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Sonar sensors are universally applied in autonomous vehicles such
as robots and driverless cars as they are inexpensive, energy-
efficient, and provide accurate range measurements; however, they
have some limitations. Their measurements can lead to ambiguous
estimates and echo clutter can hamper target detection. In nature,
echolocating bats experience similar problems when searching for
food, especially if their food source is close to vegetation, as is the
case for gleaning bats and nectar-feeding bats. However, nature has
come up with solutions to overcome clutter problems and acousti-
cally guide bats. Several bat-pollinated plants have evolved specially
shaped floral parts that act as sonar reflectors, making the plants
acoustically conspicuous. Here we show that artificial sonar beacons
inspired by floral shapes streamline the navigation efficacy of sonar-
guided robot systems. We developed floral-inspired reflector forms
and demonstrate their functionality in 2 proof-of-principle exper-
iments. First we show that the reflectors are easily recognized
among dense clutter, and second we show that it is possible to
discern different reflector shapes and use this identification to
guide a robot through an unfamiliar environment. Bioinspired
sonar reflectors could have a wide range of applications that could
significantly advance sonar-guided systems.

bioinspired sonar | robotics | sonar landmarks | echolocation |
autonomous navigation

Reliable and recognizable landmarks are a crucial prerequisite
for autonomous navigation as they ensure stable and accurate

positioning (1–3). A landmark can be either a prominent structure
in the environment that can easily be detected and recognized or it
can be an artificial landmark such as a signal or a sign installed as a
local source of information. These artificial landmarks obviously
must be suited to the respective modalities of the exteroceptive
sensors on the autonomous vehicle. For visual sensors, objects can
be recognized using salient cues (e.g., simple signs like colored
cylinders; refs. 4 and 5). Such sensors can easily read out any traffic
signs made for humans that use computer vision algorithms based
on convolutional neural networks (6). Active infrared beacons are
widely used for floor-cleaner robots (7). For laser sensors, retro-
reflective strips were successfully employed as beacons for un-
derground mining vehicles (8) and active laser diodes were tested
as beacons for planetary rovers and inspection vehicles at disaster
sites (9). For radar sensors, multiple trihedral reflectors proved
useful in autonomous straddle-carrier systems (10, 11) and could
improve their localization efficacy. To aid underwater robot nav-
igation, sonar landmarks (12), information encoding sonar mark-
ers (13, 14), and even commercially available sonar targets exist
(15). Surprisingly, airborne sonar systems have not used synthetic
markers so far, even though nearly every autonomous vehicle is
equipped with sonar sensors and several studies showed that such
sensors are capable of 3-dimensional (3D) localization and clas-
sification of objects in complex environments (16–21). The reason
reflector designs used for underwater sonar cannot be used in air is
that they are usually multilayered, which means that they have
layers of different materials with different acoustic impedances
creating a certain recognizable reflection pattern. In air the large

