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ABSTRACT The present study applies the one-dimensional convolutional neural network (1D-CNN) to
propose an intelligent approach of the feature extraction for the analog circuit diagnosis. The raw signals
based on various soft faults from the output terminal of the circuit under test (CUT) are collected with
appropriate data acquisition system to implement a data-driven fault diagnosis. The data-driven diagnosis
process is typically encapsulated in two distinct blocks, including the feature extraction and the classification.
In this study, the designed 1D-CNNmodel efficiently combines the aforementioned two phases into a single
diagnosis body with fast learning rate and accurate classification. The main advantages of the 1D-CNN are:
1) it can be directly established to the raw signal with proper training so that it is more applicable in real
applications; 2) its compact architecture and configuration has reasonable applicability in complex analog
circuits; 3) convolutional kernels guarantee that the hierarchical features can be extracted from raw data
with better anti-interference performance. Moreover, since the method can extract high-level features of
raw signals, it resolves the necessity to employ other per-processing methods for the hand-crafted feature
transformation. The performance of the proposed 1D-CNN model is evaluated through three benchmark
circuits on the SIMULINK platform. Obtained results are compared with other intelligent fault diagnosis
methods. The experimental results show that the 1D-CNN can be utilized effectively as the feature exactor
and faults classifier for analog circuits.

INDEX TERMS Analog circuit fault diagnosis, convolutional neural network, data-driven method, faults
classification, feature extraction.

I. INTRODUCTION
With high integration and wide application of analog cir-
cuits in modern electronic systems, the fault diagnosis of
analog circuits has become a fundamental issue to perform
reasonable maintenance and maintain the reliable operation
of the system. Reviewing the literature shows that it has
attracted much attention and achieved great research results
since 1970s [1], [2]. Analogue circuits are more susceptible
to interference and limited in test nodes. Moreover, analogue
circuits have poor performance of component tolerance, and
have more complex and complicated fault diagnosis system
compared to digital circuits [3]. Moreover, less than 20%
of analog circuits are responsible for more than 80% circuit
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faults [4]. Therefore, it is extremely essential to develop an
effective fault diagnosis approach in electronic system health
monitoring. This is more pronounced for soft faults, which
mainly refer to abnormal variation of resistance, capacitance
and inductance parameters. It should be indicated that power
supply fluctuations, intense electromagnetic interference and
poor solder joint contact are typical reasons of soft faults.
Comparatively, hard faults in analog circuits would directly
lead to catastrophic failures and are easier to be detectedwhen
the output of the circuit system seriously distorted [5]. To this
end, it is still a challenging task to implement component-
level diagnosis of the soft fault.

Analog circuit diagnosis approaches can be roughly
divided into the modeling approaches and the data-driven
approaches. The model-based methods mainly utilize mea-
sured signal responses under various conditions and outputs
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of circuit-model so that they are also known as signal-
model methods. Liu et al. [6] combined a signal charac-
terization model containing a feature extraction with the
fault coding method to implement diagnostics and prognos-
tics. Chen et al. [7] proposed an improved simulation-based
multi-signal modeling for hard (F-fault and G-fault) and
parametric faults. However, in this method, the Monte-Carlo
simulation is determined explicitly and an adaptive threshold
estimation is required. Other modeling approaches, including
the matrix model [8], fuzzy model [9], parity space-based
model [10] and the hidden Markov model (HMM) [11], are
also combined with various signal processing methods for the
fault diagnosis in analog circuits. Yang et al. [12] proposed a
float encoding genetic algorithm that can model all parameter
shifting faults with the grouped crossover, mutation and an
integrated selection strategy. Moreover, the analytical ideas
were adopted in the model-based approaches to establish the
relationship of cause-effect dependency, such as the directed
graph, decision trees, and fault dictionary methods, between
the test and fault [13]. In summary, even in complex methods,
the most fundamental principle of model-based approaches is
to derive available transfer function equations for the analog
circuit [14], [15]. For instance, a complex filed-based fault
modeling is derived from the binary quadratic function that
can characterize any continuous parameter shifting (soft)
faults [16]. However, the modeling approaches require man-
ual analysis and a great deal of prior knowledge. Further-
more, the modeling verification is extremely necessary and
important for these models. Although these models have
achieved great research results, it is a challenge to complete
the fault diagnosis task with an unsupervised way. This is
more pronounced for complex electronic systems.

