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Abstract

Recent advances in multi-omics clustering methods enable a more fine-tuned separation
of cancer patients into clinical relevant clusters. These advancements have the potential
to provide a deeper understanding of cancer progression and may facilitate the
treatment of cancer patients. Here, we present a simple hierarchical clustering and data
fusion approach, named HC-fused, for the detection of disease subtypes. Unlike other
methods, the proposed approach naturally reports on the individual contribution of each
single-omic to the data fusion process. We perform multi-view simulations with disjoint
and disjunct cluster elements across the views to highlight fundamentally different data
integration behaviour of various state-of-the-art methods. HC-fused combines the
strengths of some recently published methods and shows superior performance on real
world cancer data from the TCGA (The Cancer Genome Atlas) database. An R
implementation of our method is available on GitHub (pievos101/HC-fused).
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1 Introduction 1

The analysis of multi-omic data has great potential to improve disease subtyping of cancer 2

patients and may facilitate personalized treatment [1, 2]. While single-omic studies have been 3

conducted extensively in the last years, multi-omics approaches, taking into account data from 4

different biological layers, may reveal more fine-grained insights on the systems-level [3–5]. 5

However, the analysis of data sets from different sources like DNA sequences, RNA expression, 6

and DNA methylation brings great challenges to the computational biology community. One of 7

the major goals in integrative analysis is to cluster patients based on features from different 8

biological layers to identify disease subtypes with enriched clinical parameters. Integrative 9

clustering can be divided into two groups. Horizontal integration on the one side, which is the 10

aggregation of the same type of data, and vertical integration on the other side, which concerns 11

the analysis of heterogeneous omics data sets for the same group of patients [6]. In addition to 12

this classification, one distinguishes between early and late integration approaches. Late 13

integration-based methods first analyze each omics data set separately and then concatenate 14

the information of interest to a global view. Early integration first concatenates the data sets 15

and then performs the data analysis. 16

In vertical integration tasks, one major problem is that the data sets are often highly 17

diverse with regard to their probabilistic distributions. Thus, simply concatenating them and 18

applying single-omics tools is most likely to bias the results. Another issue arises when the 19

number of features differs across the data sets with the effect that more importance is assigned 20

to a specific single-omics input. The recent years have seen a wide range of methods that aim 21
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to tackle some of these problems [7]. Most prominent is SNF (Similar Network Fusion) [8]. For 22

each data type it models the similarity between patients as a network and then fuses these 23

networks via an interchanging diffusion process. Spectral clustering is applied to the fused 24

network to infer the final cluster assignments. A method which builds up on SNF is called 25

NEMO and was recently introduced in [9]. This paper provides solutions to partial data and 26

implements a novel eigen-gap method [10] to infer the optimal number of clusters. A method 27

called rMKL-LPP [11] makes use of dimension reduction via multiple kernel learning [12] in 28

order to perform the data integration step. In addition, overfitting is taken care of by 29

regularization. 30

Spectrum [13] is another recently published multi-omics clustering method and R-package. 31

Again it performs spectral clustering but provides a data integration method which is 32

significantly different from NEMO and SNF. Spectrum’s data integration approach is based on 33

a tensor product graph (TPG) diffusion technique. Furthermore, it provides a novel method to 34

infer the optimal number of clusters k using eigenvector distribution analysis. Statistical 35

solutions for the clustering of heterogeneous data sets were introduced in [14]. In the 36

(iClusterPlus) approach the observations from different genomic data types are simultaneously 37

regressed under appropriate distributional assumptions to a common set of latent variables [14]. 38

A computational intensive Monte-Carlo Newton-Raphson algorithm is used to estimate the 39

parameters. Also, a fully Bayesian version of iClusterPlus was recently put forward in [15]. A 40

number of additional techniques have been developed as outlined in [16]. One of these 41

techniques is called PINSPlus [17, 18]. Its authors suggest to systematically add noise to the 42

data and to infer the best number of clusters based on the stability against this noise. When 43

the best k (number of clusters) is detected, binary matrices are formulated reflecting the 44

cluster solutions for each single-omics. A final agreement matrix is derived by counting the 45

number of times two patients appear in the same cluster. This agreement matrix is than used 46

for a standard clustering method, such as kmeans. 47

In this article we introduce a new method for hierarchical data fusion and integrative 48

clustering called HC-fused. First we cluster each data type with a standard hierarchical 49

clustering algorithm. We then form network structured views of the omics data sets, and finally 50

apply a novel approach to combine these views via a hierarchical data fusion technique. In 51

contrast to other methods, HC-fused naturally reports on the contribution of the individual 52

views to the data fusion process. Its advantage is the adoption of simple data analytic concepts 53

with the consequence that results can be easily followed-up and interpreted. 54

2 Materials and methods 55

2.1 Data preprocessing 56

Data normalization and imputation is done as suggested by [8]. When a patient has more than 57

