiments were performed across an additional 18 highly imbalanced

time-series datasets. The results provided evidence that the proposed method achieved

comparable results with the state-of-the-art sampling/non-sampling based approaches for
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highly imbalanced time-series datasets. However, the proposed CS-LTS method is highly

interpretable which is an advantage over many other methods.

In Chapter 4 and Chapter 5, the temporal dependencies among shapelets are explored.

Two models are proposed, Pairwise Shapelet-Orders Discovery (PSOD) and Learning

pairwise Orders and Shapelets (LOS), which extracts both informative shapelets and

shapelet-orders and incorporates the shapelet-transformed space with shapelet-order space

for time-series classification. The two proposed models are contrasting approaches in

the time-series classification paradigm. The PSOD is a search-based greedy procedure

to extract unique shapelets and identify orders among the selected shapelets. On the

other hand, LOS is an optimization-based approach to extract shapelet-orders among

learned generalized shapelets. However, in both the hypotheses, the extracted pairwise

shapelet-orders could increase the confidence of the prediction and further improve

the classification performance. In case of PSOD, the results of extensive experiments

conducted on 75 univariate and 6 multivariate real-world datasets provide evidence

that the proposed model could significantly improve accuracy on average over baseline

methods. However, the drawback of a randomized candidate shapelet selection procedure

is highlighted in Chapter 5 and a novel model, LOS, is proposed to alleviate the issue of

non-optimal shapelet selection. The proposed LOS model was more accurate and faster

than the baseline alternatives when evaluated on both synthetic and real-world time-series

datasets.
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Demšar, J. (2006), “Statistical Comparisons of Classifiers over Multiple Data Sets,” Jour.
of Machh. Learn. Res., 7, 1–30.
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Appendix A

PRECISION OF THE CANDIDATE-ORDER

The precision of the candidate order can be computed as follows

P pClass “ c|o existsq “
P po exists|Class “ cq P pClass “ cq

P po existsq
, (A.1)

where P po existsq is the probability that the candidate order o exists in the training

data. P pClass “ cq is the probability of an instance belonging to class c, and

P po exists|Class “ cq is the probability of an instance belonging to class c contains the

order o. More specifically we compute the terms in Eq. A.1 in the following manner:

P po existq “
#training instances where o occurs

#training instances
(A.2)

P pClass “ cq “
# training instances which labels are c

#training instances
(A.3)

P po exists|Class “ cq “
# training instances which labels are c and order o also occurs

# training instances which labels are c

(A.4)

The confidence of the candidate order o of class = c is defined as a product of the

precision (Eq. A.1 of the candidate order and the probability of the intersection that the

101



candidate order exists and belongs to class c, that is,

Cpoq “ P pClass “ c|o existsq ˚ P pClass “ cX o existsq (A.5)

Both terms in Eq. A.5 are probabilities, thus the confidence measure for order o is a value

between 0 and 1.

102



Appendix B

PSOD FRAMEWORK

The following figure is a diagrammatic representation of the proposed PSOD framework.

FIGURE B.1: The framework of the proposed model PSOD (training phase).
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Appendix C

DETAILED RESULTS ON 75 UNIVARIATE TIME-SERIES
DATASETS

Table C.1 lists the classification accuracies of FS, SSD and PSOD on real-world univariate

time-series datasets from 7 different categories. The summarized results of this table are

shown in Fig. 4.8, Fig. 4.9, Fig 4.10 and Fig. 4.11 respectively in chapter 4.

Table C.1: Average classification accuracy for datasets from 7 different categories

Category Dataset FS SSD PSOD

CinCECG 0.85 0.53 0.55
ECG ECG200 0.75 0.81 0.81

ECG5000 0.92 0.92 0.94
ECGFiveDays 0.99 0.95 0.99
TwoLeadECG 0.92 0.9 0.92

50Worlds 0.48 0.64 0.62
Adiac 0.54 0.59 0.3

ArrowHead 0.57 0.7 0.73
BeetleFly 0.65 0.71 0.75

Birdchicken 0.75 0.66 0.63
DiatomSizeRedu 0.87 0.91 0.74
DistalPhalanxAG 0.64 0.67 0.68
DistalPhalanxCorr 0.72 0.73 0.74
DistalPhalanxTW 0.62 0.58 0.66

FaceALL 0.62 0.73 0.73
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Table C.1 continued from previous page
Category Dataset FS SSD PSOD

FaceFour 0.9 0.75 0.8
FacesUCR 0.7 0.85 0.86

Fish 0.77 0.76 0.69
Image handOutline 0.81 0.82 0.86

Herring 0.53 0.51 0.55
MedicalImages 0.6 0.68 0.7

MiddlePhalanxoutlineAgeGrp 0.53 0.47 0.61
MiddlePhjalanxoutlineCorrect 0.66 0.71 0.73

MiddlePhalanxTW 0.46 0.44 0.52
OsuLeaf 0.67 0.61 0.6

PhallangedOutlineCorrect 0.72 0.73 0.74
ProximalGroup 0.77 0.78 0.83
proximalcorrect 0.8 0.72 0.78

ProximalTW 0.7 0.71 0.78
ShapesAll 0.58 0.82 0.79

SwedishLeaf 0.6 0.87 0.85
Symbols 0.93 0.81 0.86

WordSynonyms 0.43 0.59 0.57
Yoga 0.69 0.8 0.73

Car 0.73 0.67 0.7
Earthquake 0.71 0.68 0.73

FordA 0.78 0.85 0.88
FordB 0.72 0.77 0.83

InsectWingbeat 0.47 0.45 0.48
ItalyPowerDemand 0.9 0.82 0.86

Sensor Lightning2 0.7 0.8 0.78
Lightning7 0.63 0.65 0.69
Motestain 0.77 0.77 0.79
Phoneme 0.17 0.17 0.2

Plane 0.99 0.96 0.98
Sony1 0.68 0.77 0.78
Sony2 0.79 0.85 0.87

StarLightcurve 0.91 0.94 0.94
Trace 1 0.98 0.99
Wafer 0.99 0.99 0.99

shapeletSim 1 0.92 0.92
synthetic controll 0.91 0.95 0.97

Synthetic Two Patterns 0.92 0.97 0.99
ChlorineConcentraion 0.54 0.57 0.57
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Table C.1 continued from previous page
Category Dataset FS SSD PSOD

CBF 0.94 0.95 0.98
Beef 0.56 0.5 0.58
Ham 0.64 0.55 0.6

Spectro Meat 0.83 0.91 0.91
OliveOil 0.73 0.76 0.65

Strawberry 0.9 0.9 0.92
Wine 0.75 0.5 0.5

CricketX 0.48 0.72 0.73
CricketY 0.53 0.69 0.71
CricketZ 0.46 0.73 0.76
GunPoint 0.94 0.94 0.94
Haptics 0.39 0.32 0.43

Motion ToeSegm1 0.65 0.9 0.92
ToeSegment2 0.69 0.87 0.92
UWGestureX 0.69 0.73 0.74
UWGestureY 0.59 0.64 0.68
UWGestureZ 0.63 0.67 0.67

Computers 0.5 0.61 0.61
LargeKitchen 0.56 0.76 0.74

Device RefrigenationDevice 0.33 0.5 0.53
ScreenType 0.4 0.37 0.4

SmallKitchenApplian 0.33 0.63 0.72
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