Since establishment of modeling approaches is a great
challenge, data-driven approaches have become more pop-
ular as they combine feature extraction and classification
techniques into a single learning body. Reviewing the liter-
ature indicates that commonly used data-driven approaches
are the artificial neural network (ANN) [17]–[22], support
vector machine (SVM) [23], [24], and other machine learning
methods [27], [28]. Zhao et al. [17] proposed an intelligent
solution based on the deep belief network (DBN), which
has higher classification accuracy and lower requirements on
data. Similarly, Zhang et al. [4] adopted the DBN method
for the feature extraction. However, the quantum-behaved
particle swarm optimization (QPSO) is used to optimize the
structure parameters of the DBN. Afterward, SVM benefiting
from QPSO served as a classifier for incipient faults. The
neural network has superior advantages in feature extrac-
tion and it is commonly combined with some signal pre-
processing methods. For example, Gan et al. [20] presented
a wavelet neural network (WNN), which is trained by a
modified unscented Kalman filter (UKF) algorithm. More-
over, the wavelet transform and kernel linear discriminant
analysis (KLDA), kurtosis and entropy of signals, and the
maximal class separability based on kernel principal com-
ponents analysis (MCSKPCA) are used as preprocessors in

Ref. [19], [28] and [18], respectively. Furthermore, a multi-
class adaptive neuro fuzzy interface system (ANFIS) is pro-
posed in Ref. [22], which incorporates both ANN and fuzzy
logic systems. Tan et al. [29] presented a systematic method,
which combines neural networks and the genetic algorithm.
Moreover, the SVM has been successfully applied in the fault
diagnosis by using some signal transformation techniques as
the preprocessor. For instance, in [30] and [31], SVDD based
on the fractional wavelet transform (FTW) and improved
LLSVR based on the nonlinear independent component anal-
ysis (NICA) are proposed, respectively. It should be indicated
that the signal processing methods (NICA or FTW) are used
for the feature extraction, while the latter methods (LLSVR or
SVDD) are applied for the classification. Yuan et al. [32] used
an improved hybrid particle swarm optimization (IH-PSO)
algorithm to tune SVM parameters so that they achieved
significant improvements in the initialization, convergence
speed and the mechanism.

Considering the foregoing literature review, the most
important advantages of data-driven approaches in the analog
circuit fault diagnosis can be summarized as the following:
• The diagnosis model is established based on the artificial
intelligence tools by automatic training.

• Classification results for faults can be autonomously
obtained with implicit feature patterns discovered from
a large number of historical data.

• This approach can also be combined with many statisti-
cal analysis methods and optimization algorithms to get
better performances.

However, the data-driven diagnosis method still needs to
extract features of underlying signals. On the other hand,
the majority of performed investigations so far have been
focused on fixed and manual feature extraction methods.
Generally, these methods are along with the domain transfor-
mation that can significantly decrease the efficiency of algo-
rithms. Furthermore, handcrafted features extracted by the
preprocessing algorithm cannot represent deep characteris-
tics of signals for different circuits. Meanwhile, these features
can be hardly generalized in other applications [33]. In order
to resolve these shortcomings, a compact 1D convolutional
neural network (1D-CNN) is considered for analog circuit
fault diagnosis with an automatic feature extraction process.
A deep CNN model has a hierarchical neural network frame-
work, in which the convolutional layers are employed as
feature maps to achieve ‘‘deep learning’’ of features. Com-
pared with conventional schemes, a simple 1D-CNN model
achieves a superior performance in feature extraction and
classification with limited training data. Moreover, filter ker-
nels of the 1D-CNN can be optimized with proper training by
a few dozens of back-propagation (BP) epochs so that it is an
appropriate choice for processing one-dimensional signals.
It should be indicated that in the present study, obtained
results will be evaluated in three benchmark circuits.