20% missing values we do not consider this patient for further investigation. When a specific 58

feature has more than 20% missing values across the patients, we remove this feature from 59

further investigation. The remaining missing values are imputed with the k-Nearest Neighbor 60

method (kNN). Finally, the normalization is performed as folllows: 61

f̂ =
f − E(f)√
V ar(f)

, (1)

where f is a biological feature. 62

2.2 Transforming the views into network structured data 63

Given is a set of data views V1,V2, . . . ,Vl ∈ Rm×ni , where m is the number of observations, 64

and ni is the number of features from view Vi. We transform these views into connectivity 65

matrices G1,G2, . . . ,Gl ∈ {0, 1}m×m. This is done by clustering the views with a hierarchical 66

clustering algorithm using Ward’s method [19]. We then infer the best number of clusters k via 67

the Silhouette Coefficient. The produced matrices G1,G2, . . . ,Gl are binary matrices with 68

entry 1 when two elements are connected (being in the same cluster), and 0 otherwise. In 69

addition, we construct a G∧ matrix as follows: 70
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G∧ = G1 ∧G2 ∧ . . . ∧Gl. (2)

The matrix G∧ reflects the connectivity between patients confirmed by all views. 71

2.3 Generating the fused similarity matrix P 72

For data fusion we apply a bottom-up hierarchical clustering approach to the binary matrices 73

G. Initially, no patient cluster exists. In each iteration, patients or clusters of patients (c1 ∈ C 74

and c2 ∈ C) fuse to a newly built cluster with minimal distance dmin, until just one single 75

cluster remains. The distance between two clusters is calculated as 76

df (c1, c2) =
#0Gf [c1,c2]

#1Gf [c1,c2] + #0Gf [c1,c2]

, (3)

where f ∈ {1, . . . , l,∧} and # means count. 77

In each iteration the algorithm is allowed to use the distances from any given binary matrix 78

G1,G2, . . . ,Gl,G∧. We refer to Gmin as the matrix containing the minimal distance dmin, 79

where min ∈ 1 . . . l,∧. In cases where the minimal distance is shared by multiple matrices we 80

give preference to fusing the clusters in G∧. In our approach, a fusion event between two 81

clusters is denoted as (c1 ++ c2) or fuse(c1, c2). During the fusion process we count how many 82

times a patient pair (i, j) occurs in the same cluster. This information is captured in the fused 83

similarity matrix P ∈ Rm×m. 84

P(i, j) =

m∑
k=1

1((i, j) ∈ C), (4)

where 1 denotes the indicator function. 85

Finally, the matrix P is normalized by its maximal entry. The similarity matrix P can be 86

used as input for arbitrary cluster algorithms. Currently we apply agglomerative hierarchical 87

clustering using Ward’s method [19] as implemented in [20]. 88

2.4 Contribution of the views to the data fusion operation 89

We define matrices S1,S2, . . . ,Sl, S∧ ∈ Rm×m providing information about the contribution of 90

each view to the data fusion process. We count how many times a patient is involved in a 91

fusion operation (c1 ++ c2) and in what view this fusion is executed. This information is 92

captured in the source matrices S. 93

Sf (i, j) =

m∑
k=1

1(i, j ∈ (c1 ++ c2)), (5)

where f ∈ {1, . . . , l,∧} and 1 is the indicator function. The clusters c1 and c2 refer to the 94

clusters which are fused in iteration k. 95

It should be noted, however, that in each fusion operation there might occur multiple 96

minimal distances across the views G, while the minimal distance is not present in G∧. In that 97

case we randomly pick one view. Consequently, the algorithm needs to run multiple times in 98

order to deliver an adequate estimate of the view-specific contributions to the data fusion 99

operation. We introduce the parameter HC.iter which is set to a minimum limit of 10 as a 100

default. 101
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Algorithm 1: Data fusion with hierarchical clustering

1 Given the network views G1, G2, . . . , Gl,G∧;
2 #cluster = #patients;
3 k = #cluster;
4 while k 6= 0 do
5 d1 = dist(c1, c2|G1);
6 d2 = dist(c1, c2|G2);

7
...

