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ABSTRACT In recent years, deep learning methods have been widely applied in remote sensing image
classification tasks, providing valuable information for natural monitoring and spatial planning. In an actual
application like this, acquiring massive labeled data for deep convolutional networks is costly and difficult
especially in the situation that the data sources are diverse and the requirements are changing. Transfer
learning methods have already shown superior performance on exploiting domain invariance features in
existing data for deep network-based categorization tasks. However, the data imbalance between source
and target domains may bring negative transfer and weaken the classifier’s ability. Moreover, it is still
a difficult problem to extract object-level visual features among easy-mixed categories. In this context,
Multi-adversarial Object-level Attention Network (MOAN) is proposed for partial transfer learning and
selecting useful features. On the one hand, we present an improved object-level attention proposal network
(OANet) for perceiving structural features of the main object in the picture, and weakening the unrelated
regions. On the other hand, the extracted features are further enhanced by multi-adversarial framework
in order to promote positive transfer, selecting and mapping valuable cross domain features from shared
categories and suppressing others. This adversarial learning module can also generate pseudo tags for the
samples in target domain so as to perceive integral visual signals, similar to the process in source domain.
In addition, virtual adversarial training method is introduced in MOAN so as to regularize the model and
maintain stability. Experimental analyses show that our MOAN can significantly promote positive transfer
and restrain negative transfer in unsupervised classification problems. MOAN has good performances such
as higher accuracies and lower loss values on several benchmark data sets.

INDEX TERMS Partial transfer learning, domain adaption, object-level attention, remote sensing scene
classification, multi-adversarial learning, convolutional neural networks.

I. INTRODUCTION
It is always a tough work to acquire sufficient labeled data
for training complex models in a special application, like
remote sensing scene classification. The problemwill worsen
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when the monitoring targets are changing in different periods
and different regions. It is impracticable to label massive
data accordingly for those effective but complicated deep
networks. Transfer learning is regarded as a good solution for
solving problems like this. As a typical transfer learning task,
domain adaption has gained attention from many researchers
in the past decade [1].

56650 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5453-7389
https://orcid.org/0000-0002-3456-5259
https://orcid.org/0000-0002-0519-169X
https://orcid.org/0000-0001-7909-9012
https://orcid.org/0000-0001-7228-7838
https://orcid.org/0000-0003-0542-2280


P. Li et al.: Multi-Adversarial Partial Transfer Learning With Object-Level Attention Mechanism

FIGURE 1. An overview of the proposed MOAN. MOAN consists of 2 main sub-modules: 1) an
improved object-level attention mechanism (OANet) for extracting features and evaluating
relationships among pixels; 2) a main framework composed of multi-adversarial units which will
promote positive transfer and implement unsupervised learning between related categories in
source and target domains. VAT denotes Virtual Adversarial Training. Particularly, we use the
DIRT-T method in [8].

Some scholars have introduced Generative Adversarial
Network (GAN) [2] to implement domain adaption, like [3]
and [1]. For these models, there is a precondition that the
label spaces in source domain and target domain are iden-
tical. However, in most real transfer learning scenarios, data
imbalance is very common that the data and labels in source
domain are more and more complicated than those in target
domain, like from ImageNet [4] to NWPU-RESISC45 [5].

How to carry out a positive transfer and select useful
domain-invariant features from large, complex source domain
is the key point in actual remote sensing applications. Many
existing methods adopt symmetric feature representation
structures in which there is only one feature extractor in
both source and target domains [6]. This is not suitable for
the situation that the gaps between different domains are
big, like the domain gap between remote sensing pictures
and our daily life pictures. There are visual particularities
in remote sensing pictures, different from daily life pictures
that may be taken in everyday situations, perhaps by an
digital camera. Instead, the remote sensing pictures can be
obtained by the satellite, radar or other professional equip-
ment and will be processed and analyzed for spatial percep-
tion or other applications. On the other hand, it is also a
challenging topic to perceive accurate object-level features
from remote sensing images in which the objects are dis-
tributed sparsely.

It has been shown that partial transfer learning is a
good method to promote positive adaption by the utilization
of class-wise multi-adversarial learning unites [7]. Due to
the fact that there are always data imbalance in transfer

learning tasks and the categories in source domain are much
more than those in target domain, for remote sensing tasks,
we propose the Multi-adversarial Object-level Attention
Network (MOAN) in this article. There are 2 main submod-
ules in the proposed MOAN: 1) attentional feature extrac-
tors for source and target domains respectively; 2) domain
adoption module with multi-adversarial units. In order to
obtain high quality visual representations and promote an
positive transfer, thus utilize useful information and eliminate
the irrelevant, we make different improvements. Effective
training method is also applied to MOAN. The overview of
MOAN is shown in Figure 1. Our contributions can be listed
as follows:

1) An improved object-level attention proposal network
(OANet) is introduced and embedded in MOAN.
OANet adopts improved self-attention mechanism
which can take a good use of contextual information
and pixel-level spatial relationships, suitable for remote
sensing images in which the object may be far away
from another related one.

2) GAN-based partial transfer learning is utilized in
MOAN.We use a group of generative-adversarial units
in the framework for aligning cross-domain features
class-wisely and partially.

3) We adopt different feature extractors for different
domains and design an asymmetric framework for
mappings which can extract features with the pro-
gressing ‘‘pseudo’’ tags in target domain and remove
the the gradient reversal layer so as to prevent model
instability.

VOLUME 8, 2020 56651



P. Li et al.: Multi-Adversarial Partial Transfer Learning With Object-Level Attention Mechanism

4) We design an alternative training strategy for MOAN
and select an ‘‘warm booting’’ method so as to obtain
credible ‘‘pseudo’’ labels and propose attention regions
effectively. Virtual adversarial training [8] is also used
in MOAN.