The rest of this study is organized as follows: The archi-
tecture and detailed configuration of the 1D-CNN model is
introduced in section 2. Fault diagnosis simulations based on
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FIGURE 1. Architecture of the proposed adaptive 1D-CNN model.

three typical circuits are conducted to demonstrate the perfor-
mance of 1D-CNN in section 3. Finally, main achievements
and conclusions are presented in section 4.

II. INTELLIGENT 1D-CNN METHOD FOR ANALOG CIRCUIT
FAULT DIAGNOSIS
Reviewing the literature indicates that CNNs have reasonable
performance in many pattern recognitions, such as the nature
language processing [35], image classification [36] and the
object detection in scene [37]. By applying the convolutional
operation, CNNs construct a series of mapping to gener-
ate a succession of higher abstraction of input data, where
each feature map can be called a channel and a convolu-
tional operation filter. In the studied case, 1D-CNN which
is sensitive to the one-dimensional time sequence, has been
successfully applied in the electroencephalogram (EEG) and
electrocardiogram (ECG) classification [38], [39], bearing
and hydroelectric generating unit fault diagnosis [40], and the
wheelset bearing fault diagnosis [41]. In a 2D-CNN model,
input images are decimated to the class vectors at output layer.
Hence, the entire configuration of the CNN model should be
designed properly. In this regard, the topology of 1D-CNN
model needs rational arrangements and certain modifications
to perform the 1D (time-series) signal processing.

A. OVERALL ARCHITECTURE
1D-CNN is utilized to process time series data in one dimen-
sional form with convolutional (Conv) 1D layer, dropout
layer, pooling (PL) 1D layer, batch normalization (BN)
layer and fully connected (FC) layer and softmax classifier.
Figure 1 illustrates the architecture of the proposed 1D-CNN
model following an end-to-end diagnosis strategy without
manual feature extraction procedure.

The architecture of compact CNNs is adaptive to process
the input sequences of any dimension. Meanwhile, it is nec-
essary to obtain the given output dimension of the last CNN
layer by automatically assigning the sub-sampling factor of

the last SS layer. This factor is set in accordance with the
size of the practical input and objective output array. Figure 1
indicates that the sub-sampling factor of PL-2 layer in Conv-
2 block can be adapted automatically so that the given output
of this layer ca be set to an arbitrary dimension. Because
of this ‘‘adaptive’’ design, the proposed 1D-CNN model has
adaptation ability to set a proper number of CNN layers
depending on the dimension of input signals.

Obviously, the convolution kernels and feature maps
in 1D-CNN is a 1D-sequence instead of 2Dmatrices. Accord-
ingly, the kernel size parameters and SS size are scalars,
which are two major factors for 1D-CNN performance.
Architectures and parameters should be set properly in accor-
dance with various feature extraction and classification tasks
for different circuits. Moreover, a dropout layer is added
after the Conv layer to avoid overfitting, which is caused
by increasing the model parameters with limited supervised
learning. Since the distribution of feature maps changes
during the training process, the BN layer is introduced to
provide faster convergence and avoid special initialization
of parameters [42]. There are two parameters of the BN
layer, γ and β, that should be iteratively updated by BP.
It should be indicated that in the 1D-CNN model, the sum
of parameters γ and β that shows acceptable number of
parameters, is equal to 2 × fmap length × fmap num,, which is
much less than that of the 2D-CNNmodel.. Thanks to the BN
layer, the ‘‘gradient diffusion’’ can be effectively prevented
hence the convergence performance is improved with higher
learning rate and lower dependency on the initialization of
weights.

Eventually, a FC layer accompanied by a softmax classifier
is applied for the signal classification, where higher features
are extracted from upper layers. All CNN units in BN layers
of Conv block are connected to each neuron of FC layer.
By this compact design, the number of hidden Conv blocks
can be set automatically for adapting to various fault classifi-
cation in analog circuits.
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FIGURE 2. The detailed configuration of 1D-CNN model for three experimental circuits.