8 dl = dist(c1, c2|Gl);
9 d∧ = dist(c1, c2|G∧);

10 if min(d1, d2, . . . , dl, d∧) == d∧ then
11 dmin = d∧;
12 fuse(c1, c2|Gmin, dmin);
13 Smin(i, j ∈ (c1 ++ c2)) ++;

14 else
15 dmin = min(d1, d2, . . . , dl) ;
16 fuse(c1, c2|Gmin, dmin);
17 Smin(i, j ∈ (c1 ++ c2)) ++;

18 end
19 P((i, j) ∈ C) ++;
20 k −−;

21 end

102

2.5 Simulation 1: Disjoint inter-cluster elements 103

In a first simulation we generate two data views represented as numerical matrices 104

(V1 ∈ Rm×n1 and V2 ∈ Rm×n2). The first matrix reflects three clusters, sampled from 105

Gaussian distributions, c1 = N (−10, σ2), c2 = N (0, σ2), and c3 = N (10, σ2). Each of the three 106

clusters contains four elements. The numbers of features are n1 = 100 in support of these 107

cluster assignments. For the second data view we generate two cluster, c1 = N (0, σ2) and 108

c2 = N (10, σ2). In this case the number of features is n2 = 1000. The two views are denoted as 109

follows: 110

V1 =



N1,1(−10, σ2) . . . N1,100(−10, σ2)
...

. . .
...

N4,1(−10, σ2) . . . N4,100(−10, σ2)
N5,1(0, σ2) . . . N5,100(0, σ2)

...
. . .

...
N8,1(0, σ2) . . . N8,100(0, σ2)
N9,1(10, σ2) . . . N9,100(10, σ2)

.

..
. . .

.

..
N12,1(10, σ2) . . . N12,100(10, σ2)


V2 =



N1,1(0, σ2) . . . N1,1000(0, σ2)
..
.

. . .
...

N8,1(0, σ2) . . . N8,1000(0, σ2)
N9,1(10, σ2) . . . N9,1000(10, σ2)

...
. . .

...
N12,1(10, σ2) . . . N12,1000(10, σ2)


.

It is evident from these views that the first two cluster in V1 ({1, . . . , 4} and {5, . . . , 8}) form a 111

subset of the first cluster in V2 ({1, . . . , 8}). After data integration we expect a final cluster 112

solution of three clusters (c1 = {1, . . . , 4}, c2 = {5, . . . , 8}, and c1 = {9, . . . , 12}) because these 113

clusters are supported by both views. However, since cluster c1 and c2 are fully connected in 114

the second view, we expect these two clusters to be closer to each other than to c3. 115

We vary the parameter σ2 = [0.1, 0.5, 1, 5, 10, 20] and expect that the cluster quality 116

decreases the higher the variances for the specific groups. The effect of σ2 on the clusters is 117

graphical illustrated in Supplementary Figure 1. We analyze how HC-fused is affected by these 118

variations accordingly. 119
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2.6 Simulation 2: Disjunct inter-cluster elements 120

For the second simulation we formulate two views, V1 ∈ Rm×n1 and V2 ∈ Rm×n2 . The first 121

view reflects three clusters, c1 = N (−10, σ2), c2 = N (0, σ2), and c3 = N (10, σ2). In this case, 122

the first and the third cluster contains two elements, respectively, and the second cluster six 123

elements. The second view represents two clusters, c1 = N (−10, σ2) and c2 = N (0, σ2), plus 124

two single elements, c3 = N (10, σ2) and c4 = N (30, σ2). The only difference between V1 and 125

V2 is that in view V2 the last two elements do not form a cluster. 126

V1 =



N1,1(−10, σ2) . . . N1,100(−10, σ2)
N2,1(−10, σ2) . . . N2,100(−10, σ2)
N3,1(0, σ2) . . . N3,100(0, σ2)

...
. . .