The rest of this paper is divided into 4 parts. In section II,
related works are reviewed briefly; the proposed MOAN is
introduced and analyzed in section III; comparative experi-
ments are conducted in section IV and the conclusion is given
in section V.

II. RELATED WORK
A. DEEP TRANSFER LEARNING FOR SCENE
CLASSIFICATION
With the development of satellite technologies, a large num-
ber of high resolution remote sensing images have been accu-
mulated for different regions of interest. Although there are
many mature technologies in the processing of hyper-spectral
images [9], [10], it always a challenging topic to utilize
advanced computer vision strategies in the remote sensing
field and handle pictures in different bands including RGB
images [11]. In recent years, deep learning technologies have
become a widespread concern that Convolutional Neural Net-
works (CNN) are effectively applied in computer vision [4],
language processing [12], [13], fault diagnosis [14], [15] and
fault tolerant control [16] fields. More and more scholars
adopt deep learning-based computer vision methods to han-
dle scene classification for remote sensing images and these
methods have shown better feature extraction and seman-
tic comprehension abilities than those classic methods like
Gist [4]. However, complex model structures and lots of
network parameters pose new challenges for the utilization of
Convolutional Neural Networks (CNN) [4] in remote sensing
fields. Compared with acquiring massive labeled samples,
those strategies with limited supervisory signals, like semi-
supervised learning [17], [18], small-sample learning [19],
un-supervised learning [1] and zero-short learning [20], are
more economic and feasible.

This article mainly focus on transfer learning for remote
sensing image classification. In this topic, Penatti Otavio
et al. evaluated the performance of CNN networks trained
on daily life pictures for the classification of remote sensing
images [21], [22]. Nogueira et al. [21] and Scott et al. [23]
fine-tuned CNN networks by transforming the final layers of
CNN, like ResNet [24] and GoogLeNet [25], according to
the categories of pictures. Their results show that only need a
small amount of labeled data, the model is able to achieve
excellent accuracies. Luus et al. even re-trained simplified
CNN model by multi-view learning [26].

In order to improve the feature extracting ability of CNN
models on this transfer learning task, Chaib et al. combined
more than 1 CNN features by discriminant correlation anal-
ysis [27]; Cheng et al. coded the CNN features by semantic
bags then dealt the categorization by one-versus-all support
vector machine (SVM) classifiers [28]. These strategies take

advantages of original CNN features but make little improve-
ments on CNN architectures. In addition, most of them still
need a few amount of labeled data which may be scarce
in some real applications. Recently, attention mechanism
is popular for improving CNN structures and have drawn
attention from computer vision community. There are also
researchers pay attention to unsupervised domain adaption to
handle unlabeled data.

B. ATTENTION MECHANISM
In computer vision tasks, one important issue is to extract
object-level visual features and recognize them. This issue
is more important in remote sensing image processing due to
the fact that the objects in large remote sensing pictures are
always distributed unevenly and easily confused with each
other. Classical methods adopt sparse or low-rank represen-
tations [29], [30] for image patches [31] and they are very
effective in remote sensing area. Recently, deep learning-
based attention mechanism [32], [33] is regarded as good
solution for problems like this, perceiving object-level fea-
tures which illustrate the main sematic information in remote
sensing scenes.

These years, attention mechanism is widely applied in
computer vision and natural language processing tasks. Spa-
tial Transformer Network [32] is classical work which tried
to generate rotation angles and grids of objects by the train-
ing of location network embedding in CNN architectures.
SENET [34] is another representative work which aims
to learn the weights for different channels. Besides, self-
attention method [33], [35] is designed for evaluating
the long-range relationships between different objects and
regions by a pixel-level matrix multiplication.

In remote sensing field, Haut et al. proposed residual
channel attention-based neural network model which inte-
grated the attentionmodule into the residual CNN layers [36];
Luo et al. also introduced channel attention mechanism into
Fully Convolutional Networks to select appropriate features
[37];Wang et al. also improved Fully Convolutional Network
by integrating class-specific attentionmodel andResNet [38];
Ba et al. incorporated spatial and channel-wise attentionmod-
ules in CNN architectures to enhance features and detect fire
smoke in satellite pictures [39].

C. GENERATIVE ADVERSARIAL NETWORK, DOMAIN
ADAPTION AND UNSUPERVISED LEARNING
The monitoring requirements in remote sensing field is
changing frequently resulted from the variations in target
regions, time and even social development. Unsupervised
domain adaption methods are urgently needed in which the
objects in target domain can also be recognized by making
effective use of existing labeled data and knowledge. Dif-
ferent other un-supervised learning methods like zero-shot
learning which mainly focuses on newly-presented and never
seen categories, in domain adaption, label space is shared
between source domain and target domain [1], [3].
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In recent years, GAN-basedDomain Adaptionmethods are
popular in many un-supervised classification and segmen-
tation tasks [40]. The most common flow is to obtain the
initial feature representations and classifier in source domain
in which the data are sufficient, than align the features and
map samples from target domain to source domain so as to
classify them by the obtained classifier. Ganin et al. designed
the symmetric adversarial learning-based domain adaption
framework and the matched training method [1]. In the pro-
posed Domain-Adversarial Neural Networks (DANN) in [1]
and [6], samples in source domain and target domain are
represented by a same feature extractor and the opposite
optimization objectives between generator and discriminator
are implemented by a gradient inversion layer [1]. In [3],
Tzeng et al. presented the typical asymmetric domain adap-
tion structure, Adversarial Discriminative Domain Adapta-
tion (ADDA). In ADDA, 2 different feature extractors are
optimized for source domain and target domain respectively.
The one is obtained by the training with classification loss
on source domain and the other can be acquired during
the alternative training with adversarial loss between gen-
erator (feature extractor in target domain) and discrimina-
tor [3]. Although these models are very effective in the un-
supervised classification of office supplies and hand-writing
numbers [3], [41], there are still improvements for them
in remote sensing fields due to the greater domain differ-
ences and data imbalance between daily life pictures and
remote sensing images. Partial transfer learning is a valuable
topic to promote positive transfer between related categories
and avoid negative transfer between unrelated categories.
Aiming at this issue, Cao et al. proposed Selective Adver-
sarial Network (SAN) which matched feature distributions
among shared categories bymulti-adversarial learning frame-
work [7]. SAN [7] inspired us a lot for the propose of MOAN
in this article.