B. DETAILED CONFIGURATION FOR THREE CIRCUITS
As aforementioned in section 2.1, the core component of the
proposed 1D-CNN architecture is Conv block, which con-
sists of four main layers, including the Conv layer, dropout
layer, PL layer and the BN layer. Prior to implementing the
signals to the CNN classifier, response signals of the analog
circuit that are sampled as sequential time series, will be
preprocessed by the normalization. Figure 2 illustrates the
configuration of 1D-CNN model for three circuits. It should
be indicated that ReLU is selected as the activation function.
Moreover, the max-pooling function is used for the PL layer,
while the batch size varies from 20 to 60.

As shown in Figure 2, low-level layers have larger number
of kernels and high-level layers have smaller numbers of
kernels. For example, in the test circuit-1, the number of
kernels in Conv-1 is 24, while receptive field of each kernel
is 5. On the other hand, the number of kernels in Conv-2
is 16, while receptive field of each kernel is 3. Therefore,
the kernel depth in Con-2 is 24 as the depth is the number
of channels that is decided by feature maps of the previous
layer. In each Conv layer, the input sequence is separated
into several vectors in accordance with the number of kernels
of this Conv layer so that Conv-1 is 24 and Conv-2 is 16.
This pyramid architecture can reduce the number of learnable
parameters. Through these Conv blocks, a hierarchy of low-
to high-level features originating from the input 1D-sequence
can be learned, while the redundancy or unnecessary features
reduce.

III. SIMULATION EXPERIMENTS
In this section, three cases are studied in analog circuit
fault diagnosis to evaluate the performance of the proposed
method. Sallen-Key band pass filter and four-opamp biquad
high-pass filer are the most representative subjects to inves-
tigate the analog circuits fault diagnosis. Meanwhile, these
filters can be simply applied to verify the performance of the
proposed method. On the other hand, the leapfrog filter is a
more complex filter circuit with more critical components,
which is widely applied for the fault diagnosis [22]. There-
fore, the leapfrog filter is employed in the present study to
demonstrate the wide applicability of the proposed 1D-CNN
model. Circuit modeling and signal processing are performed
in theMATLAB/Simulink platform,where the data collection
of fault patterns and 1D-CNN training can be integrated
seamlessly. Generally, the analog circuit fault diagnosis is
mainly divided into two cases with respect to the fault type.
These cases are single faults and multiple faults [43].
Single faults: In case of the single fault, one of the critical

components fails, while no other component is in the failure
state. In this case, faulty impulse responses can be processed
with the feature extraction to implement the real-time diag-
nosis. Generally, single faults have the highest probability of
fault occurrence in the system [4].
Multiple faults or coupling faults: In this case, two or

multiple components fail simultaneously or the faulty com-
ponent causes the failure of other associated components.
Since the coupling fault in this case is mostly caused by
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FIGURE 3. Salley-Key Bandpass Filter model.

FIGURE 4. Raw output signals of different fault patterns in circuit-1.

switching circuits, performing an efficient diagnosis is a great
challenge. It should be indicated that multiple faults have the
same processing methods with the single faults. Studies show
that multiple faults have lower probability of occurrence in
comparison with the single fault case.

Therefore, the proposed 1D-CNN method is validated
through single fault simulation in the analog circuit mod-
eling. First, features of single fault patterns in the example
circuits modeling are extracted and results are visualized
in section 3.1. Second, the fault classification experiment is
conducted to verify the performance of the fault diagnosis in
section 3.2.

A. FEATURE EXTRACTION AND VISUALIZATION
1) EXAMPLE CIRCUIT 1
In this experiment, Sallen-Key bandpass filter circuit is mod-
eled and soft faults are simulated to occur in four critical
components. Figure 3 illustrates the configuration of such
filter. The tolerance values of resistors and capacitors are
set to 5% and 10%, respectively. Considering the rational-
ity of faults setting, normal values of the components R2,
R3, C1 and C2 have more impact on the center frequency.
Accordingly, these four critical components are determined
as fault injection devices through the sensitivity analysis.
Fault free condition and different soft faults are simulated
in R2, R3, C1 and C2 with 50% lower and higher variation
than their nominal values. The single pulse of 5V pick ampli-
tude with duration of 80µs is applied as the input signal.
Figure 4 presents the response signals with different fault
patterns, where ↓ and ↑ symbols donate higher and lower
variations than the nominal variation, respectively. F0 is the
fault free condition. Moreover, to further evaluate the perfor-
mance of the proposed 1D-CNN method, 5% (of the voltage
range) white Gaussian noise and 3% (of the sampling time)
shift variance are added to the raw response signals.