difference between the acoustic impedances of air and solid ma-
terial precludes the use of such reflector designs as all sound waves
would be reflected by the first layer. However, it turns out nature
found a simple yet efficient solution to the problem of airborne
sonar landmarks. In tropical South and Central America, some
400 plant species chose a quite rare pollination system: They open
and produce nectar at night and lure glossophagine bats for pol-
lination services. In the absence of light they cannot attract their
pollinators with conspicuous colors. Instead they found a smart
solution: They developed floral forms which act as sonar signals
and reflect the ultrasound calls of bats in special pathways, making
the flowers acoustically conspicuous. This was shown for a row of
bell-shaped flowers, like the calabash tree flower (Crescentia cujete;
Fig. 1A), which has waxy petals that reflect a prolonged, high-
amplitude echo (22). There are also more sophisticated exam-
ples of specialized acoustic beacons, including the guiding petals of
Mucuna holtonii (23) (Fig. 1B) or the dish-shaped inflorescence-
associated leaves of the Cuban vine Marcgravia evenia (24) (Fig.
1C). The dish-shaped leaves exhibit striking spatially invariant
temporal and spectral reflective characteristics which are gener-
ated by an interference mechanism through the dish’s shape,
transforming them into acoustic beacons that attract pollinating
bats (24). Their key feature is their saliency even in highly cluttered
surroundings, demonstrated by behavioral experiments with nectar-
feeding bats. These experiments showed that such sonar signs can
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reduce bats’ search time for flowers hidden in clutter by 50% (24).
As airborne sonar in man-made environments also has to deal with
high amounts of clutter, the features of these natural reflectors can
be used as a source of inspiration for the design of artificial sonar
landmarks that can be reliably detected among other objects and
surfaces. We hypothesized that forms similar to the Marcgravia
reflectors can be detected among echo clutter with a technical
sonar system and that they can additionally be used as navigational
sonar markers for autonomous agents to streamline their naviga-
tion efficacy. To accomplish this task, we added functionality to the
bioinspired reflectors and used them as an information-encoding
source. As we know that bats accurately perceive these spheri-
cal forms and are capable of detecting small differences in form
(25, 26), we proposed that sets of different reflectors with slightly
different sizes and noticeable differences in their echo can be
employed to encode different symbols, thereby transmitting useful
information from the environment to the sensor system. These size
differences will be clearly visible in the tempo/spectral echo sig-
nature (25) while their detectability in clutter is preserved. A sonar
sensor that works with a broadband frequency modulated signal—
just like that of a nectar-feeding bat—will be able to extract this
metainformation from the environment and can be reliably guided
through an unfamiliar environment only using sonar information.

Results
We approached the development and application of bioinspired
reflectors in 3 steps. First, we analyzed the geometry and acoustic
properties of dish-shaped Marcgravia leaves (Fig. 2A and SI
Appendix, Fig. S2) and tried to mimic their acoustic features with
synthetic reflector dishes. In a second step, we tested if it was
possible to detect these bioinspired reflector dishes among echo
clutter using a broadband sonar system. We developed an algo-

rithm using the envelope of the environment’s impulse response
(IR) derived from a bat-like broadband call. For most experiments
we used a linear frequency sweep from 160 kHz to 30 kHz. Calls of
nectar-feeding bats are somewhat higher but have a comparable
bandwidth (27–29). A broad bandwidth is not only important for
bats to resolve structures in front of vegetation (30) but was also
essential for our IR-based reflector recognition (SI Appendix, Fig.
S8). Third, we introduced different reflector forms (sizes) and
adjusted the algorithm to detect several reflector dishes at the
same time. We tested the detection of multiple reflectors with
an autonomously controlled linear guide and mobile robot and
steered these systems through commands associated with the
different reflector forms. We also developed a specialized so-
nar array that could quickly acquire sonar information over a
large volume using a noncoherent electronic scan.

Design of Bioinspired Sonar Beacons. Many bat-pollinated flowers
are bell-shaped and have waxy petals, features that are thought
to increase their detectability and help bats find the flowers.
However, as with many other complex objects the spatiospectral
features of the flower’s echo signal are quite stochastic (ref. 22
and Fig. 1D). For the acoustic guiding petal of M. holtonii, this is
different; these petals show spatially more stable echo features
(Fig. 1E), especially around 40°. At this point, there are high-
amplitude full-spectrum reflections that should be very useful in
helping a bat to coordinate its approach. However, the most
striking and constant echo pattern, which is described as an echo
signature, is found for the dish-shaped leaves of M. evenia (Fig.
1F). The leaves have 2 main morphological adaptations that give
rise to this characteristic echo pattern. Unlike other leaves of this
plant they have a spherical, concave shape and the leaf edge is
bent backward (Fig. 2A, inlay in the IR plot and SI Appendix, Fig.