...
N8,1(0, σ2) . . . N8,100(0, σ2)
N9,1(10, σ2) . . . N9,100(10, σ2)
N10,1(10, σ2) . . . N12,100(10, σ2)


V2 =



N1,1(−10, σ2) . . . N1,1000(−10, σ2)
N2,1(−10, σ2) . . . N2,1000(−10, σ2)
N3,1(0, σ2) . . . N3,1000(0, σ2)

...
. . .

...
N8,1(0, σ2) . . . N8,1000(0, σ2)
N9,1(10, σ2) . . . N9,1000(10, σ2)
N10,1(30, σ2) . . . N10,1000(30, σ2)


.

After data integration we expect a final solution of three clusters (c1 = {1, 2}, 127

c2 = {3, . . . , 8} and c3 = {9, 10}). The clusters c1 and c2 should be inferred with high 128

confidence because these are confirmed in both data views. A lower confidence should be 129

assigned to the third cluster c3 because it is just confirmed in the first view. Again, we vary 130

the parameter σ2 = [0.1, 0.5, 1, 5, 10, 20]. The effect of σ2 on the clusters is graphical illustrated 131

in Supplementary Figure 2. 132

2.7 Comparison with other methods 133

We compare HC-fused to the state-of-the-art methods SNF [8], PINSPlus [18], and NEMO [9]. 134

In addition, we match the performance of these methods to a baseline approach 135

(HC-concatenate) where data are simply concatenated, and a single-omics hierarchical 136

clustering approach based on Ward’s method is applied. We administer the Adjusted Rand 137

Index (ARI) [21] as a performance measure and the Silhouette Coefficient (SIL) [22] for cluster 138

quality assessment. Figures are generated using the R-package ggnet [23] and ggplot2 [24]. 139

Simulation results can be easily reproduced by the R-scripts provided in our GitHub repository 140

(pievos101/HC-fused). 141

3 Results 142

3.1 Disjoint inter-cluster elements 143

The results from the simulations with disjoint inter-cluster elements are illustrated in Fig. 1. 144

HC-fused infers three clusters for the first view and two clusters for the second view. At this 145

stage, the similarity weightings of the vertices are all equal to 1. After applying our proposed 146

algorithm for data fusion, a fused network is constructed as seen in Fig. 1C. The optimal 147

number of clusters is k = 3, as inferred by the Silhouette Coefficient based on the matrix P. 148

Panel D shows the dendrogram when the hierarchical clustering algorithm based on Ward’s 149

method is applied to the fused matrix P. The cluster elements {9, . . . , 12} are most distant to 150

the other elements because they are disconnected from these elements in both views. The 151

elements within the three clusters are all equally distant to each other because all connections 152

within these clusters are confirmed in the G∧ view. 153
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Fig 1. Results from simulation 1 (disjoint inter-cluster elements with σ2 = 1). A.
Shown is G1 as a result from the first view (V1). B. Shown is G2 as a cluster result
from the second view (V2). C. The fused network based on the fused similarity matrix
P. Three clusters are suggested by the Silhouette Coefficient. D. The resulting
dendrogram when hierarchical clustering is applied to the fused similarity matrix P.
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Fig 2. Results for simulation 1. Contribution of the views to the hierarchical data
fusion.

Fig. 2 highlights the contributions of the views to the data fusion process. The cluster 154

members {9, . . . , 12} are fully supported by the G∧ view, whereas the view G2, also 155

contributes to the other elements. This is not surprising because the concerned elements are all 156

connected in the second view. 157

It can be seen that HC-fused is competing well with the state-of-the-art methods (Fig. 3). 158

To our surprise, SNF performs very weak. The eigen-gaps method, as mentioned by its 159

authors, infers two cluster as the optimal solution. It does not take into account that cluster c1 160

and cluster c2 are disconnected in the first view. Also, the Silhouette method applied to the 161

fused affinity matrix infers only two cluster. We observe similar ARI values for HC-fused, 162

PINSPlus, and NEMO. Compared to HC-fused, PINSPlus and NEMO are more robust against 163

increased within-cluster variances. 164

Starting with a within-cluster variance of σ2 = 1, HC-fused frequently behaves like SNF 165

and infers the cluster assignments as represented by the second view (Fig. 1). Simply 166

concatenating the data views (HC-concatenate) has the consequence of an overall low accuracy. 167