FIGURE 5. Feature visualization of the 1D-CNN FC layer in the circuit-1
(a) input data (b) output data of hidden FC layer.

Then the dataset of each fault with almost the same fault
signature (hereafter called the ambiguity set) should be pro-
duced in the fault dictionary. Accordingly, the Monte-Carlo
analysis is performed to obtain a large number of instances
for a fault mode that are used for learning and evaluating the
neural network parameters. Time series signal for each fault
type is treated as one input instance to perform the analysis.
Then the Monte-Carlo analysis is conducted 300 times and
300 groups of fault instances are collected as the ‘‘ambigu-
ity sets’’. Each incipient fault class is equally divided into
training and testing dataset with 150 samples. The training
dataset is applied for constructing the 1D-CNN modeling
with feature extraction and fault classification, and the testing
data is used for validation study.

As shown in Figure 2, the configuration of 1D-CNNmodel
for circuit-1 is constructed with 2Conv blocks, a FC layer and
a softmax classifier. The response signal of each fault type in
this circuit is sampled with dimension of 400×1 and output of
FC layer is 22×1. The convolutional kernel sizes of Conv-1
and Conv-2 blocks are 5 and 3, respectively. The measured
signals are first normalized and then used as the input data
of 1D-CNN. For illustrating results of the feature extraction
more clearly, the t-SNE technique is employed to provide a
two-dimension representation feature of the input data and
output of 1D-CNN FC layer. Obtained results are presented
in Figure 5.

Feature extraction results of circuit-1 indicate that the deep
and intrinsic feature of each incipient faults can be separated
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FIGURE 6. Four-opamp biquad high-pass filter model.

FIGURE 7. Raw output signals of different fault patterns in circuit-2.

from raw signals by the proposed 1D-CNN model. Figure 5
shows that signals in the fault free condition represented
by red dots has two outliers, which is close to region R3↓.
Similarly, signals in R3↓ condition have two outliers, which
approach to C1↓ and R2↑ regions. Meanwhile, there are
slight overlapping between the R3↓ and C2↑ regions, C2↓
and R3↑ regions. However, after implementing kernel filters
and sub-sampling layers, the FC layer can extract abstract
and higher-level features of soft fault patterns, which has
obtained great performance compared with raw data. The
feature extractor of Conv blocks and FC layer provide basis
for successive fault diagnosis in analog circuits.

2) EXAMPLE CIRCUIT 2
Four-opamp biquad high-pass filter is considered in the sec-
ond test circuit. The circuit model and nominal values of all
components are shown in Figure6. The tolerance values of
resistors and capacitors have same setting with those of the
Salley-Key bandpass filter in the foregoing section. Regard-
ing the rationality of faults setting, components R1, R2, R3,
R4, C1 and C2 are selected as the experimental devices with
50% lower and higher variation than their nominal values
through the sensitivity analysis. Input signal is a single pulse
of 5V pick amplitude with 10µs duration in the time domain,
and raw output response signals of all incipient faults and
fault free condition are shown in Figure 7. The simulation
is conducted with 300µs duration and output time series
of 12 fault modes are obtained. Then the noise is added to
the raw signals as same as circuit-1.

FIGURE 8. Feature visualization of the 1D-CNN FC layer in circuit-2
(a) input data (b) output data of hidden FC layer.