Fig. 1. Examples of bat-pollinated flowers, natural flower reflectors, and their spectral directional echo pattern. (A) Illustration of Pallas’s long-tongued bat
(Glossophaga soricina) approaching a flower of the calabash tree (C. cujete). They have waxy petals (highlighted in brighter green). (B) Commissaris’s long-
tongued bat (Glossophaga commissarisi) inspecting a ripe flower of the vine M. holtonii. Ripe, unvisited flowers of this plant show a concave-shaped petal
(vexillum) that acts as acoustic guide (highlighted in brighter green). (C) Illustration of a Leach’s single leaf bat (Monophyllus redmani) visiting an M. evenia
inflorescence. This plant has dish-shaped leaves (highlighted in brighter green) above their inflorescences that act as acoustic beacons (illustrations by
Matthew Twombly). (D–F) Spectral directional echo pattern of the different flowers and flower reflectors highlighted in the illustrations above. (D) C. cujete
flower. (E) Vexillum of M. holtonii. (F) Dish-shaped leaf of M. evenia. A–C: Image courtesy of Matthew Twombly/National Geographic Creative.
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S2). Both adaptations influence the acoustic properties; the bent
leaf edges minimize reflections originating from the edge surface
and the concave shape of the leaves results in an IR which is
dominated by 2 steep amplitude peaks (peak1–2; see red and
orange arrows in the IR plots of Fig. 2A), with almost constant
time separation independent of the incidence angle (see high-
lighted areas in the directional IRs of Fig. 2A). Interference of
these 2 reflections results in a spectral directional pattern of
enhanced frequency bands separated by bands of frequency
notches. We searched for a reflector shape that would respond
like a dish-shaped Marcgravia leaf and mimic both features—the
reduced edge reflection and most importantly the viewpoint-
independent echo with 2 steep, clear amplitude peaks (peak1–2).
The basic geometry of the leaves is a section of a sphere or a

spherical dish. We produced such synthetic spherical dishes us-
ing 3D printing and analyzed the spatiospectral features of the
reflector-induced echoes in ensonification measurements. We
were particularly interested in distance of the first and second
reflection (peak1–2) as this was a very constant echo feature for
Marcgravia leaves as well as synthetic spherical reflectors and we
wanted to use this peak1–2 to reliably detect reflectors in the
environment. A full hemisphere on first sight seems optimal
because it has a broad directionality for which the peak1–2 can be
detected (Fig. 2B, spectral pattern and highlighted areas in di-
rectional IRs; see also SI Appendix, Fig. S6). However, peaks in
the IR are not as clear because of multiple reflections within the
concave surface which lead to a prolonged echo (Fig. 2B and inlay
in SI Appendix, Figs. S5 and S7) which made it more difficult to

Fig. 2. Echo features of a natural and a series of synthetic reflectors. From left to right: photograph of the reflector (the scale depicts 1 cm), spectral di-
rectional echo pattern (see Fig. 1 for target strength axis), directional pattern of the IRs, and an example of a single IR from a frontal ensonification angle. The
gray inlay in the single IRs illustrates the nature of the edge of the reflector. The yellow arrows indicate the peaks originating from the edges, and the orange
and red arrows indicate the 2 main peaks originating from the inner concave surface of the reflector. The highlighted parts in the directional IR plots indicate
the area where the 2 main peaks (peak1–2) are clearly detectable. (A) Echo acoustic properties of a natural dish-shaped leaf ofM. evenia. (B) Spherical reflector
dish with a radius of 35 mm a depth of 30 mm and a flat edge. (C) Spherical reflector dish with a radius of 35 mm and a depth of 20 mm and rounded edges.
(D) Spherical reflector dish with a radius of 35 mm and a depth of 25 mm and tapered edges. The natural and the bioinspired reflector are highlighted by a
gray box. Note that the directional plots are asymmetric because they were measured with a monaural setup.
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detect peak1–2. By contrast, a very shallow dish has a short IR
with clearly pronounced peaks, mainly consisting of peak1–2
(single IR of Fig. 2C) but limited directionality (see directional
spectra and highlighted area in the directional IRs of Fig. 2C).
We did a quantitative analysis of reflector-induced echoes for
reflector dishes with different depths (SI Appendix, Figs. S6 and
S7) and found that the design of an optimal reflector is a trade-off
between clean peak pattern and broad directionality. The depth
of an optimal reflector should not be lower than 60% of the ra-
dius as then the angular range in which peak1–2 can be detected
would already be halved. On the other hand, it should also not
exceed a depth of 70% because then the echo gets significantly
longer and the peak pattern gets unclear. As we wanted to use
this viewpoint-independent peak1–2 pattern as a recognizable
echo feature we used reflectors with a depth between 60 and 70%
(maximum 71.4%) of the radius throughout our experiments.
These spherical dish reflectors also resembled the Marcgravia
leaves—which have a depth exactly in that range (average 66% of
the radius)—most accurately across spectral, temporal, and di-
rectional parameters, (compare Fig. 2 A and D and see SI Ap-
pendix, Supplementary Information Text and Figs. S1–S7 for more
information on the reflector design). To further mimic the
Marcgravia dish reflectors we also rounded off the edges of the
synthetic reflectors, which caused lower peaks (Fig. 2B, IRs,
yellow arrows, inlay), comparable to those of Marcgravia leaves.
As we wanted to optimize the reflectors, avoid any other inter-
fering amplitude peaks, and only generate the 2 characteristic
peaks, we used tapered edges as they provided almost no re-
flective surface area (Fig. 2D, IRs, inlay). Note that from the start
we chose synthetic reflectors with a bigger size than Marcgravia
leaves to increase detection range. Therefore, the synthetic re-
flectors had a larger interfering wavelength, more spectral bands
visible in the directional spectra, and larger spacing between
peaks in the IRs. Smaller synthetic reflectors would have the
same number of spectral bands and the same peak spacing as the
original leaves but a lower detection range than the reflectors
we used.