There are some other representative unsupervised methods
in these years, e.g., multi-task learning. Although the ‘‘task’’
and ‘‘domain’’ are proceed in different styles in different
models, these models have similar frameworks. The first
group is represented by [42] and [43], including a feature
mapping module for recognizing speech [42] or text [43], and
a discriminator-like module to distinguish different domains,
like different speakers, different languages or different review
topics. References [42] and [43] regarded the information per-
ception in different domains (or modalities in [44] and [45])
as different ‘‘tasks’’, while in [46], speech recognition and
speaker recognition were regarded as 2 different tasks. The
main structure of [42], [43] and [46] is similar to ADDA [3]
and the proposedmethod in this article. There are alwaysmul-
tiple sources, more than 2, in those applications of them [43].
Reference [47] did not adopt adversarial learning-based struc-
ture and the classifications in source and target domains were
regarded as 2 tasks. These 2 classifiers were boosted by a
joint learning and regularized by Maximum Mean Discrep-
ancy (MMD). The second group of multi-task learning is
based on self-supervised representation, like [48] and [49].

In methods like these, different newly-designed tasks are
utilized to obtain better feature mappings. Common self-
supervised tasks include rotation prediction [48], relative
position evaluation [50], colorization [49], inpainting [51]
and even the depth prediction and surface normal estima-
tion [52], [53] (labeled in synthetic images; the task in [53]
is also used in GAN-based framework, similar to group 1).
In general, these multiple tasks can be proceeded and ensem-
bled in an integrated framework [54], [55].

III. UNSUPERVISED PARTIAL TRANSFER LEARNING FOR
REMOTE SENSING SCENE CLASSIFICATION
As analyzed in Section 1, data imbalance and domain differ-
ences are very common in the transfer from existing data to
a new application. To solve the partial transfer task in remote
sensing field, inspired by [3], [7] and [35], we propose a
Multi-adversarial Object-level Attention Network(MOAN),
as shown in Figure 1.

As shown in Figure 1, in MOAN, OANet is mainly used
to perceive the basic features of images and provide visual
information for multi-adversarial module. Multi-GAN struc-
ture is adopted in MOAN to eliminate the interference of
irrelevant categories, and further improve the classifier’s per-
formance during the partial transfer learning. VAT denotes
Virtual Adversarial Training [8] which instructs the training
of GAN-based structure and makes the classifier and domain
discriminators abide by locally-Lipschitz constraint so as to
keep the classification boundary in target domain far away
from the high-density region and obtain higher classification
accuracies. In order to deal with the issue that the image atten-
tion in target domain cannot be effectively obtained without
supervision, we introduce ‘‘pseudo labels’’ in target domain.
These ‘‘pseudo labels’’ provide effective instruction for the
optimizing of OANet and multi-adversarial units alternately.
Relevant analyses and experimental results will be presented
in the following Sections.

A. OBJECT-LEVEL ATTENTION NETWORK (OANet)
In general, satellite pictures are taken with huge spans in
which the structures of ground objects are relatively complex.
Therefore, globally perceiving objects is an important issue
in scene classification. Self-attention mechanism can learn
the correlations between any two pixels and obtain global
features [33], [35]. Inspired by it, we propose an improved
attention mechanism OANet to extract object-level and over-
all features in-depth in remote sensing images. OANet is
shown in Figure 2.

Figure 2 illustrates the architecture of OANet. At first,
original images are fed into the backbone (ResNet [24] is used
in this article) to extract initial feature maps, as (1),

F ∈ RM×H×W , (1)

where M is the number of channels; H and W indicate the
size of single feature map; ∈ denotes the tensor meets the
multi-dimensional shape.
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FIGURE 2. The overall structure of OANet. F , O, P , and T are different
feature mappings in the module; A is attention mask proposed by the
module.

Then F is further processed as the inputs of two convolu-
tional layers to obtain feature representations O ∈ RM×H×W

and P ∈ RM×H×W respectively. After that, we reshape and
transpose O to O′ ∈ RN×M and reshape P to P′ ∈ RM×N ,
where N = W×H . In OANet, there is a matrix multipli-
cation between O′ and P′, then the results are further pro-
cessed in a softmax layer row by row. Through these steps,
we can achieve the attention mask A ∈ RN×N , which can be
described as equation (2),

Aij =
exp(O′i · P

′
j)∑N

i=1 exp(O
′
i · P
′
j)
, (2)

where Aij denotes the jth point’s weight associated with the ith
point in the feature maps, F .

In addition, we reshape F to F1 ∈ RM×N and apply a
matrix multiplication between F1 and the transpose of A, and
the result is reshaped to T ∈ RM×H×W . Instead of performing
a point-wise sum operation between T andF directly, we con-
catenate them and input the result into a convolution layer
to get the final feature maps F ′ ∈ RM×H×W . The purpose
of doing this is to adjust the combination mode between T
and F through optimization training iteratively, rather than
artificially defining the correlation weight between them,
which can be expressed as equation (3),

F ′ = ReLU (f ([F,T ], θf )), (3)

where [,] denotes the concatenation operation; f (, ) donates
the convolution operation with parameter θf ; ReLU is the
non-linear active function to prevent vanishing gradient.