Then the Monte-Carlo simulation is performed to pro-
duce 300 samples of each fault mode, which are equally
separated into the training and the testing datasets. Simi-
larly, the 1D-CNN model for this circuit is constructed with
2 blocks, a FC layer and a softmax classifier. The response
signal of each incipient fault in this circuit is sampled with
dimension of 600×1 and output of FC layer is 32×1. The
number of kernels in Conv-1 and Conv-2 is 36 and 18, while
receptive field of each kernel is 5 and 3, respectively. Themax
pooling kernels with length 2 are designed in all Conv blocks.
Then the t-SNE technique is applied to visualize the input
data and output data of to demonstrate the feature extraction
results.

Figure 8 indicates that the 1D-CNNmodel can separate dif-
ferent fault patterns apparently. Intuitively, it shows that some
fault patterns have slight overlapping between R3↓ and R2↓
regions, C1↓ and C2↑ regions, R1↓ and R2↑ regions, R4↓
and fault free regions. In addition, C2↑ and C1↓ has a few
outliers in each other’s regions. However, comparing with the
results of raw data, the regions of each fault type have clear
boundary after processing by 1D-CNN, which demonstrates
its good performance in feature extraction further.

3) EXAMPLE CIRCUIT 3
In this section, a more complex analog circuit model is pre-
sented to illustrate the feature extraction performance of the
1D-CNN. A leapfrog filter circuit model with normal values
of all components is presented in Figure 9.
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FIGURE 9. Leapfrog filter circuit.

It should be indicated that most components in this circuit
are sensitive to the parameters of the response waveform,
including the center frequency, voltage maximum and the
bandwidth. In this regard, the components R1, R2, R3, R4,
R6, R7, R8, R9, R10, C1, C2, C3, and C4 which have
remarkable impact on the waveform parameters should be
simulated in the failure state with 50% lower and higher
variation than their nominal values. The rationality of fault
occurrence is fully considered by the fault setting to reflect

FIGURE 10. Raw output signals of different fault patterns in circuit-3
(a) soft faults in R1, R2, R3, R4, R6, and R7 (b) soft faults in R8, R10, C1,
C2, C3, and C4.

the inherent characteristics of each faulty component. Input
signal is a single pulse of 5V pick amplitude with 200µs
duration in the time domain. The white noise is added to the
simulated signals as above two circuits. In order to show the
raw response signals more clearly, the waveforms of signals

FIGURE 11. Feature visualization of 1D-CNN FC layer in circuit-3 (a) soft faults in R1, R2, R3, R4, R6, and R7 (b) soft
faults in R8, R10, C1, C2, C3, and C4.
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TABLE 1. Comparing the classification accuracy of different methods in
Circuit-1.

TABLE 2. Comparing the classification accuracy of different methods in
Circuit-2.

are separated. Figures 10 (a) and 10 (b) illustrate the obtained
results.

The response signal of each fault in this circuit is sampled
with dimension of 800×1 and output of FC layer is 64×1.
As shown in Figure 2, the number of kernels in Conv-1 ad
Conv-2 is 32 and 16, while receptive field of each kernel
is 5 and 3, respectively. After feature extraction, the feature
visualization results of raw data and output data are presented
in Figure 11 using t-SNE technique.

Experimental results prove that the 1D-CNN model has
reasonable performance in extracting deep features for soft
faults in analog circuits. Meanwhile, it can implement
the filtering of interference noise in the feature extrac-
tion process. Comparing the visualization results presented
in Figures 11(a) and 11(b), 11(c) and 11(d), it is concluded
that learned features by the 1D-CNN achieves a better sep-
arability. A large area of overlapping if found in raw data
visualization results, but a slighter overlapping exists in the
output data of the FC layer. Mapped features of the 1D-CNN
can be clustered well for all fault types, indicating the good

TABLE 3. Comparing the classification accuracy of different methods in
Circuit-3.

performance of feature representation ability of the proposed
model. Meanwhile, the feature extraction results are in good
consistency with fault classification results shown in Table 4.