Reflector Detection in Clutter. The proposed mechanism of re-
flector recognition by bats assumes that the spatially invariant echo
features of the dish-shaped floral reflector contrasts with the
vegetation echoes (23, 24). The latter are stochastic and highly
variable and will change when bats change their position (31–33).
An echolocating bat passing by a flowering Marcgravia plant re-
ceives the same echo information from the dish-shaped floral re-
flector again and again, whereas all of the other reflections coming
from the surrounding vegetation change with every call due to the
stochastic nature of the background vegetation. As bats integrate
information acquired from multiple calls (34), the constant echo
features of the reflector should accumulate in the acoustic image
and show up among the multitude of changing clutter echoes.
Although this mechanism would be straightforward for bats to
exploit, it has never been proven to be effective through robotic
experimentation or simulation studies. In a first experiment we
tested whether it is possible to mimic this mechanism of reflector
recognition with a technical sonar setup. We used a sonar head,
consisting of a broadband electromechanical film (EMFi) trans-
ducer (35, 36) and a .25-inch condenser microphone which were
fixed next to each other in an aluminum body. This sonar head was
moved forward in 10-cm steps. For each position, the sonar head
made scan movements and collected 51 echo sequences. We in-
stalled a reflector within artificial clutter (as described in ref. 24)
on the right side of the movement path of the sonar head (Fig. 3A)
and ensonified this scene with a broadband sweep and calculated
the cross-correlation functions. In the directional plots of the
cross-correlation functions the reflector pattern is clearly visible,
but also many other reflections from the clutter screen and sur-
rounding tables and tripods (Fig. 3 B–E). To extract the relevant

reflector information and remove the noise, we then analyzed
all amplitude peaks of the reflected signal and searched for the
peak1–2 pattern, which is characteristic for this reflector (Fig. 3F).
As we used a reflector with a radius of 32 mm we searched for a
peak1–2 spacing Δt of 78 μs, Δt= 0.828ðr=cÞ, where r is the radius
and c is the speed of sound (25). We calculated the probability that
the detected peak patterns would be the reflector’s pattern and
plotted the probability in the respective position in a 3D voxel map
(Fig. 3G; see SI Appendix for the detailed algorithm). Then, while
moving the sonar head forward, more measurements were col-
lected, always searching for the reflector-like peak pattern and
updating the probability of the presence of a reflector in the voxel
map (Fig. 3 G–J). To correct for uncertainty in positioning, we
smoothed the voxel map in between each measurement by con-
volving it with a 2-dimensional (2D) Gaussian filter kernel. With
every measurement, the maximum at the reflector position in the
voxel map grew in importance as it remained consistently at the
same position. False positives would occur whenever peak patterns
similar to the reflector peak pattern were recognized (Fig. 2I), but,
as they occurred only for some measurements, they rapidly died
down again. Therefore, only the peak pattern of the spherical
reflector was received repeatedly. After 3 to 5 measurements—
depending on the distance and the clutter present—the true
maximum in the voxel map became clear and reflector position
could be determined. This demonstrates that bioinspired sonar
reflectors can indeed be recognized even within acoustically
complex scenarios and it shows that the perceptual mechanism
proposed for bats, that is, to build up acoustic images by sum-
ming up peaks in the cross-correlation functions of the received
echo (37), is functional and can be simulated with a technical
sonar setup.