In order to verify the effectiveness of the proposed OANet,
we carry out comparative experiment with original self-
attention mechanism on NWPU-RESIS45 [5] data set. In this
experiment, Resnet-50 [24] is selected as the backbone
and initial classifier. We utilize 3 indicators, Precision(P),
Recall(R) and F1-score(F1) to evaluate the performance of

TABLE 1. Classification accuracies of ResNet-50 [24] with different
attention proposal methods on NWPU-RESISC45.

different attention strategy as written in equations (4) to (6),

P =
TP

TP+ FP
(4)

R =
TP

TP+ FN
(5)

F1 = 2×
P× R
P+ R

(6)

where TP, TN, FP and FN are the numbers of true positive,
true negative, false positive and false negative respectively.

Experimental results are listed in Table 1. It can be seen
that OANet has obvious advantages over basic Resnet-50 [24]
and Self-attention mechanism in terms of precision, recall,
and F1. The detailed and comprehensive comparison will be
given in the experimental section (Section IV).

We also visualize the attention regions on the typical
picture from NWPU-RESISC45 [5], as shown in Figure 3.
In these attention sub-figures, brighter regions are with higher
pixel values.

As illustrated in Figure 3, it can be found that self-attention
and OANet significantly surpass basic Resnet-50 [24] in
capturing the integrity of object-level attention regions, which
indicates that attention proposal plays an important role in
feature representation and classification. Compared with self-
attention, OANet is more effective in highlighting the main
object area and weakening the negative impacts from irrel-
evant objects. OANet has a better performance on acquiring
basic features of remote sensing ground objects with complex
structures in large span satellite pictures.

B. UNSUPERVISED PARTIAL TRANSFER LEARNING WITH
MULTI-ADVERSARIAL NETWORKS
Partial transfer learning is proposed for the situation that
the label space in source domain, Ls, is bigger than that in
target domain and all the labels in target domain, Lt , are
contained in source domain labels. As shown in Figure 1,
Lt ⊂ Ls (shown in the ‘‘source label space’’ and ‘‘target
label space’’). This is very common in real applications, such
as transfer learning from ImageNet [56] to Caltech-256 [57]
or from NWPU-RESISC45 [5] to UCM [58]. Most of Tradi-
tional transfer learning methods are designed for the situation
that the label space is shared between source and target
domains [3], [59]. That is Ls = Lt , the labels are identical
in different domains. However, for most real applications,
single transfer frameworkmay be not suitable since the useful
knowledge in source domain is always limited. In a huge data
set in source domain, most feature mapping modules, like
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FIGURE 3. Attention visualization for a typical picture with basic backbone and 2 attention proposal methods.

single adversarial learning unit, can only roughly eliminate
the domain differences. It is possible to bring negative trans-
fer that the mapping will be influenced by other unrelated
categories from source domain. The inconsistent between
domains makes it difficult to obtain an appropriate adaption.

In this article, we propose the improved unsupervised
domain adaption framework with partial transfer learning
style, as shown in Figure 4. Multi-adversarial learning units
are embedded in the framework. Unlike SAN [7], we set
two feature extractors, Fs and Ft separately for the source
and target domains. The aim of this is to improve the dis-
criminating ability of domain predictor D through perceiving
the inter-domain discrepancy deeply, and to model samples
in different domains effectively. In addition, we introduce
virtual adversarial training mechanism to further enhance the
effectiveness of positive transfer.

In detail, we build the label classifier in source domain
by the labeled data at first. The loss can be written as
equation (7),

LadvC =
1
ns

∑
xi∈Ds

Ly(C(Fs(xi)), yi), (7)

where C is the label classifier, and Ly is its loss function;
xi is the labeled data in source domain (in the dataset, Ds,
in source domain), and yi is the related label; ns is the amount
of instances in source dataset.

In addition, according to the number of categories in source
domain, we build domain discriminators Dk , k = 1, 2, . . . ,
|Ls|, where |Ls| is the number of source labels. The domain
discriminators can distinguish the domain for samples. The
loss function can be written as equation (8),

LadvD = −
|Ls|∑
k=1

[
1
ns

∑
xi∈Ds

Lkd (Dk (Fs (xi)) , di)

+
1
nt

∑
xi∈Dt

Lkd (Dk (Ft (xi)) , di)], (8)

where ns and nt are the numbers of samples in source dataset
and target dataset respectively; Ds and Dt denote the source
dataset and target dataset; Ld is the loss function of the
domain discriminator.

However, due to the presence of irrelevant categories,
Li, this adversarial learning-based domain adaptation may

FIGURE 4. The multi-adversarial network for unsupervised partial
transfer learning. Fs and Ft are the feature extractors in source domain
and target domain respectively. C is the classifier which need to predict
data label. Xs and Xt are the images from source and target domains
respectively. The multi-GAN structure can align features from different
domains and implement positive transfer by selecting out outlier classes.
D is domain predictor. Ys are labels in source domain; d are domain

labels. L denotes the loss and θ means the parameters in each module;
∧
y

are predicted data labels and
∧

d are predicted domain labels.

be hindered. How to eliminate the interference of irrele-
vant categories is the main factor for improving the perfor-
mance of partial transfer learning. Since the samples in target
dataset are unlabeled, we cannot distinguish the related labels
beforehand from those redundant labels that only exist in
source domain. Settle for second best, we can get ‘‘pseudo
labels’’ through the pre-trained classifier in source domain.
The prediction of ‘‘pseudo labels’’ is the result from the
analyze of probability distribution of source labels. These
probability distributions for each target sample on source
labels are superimposed as weights which can be obtained
from the softmax normalization, as written in equation (9).
This equation is able to determine which labels are valid and
which are not. Along with the continuous optimization for
label classifier and domain discriminators, the prediction will
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become more accurate.