This is expected because the second view contains 10 times more features and thus gives more 168

weights to the cluster assignments in V2. The SIL coefficient, as a measure of cluster quality, is 169

highest for the HC-concatenate approach for low to medium variances. However, it suggests 170

even higher SIL values for a k = 2 cluster solution. The SIL coefficient of HC-fused is markedly 171

higher than those of SNF and NEMO. We cannot give any cluster quality measure for 172

PINSPlus because the corresponding R-package does not provide a single fused distance or a 173

similarity matrix. 174
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Fig 3. Results from simulation 1 (disjoint inter-cluster elements with
σ2 = [0.1, 0.5, 1, 5, 10, 15, 20]). We compare HC-fused with SNF, PINSPlus, NEMO, and
HC-concatenate. The true number of clusters is k = 3, with the cluster assignments
c1 = {1, . . . , 4}, c2 = {4, . . . , 8}, and c3 = {9, . . . , 12}. The performance is measured by
ARI. For each σ2 100 runs were performed and the mean ARI values are displayed. The
panel in the bottom right shows the mean SIL coefficients for the true cluster
assignments (k = 3).

3.2 Disjunct inter-cluster elements 175

The hierarchical fusion process via HC-fused is illustrated in Fig. 4. The only difference 176

between the two network views shown in Fig. 4A and Fig. 4B is, that in Fig. 4B the elements 177

9 and 10 are not connected. After data fusion (Fig. 4C) the SIL coefficient infers three clusters 178

as the optimal solution. The cluster elements in c3 = {9, 10} are substantially distant from 179

each other (Fig. 4D) and signify a contribution from view 1, as shown in Fig. 5. This is 180

expected because they are only connected in the first view and thus the confidence about the 181

relevance of this cluster is reduced. The cluster elements c2 = {3, . . . , 8} are mainly fused in 182

matrix G∧ because the cluster is confirmed by both views (Fig. 5). The same applies to the 183

cluster c1 = {1, 2} and thus the elements within c1 and c2 have equal distances to each other 184

(Fig. 4C, 4D). 185
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Fig 4. Results from simulation 2 (disjunct inter-cluster elements with σ2 = 1). A.
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result from the second view (V2). C. The fused network based on the fused similarity
matrix P. Three clusters are suggested by the SIL coefficient. D. The resulting
dendrogram when hierarchical clustering is applied to the fused similarity matrix P.
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Fig 5. Results for simulation 2. Contribution of the views to the hierarchical data
fusion.

Overall, the results of the simulation with disjunct cluster elements are the best for 186

HC-fused. PINSplus cannot compete with HC-fused (Fig. 4), it constantly infers four clusters 187

as the optimal solution and does not take into account the connectivity between elements 9 and 188

10 in the first view. Starting with a within-cluster variance of σ2 = 1, the same can be 189

observed for HC-fused (see Fig. 4). NEMO performs surprisingly weak. The modified 190

eigen-gap method, as pointed out by the authors, performs poorly in this specific simulation 191

scenario. NEMO infers far more than three clusters and the elements seem to be randomly 192

connected to each other. When reducing the number of neighborhood points in the diffusion 193

process, the total number of clusters is slightly decreasing but with no relevant gain in 194

accuracy. Interestingly, with the same number of neighborhood points SNF performs much 195

better. In a further investigation, when the Silhouette method is adopted to the fused 196

similarity matrix from NEMO, the true number of clusters can be obtained. This fact points at 197

a potential problem with the eigen-gap method as implemented in NEMO for data sets with 198

disjunct inter-cluster elements. 199

When conducting cluster quality assessments, again we can observe low SIL values for the 200

fused affinity matrix resulting from SNF (see Fig. 6). For low to medium within-cluster 201

variances, results by NEMO are comparable to those by HC-fused. A value for cluster quality 202

cannot be reported for PINSPlus because no single fused data view is available. 203
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Fig 6. Results from simulation 2 (disjunct inter-cluster elements with
σ2 = [0.1, 0.5, 1, 5, 10, 15, 20]). We compare HC-fused with SNF, PINSPlus, NEMO and
HC-concatenate. The true number of clusters is k = 3, with the cluster assignments
c1 = {1, 2}, c2 = {3, . . . , 8}, and c3 = {9, 10}. The performance is measured by ARI. For
each σ2 100 runs were performed and the mean ARI values are shown. The panel at the
bottom right displays the mean SIL coefficients for the true cluster assignments (k = 3).