Robot Guidance. To quickly acquire sonar information over a
large area and search for the different reflectors without any
scanning movement we developed a sonar array with 2 omnidi-
rectional microphones and 14 directional and broadband EMFi
transducer (see SI Appendix, Figs. S9–S11 and description in SI
Appendix, Supplementary Information Text). With this setup, it was
possible to perform an electronic scan, instantaneously build up a
sonar-based voxel map of the environment, and search for sonar
reflectors. We equipped a robot (Pioneer P3-DX; Fig. 4 D and E
top image inlay) with the sonar array and guided it only based on
reflector information. For capturing ground-truth data, the robot
was also equipped with a 2D laser scanner (Hokuyo URG), which
was used to build a map of the surroundings. The map was con-
structed using the FastSLAM 2.0 algorithm implemented in a
Robot Operating System (ROS) software framework. In sub-
sequent experimentation, the robot was localized in the generated
map using adaptive Monte Carlo localization, also implemented in
ROS (Fig. 4 D and E). This map was only used for ground-truth
capture, that is, the robot’s control algorithm had no access to this
information. We repeated the clutter detection experiment, but
this time the autonomous robot had to search for a reflector within
clutter and, once found, turn toward it (see trajectories in Fig. 4D
and Movie S1). The reflector detection algorithm performed well
even though the information from the sonar array was sparser—
14 measurements per scan compared to 51 measurements with the
scanning/moving sonar head. However, for reliable reflector de-
tection movement and integration of several measurements from
different distances and directions remained crucial.

Information-Encoding Reflectors and Simultaneous Reflector Detection.
In a second experiment we tested whether it is possible to detect
different sonar reflectors presented simultaneously and associate
specific motion commands with reflectors of different sizes. The
different sizes of the reflectors resulted in slightly different re-
flection pathways, which shifted the 2 main amplitude peaks fur-
ther apart; nevertheless, the peak1–2 distance remained constant

1370 | www.pnas.org/cgi/doi/10.1073/pnas.1909890117 Simon et al.
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for a given reflector over different angles of sound incidence. We
used 3 different sizes of reflectors with radii of 35 mm, 50 mm, and
70 mm, which had peak1–2 spacings of 82 μs, 122 μs, and 171 μs,
respectively (Fig. 4 A–C). The reflector-recognition algorithm
could then be tuned to the peak pattern of different reflector
forms, which makes it possible to recognize multiple reflectors
within the surroundings. We used the reflector shapes as a kind of
traffic sign and guided the robot through a laboratory environ-
ment. A green reflector (r = 35 mm) transmitted the command
“turn light on,” and as soon as it was detected a light-emitting
diode on top of the array was switched on. The blue reflector
(r = 50 mm) transmitted the command “turn 30° away,” which
initiated a movement to the opposite direction of the reflector.
The orange reflector (r = 70 mm) caused the robot to stop at a
certain distance from the reflector. Note that the different colors
were only used to help us to distinguish the different reflectors and
were not used for visual guidance. As an example, we plotted
3 voxel-based range maps for each reflector to show how the range
maps built up while the robot moved forward through the labo-
ratory (Fig. 4 F–I). As soon as the reflector was detected a small
peak appeared in the image, which became more prominent with
more and more measurements from different distances and posi-
tions. The positioning of the reflectors was accurate (compare light

crosses and green and blue voxels in Fig. 4 F and G) but became a
little bit off due to the odometry error after turns and longer travel
distances (Fig. 4 H and I). However, the identified landmarks
could be used in the classic landmark-based simultaneous locali-
zation and mapping (SLAM) formulation to reduce the buildup of
positioning errors due to odometry (38). We also did a quantitative
assessment of our system with a linear guide steered by the set of
reflectors described above and measured how many errors were
made during runs with 3 different speeds (25 runs per speed). We
found that from a speed of 19 mm/s on the system ran without any
errors (SI Appendix). In general, the speeds were not very high;
however, the system could be easily sped up if computation of
the range maps would be streamlined and coded sonar sequences
were used, which would allow the simultaneous operation of all
14 loudspeakers (39).