Wk =
1
nt

∑
xi∈Dt

Ck (Ft (xi)) , k = 1, 2, . . . , |Ls| , (9)

where Ck donates the probability that the target data xi
belongs to label k . Therefore, the greater the value of Wk ,
the greater the possibility that label k is a valid label, and
conversely, the greater the possibility that it belongs to the
collection of redundant labels.

In order to further reduce the impact from negative transfer,
we take Wk as a constraint to optimize the domain discrim-
inator, and the loss function of D can be improved from
equation(8) to equation(10).

L ′advD = −
|Ls|∑
k=1

[Wk .(
1
ns

∑
xi∈Ds

Lkd (Dk (Fs (xi)) , di)

+
1
nt

∑
xi∈Dt

Lkd (Dk (Ft (xi)) , di))] (10)

It has been shown that adversarial learning is able to
excavate domain-invariant features in many existing works.
However, in our un-supervised partial transfer learning task,
the target labels are missing and there are many irrelevant
categories in source domain as mentioned above. For solving
this problem, we apply multiple (Ls) domain discriminators
to evaluate and adjust the features cross domains. The target
mapping is able to obtain a weight for the ith sample associ-
ated with the kth category, as equation (9). It is reasonable to
believe that the features that make the samples successfully
puzzle the discriminators would be useful in target domain.
And also, the target sample is more likely to be assigned to
No. k category, the adversarial learning enhanced mapping is
more effective, as equations (9) and (10).

During the alternative optimization, the feature extractors
and domain discriminators will be improved accordingly.
By extractors, Fs, and Ft , samples cross domains can be
mapped into a space where they can be classified by the clas-
sifier. As a result, the per-class features in source domain will
be selected in multi-adversarial learning process and those
valuable features are enhanced partially, while the ‘‘negative
transfer’’ are suppressed.

In this paper, we also introduce clustering hypothe-
sis into partial transfer learning. In clustering hypothesis,
the processed dataset consists of multiple subsets and each of
them is associated with a typical category label. This cluster-
ing hypothesis has been successfully applied into many clas-
sification tasks [8]. Based on this assumption, the partition
boundary between different collections should be far away
from the high-density regions. Note that the optimization is
highly rely on the predictions on unlabeled data. For the sake
of improving the classification accuracy on the unlabeled
target dataset, we minimize the conditional entropy of target
distribution [60], which can be written as equation (11).

E = −
1
nt

∑
xi∈Dt

|Ls|∑
k=1

Ck (Ft (xi)) .lnCk (Ft (xi)) . (11)

It should be pointed out that since the target data is
unlabeled, the classifier trained on the source domain can
only give an approximate label in advance. As a result,
the conditional probability here refers to a pre-determined
label probability distribution archived according to the out-
puts of classifier.

Through minimizing conditional entropy, the prediction on
unlabeled target data can be boosted effectively. We make
the classifier and discriminators (domain classifiers) obey
locally-Lipschitz constraint [60] in order to avoid the non-
effective estimation and minimization of conditional entropy.
This constraint can also help the classifiers (including domain
classifiers) make decision boundaries which will bypass the
sample dense areas rather than pass through them. This is the
reason why we adopt virtual adversarial training [8] to make
constrains on the optimization for classifier and adversarial
learning units, as written in equation (12),

R=
|Ls|∑
k=1

[
1
nt

∑
x∈Dt

max
‖r‖≤ε

Dkl(Ck (Ft (xi))||Ck (Ft (xi+r)))], (12)

where ε is a hyper-parameter; Dkl(.) represents the KL diver-
gence calculation operation.

Considering all the factors above, the loss function of the
whole framework can be written as equation (13).

L = LadvC + L ′advD + E + R (13)

The optimization objectives can be written in
equations (14) and (15),(

θ̂Fs , θ̂Ft , θ̂C
)

= arg min
(θFs ,θFt ,θC )

L
(
θFs , θFt , θC , θDk |

|Ls|
k=1

)
, (14)(

θ̂D1 , θ̂D2 , . . . , θ̂|Ls|
)

= arg max
(θD1 ,θD2 ,...,θD|Ls| )

L
(
θFs , θFt , θC , θDk |

|Ls|
k=1

)
, (15)

where θFs , θFt , θC , θDk |
|Ls|
k=1 are the parameters that need to be

optimized.
It also should be mentioned that in the training of MOAN,

we adopt a ‘‘warm boosting’’ strategy. That is, the attention
proposal network, OANet, comes into play posterior to the
adversarial training for multi-GAN units so as to generate
credible labels which can provide more effective instruction
for attention proposal (OANet mentioned in Section 3.1).
These extracted attentions can also provide good instructions
for the classifier to handle target data.
In Figures 5 and 6, we visualize the attention regions dur-

ing the adversarial training of MOAN on 2 typical pictures.
These pictures are randomly selected from another represen-
tative data set in remote sensing field, UCM [58]. Similar to
Section 3.1, the higher the pixel values are, the brighter the
regions will be.
In these 2 pictures, it can be seen that along with the

increase of epoches, the extracted attention regions are con-
centrated near the the main objects, and become more obvi-
ous increasingly. This phenomenon shows that there is a
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FIGURE 5. Attention visualization during the adversarial training (example 1).