3.3 Disjoint & disjunct inter-cluster elements 204

In addition to the above studied simulation scenarios, which represent two fundamentally 205

different cluster patterns across the views, we also studied a mixture of both. We simulated 206

two views comprising disjoint and disjunct inter-cluster elements. This particular simulation 207

scenario is described in detail in the supplementary material. We observed that HC-fused is 208

clearly outperforming the competing methods (Supplementary Fig. 5). To our surprise, none of 209

the state-of-the-art methods (SNF, NEMO, and PINSPlus) infers the correct number of 210

clusters, even when the within-cluster variances are rather low. The results obtained from 211

PINSPlus are almost as good as from HC-fused. For medium-size variances PINSPlus does 212

slightly better. The cluster quality of HC-fused, as expressed by the SIL coefficients, is higher 213

than those of NEMO and SNF (Supplementary Fig. 5, bottom right). 214

3.4 Robustness analysis 215

Sets of features, in size 1,5,10, and 50, were randomly permuted across the objects in order to 216

test the stability of the approaches to predict the correct cluster solution. One hundred runs 217
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were executed for each setting and the mean ARI values calculated. As can be seen from the 218

Supplementary Fig. 6, NEMO and PINSPlus are more stable against noise compared to 219

HC-fused. When the number of permuted features is greater than one, the accuracy of 220

HC-fused drops. This is most likely due to the fact that HC-fused uses the Euclidean distance 221

to generate the connectivity matrices G. It is well known that the Euclidean distance is prone 222

to outliers. Removing concerned data points prior to the analysis may be a necessary initial 223

step. Another possible approach would be the application of principal component analysis 224

(PCA) on the feature space. 225

In case of disjunct cluster elements (Supplementary Fig. 7) we observe a slightly different 226

outcome situation. HC-fused is definitely more robust against noise compared to SNF. 227

PINSPlus provides also stable results, but as already pointed out in the previous section, 228

produces a wrong cluster assignment. 229

3.5 Application of integrative clustering to TCGA cancer data 230

To demonstrate the usability of our approach we applied it to the TCGA cancer data as 231

provided by [16]. TCGA provides mRNA, methylation, and miRNA data for a fixed set of 232

patients. We tested our approach HC-fused on nine different cancer types: glioblastoma 233

multiforme (GBM), kidney renal clear cell carcinoma (KIRC), colon adenocarcinoma (COAD), 234

liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM), ovarian serous 235

cystadenocarcinoma (OV), sarcoma (SARC), acute myeloid leukemia (AML), and breast cancer 236

(BIC). 237

In contrast to other benchmark studies, that apply multi-omics approaches to a static data 238

set, we randomly sample 20 times 100 patients from the data pool, performed survival analysis 239

and calculated the Cox log-rank [25]. The thus obtained p-values are summarized in boxplots 240

in Fig. 7. We are convinced that our approach is conveying a less biased picture of the 241

clustering performance. In summary, we observe an overall weaker performance across all 242

methods than previously reported in [16] (Fig. 7, Supplementary Table 1). HC-fused performs 243

best for KIRC, LIHC, SKCM, OV, and SARC when the median log-rank p-values are used for 244

comparison. Global best results are observed for the KIRC and SARC data sets. The method 245

implemented in the R-package NEMO outperforms the other methods for the GBM and AML 246

cancer types. PINSplus shows an overall low performance in almost all cases. Notably, all 247

methods studied here perform weak on the COAD data set. Above observations indicate 248

substantial differences in structure and quality of the various cancer type data. 249

May 20, 2020 12/15

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.01.16.909382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.909382
http://creativecommons.org/licenses/by-nd/4.0/


GBM

BIC

COADKIRC

LIHC SKCM OV

AML
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

0.
0

0.
2

0.
4

0.
6

0.
8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0
1

2
3

4
5

SARC

0
1

2
3

4

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

0
1

2
3

4

SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused

SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused

SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused SNF PINSplus NEMO HC-fused

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

-l
o
g
1

0
(l

o
g
ra

n
k
 p

-v
a
lu

e
)

0
1

2
3

4

Fig 7. TCGA integrative clustering results. Displayed are the log-rank p-values on a
logarithmic scale for nine different cancer types. The red line refers to α = 0.05
significance level.