Discussion
Our experiments show that sonar beacons inspired by natural
flower reflectors can indeed be detected in cluttered surroundings
using the envelope of the environment’s IR based on bat-like
broadband calls. Such a representation is biologically feasi-
ble to generate from a cochlear representation followed by a
dechirping operation [which equates to a semicoherent matched

Fig. 3. Reflector recognition with a biomimetic sonar head in cluttered surroundings. (A) Sketch of the experimental setup. The sonar head was moved
stepwise (10 cm) forward along the red line in the direction to the clutter screen. At each position, marked with a red dot, the sonar head was scanning the
environment −90° to 90° degrees, in 3.6° steps amounting to 51 single measurements during one scan. (B–E) Directional IR pattern acquired from the scans at
different distances from the clutter screen: (B) 110 cm, (C) 80 cm, (D) 50 cm, and (E) 20 cm. The peaks in the IRs are plotted in white, and the red arrow
indicates the start of the peaks origination from the reflector. The blue line in D shows the position of the IR that is depicted in F. (F) Single IR exemplarily
shown for a distance of 50 cm from the reflector. The red arrow here also indicates the start of the peaks origination from the reflector surface. The red line
depicts the peak detection threshold for which the peak positions were determined. (G–J) Three-dimensional representation of the voxel-based range maps
that are based on the probability of the presence of a certain peak separation, which is characteristic for the reflector. With more and more measurements
the probability of reflector presence gets higher and pointier, which makes the estimation of reflector position more precise. Note that there are also some
false assignments (small peaks) visible in graph I. The gray line indicates the path of the sonar head.
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filter operation (40)]. We also demonstrate that an autonomous
system can be reliably guided with a set of bioinspired reflectors, a
specialized sonar array mimicking the scanning movements of bats,
and an algorithm tuned to different reflector shapes. For the whole
system/algorithm, movement is crucial as it causes the ensonification
angles of the objects in the surroundings to change, leading to a

changed peak pattern for all objects except for the reflectors. This
makes the reflector detection process very selective, as shown by the
fact that no ambiguous peaks are visible in the range maps (Fig. 4 F–
I), although there were walls, tripods, and tables in the sur-
roundings. Only the reflectors show up because their peak
pattern remains constant and can be detected repeatedly in the