FIGURE 6. Attention visualization during the adversarial training (example 2).

positive interaction between the multi-adversarial module
and OANet.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
To evaluate the effectiveness of MOAN, we conduct com-
parative experiments on several public data sets with repre-
sentative transfer learning algorithms in these years. All the
experiments are carried out on a server with two Intel
Xeon(R) E5-2640K CPUs @2.4GHz, a 64GB RAM and
two 11GB GeForce RTX 2080 Ti GPUs. Development envi-
ronment is pycharm on Ubuntu 16.04.1 system. We adapt
TensorFlow 1.12 deep learning framework.

The parameters for training are set as this: batch-size, 50;
initial learning-rate, 0.001; epoch, 6000; learning-rate-decay,
0.99; ε in equation (12) is set at 2.1. LeakyRelu is applied
as the activation function in order to avoid the vanishing
gradient. We also introduce the batch normalization strategy
to prevent over-fitting. Resnet-50 [24] pretrained on Ima-
geNet [56] is chosen as the backbone.

B. DATA SETS, BASELINES AND STATE OF THE ART
We carry out 3 groups of experiments in this article. The
first group is on daily life pictures, Caltech [57]-Office [63],
[64], similar to the experiments in [7] and other state of arts.
We handle 4 transfer tasks in these experiments, C-256->
W-10, C-256->A-10, C-256->D-10. C denotes Caltech [57]
as the source domain. W, A and D are 3 distinct domains with
shared label space, Amazon (A),Webcam (W) and DSLR (D)
respectively [63]. The transfer is in 10 shared categories.

The second group is conducted on ImageNet (I-1000) [56]
and Caltech(C-256) [57]. There are 84 shared categories in
these 2 data sets and the transfer tasks can be setting as
I-1000->C-84 and C-256->I-84. It should be noted that in
order to eliminate the interference from the pre-trained model
on ImageNet [56] and keep the rationality of experiment,
I-1000 are derived from the training set of ImageNet [56],
while I-84 comes from the validation set.

In remote sensing field, we also select 20 categories shared
in NWPU-RESISC45 [5] and UCM [58] expect ‘‘buildings’’
that only in UCMdata set. ‘‘Agricultural’’ in UCM ismatched
with ‘‘Rectangular Farmland’’ in NWPU-RESISC45 [5].
Since almost all the categories in UCM [58] can be matched
to related ones in NWPU-RESISC45 [5], only N-45->U-20 is
evaluated for the partial transfer learning.

Several mainstream deep transfer learning algorithms
includingDAN [41], DANN(RevGrad) [6], RTN [61], ADDA
[3] and SAN [7] are selected as comparisons. We select
Resnet-50 [24] pretrained on ImageNet [56] as the back-
bone for all the algorithms. ResNet [24] has achieved good
effectiveness in many classification tasks, and its residual
mechanism makes it possible to build very deep networks.
The main idea of DAN [41] is to enhance the transferable
ability of the specific layers which are embedded in the
reproducing kernel hilbert space. There is an optimal pro-
cess for multi-kernel selection and minimizing the Maximum
Mean Discrepancies [65] designed in DAN so as to reduce
domain discrepancy effectively. DANN (RevGrad) [6] is the
first framework utilizing GAN-based structure for domain
adaption. In DANN, a gradient reversal layer is used to
connect the feature extractor and domain classifier during the
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TABLE 2. Classification accuracies on Caltech-Office tasks with different models.

TABLE 3. Classification accuracies on ImageNet-Caltech tasks with different models.

backpropagation-based training for the opposite optimization
objectives. RTN [61] is the upgrade of DAN [41]. In addition
to kernel embedding, new residual layers and loss functions
are also integrated in RTN [61]. ADDA [3] introduces the
unsymmetrical adversarial mechanism into domain adaption
and gives the overall framework which is the basis of some
related research. SAN [7] is the first model for partial transfer
learning, which can effectively improve the model’s effec-
tiveness by eliminating the outlier class in the source domain
and minimizing domain differences in shared label space.
WAN [62] is the advanced partial transfer learning method
with 2 different domain discriminators, the one for discrimi-
nation and the other one for the weight generation for samples
in feature space.

In addition to adversarial learning based methods above,
we also adopt the novel multi-task method mtUDA [47] for
comparison. Self-supervised learning method AMDIM [66]
is also used in our experiments.

C. STATISTICAL RESULTS AND ANALYSES
Experimental results on different partial transfer learning
tasks (as mentioned in section 4.2) are listed in Table 2,
Table 3 and Table 4 respectively. In these tables, CE
denotes ‘‘Conditional Entropy’’ as mentioned in Section 3.2;

TABLE 4. Classification accuracies on NWPU-UCM task with different
models.

VAT denotes ‘‘Virtual Adversarial Training’’; OA denotes
‘‘Object-level Attention’’ as mentioned in Section 3.1.

On Caltech-Office tasks, as listed in Table 2, the perfor-
mances of DAN [41] and DANN(RevGrad) [6] are weaker
than basic ResNet50 [24]. On C-265 -> W-10 and C-256 ->
D-10 tasks, these 2 methods gain extremely low accu-
racies. This is probably because that DAN [41] and
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FIGURE 7. Convergence curves on NWPU-UCM task.

DANN(RevGrad) [6] are proposed for the symmetric domain
adaption in which the label spaces in source and target
domains are identical. For partial transfer learning with
much noises, the specially designed structures in these meth-
ods are more susceptible to interferences. For example,
In DAN [41], the kernel-based embedding and MMD-based
(Maximum Mean Discrepancies-based) cross domain evalu-
ation may amplify the negative effects from those irrelevant
samples. Similarly, in DANN(RevGrad), there is only one
feature extractor for all the samples in both domains. In partial
transfer learning with huge source samples, the extractor
cannot map the target sample effectively and the domain
discriminator cannot distinguish the domain, too. Due to the
fact that in Amazon pictures (A10 classification), the objects
are obvious with fewer noises associated to source domain,
these methods are not so weak and have similar accuracies to
RTN [61] and ADDA [3]. The popular domain adaption algo-
rithm ADDA [3] achieves an average accuracy at 80.82%.
In ADDA [3], there is only one adversarial learning unit.
Due to the introduction of multi-adversarial learning-based
category selection mechanism, SAN [7] surpasses ADDA [3]
with a huge advantage of 6.9%. The sample weighting strat-
egy in WAN [62] makes it have a better average accuracy
than SAN. Although MOAN is lower than SAN in C-256 ->
W-10 task with 0.29%, it exceeds other methods in average
accuracy.