Based on the analysis that produced the findings in Fig. 7, we applied our approach to the 250

TCGA breast cancer data as allocated by [8]. In the supplementary material we provide a 251

step-by-step guide on how to analyze this data set within the R environment using HC-fused. 252

HC-fused infers seven clusters (Supplementary Fig. 8) as the optimal solution with a significant 253

Cox log-rank p-value of 3.2−5. Previously reported p-values for the same data set take the 254

values p = 1.1−3 for SNF and p = 3.0−4 for rMKL-LPP. Clusters 1,2,4, and 5 are mainly 255

confirmed by all biological layers, whereas cluster 3,6, and 7 signify some exclusive 256

contributions from the single-omics views to the data fusion process. Especially the mRNA 257

expression data seem to substantially contribute to clusters 3 and 7 (Supplementary Fig. 9). 258

4 Discussion 259

In this article, we have developed a hierarchical clustering approach for multi-omics data fusion 260

based on simple and well established concepts. Simulations on disjoint and disjunct cluster 261

elements across simulated data views indicate superior results over recently published methods. 262

In fact, we provide two simulation scenarios in which state-of-the-art methods behave 263

remarkably different. We discovered that NEMO performs well on data sets with disjoint 264

inter-cluster elements, whereas SNF does much better on disjunct inter-cluster elements across 265
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the data views. We hope that our synthetic data sets may act as a useful benchmark for future 266

studies in the field. 267

The application on real multi-omics TCGA cancer data suggest promising results of 268

HC-fused. It competes well with state-of-the-art methods. Out of nine studied cancer types, 269

HC-fused performs best in five cases. Importantly and in contrast to other approaches, 270

HC-fused provides information about the contribution of single-omics data to the data fusion 271

process. It should be noted, however, that our algorithm requires multiple iterations to achieve 272

a high-quality estimate. The reason is that in each integration step the single views may 273

contain comparable minimal distances. As a consequence, there might be uncertainty about 274

the views for which data points should be fused. Currently, we solve this problem by a uniform 275

sampling scheme plus running the proposed algorithm multiple times. At the moment it is not 276

entirely clear how many iteration steps should be used. We suggest to apply as minimum 277

HC.iter>= 10. Values above this minimum have produced reasonable results in our 278

investigations. We plan to solve this problem in a computational more feasible way in the next 279

release of the HC-fused R-package. A promising approach would be to model the fusion 280

algorithm as a Markov process where each view represents a state and the transition 281

probabilities depend on the number of view-specific items providing the same minimal distance. 282

Unlike other approaches, the HC-fused workflow does not depend on a specific clustering 283

algorithm. This means, with the current release, any hierarchical clustering method provided 284

by the native R function hclust can be used to create the connectivity matrices G. Also, the 285

final fused matrix P can be calculated by an arbitrary clustering algorithm preferred by a user. 286

Further investigations are needed to study popular cluster algorithms within the proposed 287

HC-fused workflow to learn how they might influence the fusion results. Given the known 288

heterogeneity of omics data, this might be worthwhile to work on next. Another characteristic 289

of HC-fused is its independence of a specific technique to infer the best number of clusters. 290

While, in this work, the Silhouette Coefficient was adopted, other assessment parameters might 291

improve the outcomes. We plan to further develop the corresponding GitHub R-package 292

(pievos101/HC-fused), add functionality, and at the same time make sure that the package 293

remains flexible and versatile. 294

5 Conclusion 295

In this article we have proposed a novel hierarchical data fusion approach embedded in the 296

versatile R-package HC-fused available on GitHub (pievos101/HC-fused). Simulations and an 297

application to real-world TCGA cancer data indicate that HC-fused is more accurate than or 298

at least as accurate as the state-of-the-art methods. In contrast to other approaches, it 299

naturally reports on the contribution of the single-omics data to the data fusion process. Its 300

overall conceptual simplicity fosters the interpretability of the final results. With respect to the 301

biomedical application, multi-omics clustering approaches like the one introduced in this article 302

have certainly the potential to improve the discovery of cancer subtypes. In the future they are 303

most likely to facilitate the treatment of cancer patients in personalized routines. 304
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