Fig. 4. Robot guidance experiment with a set of bioinspired sonar reflectors and a specialized sonar array. The robot was guided with different sizes of
reflectors, which transmitted different commands encoded by their characteristic peaks in their IR. The peaks are indicated by orange and red arrows, and the
green bar indicates the characteristic peak1–2 spacing. (A) IR of a green reflector (r = 35 mm, depth = 25 mm: light on). (B) IR of a blue reflector (r = 50 mm,
depth = 30 mm; turn 30° away from the reflector). (C) IR of an orange reflector (r = 70 mm, depth = 49 mm; stop at 20-cm distance). (D) Image and laser-
generated map for the reflector search experiment. The reflector was placed within a clutter screen while the robot had to find it and turn toward it. The
trajectories of 4 different runs are depicted in the laser range map. In the map the positions of the reflectors are indicated by the green, blue, and orange
shapes. For the blue trajectory the reflector and clutter screen (also in blue) was placed on the left side. (E) Image and laser-generated map for the guidance
experiment. The trajectories of 3 runs are depicted in the laser range map in different colors. (F–I) Examples of voxel maps during the approach of the
4 different reflectors as indicated in B. The light crosses indicate the actual position of the reflectors. The red line gives the path of the robot; as the turning of
the robot was not incorporated into the voxel maps, this line appears to be straight.
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IRs of the environment. Comparing the reflector designs pro-
posed here with the underwater reflector designs referred to
above, we note again that for airborne sonar we cannot make
use of multiple internal layers of materials with different reflective
properties to generate a characteristic echo pattern (13, 15) be-
cause of the large mismatch between acoustic impedances of air
and solid materials. Virtually no sound will penetrate into the
reflector, and thus the approach of layers of different reflective
properties cannot be used for sonar landmarks on land. Second,
none of the underwater studies show that their sonar landmarks
can be perceived in clutter-rich surroundings, as they are always
used in open water or on the seabed (12, 14). However, in our
approach where we take inspiration from nature in designing sonar
landmarks, we provide experimental evidence that passive in-air
sonar landmarks can indeed be perceived in dense clutter. Possible
applications of our proposed method can be found in level-4 au-
tonomy: By augmenting the environment with our beacons we can
implement an infrastructure-to-vehicle (I2V) communication,
which can alleviate applications such as automated parking,
steering of service robots, or guidance of straddle-carrier systems
and robots in mines. Sonar sensors communicating with bio-
inspired sonar landmarks could work as important backup systems,
which would perfectly support visual sensors as they also work
under visually challenging conditions such as in dark, glass-rich, or
foggy and dusty environments. Next-generation reflectors could
also be asymmetrical, mimicking even closer the form of original
Marcgravia leaves. Those would have a slightly changing yet pre-
dictable echo pattern which would allow the estimation of orien-
tation of the mobile agent with respect to the reflector, making it
easier to use the reflectors as waypoints. Furthermore, by trans-
ferring these ideas of reflector construction and detection to
electromagnetism, one can construct I2V communication for radar
systems, which could be useful in autonomous driving as well as
autonomous shipping.

Materials and Methods
Leaf and Reflector Ensonification. The echoes of the original flowers and
leaves (Fig. 1 D and E) were measured during an earlier project. We ensonified
leaves with a sonar head from a distance of 20 cm with a continuously replayed
MLS (maximum length sequence) signal of 16,383-samples length. We recor-
ded the reflected signal and obtained the IRs by deconvolution of the reflected
echo and the original MLS. The leaves were measured from 91 different an-
gular positions on the azimuthal plane around their opening in steps of 2°. We
conducted the measurements of the bioinspired reflectors in a similar way, but
we used a sweep signal (180 kHz to 30 kHz, 1 ms) instead of an MLS. We se-
lected the sweep signal because there were some slight differences in the
waveform of the IRs, that is, the peaks where higher and signal-to-noise ratio
was better, making it favorable to use the cross-correlation of the echo and
sweep. Therefore, broadband sweeps were used for the measurements and
characterization of the reflected signal, as well as the reflector detection ex-
periments. The ensonification of the reflectors was done with an automated
setup, where the reflectors were turned with a stepping motor in 1.8° steps
amounting to 101 measurements. The spectral directional echo patterns in
Figs. 1 and 2 were obtained by windowing the IRs (1,024 samples) and calcu-
lating the power spectral density (PSD). To obtain the spectral target strength
independent of the frequency response of the loudspeaker, we calculated the
difference between PSD from the reflector and the PSD of an acrylic glass plate
oriented perpendicular to the direction of sound propagation at exactly the
same position as the reflector. This was also done in a similar way for the
measurements of the original flower reflectors.

Clutter Detection Experiment. To figure out whether the bioinspired reflec-
tors could be recognized in clutter-rich surroundings, we used a custom-built
sonar head consisted of a .25-inch condenser microphone (40BF, preamplifier
26AB, power module 12AA; G.R.A.S. Sound & Vibration) and a one-layered
custom-made EMFi loudspeaker (see SI Appendix, Fig. S9 for directionality
and frequency response). The speaker and the microphone were embedded in
an aluminum body, which was mounted on a stepping motor, which itself was
mounted on a tripod. We started the first measurement at a 130-cm distance
to the reflector and moved the tripod manually forward in steps of 10 cm. For
each position the sonar head scanned the surrounding by a rotation of 180° in
3.6° steps, which summed up to 51 measurements. The artificial clutter con-
sisted of 126 randomly inclined round plastic plates with a diameter of 38 mm.
We ensonified this scene with a broadband 5-ms, downward modulated sweep
(160 to 30 kHz) and calculated the cross-correlation function of the recorded
sequence. The reflector detection algorithm was the same we used for the
array signal processing (discussed in the following paragraph).