On Image-Caltech tasks, there is a huge difference in the
number of categories between source and target domains in
which the shared categories are only 84. It is obvious that the
outlier data in source domain are much more than the related
data. This situation will lead to a serious negative transfer
disturbed by unrelated signals. As a result, the accuracies of
models on these tasks are a little lower than those on Caltech-
Office tasks. It can be seen that in Table 3, the performances
of all the methods on I-1000 -> C-84 task are better than

C-256 -> I-84. This revels that the labeled source data are
important for training feature extractors. Recent adversar-
ial learning-based methods (like ADDA [3]) have higher
accuracies than classical methods. The multi-task method,
mtUDA [47], performs better than ADDA [3] on both 2 tasks.
Those methods proposed for partial transfer learning, SAN
and WAN [62], outperform other existing methods. On
I-1000-> C-84 task, MOAN obtains an accuracy at 77.20%,
and its average accuracy exceeds RTN [61], ADDA [3] and
SAN [7] by 5.37%, 4.02% and 2.23% respectively. This indi-
cates that MOAN has a better ability to eliminate interference
from irrelevant categories effectively and prevent negative
transfer.

In terms of remote sensing data set, the performances
of DAN [41] and DANN(RevGrad) on NWPU-UCM tasks
are inferior to that obtained by the baseline, ResNet50, and
also weaker than RTN [61]. The trend is similar to the
results listed in Tables 2 and 3. mtUDA [47] outperforms
ADDA [3] with 0.4% higher. The partial transfer methods
like SAN [7], WAN [62] and our MOAN are designed with
special GAN-based structures to evaluate the samples and
features, therefore showing obvious advantages in processing
these partial transfer problems. As listed in Table 4, MOAN
also shows better performance with higher accuracy than
RTN [61], ADDA [3], mtUDA [47], SAN [7] and WAN [62]
by 9.02%, 4.66%, 4.26%, 2.23% and 1.95% respectively. It is
obvious MOAN is very suitable for the unsupervised remote
sensing scene classification tasks. It should also be noticed
that the main idea of self-supervised methods is to learn a
strong encoder with massive un-labeled samples, than train
basic classifiers in a relative small labeled sample set without
backpropagation to the encoder. Since the structure of basic
classifier is relative simple, the classifier can be obtained by
very limited samples. In transfer task, the encoder and classi-
fier are trained by different data sets, e.g., training encoder on
ImageNet [56] and MLP (Multi-Layer Perception) classifier
on Places205 [66]. In the testing, the Places205 [67] samples
are mapped by the encoder trained on ImageNet [56]. In this
article, we also design experiments for the self-supervised
method AMDIM [66]: training encoder on NWPU [5] and
training the classifier on UCM [58]. We use unlabeled
NWPU [5] and labeled UCM [58], according to the self-
supervised idea. AMDIM [66] obtains a similar accuracy to
SAN [7], higher than mtUDA [47]. We believe that more
samples can further improve the encoder in self-supervised
style. MOAN outperforms AMDIM [66] in this task.

With regard to different components in MOAN, it can
be seen that the introduction of Virtual Adversarial Train-
ing (VAT) has improved the average accuracies by 0.19%,
0.22% and 0.29% respectively on all 3 groups of experi-
ments. OANet has further enhanced the average accuracies
by 0.53%, 0.42% and 0.47%.From the perspective ofmodel
structure, we find that the adversarial learning-based models
(e.g. ADDA [3], SAN [7] and WAN [62]) perform better
than other models (like DAN [41] and Resnet-50 [24]). The
models with multi-adversarial units (like SAN [7], WAN [62]
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FIGURE 8. t-SNE visualization of RTN, ADDA, SAN and MOAN with class information on UCM data set.

and MOAN) for feature evaluation are superior to those
with single adversarial unit (e.g. DANN(RevGrad) [6] and
ADDA [3]). The multi-task method mtUDA [47] and self-
supervised method ADDIM also obtain acceptable accura-
cies. Although self-supervised methods have advantage in

feature representation, they need an additional step to train
classifiers with semantic labels.

It can be concluded that MOAN performs better than
other methods on partial transfer learning tasks in an unsu-
pervised style. In these tasks, the source data set is large and
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FIGURE 9. Feature visualization on ‘‘airplane40’’ picture.

FIGURE 10. Feature visualization on ‘‘sparseresidential70’’ picture.

FIGURE 11. Feature visualization on ‘‘storagetanks27’’ picture.

complex and the target data set is relatively small. In remote
sensing field, the advantage is more obvious as shown
in Table 4. In these experiments, we can also easily find that
the cross-domain noises impact negatively on the models’
performances especially for those symmetrical domain adap-
tion methods like DANN(RevGrad) [6] and ADDA [3]. It is
a valuable research topic to modify existing methods so as to
handle partial transfer tasks.