B. CLASSIFICATION EXPERIMENT TO PERFORM FAULT
DIAGNOSIS
Feature extraction and selection is an important stage for
fault classification aiming to find an effective fault diag-
nosis method. Experimental circuits include the Salley-Key
bandpass filter (Circuit-1), Four-opamp biquad high-pass
filter (Circuit-2), and the leapfrog filter (Circuit-3). The
circuit model and parameter settings, including the noise
added to the dataset of circuit-3, are the same with those
of section 3.1. In order to evaluate the performance of the
proposed method, results obtained from the 1D-CNN classi-
fier are compared with those of other classification methods,
including ANFIS [22], DBN [17] and UFK-WNN [20]. All
of these methods are based on the neural network algorithm.
For each incipient fault pattern, 300 groups labeled 1-D time
series are divided equally into 150 groups of training data
and 150 groups of testing samples. It should be indicated
the common 1D-CNN model with the same configuration as
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TABLE 4. Confusion matrix of the testing results based on 1D-CNN in Circuit-1, Circuit-2 and Circuit-3.
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the model in feature extraction experiments is used for the
feature extraction and fault classification for one circuit, but
the output data is from the FC layer in the feature extraction
and classification results is from softmax layer. The 10-fold
cross-validation experimental results of fault classification
are provided in Tables 1, 2, and 3.In order to present the actual
and predicted categories of each fault type intuitively, the con-
fusion matrix (i.e. the error matrix in the supervised learning)
of testing results are obtained through the 1D-CNN in one
experiment. Table 4 presents the obtained results accordingly.

Comparing the classification results obtained from differ-
ent methods indicate that the fault diagnosis performance
of the 1D-CNN method has high accuracy even when input
signals are polluted by the noise. With the powerful filter
capability, the 1D-CNN method shows superior performance
to ANFIS, DBN and WNN methods in accuracy and anti-
interference of classification. It is found that the classifica-
tion accuracy of 1D-CNN, ANFIS, DBN and WNN meth-
ods reach 97.7%, 97.0%, 97.3% and 94.5%, respectively for
circuit-1, and 97.1%, 95.7%, 95.0% and 93.8%, respectively
for circuit-2. Furthermore, results have some differences for
various faults modes. For example, C1↑ and C1↓, R4↑ and
R4↓ have lower diagnosis accuracy, which originates from
their similar response signals in circuit-2. Moreover, the aver-
age classification accuracy of ANFIS, DBN, and UKF-WNN
methods for circuit-3 reaches 93.4%, 94.9% and 92.8%,while
that of the proposed 1D-CNN method reaches 95.6%, which
demonstrates the reasonable performance of the proposed
method in the fault diagnosing. Based on the confusionmatrix
of testing results obtained from the 1D-CNN method in one
experiment, it is concluded that most fault types can be
classified into accurate categories with a small number of
true negatives. Furthermore, comparing the two results of
feature extraction and confusion matrix, shows that they are
consistent with each other, where the distinct feature extrac-
tion result promotes the classification accuracy. It can be
concluded that the 1D-CNN method can achieve satisfactory
results with anti-interference and stable characteristics in soft
fault diagnosing of analog circuits.

IV. CONCLUSION
This paper proposes an analog circuit fault diagnosis method
using the a compact 1D-CNN model. The proposed intelli-
gent diagnosis model employs a supervised machine learning
approach for fault classification with feature extraction and
visualization. The adaptive mechanism is implemented by
constructing Conv blocks so that hierarchical features can
be obtained through these blocks. Compared with existing
NN methods, the proposed 1D-CNN model can be simply
designed for more complex analog circuits and can dis-
tinguish various signals of fault patterns. The convolution
kernels (filters) are utilized in the training model with capa-
bility of learning local and hierarchical representations from
raw signals. These kernels not only improve the classifica-
tion accuracy, but also guarantee the anti-interference per-
formance of fault diagnosis method, which makes it more

suitable for real-time fault detection and monitoring. Then
the performance of the proposed method is evaluated through
three analog circuit examples. However, the main drawback
of the proposed method is that training the 1D-CNN model
requires more accurate and larger labeled datasets. In the
near future, it is intended to focus on the more data-driven
fault diagnostic techniques with data argumentation methods
through the unsupervised way.
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