Array Signal Processing and Voxel-Map Generation. To be able to quickly
acquire sonar information for different directions without any rotational
movement we developed an array of speakers which were combined with
2 omnidirectional microphones (.25-inch free-field microphone 40BF, pream-
plifier 26AB, powermodule 12AA;G.R.A.S. Sound&Vibration). The sensor array
consisted of 14 ultrasonic loudspeakers constructed around double-layered
EMFi transducer materials (see SI Appendix, Fig. S9 for directionality and fre-
quency response). Each transducer was oriented in a different direction and
they were inclined by 5°, amounting to an angle of 70°, as can be seen in SI
Appendix, Fig. S10. As signal we used a linear frequency sweep from 160 kHz
to 30 kHz in 6 ms. The 2 microphones each recorded an acoustic time-pressure
signal with a duration of 20 ms. See SI Appendix for more information on array
signal processing and the detailed algorithm for the voxel-map generation.

The Robot System. The robot system consisted of an Intel NUC, which ran a
custom LabView program to process the data, implementing the algorithm
detailed in the SI Appendix. The NIDAQ NI-USB 6361 generated the ultra-
sonic signal which was sent to an amplifier (Ultrachecker, custom-built by
Michael Günther, Chair of Sensor Technology, Erlangen University, Ger-
many) generating a signal of 200-V amplitude. This signal was fed to a
custom-made high-voltage demultiplexer which could route the amplified
signal to 1 of the 14 emitter channels. The routing was controlled by the
Intel NUC through the digital outputs of the NI DAQ device (SI Appendix,
Fig. S11).

The reflected sound was captured by 2 G.R.A.S. microphones (40BF with
preamplifier 26AB; G.R.A.S. Sound & Vibration) which were amplified by a
low-noise amplifier (power module 12AA; G.R.A.S. Sound & Vibration). The
amplified signals were digitized by the NIDAQ device at a sample rate of
500 kHz. The robot consisted of a Pioneer 3DX experimental robot platform.
It was a nonholonomic robot with a front-wheel skid steer drivetrain. The
robot was running the ROS. Ground-truth data about the robot’s path were
captured through the combination of the wheel encoders and the laser
scanner (Hokuyo UBG-04LX-F01) in a SLAM application. We used the
GMapping module available in the ROS software framework.

Data and Code Availability. Data and code described in the paper are publicly
available at Zenodo.

ACKNOWLEDGMENTS. We thank Wouter Halfwerk, Susan McGrath, Estefa-
nia Velilla, and Andrew Cronin for valuable suggestions on the manuscript;
Reinhard Lerch and Peter Ploss for stimulating discussions; Manuel Weiß for
programming support; and Christian Hoffmann, Tayyab Saeed, Shu Ju, Girmi
Schouten, and Dennis Laurijssen for help during several parts of the exper-
iments. This work was supported by Volkswagen Foundation grant Az.
89 111.

1. B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, 2016).
2. S. Thrun, “Finding landmarks for mobile robot navigation” in Proceedings International

Conference on Robotics and Automation (IEEE, Piscataway, NJ, 1998), pp. 958–963.
3. V. Magnago et al., “Optimal landmark placement for indoor positioning using con-

text information and multi-sensor data” 2018 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC) (IEEE, Piscataway, NJ, 2018), pp. 1–6.

4. D. Prasser, G. Wyeth, “Probabilistic visual recognition of artificial landmarks for si-
multaneous localization and mapping” IEEE International Conference on Robotics
and Automation (IEEE, Piscataway, NJ, 2003), pp. 1291–1296.

5. D. Kim, D. Lee, H. Myung, H.-T. Choi, Artificial landmark-based underwater localization
for AUVs using weighted template matching. Intell. Serv. Robot. 7, 175–184 (2014).
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