The loss curves of different methods on remote sens-
ing task, NWPU-UCM, are shown in Figure 7. As the
number of epoches increases, the losses of DAN [41] and
DANN(RevGrad) [6] increase instead of falling. This is prob-
ably because that these 2 methods are mainly designed for the
symmetric transfer tasks in which the label spaces are same in
different domains. In DAN [41], the kernel-based embedding
and MMD-based domain adaption cannot map the target
samples effectively in the partial transfer tasks. In DANN
[6], the gradient reversal layer may bring instability during
the training of feature extractor and discriminator, and the
instability is amplified by the negative transfer resulted from

unrelated categories. Although DANN(RevGrad) [6] adopts
adversarial structure, its performance is inferior to the back-
bone. This can also verify the importance of limiting negative
transfer and promoting positive transfer. It can also be seen
that the loss curve of RTN [61] tends to decrease generally,
possibly because the method introduces entropy minimiza-
tion constraint. ADDA [3] weakens the influence of negative
transfer to some extent by mapping the target samples to the
source space and adopting the alternative training method.
This is the reason why ADDA [3] can converge, though the
final loss value is still at a high level. SAN [7] exceeds the
above methods both in the convergence rate and value, show-
ing that the selective multi-adversarial structure can effec-
tively avoid the interference of unrelated categories. mtUDA
[47] and AMDIM [66] have similar downtrends with lower
loss values than ADDA [3]. The adversarial learning-based
partial transfer learning methods WAN [62] and SAN [7]
have better convergence curves, falling faster with lower loss
values. MOAN obtains the lowest loss value among all the
models.
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FIGURE 12. Confusion matrixes of SAN and MOAN on UCM data set.

D. FEATURE VISUALIZATION AND CONFUSION MATRIXES
For NWPU-UCM task, we visualize the t-SNE [68] embed-
dings of samples in target domain in order to show the
impacts of feature enhancement on remote sensing images.
5 models are used for comparison with MOAN, as shown
in Figure 8.

It can be seen that RTN [61] cannot clearly distinguish
the different categories. Although ADDA [3] adopts adver-
sarial structure, it do not discriminate those target categories,
too. Similar to the analyses in section IV.C, symmetrical
domain adaptionmethods aremore susceptible to noises from
unrelated categories in partial transfer learning problems.
Compared with ADDA [3], mtUDA [47] can generate more
obvious regional boundaries. Since SAN [7], WAN [62] and
MOAN are proposed for partial transfer problems and design
different modules for accurate feature selection, their target
samples are more concentrated with larger inter-class dis-
tances. MOAN performs better than other existing methods.

To illustrate the performance of OANet in feature extrac-
tion, we also visualize the feature maps of 3 images from

UCM [58] data set, as shown in Figures 9, 10 and 11.
Residual Attention network (Res-Attention) [69], the repre-
sentative and effective attention mechanism, is selected as a
comparison.

We can easily observe that after the processing by object-
level attention network, in the maps, the features associ-
ated with the main objects (such as airplanes, buildings and
oil tanks) are enhanced effectively. The attention areas are
brighter after mapping, while the unrelated parts are weak-
ened by the model. In addition, the overall structure of the
object is more prominent. It is reasonable to believe that this
advantage can help MOAN perform better in global scene
recognition.

Figure 12 shows the confusion matrixes obtained by
mtUDA [47], SAN [7], WAN [62] and MOAN. We use 2 sig-
nificant digits. It can also be observed that MOAN has more
excellent scene classification ability in remote sensing field,
especially for those easily-confused categories like ‘‘mobile
home park’’, ‘‘parking lot’’ and ‘‘residential’’. From (a) to (d),
the accuracies increases gradually. On ‘‘mobile home park’’,
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the accuracy obtained by MOAN is higher than mtUDA [47],
SAN [7] and WAN [62] by 0.12%, 0.09% and 0.06% respec-
tively. On ‘‘parking lot’’, the differences are 0.09%, 0.06%
and 0.03%.

V. CONCLUSION
In this paper, we propose a novel unsupervised partial trans-
fer learning framework, MOAN, for remote sensing scene
classification. Different from conventional image recogni-
tion methods, object-level attention mechanism and multi-
adversarial learning model are embedded in the framework.

With the ability to circumvent negative transfer by select-
ing out the irrelevant source data, MOAN can obtain higher
accuracies in target domain than existing domain adaption
methods (e.g. RTN [61]) in un-supervised partial trans-
fer learning problems. Different from those state-of-the-art
adversarial domain adaption methods like ADDA [3] and
SAN [7], in MOAN, object-level attentions are improved and
optimized alternatively in order to completely perceive the
objects in pictures. This is the key point to boosting the perfor-
mance on unsupervised remote sensing scene classification.
Considering that most of existing attention proposal strate-
gies are highly dependent on labels, it is a valuable attempt
to propose attention regions by ‘‘pseudo tags’’ which are
obtained during the multi-adversarial learning-based domain
adaption. These attention regions can also promote predicted
tags in target domain. Moreover, the virtual adversarial train-
ing mechanism is introduced in the training for adversarial
learning units so as to keep the stability of the model and
facilitate a positive, effective transfer.

Experimental results on 3 groups of transfer learning tasks
show that our MOAN can significantly promote positive
transfer and weaken negative transfer, thereby achieving
higher accuracies. MOAN is valid in both daily life pictures
and remote sensing images.

In the future, MOAN can be further improved in 4 aspects:
1) in addition to ‘‘pseudo’’ labels, ‘‘proxy tasks’’ like color
prediction and relative position estimation can also be utilized
to embed visual signals in a self-supervised multi-task style;
2) the proposed method is expected to obtain more guid-
ance information from multiple feature embedding strategies
like multi-view learning [70] and multi-modal learning [71];
3) with high quality visual representations from 1) and 2),
MOAN can be modified and applied in other complex remote
sensing image archive, e.g., Bigearthnet [72]; 4) the proposed
method can also be improved and used to deal with more
complex spatial applications, like semantic segmentation.
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